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Axions are some of the best motivated particles beyond the Standard Model. We show how the
attractive self-interactions of dark matter (DM) axions over a broad range of masses, from 10722 eV
to 107 GeV, can lead to nongravitational growth of density fluctuations and the formation of bound
objects. This structure formation enhancement is driven by parametric resonance when the initial
field misalignment is large, and it affects axion density perturbations on length scales of order the
Hubble horizon when the axion field starts oscillating, deep inside the radiation-dominated era.
This effect can turn an otherwise nearly scale-invariant spectrum of adiabatic perturbations into
one that has a spike at the aforementioned scales, producing objects ranging from dense DM halos to
scalar-field configurations such as solitons and oscillons. We call this class of cosmological scenarios
for axion DM production “the large-misalignment mechanism.”

We explore observational consequences of this mechanism for axions with masses up to 10 eV. For
axions heavier than 10™° eV, the compact axion halos are numerous enough to significantly impact
Earth-bound direct detection experiments, yielding intermittent but coherent signals with repetition
rates exceeding one per decade and crossing times less than a day. These episodic increases in the
axion density and kinematic coherence suggest new approaches for axion DM searches, including
for the QCD axion. Dense structures made up of axions from 10722 eV to 107> eV are detectable
through gravitational lensing searches, and their gravitational interactions can also perturb bary-
onic structures and alter star formation. At very high misalignment amplitudes, the axion field
can undergo self-interaction-induced implosions long before matter-radiation equality, producing

potentially-detectable low-frequency stochastic gravitational waves.

I. INTRODUCTION

The overwhelming majority of the energy density in
the Universe appears to interact only gravitationally, in
all available observational and experimental data so far.
A quarter of this energy density is in the form of dark
matter (DM), a matter component that does not emit or
interact strongly with light. Two of the main pieces of
evidence for DM are the fluctuations in the cosmic mi-
crowave background (CMB) and the formation of grav-
itational structures over a large range of length scales,
from the size of the largest superclusters of galaxies down
to the smallest observable dwarf galaxies. These two bod-
ies of evidence are in mutual quantitative agreement with
one another.

Among the best motivated particle physics candidates
for DM are azions, CP-odd scalar fields. The most fa-
mous one is the QCD axion [TH3], responsible for address-
ing the strong CP problem as it explains the smallness
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of the neutron’s electric dipole moment. Axions are also
ubiquitous in extensions of the Standard Model such as
string theory, where they arise as the byproducts of com-
plex topology [4].

Axions have a natural production mechanism of near-
pressureless energy density, through what is known as the
misalignment production mechanism [5H7]. The dynam-
ics of the axion field ¢ are described by four-dimensional
partial differential field equations which depend on the
potential of the axion. Inflation irons out all spatial wrin-
kles, converting the axion into a spatially homogeneous
but time-dependent field. Near the minimum of its po-
tential (here at ¢ = 0), the potential of the axion is well
approximated by a quadratic function of ¢, which then
behaves cosmologically as a damped harmonic oscillator:

¢+ 3Hd+m?p =0, (1)

where H is Hubble parameter and m the axion mass.
Initially, the axion field value is frozen due to Hubble
friction; the axion only starts oscillating once 3H < m.
The energy density associated with this oscillation red-
shifts exactly like cold DM: pg o< a~—3. However, there
is no reason to expect that the axion will start close to
the minimum. If the axion misalignment is large, the
quadratic approximation to its potential is no longer ad-
equate and higher order terms must be included. The
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FIG. 1. Summary of signatures for axions with mass m, decay constant f, cosine potential of Eq. and an initial axion
misalignment chosen such that the axion accounts for all DM. The left axis shows f normalized relative to f,,,, the
value for which the initial axion misalignment is |¢o|/f = 7/2 (see Eq. . As f/fx/2 decreases, the misalignment
angle has to be closer to 7 to saturate the DM abundance. Diagonal gray lines represent contours of constant f. The
top axis displays the typical halo scale mass M whose density is maximally enhanced by the effects of the attractive axion
self-interactions (see Eq. . The right axis shows the time t,,,0 in Compton units for which the amplitude of the axion field
oscillation is ® = ¢/f = 1 (see Eq. . For axions lighter than 107° eV, the enhanced-density halos can be detectable
through their gravitational (lensing) interactions (blue). Axions heavier than 107° eV can produce “femto-halos” lighter than
107'% Mg that have important consequences for direct detection experiments (green). Axions lighter than 107'% ¢V can affect
baryonic structures and accelerate star formation in the early Universe (brown). At low f, self-interaction-induced collapse
into oscillons happens prior to matter-radiation equality (red), a process that produces gravitational waves, which may be
detectable in the yellow region. Signature contours are extracted from Figs. [[1] [[2] [[4] and [I5] of Sec. [IT} and translated to
f/ fr/2 via the numerical results for B as a function of m in Fig.

