
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Impact of transport modeling on the ^{60}Fe abundance
inside Galactic cosmic ray sources

Giovanni Morlino and Elena Amato
Phys. Rev. D 101, 083017 — Published 13 April 2020

DOI: 10.1103/PhysRevD.101.083017

http://dx.doi.org/10.1103/PhysRevD.101.083017


Impact of transport modelling on the 60Fe abundance inside Galactic cosmic ray
sources

Giovanni Morlino1, ∗ and Elena Amato1, 2, †

1INAF/Osservatorio Astrofico di Arcetri, L.go E. Fermi 5, Firenze, Italy
2Dipartimento di Fisica e AstronomiaUniversità degli Studi di Firenze,
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The ACE-CRIS collaboration has recently released the measurement of radioactive 60Fe nuclei
abundance in Galactic Cosmic Rays, in the energy range ∼ 195 − 500 MeV per nucleon. We model
Cosmic Ray propagation and derive from this measurement the 60Fe/56Fe ratio that is expected
in the sources of Galactic Cosmic Rays. We describe Cosmic Ray origin and transport within the
framework of the disk/halo diffusion model, namely a scenario in which the matter and the Cosmic
Ray sources in our Galaxy are confined to a thin disk, while Cosmic Ray propagation occurs in
a much larger halo with negligible matter density. We solve the Cosmic Ray transport equation
accounting for spallation reactions, decay and ionization losses as well as advection. We find that
the 60Fe/56Fe ratio at the source must be very close to the value detected in the local Cosmic Ray
spectrum at Earth, due to the fact that spallation reactions are more effective for 56Fe than for 60Fe.
Such a result could help identify the sources of Galactic Cosmic Rays.

I. INTRODUCTION

The question of what the primary sources of Galactic
Cosmic Rays (CRs hereafter) are is a very active subject
of research. While particle acceleration certainly takes
place in Supernova Remnants (SNRs hereafter), there are
some important unsettled issues in the paradigm that
associates Galactic CRs to Supernova (SN) explosions.
Among these is the CR composition, which shows few
but relevant peculiarities, likely to hold precious clues
both on the main sources and on the acceleration process.
Especially important in this sense is the study of nuclear
isotopes that are not commonly found in the ISM, like
22Ne and 60Fe. This work focuses on the latter, which
is believed to be produced primarily in core-collapse SNe
involving stars with mass >∼ 10M�.

60Fe is a radioactive isotope, unstable to β− decay,
with a half-life of 2.62× 106 years. While SN nucleosyn-
thesis calculations [1, 2] predict it to be rare, its relatively
long half-life has however made it detectable in CRs: a
thorough analysis of ACE-CRIS data collected between
1997 and 2014 has revealed the presence of 60Fe nuclei in
the energy interval between 195 and 500 MeV/n (energy
per nucleon)[3]. In this range, the measured 60Fe/56Fe
ratio is (4.6± 1.7)× 10−5.

In order to derive from this measurement the value of
60Fe in CR sources, one must first correctly describe two
fundamental processes: i) the particle injection mecha-
nism, that must be able to promote elements from the
thermal pool to relativistic energies and ii) the propa-
gation of CRs from the sources to Earth. In the frame-
work of diffusive shock acceleration theory (DSA), the
injection of elements can only depend on the A/Z ra-
tio (where A is the atomic number and Z the effec-
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tive charge of each specie). Such a dependence has
been invoked to explain the difference between
the GCR and solar composition: in particular,
the increase of injection efficiency with the ra-
tio A/Z allows one to explain the enhancement of
the heavier elements with respect to the lighter
ones (among the volatile elements), as well as the
mass-independent enhancement of the refractory
elements with respect to the volatile ones [4, 5].
Those findings are also in agreement with results
from hybrid simulations, where a dependence of
injection ∝ (A/Z)2 has been found [6], implying that
the injection of 60Fe is expected to be enhanced, with
respect to that of 56Fe, by less than ∼ 15%.

As far as propagation is concerned, in the 60Fe dis-
covery paper by the ACE-CRIS collaboration [3], a sim-
plified leaky box model was used to infer a value of
(7.5 ± 2.9) × 10−5 for the 60Fe/56Fe ratio in the CR
sources. Such a high value would clearly imply that the
60Fe observed in CRs cannot originate from the accelera-
tion of the average interstellar medium (ISM), where the
relative abundance of 60Fe is much lower. In fact, the
60Fe abundance has been measured in the ISM through
the detection of γ-ray lines produced by its decay. The
best available measurement comes from the spectrome-
ter on board the INTEGRAL mission [7] and returns a
60Fe/56Fe ratio of ∼ 3× 10−7 [see also 8]1.

In a time when several different aspects of the standard
scenario for the origin and propagation of CRs are be-
ing questioned, pushed by both new data and theoretical
developments [see 9, 10, for a review], gamma-ray obser-
vations [11] have recently revived the suggestion by [12]
that the winds of massive stars might be important (if not

1 It is interesting to note that the estimated value of 60Fe/56Fe
ratio at the time of formation of the Solar System is even lower,
being ∼ (3.8± 6.0)× 10−8 [8].
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the primary) CR sources. Such a scenario would imply a
paradigm shift, but what is interesting in the context
of this work is that one of the possible tests consists ex-
actly in the CR abundance of 60Fe: stellar wind material
has essentially the same composition as the galactic av-
erage, and hence a large 60Fe abundance in CR sources
disfavours these winds as the main CR contributors, at
least at low energies (below 1 GeV/n), where these mea-
surements are available.