axion potential generically contains quartic terms which structure to grow at scales that are comparable with the
convert its equation to that of a nonlinear damped an- axion Compton wavelength when the field starts oscillat-
harmonic oscillator: ing. This leads to both denser and more numerous small

- ; halos than in ACDM. We stress that such behavior is onl

O+3HO+m* = A"+ =0 (2) possible when the field amplitude of the axion is larg}el
The all-important negative last term describes an attrac- ~ enough for the attractive non-linearity to be significant,
tive self-interaction. When |¢2| Z m2/)\’ nonlinearities so we term this the “large—misalignment” mechanism for
at all orders in the axion field become relevant, and can axion DM.

cause a delay in the onset of oscillations: Hue. < m. In For definiteness, we will mainly focus on a simple pe-
this scenario, the lower Hubble friction and the attrac- riodic potential that is well motivated for several axion
tive quartic self-interaction conspire to usher in a qual- models, namely the cosine potential:

itatively new phenomenon: a parametric resonance am-

plification of semi-relativistic axion fluctuations around V =m?f? {1 — cos (—)] , (3)

the spatially constant ¢ background. In this work, we
show that these attractive self-interactions can cause DM where f is the axion decay constant. Nonperturbative



effects generically generate periodic axion potentials; the
form of Eq. [3| arises from the one-instanton contribu-
tion, which is typically dominant in weakly coupled the-
ories. Periodic potentials will in general have attractive
(negative) self-interactions because these tame the rapid
growth of the quadratic potential and foretell the pres-
ence of an upper bound. As we will discuss, the above
potential is also nearly that of the QCD axion at tem-
peratures above the QCD phase transition, albeit with a
time-dependent mass. We stress that the observable con-
sequences of this work emerge solely from this attractive
self-interaction, and do not qualitatively depend on the
detailed form of the potential. In fact, some of our sig-
natures will be more naturally realized with nonperiodic
potentials. The quartic interaction for the cosine is given
by V D A¢*/4 with A = —m? /6 f2.

If the axion’s initial misalignment amplitude ¢q is in
the “large-misalignment” range |¢o|/f > /2, we show
that there will be enhanced structure around a comoving

wavelength:
2 10—22eV
— T R~ 0.69Mpc | —— .,  (4)
2ma2 Heq m

generating numerous halos with scale mass of Mg ~ M:

A

3/2

A0 (A’ 10722V
M? = @ (2) ~ 5 x 10° Mg, [me] . (5)

The halo scale density ps is an increasing function of
|do|/f, and can be much larger than the scale density

pSPM of CDM halos of the same mass by a parametric
factor:
Ps m
B= ——~ . 6
St ~ e { e} ®

The parametric form of this “density boost factor” B is
valid for generalized axion potentials as well; £ is an O(1)
model-dependent constant. The corresponding scale ra-

o " 13 7105\ 1/3
dius is s = 87 pc (m> B

We present our analysis of the development and dy-
namics of these enhanced structures in Sec. [II To fix
ideas, we mainly focus on a cosine potential and study the
evolution and signatures of axion DM structures when
|pol/f > 7/2 as a function of the axion mass and decay
constant]| First, we provide a fully relativistic treat-
ment of the growth of density fluctuations in linear per-
turbation theory. Starting from a standard spectrum of
primordial density perturbations, we show that growth
in density contrast can be understood as the result of a

I Requiring that the present-day axion density accounts for all the
DM automatically fixes the initial value ¢g of the axion field as
a function of m and f.

parametric resonance instability at the level of the equa-
tions of motion, which are valid in the early universe up to
axion masses of O(107) GeV (Sec. . We also present a
perturbative Newtonian approximation, where the boost
in structure growth can be attributed to a negative pres-
sure resulting from the nonlinearities in the potential of
Eq. Bl In Sec. [[TB] we describe the nonlinear evolution
of the axion density fluctuations. For moderate enhance-
ments in the density contrast with respect to large scales,
compact halos will form after matter-radiation equality
(Sec. . Depending on their density, these com-
pact halos may be solitons—gravitationally bound scalar
field configurations of minimum energy (App. —and
can even have a gravothermal cusp (Sec. [IB2)). At yet
larger density contrasts, we demonstrate in Sec.
that our mechanism can produce oscillons—metastable
configurations solely supported by axion self-interactions
(App. —during radiation domination. Further, we
show that these dense structures are expected to survive
tidal stripping in the Milky Way (Sec. .

Armed with the understanding of the behavior of these
more numerous and higher-density halos, we focus in
Sec. [T on several observable consequences that follow in
cosmological histories with a boost in structure on small
scales (cfr. Eq. . These are summarized in Fig. |1} in
the parameter space of m and f as extracted from from
Figs. 14] and [15] of Sec. [T} translated via the
results of Fig. 2] Compact axion halos and other poten-
tially long-lived axion structures have irreducible gravita-
tional couplings, so one may look for their local gravita-
tional perturbations on stellar structures or their gravita-
tional lensing (Sec. [[IT A). Extremely small minihalos—
“femto-halos”, their mass being < 107 Mg—can dra-
matically alter the signatures and sensitivity of direct
detection efforts to search for nonminimal couplings of
the axion (Sec. . Early-forming minihalos can also
influence the formation of the first stars and leave other
imprints on baryonic structure (Sec. . The implo-
sion and subsequent explosion of oscillons can lead to a
low-frequency stochastic gravitational wave background
(Sec. [IT D).

We next focus on the QCD axion in Sec. [[V] which is
one of the best-motivated particles beyond the Standard
Model. This axion, which has a temperature-dependent
potential, will collapse into halos of mass M, ~ 107 M,
for axion decay constants f, < 2 x 10'° GeV, with im-
portant consequences for direct detection searches of
high-mass, cosmic QCD axions, potentially improving
prospects for their discovery in the laboratory. We stress
that these femto-halos are produced from a standard
spectrum of small primordial perturbations. In contrast,
ultra dense QCD axion miniclusters [§HI3] rely on large
density fluctuations caused by a late post-inflationary

2 For clarity, the oscillatory behavior in Fig. [2| is suppressed by
Gaussian smoothing over neighboring m bins, and we used Eq. @
for the Ms—m correspondence, not the M™% results of Fig.



Peccei-Quinn (PQ) phase transition. Their internal den-
sity is so high that they encounter Earth too infrequently
to positively impact direct dark matter searches.

For the cosine potential of Eq. [3| significant enhance-
ment in structure growth via our mechanism requires the
axion field to start very close to |¢o|/f ~ 7, with self-
interaction-induced collapse requiring apparent tunings
of 1 part in 10'2. This apparent tuning is not, however,
necessarily an actual tuning. We discuss this in Sec. [V}
and in this section we also discuss other forms of axion
potentials, such as those in some axion monodromy mod-
els [T4HI7]. In this latter case, the structure growth can
be even more extreme and lead to long-lived oscillon con-
figurations, all without any tuning whatsoever (apparent
or actual). We offer concluding remarks and discussion

in Sec. [V1

The appendices of this paper deal with further details
that are relevant for a complete understanding of our
proposed mechanism. In App. [A] we review the spectrum
of bound, metastable scalar field configurations (solitons
and oscillons) because in much of our parameter space
they will be formed inside the DM overdensities we pre-
dict. In App. [B] we discuss the implementation and re-
sults of various numerical simulations we utilized to help
understand the nonlinear behavior of the axion field in
regimes particularly relevant to this work. App. [C] dis-
cusses possible constraints coming from the production
of isocurvature fluctuations in the CMB, although these
constraints are only present in some models. Finally,
we summarize in App. the projected sensitivities and
detection prospects for ultra-low-frequency gravitational
waves, which can be produced particularly by very light
(m <1071 GeV) large-misalignment axions.