However, before deriving any firm conclusion about the
60Fe/56Fe ratio at the sources, it is important to make
sure that CR propagation is correctly accounted for. In
fact, the leaky-box model adopted by [3] in the discov-
ery paper is not appropriate to describe the propagation
of unstable nuclei whose decay time is smaller than the
escape time from the Galaxy [see, e.g. 13, 14]. To over-
come this difficulty and provide a more reliable estimate
of the 60Fe abundance in CR sources, here we model the
Iron propagation using the disk/halo model [15], where
the Galaxy geometry is taken into account in a more
realistic way. Such a model has been successfully ap-
plied to explain the spectrum of several CR species [see,
e.g., 15] also in the context of self-generated turbulence
[16–18]. In general, for stable nuclei, the disk is treated
as infinitely thin: this approximation allows one to de-
rive an analytical solution by means of the weighted slab
technique, which, compared to numerical techniques of-
ten used to solve the CR transport equation [19, 20], has
the advantage of providing a more immediate picture of
the underlying physics. However, the thin disk approxi-
mation becomes, in principle, inappropriate for unstable
nuclei, when the propagation length-scale becomes of the
order of the disk thickness. For this reason here we also
check its results against the solution obtained for a fi-
nite disk size, quantifying the difference between the two
approaches.

The paper is organised as follows. In § II A and II B
we present the solution for the CR spectrum of stable
and unstable nuclei for a thin and a thick Galactic disk,
respectively. In § III we introduce the grammage and in
§ IV we discuss the two different transport models we as-
sume for our calculations. In § V we present quantitative
results for the 60Fe/56Fe ratio in CR sources, in both
propagation scenarios we consider. Finally, we discuss
the differences between our approach and the leaky-box
model in § VI and our conclusions in § VII.

II. THE CR DISTRIBUTION FUNCTION

In this section we solve the CR transport equation
within a disk/halo model of the Galaxy, considering both
a thin (§ II A) and a thick (§ II B) disk. While the latter
allows a more appropriate treatment of the case of unsta-
ble nuclei, the former, being simpler, serves the purpose
of illustrating the role of the different physical processes
determining the CR spectra. In addition, it also allows
one to introduce and directly quantify the accumulated

grammage, as we discuss in § III and V.

A. The thin disk solution

The transport equation for Iron nuclei that undergo
spallation, decay and also ionization losses is written as:

− ∂

∂z

[
D
∂f

∂z

]
+ u

∂f

∂z
− du

dz

p

3

∂f

∂p
+

f

τsp
+
f

τd
(1)

+
1

p2

∂

∂p

[
ṗion p

2f
]

= q(p, z) ,

where z is the height above or below the disc, located at
z = 0; D(p, z) is the diffusion coefficient; u(z) is the ad-
vection velocity, directed along z; and q is the injection
rate CR sources provide per unit volume. Finally, ṗion

describes ionization losses, while τsp and τd are the spal-
lation and decay timescales, respectively. Notice that we
are not including a source term coming from the spal-
lation of heavier elements, because for Iron this is com-
pletely negligible. Moreover we are neglecting the
diffusion in momentum space because second or-
der acceleration is found, a posteriori, to be irrel-
evant, in the propagation model we consider (see
the end of § IV).

We simplify Eq. (1) adopting a 1D slab model as de-
scribed in [15]: the CR sources are located only inside a
thin disk of half-thickness h, while the confining volume is
a thicker halo, with half-thickness H � h. The majority
of matter is concentrated inside the disk, where the gas
density is nd. The gas density in the halo, nh, is assumed
to be negligible, so that spallation and ionization losses
only occur inside the thin disk2. We further assume that
D and u are constant in the halo with u = u0(2Θ(z)−1).
In such a simplified model, the 1D transport equation re-
duces to:

− ∂

∂z
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D
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− 2

3
u0p
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δ(z) +

2hδ(z)

τsp
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f

τd

− 1

p2

∂

∂p

[
p3

τion
f

]
2hδ(z) = 2hq0(p)δ(z) , (2)

where we introduced τion = −p/ṗion. Notice that of-
ten the collisional terms are written as a function of
the disk column density which is a measured quantity,
µ = 2hndm = 2.4 mg cm−2 [21]. Hence, for both spalla-
tion and ionization losses, we can write 2h/τ = µvσ/m,
with m = 1.4mp, the average mass of gas particles. The
spallation and ionization cross sections we use are re-
ported in Appendix § A.

In order to solve Eq. (2), we proceed using a standard
technique: we first solve the equation for z > 0, where
injection, spallation and ionization processes are absent;

2 Notice that this assumption is violated when nhH
>∼ ndh. When

this happens, spallation in the halo cannot be neglected anymore.
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then we look for the solution at z = 0, integrating Eq. (2)
around the disk discontinuity. Above and below the disc,
the transport equation reads:

D(p)
∂2f

∂z2
− u0

∂f

∂z
− f

τd
= 0 , (3)

which is a linear second order differential equation whose
general solution is

f = Aeα+z +Beα−z , (4)

where α± are the solutions of the second order algebraic
equation Dα2

± − u0α± − 1/τd = 0. The coefficients α±
are then:

α± =
u0

2D

[
1±

√
1 +

4D

u2
0τd

]
≡ u0

2D
[1±∆] , (5)

where we have introduced the dimentionless quantity ∆
that can also be written as a function of the time scales
involved in the propagation process, namely

∆ =
√

1 + 4τ2
adv/ (τdiffτd) (6)

with τdiff = H2/D and τadv = H/u0. Clearly ∆→ 1 for
τd � τadv, τdiff . Now, the constants A and B in Eq. (4)
are determined by imposing the boundary conditions at
the Galactic disk and at the edge of the halo: f(p, z =
0) = f0(p) and f(p, z = ±H) = 0. The final solution, for
z > 0, reads:

f(z, p) = f0(p)
1− eu0∆(z−H)/D

1− e−u0∆H/D
eu0(1−∆)z/2D , (7)

which in the case of stable elements (∆ = 1) reduces to
the well know solution

fstable(z, p) = f0(p)
1− eu0(z−H)/D

1− e−u0H/D
. (8)

The distribution function inside the disc, f0(p), can be
obtained by integrating Eq.(2) between 0− and 0+:

−2

[
D
∂f

∂z

]
z=0+

− 2u0

3
p
∂f0(p)

∂p
+

2h

τsp
f0(p)

−2h

p2

∂

∂p

[
p3

τion
f0

]
= Q0 , (9)

with Q0(p) = 2hq0(p). The quantity D∂f/∂z|0+ repre-
sents the diffusive flux at the disk position and can be
obtained deriving Eq. (7) with respect to z, namely:[

D
∂f

∂z

]
z=0

= f0
u0

2

(1−∆)− (1 + ∆)e−u0∆H/D

1− e−u0∆H/D
(10)

≡ −f0(p)
u0

2
ξ(p) .

The quantity ξ(p) is a measure of the gradient of the dis-
tribution function in units of D/u0. Its meaning is easily

appreciated in a few limiting cases. Let us introduce the
scale-length L such that:[

D
∂f

∂z

]
z=0

' −f0
D

L
. (11)

In the case of stable nuclei, ∆ = 1 and ξ = 2/(eu0H/D −
1). If we now consider the diffusion dominated case, i.e.
D � u0H, we find ξ → 2D/(u0H), which shows that the
gradient of the distribution function is on a scale L =
H. On the other hand, in the advection dominated case
ξ → 0, and the scale-length is L → ∞. Finally, in the
case of unstable elements, if τd � 4D/u2

0 and τd � tdiff ,

are both satisfied, one finds ξ → ∆ =
√

4D/(u2
0τd) and

L =
√
Dτd.

Using Eq. (10), we can recast Eq. (9) as follows

p
∂f0(p)

∂p
=
λ1(p)f0(p)−Q0(p)

λ2(p)
(12)

where

λ1(p) ≡ ξ(p)u0 +
2h

τc1
(13)

λ2(p) ≡ 2

3
u0 +

2h

τion
(14)

and

τ−1
c1 = τ−1

sp + (αion − 3)τ−1
ion (15)

αion =
d ln(τion)

d ln(p)
. (16)

Eq. (12) is a first order differential equation in p whose
solution can be found as:

f0(p) =

∫ ∞
p

dp′

p′
Q0(p′)

λ2(p′)
exp

[
−
∫ p′

p

λ1(p′′)

λ2(p′′)

dp′′

p′′

]
. (17)

Eq. (17) shows that f0(p) is formed by particles injected
with momentum p′ ≥ p, that lose energy down to p dur-
ing propagation. The energy decrease is due to both adi-
abatic and ionization losses: particles loose energy each
time they cross the disk because of adiabatic expansion
and ionizing collisions. Clearly energy losses are impor-
tant only at low energies, i.e. when D <∼ L/u0, which
generally occurs for E <∼ few GeV for standard propaga-
tion parameters. In the opposite limit, for energies such
that D � L/u0, we have λ1/λ2 � 1 and the exponential
function reduces to a Dirac-δ:

exp

[
−
∫ p′

p

λ1(p′′)

λ2(p′′)

dp′′

p′′

]
→ p′λ2(p′)

λ1(p′)
δ(p− p′) . (18)

In this limit Eq. (9) reduces to f0(p) ≈ Q0(p)/λ1(p),
which reproduces the standard result for stable nuclei
when spallation and ionization are neglected: this is sim-
ply f0(p) = Q0H/(2D).
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B. The thick disk solution

As mentioned above, unstable elements whose propa-
gation length, Ldiff =

√
Dτd, is of the order of, or smaller

than, the disk size, are not accurately described by the
infinitely thin disk solution. For 60Fe, the diffusion

length is
√
Dτd ' 140D

1/2
27 pc at E ' 500 MeV/n,

where D27 is the diffusion coefficient in units of
1027 cm2 s−1. Therefore, in the energy range of
CRIS measurements, the diffusion length of 60Fe
is comparable with the disk size.

In order to compare our model results with CRIS data,
we are then forced to take into account the finite size of
the disk. The solution of this problem has long been
known for cases when ionization losses can be neglected
[see, e.g. 22, 23]. However ionization plays an important
role in the energy range we are interested in, so in the
following we present our own solution of Eq. (1), for the
case of a thick disk (of half thickness h) with a uniform
distribution of gas and CR sources.

The steps towards solving Eq. (1) are similar to the
ones in the previous section. We first find a solution for
the halo (h < z < H), where losses are absent and only
the decay term is important. Then we obtain a solution
valid inside the disk (|z| < h), including spallation and
ionization. Finally, we find the CR spectrum at the Earth
location (z = 0), by integrating Eq. (1) between 0− and
0+. The transport equation in the halo is the same as in
Eq. (3), hence the solution for h < z < h + H is the
same as Eq. (7), except that z has to be replaced with
z−h and f0 with fh = f(h, p). We then find the solution
for the distribution function in the halo as:

fout(z, p) = fh(p)
1− eu0∆(z−h−H)/D

1− e−u0∆H/D
eu0(1−∆)(z−h)/2D.

(19)
Concerning the solution inside the disk, we need to

include the spallation and ionization terms. The latter
term is, in principle, more delicate to handle because it
contains the momentum derivative of f . We write this
term as:

1

p2

∂

∂p

[
p2 ˙pionf

]
=

f

τion

[
∂ ln τion

∂ ln p
− ∂ ln f

∂ ln p
− 3

]
=

f

τion
[αion + α− 3] . (20)

The latter expression is linear in f apart from the spectral
slope α which, however, can be approximated as constant
for the purposes of the present work. We can then define
a compound timescale (analogous to that in Eq. (16)),

τ−1
c ≡ τ−1

d + τ−1
sp + (αion + α− 3) τ−1

ion , (21)

such that the transport equation in the disk can be
rewritten as

−D(p)
∂2fin

∂z2
+ u0

∂fin

∂z
+
fin

τc
= q(p) . (22)

The latter equation is completely analogous to Eq. (3).
The two coefficients that appear in its solution, to-
gether with fh(p) appearing in Eq. (19), can all be de-
termined imposing the following boundary conditions:
fin(0, p) = f0(p), fin(h, p) = fout(h, p) and ∂zfin(h, p) =
∂zfout(h, p), where the last two conditions entail the con-
tinuity of the particle distribution function and its flux
at the boundary between the disk and the halo, under
the assumption that the diffusion coefficient is the same
in the two regions.