We note that some of the components of this paper
have been previously touched upon in the literature (see
e.g. Refs. [I7H25]). In particular, the linear perturba-
tion effects under consideration in this work were pre-
viously discussed in Refs. [26H30]. These works how-
ever focused on the regime of m ~ 10722eV and ob-
servables such as the matter power spectrum and the
Lyman-« forest. We here extend their analyses and pro-
vide a comprehensive treatment of the linear and non-
linear evolution for any axion mass m and decay con-
stant f. As we shall see, much larger nonlinearities
are permitted (by current data) for larger axion masses
(and thus smaller structures). This leads to qualita-
tive differences in phenomenology and observable con-
sequences. On the other hand, a large body of literature
has studied the effective theory and potential observables
of “axion stars” (i.e. solitons and oscillons) but has for
the most part disregarded their formation mechanism
(see e.g. Refs. [I7, [31H43]). We provide such a mecha-
nism here, and calculate for the first time the enhanced
contrast in adiabatic fluctuations for the QCD axion.
Ref. [44] studied a scenario wherein a late-time phase
transition in an arbitrary-mass axion potential sources
large isocurvature fluctuations and associated small-scale
structures; such a structure formation history has a qual-

itatively different matter power spectrum and no tunable
density contrast.

We also note that claimed constraints on ultralight DM
due to Lyman-« forests [45] 46] or the DM distribution
of present-day dwarf galaxies [47, [48] do not necessarily
apply. The attractive self-interactions and gravitational
thermalization both have significant effects which must
be taken into account, and reanalyses are required to
understand the true constraints. We expand upon these
effects and discuss more realistic constraints in Sec. [ILC|
(Lyman-a) and Sec. (dwarf galaxies).

Throughout this paper, we take the dark matter en-
ergy density fraction in the Universe to be Qpy =
0.23, the scale factor at matter-radiation equality
Geq = 1/3250, the present-day Hubble constant Hy =
67.8kms~! Mpc~!, and therefore present-day Universe-
average DM density pd,; = 2.9 x 1078 Mg pc™ and the
Hubble parameter at matter-radiation equality Heq =
1.8 x 10728eV. We assume a local DM energy den-
sity in the Galaxy of ng = 04GeVem™ = 1.1 x
1072 Mg pc=3. We use the reduced Planck mass Mp; =
1/4/8mGy, and set the reduced Planck constant and the
speed of light to unity A =c=1.

II. EVOLUTION OF DENSITY FLUCTUATIONS

In this section, we analyze the growth of adiabatic
axion density perturbations in the early Universe and
demonstrate how self-interactions can lead to substantial
deviations from the CDM prediction. The relevant ob-
servable throughout is the gauge-covariant axion energy
perturbation ¢ (we work in Newtonian gauge, cfr. Eq. .
In the CDM framework, after the physical wavelength of
a density perturbation with amplitude § becomes smaller
than the Hubble horizon, § grows logarithmically with
the scale factor during radiation domination, and linearly
with the scale factor during matter domination. We will
find that density perturbations of size around the
axion’s Compton wavelength at horizon crossing,
i.e. modes with comoving wavenumbers k that
satisfy

k
—~m~ H, (7)
a

are unstable to rapid growth fueled by the axion’s
self-interaction at the time Eq. [7]is satisfied. The
growth instability is present if the axion starts
oscillating after its natural time scale: i.e. to5c 2
1/m. Density perturbations much smaller than
this will have their growth suppressed, and those
on much larger scales will resemble those of CDM.