The distribution function at the centre of the disk,
f0(p), is obtained again integrating Eq. (1) between 0−

and 0+, which gives

− 2

[
D
∂fin

∂z

]
z=0+

− 2u0

3
p
∂f0

∂p
= 0 , (23)

where the term in the square brackets can be obtained
deriving the solution of Eq. (22) with respect to z. The
final differential equation for f0 has the same form as
Eq. (12), namely p∂pf0(p) = Ω1f0−Ω2, and the solution
reads

f0(p) =

∫ ∞
p

dp′

p′
Ω2(p′) exp

[
−
∫ p′

p

Ω1(p′′)
dp′′

p′′

]
(24)

where

Ω1 =
3

2

∑
+,−

−1∓∆in

1− 1±∆in+ξ
1∓∆in+ξ e

±(α++α−)h
,(25)

Ω2 =
3Dq

u2
0∆in

{
2

3
Ω1

[
e−α+h − 1

1 + ∆out
− e−α−h − 1

1−∆out

]
+

+ e−α+h − e−α−h
}
, (26)

and

ξ =
∆out − 1 + (1 + ∆out)e

−u0∆outH
D

1− e−
u0∆outH

D

, (27)

α± =
u0

2D
[1±∆in] , (28)

∆in =

√
1 +

4D

u0τc
, ∆out =

√
1 +

4D

u0τd
. (29)

The integral in Eq. (24) is performed using the nu-
merical technique presented in [24]. We verified that
the solution (24) gives the same result as Eq. (17) when
h/H → 0.

III. GRAMMAGE

While the thick disk solution provides a more accu-
rate description of CR propagation in the situation we
are considering, the thin disk approximation is more
useful if one wants to discuss propagation in terms of
the grammage that particles accumulate. Following
[15, 16], the grammage can be derived rewriting
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Eq. (9) in terms of I(E), namely the particle flux as a
function of kinetic energy per nucleon E. The equality
I(E)dE = vp2f0(p)dp implies that I(E) = Ap2f0(p), A
being the atomic mass number of the nucleus. With
such a substitution, Eq. (9) can be rewritten as

(ξ + 2)u0I(E)− v

Ac

d

dE

{[
p

(
2

3
u0 +

2h

τion

)]
I(E)

}
+

2h

τsp
I(E) = 2hq0Ap

2 (30)

where we have used the definition of ξ from Eq. (10) and

p =
√
E(E + 2mpc2)/c. Rather than solving Eq. (30)

explicitly, we want to focus on the differences between
stable and unstable nuclei in terms of accumulated gram-
mage, which provides immediate insight on how the dif-
ferent isotopes are affected by propagation.

To this purpose, we recast Eq. (30) in a more useful
form by introducing the disk column density µ mentioned
in § II A and write:

I(E)

X(E)
+

d

dE

{[(
dE

dx

)
ad

+

(
dE

dx

)
ion

]
I(E)

}
+
σspI

mp
= Q(E) , (31)

where

X(E) =
µv

u0

1− e−u0∆H/D

(1 + ∆)− (1−∆)e−u0∆H/D
(32)

is the grammage for nuclei with kinetic energy per nu-
cleon E, (

dE

dx

)
ad

= −2u0

3µc

√
E(E + 2mpc2) (33)

is the rate of adiabatic energy losses,(
dE

dx

)
ion

= − 2hp

µτion
= −

σionv
√
E(E + 2mpc2)

cmp
(34)

is the rate of energy losses due to ionization, and

Q(E) =
2h

µv
Ap2q0(p) (35)

is the source term.
Notice that with respect to the result presented by

[15, 16], here the grammage X(E) has a more com-
plicated expression because it also accounts for decay.
However, Eq. (32) immediately shows the asymptotic
behaviour of the grammage in three different cases:
advection-dominated, diffusion-dominated and decay-
dominated regimes. The corresponding approximate ex-
pressions are:

X=
µv

2u0
when τadv � τdiff , τd ; (36)

X=
µvH

2D
when τdiff � τadv , τd ; (37)

X=
µvτd

2
√
Dτd

when τd � τdiff , τadv . (38)

TABLE I. Values of the parameters used in the model.

u0 h H np,disk D0 δ ∆δ s Rb γ
(km/s) (pc) (kpc) (cm−3) (cm2s−1) (MV)

5.0 150 7 1.5 3.08 × 1028 0.54 0.2 0.1 312 4.3

These expressions will be useful for the interpre-
tation of the ratio between the isotopes that we
discuss in § V.

IV. TRANSPORT MODEL

We now go back to the CR transport equa-
tion for a thick disk and discuss its full solution,
Eq. (24). Since experimental results are usually
presented in terms of the particle flux as a func-
tion of kinetic energy per nucleon, I(E), we will
present our result in this form.

The model has several parameters that need to
be fixed in order to provide a meaningful estimate
for the 60Fe/56Fe ratio at the source. The param-
eters to be fixed are H, h, u0, the diffusion coef-
ficient D and the injection spectrum q0(p). Their
combination can be constrained by fitting the ob-
served spectra of primary and secondary nuclei,
and their ratios. As fiducial values we decided
to use those estimated by [25] and [26], where
the authors used a 1D model in the thin disk
approximation identical to the one described in
§ II A. Table I summarises the best fit values of
the model free parameters. We discuss them be-
low.

In order to account for the spectral break ob-
served in all CR spectra at a rigidity ∼ 300 GV,
in [25] the diffusion coefficient is described by the
following functional form

D(R) = 2u0H + βD0
(R/GV)

δ

[1 + (R/Rb)∆δ/s]s
, (39)

where β = v/c with v the velocity of the parti-
cle of rigidity R, D0 is the value of the diffu-
sion coefficient at R = 1 GV and the break is
described in terms of s, ∆δ and Rb, which are,
respectively, a smoothing parameter, the magni-
tude and the characteristic rigidity of the break.
Even if Eq. (39) reflects a phenomenological ap-
proach, its form has been inspired by previous
works [16, 17, 27], where the diffusion is described
using two different sources of scattering: the ex-
ternally generated turbulence, which dominates
the transport at high rigidities, and the CR self-
generated turbulence, which dominates, instead,
at lower rigidities. In other words, the spectral
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break of D reflects the transition between these
two regimes. At small rigidities, namely for R <∼ 1
GV, where advection becomes important, the dif-
fusion flattens to D → 2u0H. The presence of
such a plateau is also a consequence of the self-
generated turbulence as found in Ref. [28] and
reflects the fact that advection and diffusion are
equally important (or, in other words, pure ad-
vection never dominates). It is worth noticing
that in pure diffusion models (where advection
and reacceleration are neglected) the existence of
such a plateau is in any case required by the data
[15].