Figure [2| summarizes the results of both the linear
and nonlinear evolution of density perturbations as pre-
sented in this section. We show the maximum boost
Bimax = maxy, {B} in halo scale density relative to the
CDM prediction (cfr. Eq. @ as a function of m and
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FIG. 2. Summary of properties of compact structures resulting from the linear and nonlinear evolution of axion density
perturbations in Sec. The maximum density boost factor Bmax is shown as a color map (legend on right) as a function of
axion mass m and misalignment angle ©¢ (right axis), or equivalently f/f 2 (left axis). For parameter space where Bumax > 2
(below the thick blue contour), dark gray contours indicate the halo scale mass M*** that exhibits the maximum density boost
relative to the CDM prediction, parametrically tracking the reference scale mass M; of Eq. |5| (top axis). Below the orange
contour (f/fr/2 < 0.065), solitons are produced; in the red region (f/fr/2 < 0.055), early collapse into oscillons also occurs.
We assumed the axion cosine potential of Eq.|3|and a scale-invariant curvature power of Py ~ 2.1 x 107°.

I/ fx 2 for the cosine potential of Eq. |3} We also show the
corresponding halo scale mass M = argmax,, {B}
for which this maximum density boost factor is achieved,
which can be seen to closely track the value M x of Eq.
(top horizontal axis). Finally, we also indicate parameter
space where production of solitons and oscillons occurs.

In Sec.[ITA] we discuss the linear regime, where all frac-
tional density perturbations are small: |6] < 1. This is
appropriate for all adiabatic perturbations early enough
in their history (given a standard primordial curvature
power spectrum). In Sec. we present a full general-
relativistic treatment of the density perturbations from
the time the axion field starts oscillating and show that
the growth of structure is due to a parametric reso-
nance instability well before matter-radiation equality.
We calculate analytically (cfr. Eq. and Eq. the
G = |6x/6PM|? in the power spectrum (the boost B in
density is proportional to G3/2). Figure [3| compares the
time evolution of adiabatic density perturbations for a
large- and small-misalignment axion. The results of our
linear analysis for any misalignment are summarized in
Fig. @ and 5] In Sec.[[TA2] we evolve these parametric-
resonance-boosted perturbations past matter-radiation

equality (see Fig. @

When |4| becomes O(1), axion DM structures can form
(Sec. . The properties of the collapsed structures de-
pend on the amount of growth they receive through ax-
ion self-interactions. If the growth is small enough that
the perturbations are still linear after matter-radiation
equality, their collapse is fueled by gravitational self-
interactions. In Sec. we study the halo spectrum
(see Figs. Ifl and and show that, for moderate structure
growth, the collapsing structures can be solitons. Grav-
itational cooling effects can further change the internal
structure of these compact halos and ultimately lead to
gravothermal collapse and a central soliton (Sec. [[IB 2]).
In the extreme case where the axion self-interaction in-
duced structure growth is large enough, structures can
grow nonlinear well before matter-radiation equality;
their dynamics are dominated by self-interactions, and
oscillons are formed (Sec. [IB3). Finally, we show that
these compact halos can easily survive tidal stripping

within the local galaxy (Sec. [[LB 4]).

The range of axion masses for which this section’s
analysis is relevant is from 10722eV to 107 GeV. The
lower end is an observational limit from structure forma-
tion (Sec. . The upper limit comes from two require-
ments: one is that m < f which is necessary to ensure



that during parametric resonance the axion occupation
number is large enough to justify the use of classical wave
equations; the second is the condition that the axion is
the DM (see discussion around Eq. . The require-
ment that the axion lifetime is longer than the age of
the Universe is automatic if the only interactions of the
axion are gravity and its self-couplings (Eq. , as these
are both axion number conserving in the nonrelativistic
limit. To have an axion detectable in laboratory exper-
iments we need further interactions that directly couple
the axion to photons, electrons, or nuclei. An example
is the coupling to the photon given by ﬁ%FF In the
presence of such a coupling, the longevity of the axion
constrains the axion mass to be at most 10keV corre-
sponding to f = 10! GeV. Note that axions as heavy as
107 GeV or even 10keV are not well described by classi-
cal field equations today because the occupation number
in a de Broglie wavelength is much smaller than unity.
Nevertheless, the classical field description is valid during
the crucial era of parametric resonance, when the axion
occupation number is large and the initial overdensities
are generated. Subsequently, these overdensities grow
under the influence of gravity which, by virtue of the
equivalence principle, just couples to energy regardless
of occupation number or the applicability of the classical
approximation.