In [26] all parameters are fixed by performing a
global fit over the AMS-02 data, in particular us-
ing the spectrum of p, He, C, N, O plus the ratios
Be/C, B/C, Be/O and B/O. Notice that D0 and
H cannot be determined separately based on the
flux of stable secondary and primary CRs alone,
because this only constrains the ratio D0/H. In
order to disentangle the two quantities, it is nec-
essary to use unstable elements. Unfortunately,
measurements of unstable isotopes are available
only at very low energies and AMS-02 is not able
to distinguish between isotopes of the same ele-
ment. However, the CR Beryllium is composed
by a non negligible fraction of 10Be, whose half-
life is 1.51 Myr, so that the decay signature is
clearly visible in the total Be flux. [26] used the
Beryllium flux measured by AMS-02 to fix the
halo thickness, providing a best fit of H = 7 kpc.
In our analysis we will adopt such a value, which
is, however, slightly larger than the one usually
adopted in the literature (closer to ∼ 4 − 5 kpc
[15]). In the next section we will comment on
how our results are affected by the halo thick-
ness. The remaining parameter values are the
ones reported in Table I.

The CR spectrum injected by the sources is
assumed to be a simple power law q0,i(p) ∝ p−γi

where the spectral index γi can differ for differ-
ent species. The best fit gives γp = 4.35, γHe = 4.25
while all heavier elements have the same slope
γCNO = 4.3. In [26] the Fe spectrum is not taken
into account, because no such data have been re-
leased by the AMS-02 collaboration so far, hence
we adopt here γFe = 4.3, as for CNO elements. A
comparison between the predicted spectrum and
existing data is shown in Figure 1. Considering
that the error bars above ∼ 10 GeV/n are quite
large, the agreement between our solution and
the data is rather good. Below ∼ 10 GeV/n the er-
ror bars are much smaller and the scatter between
data from different experiments is mainly due to
solar modulation. Notice that the spectrum has
been corrected for the solar modulation using the
widely used force-free approximation as in [29].
During the ACE-CRIS data taking period, the
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FIG. 1. Model predicted spectrum of Iron compared with data
from different experiments. The solid-black line is calculated
using a solar modulation potential equal to Φ = 453 MV,
as estimated by [3] while the upper and lower thin-red lines
have Φ = 250 and 1000 MV, respectively. Data are taken from
the Cosmic Ray Database [30, http://lpsc.in2p3.fr/crdb/]
and include all experiments performed after 1980.

solar wind potential Φ varied between 250 and
1000 MV, with an average value of Φ = 453 MV
[3]. We use this value for our calculation but, in
order to quantify the impact of the solar mod-
ulation, in the same Figure 1 we report the Fe
flux calculated with the maximum and minimum
values of Φ during the relevant period: the varia-
tion is consistent with the observed scatter of the
data.

Once the parameters of the model have been
established, we can evaluate all the relevant
timescales of the problem for both Fe isotopes.
We plot the ones relevant for 60Fe in Figure 2.
Notice that the average timescales for spallation
and ionization are calculated using the average
target density, i.e. 〈τ〉 = (σv ndisch/H)−1. Figure 2
makes it clear that, below ∼ 10 GeV/n, the 60Fe
propagation is largely determined by radioactive
decay. An analogous plot for 56Fe would show
slightly different curves describing spallation, dif-
fusion and ionization, due to the 7% difference
in atomic mass between the two isotopes. How-
ever, in the energy interval in which we are inter-
ested, diffusion is definitely more effective than
advection, while spallation losses are more rele-
vant than ionization above ∼ 100 MeV/n.

In deriving our solution for the particle prop-
agation in § II we neglected the effect of reac-
celeration. Such an assumption can be justified
a posteriori estimating the reacceleration time as
τreacc = p2/Dpp where the momentum diffusion is
related to the spatial diffusion as Dpp = p2v2

A/(ηpD)
and ηp ' 0.1 [31]. In our model the reacceleration
time at 100 MeV/n is ∼ 4.5 Gyr and increases
∝ Rδ for larger rigidities, hence it is much larger
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FIG. 2. Timescales in Myr for all processes involved in the
transport of 60Fe for unmodulated energies. The curves
refer to the values of the model parameters reported in Ta-
ble I.

than any other relevant timescale. This result
reflects the low level of magnetic turbulence at
scales that resonate with particles in this energy
range, and it is in line with the idea that, in order
to be effective, diffusive reacceleration scenarios
generally require an uncomfortably large energy
density in turbulence throughout the Galaxy [31].

V. RESULTS FOR THE ISOTOPE RATIO

As already anticipated, the key parameter that allows
us to understand the behaviour of the 60Fe/56Fe ratio is
the different grammage experienced by the two isotopes.
However, the grammage is a quantity that can be easily
defined only in the thin disk model. Before discussing it,
then, it is worth to consider the difference between the
thick and the thin disk solutions. In Figure 3 we show the
ratio between the fluxes calculated with the thick and the
thin solutions, Ithick/Ithin, for both 56Fe and 60Fe. All
curves are computed within the transport model
described in the previous section. Notice that,
for the thick disk solution, we are assuming that
the diffusion coefficient in the disc is the same as
the one in the halo. One can see that when the disk
size is taken into account, the flux below ∼ 10 GeV/n is
suppressed by the fact that spallation reactions and ion-
ization losses are more effective. The suppression reaches
30-40% at E ' 100 MeV/n when all loss processes
are included, while it is reduced to <∼ 10% when ion-
ization is not accounted for. This clearly highlights the
importance of taking ionization losses into account, and
also shows that at energies below ∼ 10 GeV/n, the finite
thickness of the disk cannot be neglected if one aims at
computing CR fluxes with an accuracy better than few
per cent.

no ionization

with ionization
Fe60

Fe56

108 109 1010 1011
0.6

0.7

0.8

0.9

1.0

E [eV/nucleon]

I th
ic
k
(E
)/
I th
in
(E
)

FIG. 3. Ratio between the Fe flux calculated in the thick disk
model and that computed in the thin disk approximation.
Both isotopes are shown: solid curves refer to 56Fe and dashed
to 60Fe, while thick (blue) curves include ionization losses and
thin (orange) do not. The solar modulation is applied with a
potential Φ = 453 MV, as estimated by [3].

While the thin disk approximation leads to a non-
negligible underestimate of absolute fluxes, it impacts the
two Iron isotopes in a similar way, so that the error on
the I60(E)/I56(E) ratio is ∼ 15% at ∼ 100 MeV/n and
decreases at larger energies. As a consequence, the thin
disk approximation still provides a reasonably good esti-
mate as far as the ratio of the two isotopes is concerned.

We then proceed to compute the grammage accumu-
lated by 60Fe and 56Fe (Eq. (32)) within the thin disk
approximation. In Figure 4, we show X60Fe, X56Fe,

as well as the ratio of these two grammages.
The plot shows the results for both unmodulated
(thick lines) and modulated (thin lines) energies
(with Φ = 453 MV).

It is clear that, at low energies, 56Fe suffers more spal-
lation than 60Fe. Only at energies >∼ 10 GeV/n the gram-
mage accumulated by the two isotopes becomes equal,
which correspond to the energy region where the de-
cay time is larger than the diffusion time. The results
shown in Figure 4 can be interpreted in terms
of propagation lengths by means of Eqs. (36)-(38).
As can be seen from Figure 2, at the low rigidities
of the ACE-CRIS data, the decay time is much
shorter than both τdiff and τadv. As a result, for
60Fe Eq. (38) applies, while 56Fe falls in the case
of Eq. (37), being τdiff < τadv. Therefore we expect

X56Fe

X60Fe

=
H√
Dτd

' 6.4 , (40)

which has been evaluated at the average (modu-
lated) energy measured by CRIS, i.e. 327 MeV/n.
It is interesting to notice that the above ratio
could reduce to unity even at low energies only
in the advection dominated regime with very
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FIG. 4. Grammage accumulated by 60Fe and 56Fe and
ratio of the two grammages as a function of kinetic
energy per nucleon. All lines assume the transport
model described in §IV. The solid (blue) curve is for
X56Fe, the dashed (orange) curve for X60Fe and the

dot-dashed (green) curve for X56Fe/X60Fe. The latter

quantity is clearly adimensional, but the numerical
values on the y-axis still provide the right scale. Thin
and thick lines refer to modulated and unmodulated
energies, respectively.

large advection speed. In fact in such a case
Eq. (36) should be used for 56Fe and we would
have X56Fe/X60Fe =

√
Dτd/(u0τd), which gives a re-

sult close to unity when diffusion and advection
become of comparable importance. In our case
X56Fe/X60Fe ≈ 1 at all energies requires u0

>∼ 500 km

s−1. This important fact implies that below such advec-
tion speed, at low energies transport is not fast enough to
compete with decay: 56Fe nuclei live longer and always
suffer more spallation and ionization losses than 60Fe.
The fluxes of the two are affected accordingly, with 56Fe
undergoing stronger suppression.

What we just discussed helps us to understand
the results showed in Figure 5, where we plot the
propagated ratio between 60Fe and 56Fe, namely
I60(E)/I56(E), under the assumption of an iden-
tical injection spectrum for the two (q60 = q56).
The solid curve shows the result obtained from
Eq. (24), while the shadowed band shows the en-
ergy range of CRIS data. In order to illustrate the
role of the different processes involved in propaga-
tion, in the same Figure we show the results that
are obtained by including only part of the rele-
vant processes: diffusion alone (dashed line - here
the advection speed has been reduced by a fac-
tor 10), diffusion + advection (dotted line), diffu-
sion + advection + spallation (dot-dashed line),
diffusion + advection + spallation + ionization
(solid line). It is clear that if propagation were
purely diffusive, the ratio between 60Fe and 56Fe

would be lower, the reason being that the escape
time from the Galaxy would be longer and the
60Fe would suffer more radioactive decays. Includ-
ing advection decreases the residence time in the
Galaxy and makes the fluxes of the two isotopes
more similar. However, this is a minor correction
in our model because the advection speed is only
5 km s−1 (see Table I). On the other hand, when
spallation and ionization losses are included, the
60Fe/56Fe ratio increases much more for the rea-
son we discussed above: 56Fe experiences a larger
grammage, hence suffering more losses than 60Fe.
As a consequence I60/I56 increases because I56 is
decreased. In conclusion the role of advection and
much more the role of losses, cannot be neglected
in this calculation.

After clarifying the role of the different pro-
cesses, we now turn to the task of using
CRIS measurement to deduce the ratio be-
tween 60Fe and 56Fe in CR sources. CRIS
measures the intensity ratio between 60Fe and
56Fe at two slightly different energies RI =
N60(327 MeV/n)/N56(340 MeV/n) = (4.6 ± 1.7)× 10−5.
We write the injection spectrum of CRs of species
s as qs(p) = n0χsKsp

−γ, where n0 is the gas den-
sity, χs is the relative abundance of each element
and Ks accounts for the efficiency of the injec-
tion process into the acceleration mechanism. In
this notation, we define Rsource = χ60/χ56, so that
the measured ratio RI between the two isotopes
is connected to the source ratio as

RI = Rsource
K60

K56

G60(E60)

G56(E56)
. (41)

where Gi accounts for propagation effects (i.e.
Gs(E) = Is(E)/qs(p)p

γ). The ratio G60/G56 is cal-
culated using Eq. (24) corrected for the Solar
modulation and using E60 = 327 MeV/n and
E56 = 340 MeV/n. Now, if one assumes that
the injection efficiency is the same for both iso-
topes, namely that K60 = K56, then the CRIS
measurement translates into an abundance ratio
Rsource = (8.0± 3.0)× 10−5.

We notice, however, that the injection efficiency
into the DSA mechanism may vary between dif-
ferent ions, being related to the mass to charge
ratio [4, 5]. The matter is very far from settled
and we will not discuss it in detail. We only
notice that if one assumes, following the results
from hybrid simulations by [6], that injection ef-
ficiency is proportional to ∝ (A/Z)2, then 60Fe is
injected more efficiently than 56Fe by 15%, so
that the final result in terms of abundances is
Rsource = (6.9± 2.6)× 10−5.

Before concluding this section, it seems appro-
priate to discuss the impact on our results of two
sources of uncertainties in our model: the size
of the halo and solar modulation. We already
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mentioned that the halo size is estimated to be
' 7 kpc based on constraints from the Beryllium
flux. Such a result can be affected not only by sys-
tematic errors in the Beryllium data, but also by
uncertainties in the spallation cross sections [26].
In the bottom panel of Figure 5 we report how
the estimated 60Fe / 56Fe ratio changes varying
the halo size between 4 and 9 kpc, while keep-
ing the ratio H/D0 constant. One can see that in
the ACE-CRIS energy interval the uncertainty is
∼ 10%. The same plot also shows the impact of
changing the solar modulation, allowing the po-
tential to vary between the maximum and mini-
mum values experienced during the data acquisi-
tion by ACE-CRIS. In this case the uncertainty
is less than 6%.

VI. COMPARISON WITH THE LEAKY-BOX
MODEL

We think it is mandatory to compare the results pre-
sented in the previous section with those found in [3],
where the leaky-box model (LBM) was used to describe
the transport. It is well known that such a model should
be used with caution when dealing with unstable nu-
clei: the LBM is perfectly equivalent to the slab-diffusion
model in describing stable particles, as showed by [32],
but it fails to describe unstable nuclei for the simple rea-
son that particles can disappear from the system before
reaching the boundary of the Galactic halo [14].

In spite of this important limitation the result pre-
sented in [3] is close to our finding within ∼ 8%. In the
following we discuss the reasons for this.

In the LBM the general solution for the CR spectrum
in the disk depends only on the characteristic timescales
of escape, decay and spallation, and is written as

N =
Q

τ−1
esc + τ−1

decay + τ−1
sp

. (42)

Hence the Fe isotope ratio at the sources is

Q60/Q56 = (N60/N56)× (τ56/τ60) (43)

where τ−1
56 = τ−1

esc +τ−1
sp56 and τ−1

60 = τ−1
esc +τ−1

sp60 +τ−1
decay60.

The value of the escape time used by [3] was estimated,
still in the framework of the LBM, based on the measure-
ments of other radioactive nuclei [33] and is τesc = 15±1.6
Myr. Within the same model, the average gas density is
nH+He = 0.38±0.04, and this is used to calculate the spal-
lation timescales leading to the values τsp56 = 4.45±0.47
Myr and τsp60 = 4.27± 0.45 Myr.

According to the analysis by [3], CRIS measurements
of 56Fe and 60Fe refer to an average energy in interstellar
space of 550 MeV/nu and 523 MeV/n, respectively. At
those energies, our model gives 〈τsp56〉 = 56.1 Myr and
〈τsp60〉 = 54.5 Myr (see Figure 2).
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FIG. 5. Ratio between the fluxes of 60Fe and 56Fe at
the same energy per nucleon. Top panel : Different
lines show the role of each process during transport.
From bottom to top, the different curves are com-
puted accounting for: diffusion only (dashed), diffu-
sion plus advection (dotted), spallation (dot-dashed)
and ionization (solid – full model). The shaded ver-
tical area shows the energy region of CRIS data. So-
lar modulation is taken into account with a potential
Φ = 453 MV. Bottom panel: As in the top panel, the
solid line shows the flux ratio 60Fe / 56Fe computed
within our base-line model. The shaded bands repre-
sent how the result varies when the solar modulation
changes between Φ = 250 and 1000 MV (green band)
and when the halo half thickness varies between 4
and 9 kpc (orange band). Notice that top and bot-
tom panels have different vertical scales.

The difference between the timescale estimated within
our model and the LBM is a factor ∼ 12, and is mainly
due to the fact that our average density is ndiskh/H =
0.034 cm−3. Once the difference in average gas density
is taken into account, the two estimates of the spalla-
tion timescales are still different by ∼ 12%, presumably
due to differences in the adopted spallation cross section
between the present work (see Appendix A) and that by
[3].

Aside from differences in the spallation and escape
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time-scales, another difference between this work and
that by [3] is that the latter neglects ionization losses,
which in our calculation turn out to be non-negligible,
being the ionization loss time of the same order of τsp for
energies ∼ 100 MeV/n, which translates into a correction
of ∼ 20% to the final 60Fe/56Fe ratio in the CRIS energy
band as shown in Figure 5.

Using our estimated time-scales in the leaky
box expression connecting the measured and
source ratio between the isotopes (Eq. 43), one
would estimate Rsource,LBM ≈ 4× 10−4, a factor of 5
larger than the estimate by [3].

In summary, while our estimate and the esti-
mate by [3] of the 60Fe/56Fe ratio at the sources
turn out to be very close, they correspond to
very different physical conditions for CR prop-
agation. In particular, in our model CR par-
ticles have much longer residence times in the
Galaxy and lose a non-negligible fraction of their
energy while propagating through the low-density
halo. The similarity between the two estimates
of Rsource seems at present only a puzzling coinci-
dence. What actually enters the relation between
the source ratio and the measured ratio between
isotopes is a survival probability [34]. This is coinci-
dent with a ratio between timescales, as adopted
in the LBM, only when the confinement volume
is coincident with the volume occupied by the
sources. When the former is much larger than
the latter, instead, one finds in general, that a
fraction of the actual escape time (determined by
the ratio between source and confinement volume
[34]) enters into Eq. (43).

In fact, our estimate of the diffusion time is
the same that allows one to reproduce the total
Beryllium flux [26]. Our conclusion, in agreement
with past works [e.g. 15], is that the confinement
times estimated by [33] are all underestimated by
a factor of order 10.

VII. SUMMARY AND CONCLUSIONS

In this work we modelled the propagation of Iron nu-
clei through the Galaxy within the disk/halo diffusion
model in order to translate the 60Fe/56Fe ratio measured
by ACE-CRIS in CRs into an estimate of the relative
abundance of the two isotopes in CR sources. Follow-
ing [26], the parameters of the transport model
have been fixed in such a way as to reproduce the
fluxes of CR p, He, C, N, O plus the ratios Be/C,
B/C, Be/O and B/O as measured by AMS-02.
In addition, we adopted a halo size of ∼ 7 kpc as
estimated from the CR Beryllium flux [26].

At energies <∼ 1 GeV/n, where the ACE-CRIS
measurements have been performed, the CR
transport is determined by several processes: dif-
fusion, advection, spallation, ionization losses and

solar modulation. We accounted for all these pro-
cesses, quantifying the role of each one in deter-
mining the 60Fe/56Fe ratio.

We showed that at energies <∼ 1 GeV/n also
the size of the Galactic disk becomes important,
being comparable with the energy loss length of
heavy nuclei. Hence, we have explicitly accounted
for the disk size in our analytical description of
the CR transport showing that, under the as-
sumption that the diffusion coefficient is the same
as in the Galactic halo, the Fe flux is suppressed
by ∼ 30% with respect to the infinitely thin disk
approximation. On the other hand, the final
60Fe/56Fe is affected only by ∼ 10% because the
two isotopes are affected in a similar way. Fi-
nally, we also accounted for the preferential in-
jection of heavier nuclei in the shock acceleration
mechanism.

Within the above scenario we found for the 60Fe/56Fe
ratio at the CR sources 60Fe/56Fe = (6 ÷ 11) × 10−5

(accounting for both measurement errors and model un-
certainties). Such a value is especially interesting when
compared with the average abundance in the ISM, which
is ∼ 3× 10−7, implying that the CRs detected at Earth
cannot be produced by accelerating only the average ISM
composition. As a consequence, and not surprisingly,
we can exclude the blast waves of type Ia SNe as the
main source of Galactic CRs, in that they mainly accel-
erate material from the average ISM. Our result requires,
instead, that some fraction of the accelerated material
should come from fresh SN ejecta (where fresh means
much younger than the 60Fe decay time). The exact
amount of accelerated fresh ejecta is non-trivial to esti-
mate, because the 60Fe yield from SN explosions depends
on the progenitor initial mass [35] as well as the star rota-
tional speed [2]. The value of the ratio 60Fe/56Fe ranges
between 2× 10−4 and 8× 10−3 [35], hence one can infer
that the amount of fresh ejecta that needs to be accel-
erated should be a fraction between few percent and few
tens of percent of the total accelerated material.

The two main scenarios in which this can be realised
are one in which acceleration occurs at the reverse shock
of the SN explosion and one in which the fresh ejecta of an
explosion are accelerated by the forward shock of a sec-
ond nearby event. A possible way to disentangle between
these two possibilities is by looking at the abundances of
other nuclei, especially the 22Ne, whose over-abundance
with respect to the Solar one is still not completely un-
derstood [see 36, for a critical discussion].

A major surprise is that our results are in agree-
ment with the estimate obtained by [3]. The
latter work adopted a leaky box description of
particle transport, which is in principle not ap-
propriate to describe the propagation of unstable
nuclei, and in addition neglected advection and
ionization losses, while we find the latter to be
very relevant. Our scenario predicts a confine-
ment time ∼ 10 times larger than the LBM. As
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we discussed in § VII, this is likely the key to
understand the incidental agreement. When the
volume of the sources is only a fraction of the
total confinement volume, a LBM description of
the survival probability becomes appropriate for
a confinement time which is a fraction of the ac-
tual one. We have shown that using the correct
escape time, the LBM provides a result for the Fe
isotope ratio at the sources ∼ 5 times larger than
our estimate.

It is worth stressing that while in the present
study we use the propagation model to constrain
the 60Fe abundance at the sources, analogous
measurements performed for other radioactive
secondaries produced during the spallation pro-
cess, like 10Be or 14C, could be used in the oppo-
site direction, namely to provide a valuable test
of the CR propagation regime at low energies.
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Appendix A: energy losses

For the total spallation cross section we use the follow-
ing expression from [37]:

σsp(Ek) = 45A0.7 10−27cm2 (A1)

× [1 + 0.016 sin (5.3− 2.63 ln(A))]

×

{
1− 0.62 exp

(
− Ek

2 · 108

)
sin

[
10.9

(
Ek
106

)−0.28
]}

,

where Ek is the kinetic energy per nucleon and A is
the bullet’s atomic masses (the target is assumed to be
purely protons). According to [37], the mean er-
ror of Eq.(A1) is less than 5% for energies above
100 MeV/n. Notice that the spallation cross section
use in [3] is the one measured by [38]: we notice that
at the energy where such measurements were performed,
namely 1.88 GeV/nucleon, their result for the total in-
elastic cross section of Fe onto H target is ∼ 9% smaller
than the value given by Eq. (A1). The extrapolation at
lower energies could be responsible for the ∼ 20% differ-
ence in the calculated spallation timescale as discussed
in § VI.

For the energy losses due to ionization we use an in-
terpolation formula provided by [39] (see their equations
[4.32]-[4.34]), which is proportional to the energy losses
of protons and is valid when the energy per nucleon is
Ek <∼ 1 TeV:

(
dE

dt

)
ion,Z

= Z2
eff

(
dE

dt

)
ion,p

(A2)

where the effective charge of the nucleus is given by Zeff =
Z(1− 1.034 exp[−137βZ−0.688]) and the energy losses of
protons are:

(
dE

dt

)
ion,p

= 1.82 · 10−7
(
[nHI + nH2

]/cm−3
)

× [1 + 0.0185 ln(β)Θ(β − β0)]
2β2

β3
0 + 2β3

eV s−1 .(A3)

β0 = 0.01 is the minimum Lorentz factor such that
Eq. (A3) is valid. The momentum loss function used
in Eq. (1) is ṗion = dp/dt = dp/dE × (dE/dt)ion =
A/v × (dE/dt)ion.
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