For simplicity, we will first consider the case of the co-
sine potential in Eq. [3] We will study entirely analogous
phenomena for the temperature-dependent QCD axion
potential in Sec. [[V] and present case studies of general-
ized (but time-independent) axion potentials in Sec.
Finally, for those interested in the signatures of compact
axion halos, they can directly skip to Sec. [[TI, where the
observational effects of these halos are described as a
function of their scale mass M, and density ps.

A. Linear regime

In the linear regime (i.e. |§| < 1), most of the self-
interaction-induced growth occurs at very early times,
when semi-relativistic modes enter the horizon and the
axion potential is poorly approximated by a quadratic.
This means that a full general-relativistic treatment
of the perturbations is necessary, which we give in
Sec. At later times, when nonlinearities in the
background axion field are small and the modes of in-
terest are nonrelativistic and well within the horizon, we
can patch the general-relativistic solutions onto Newto-
nian fluid equations, which we describe in Sec.

1. General relativistic treatment

We consider adiabatic perturbations in the axion field
and adopt the method of Ref. [29], the only substantive
difference being our focus on the potential of Eq. |3| and

slight changes in notation. The dynamics of interest oc-
cur in the radiation-dominated era, where we can study
the evolution of the axion field in the background metric

ds? = [1 4+ 20(t,x)]dt? — a®*(t)[1 — 2®(t,x)]dx>  (8)

where a(t) oc t1/2 is the scale factor and ®(t,x) are the
curvature fluctuations. We also define the Hubble param-
eter H = a(t)/a(t) = 1/2t where the second equality is
true only during radiation domination. During this era,
the energy density in the axion field is a tiny perturbation
to the overall energy density in the radiation bath, so we
will neglect its backreaction on the metric. We expand
the axion field into modes of comoving wavenumber k as:

(t, x)
f

=0(t) + ) bOh(t)e ™ (9)
k

where O is the zero mode (spatially-averaged axion field)
and Ay are Fourier modes of its perturbations.

Zero mode

Before studying the growth of the perturbations, we de-
scribe the evolution of the zero-mode. A field of mass m
is frozen by Hubble friction at least until H ~ m, which
motivates the definition of a dimensionless time ¢, given
by:

b = o
Y

mit (10)

the latter equality approximately true deep into the
radiation-dominated era. The equation of motion for ©
in the metric of Eq.[§]is given by:

0" + %@' +5in(6) = 0 (11)

where from hereon primes denote derivatives with respect
to t,,. The initial conditions sourced by inflation are a
fixed initial misalignment angle ©(t,, = 0) = Oy and
zero kinetic energy ©'(t,, = 0) = 0. We can then see
that indeed for ¢,,, < 1 the field is frozen and for ¢,,, > 1
the field will roll to and oscillate around the bottom of
the potential.

The energy density contained in the axion field is given
by p = m?f?[(©")?/2 + 1 — cos(©)]. For t,, > 1, an
approximate solution to Eq. can be found to show
that this energy density redshifts as p o tfng/ % We define
pr/2(tm) as the energy density at late times given an
initial misalignment angle |©¢| = 7/2. By the above, we
have that

pry2 = Cr jom? f2t,3/2 (12)
for some constant of proportionality C /2, and a numeri-

cal evolution of Eq. then gives Cr /o &~ 1.15. Requiring
that the axion field is the totality of dark matter then



implies that an axion with initial misalignment /2 and
mass m must have a decay constant fr /o given by:

Japp 37 (Heg )" (13)
Mp; - 25/401§§ m '

At fixed m, larger values of f > f; /5 require the initial
misalignment angle to be closer to the bottom of the
potential (i.e. [Og| < 7/2). Asymptotically for small
initial ©9 < 1 we have p/pr s ~ 0.3302, which implies
for f > fr/2 a required initial misalignment angle ©g ~
Similarly, f < f/2 requires |G| > /2, our case of
interest. As |Og| approaches 7, the onset of the field’s
oscillation is delayed from its typical time of ¢,, ~ O(1)
to a logarithmically larger value, due to the much smaller
gradient near the top of the potential. The delay results
in an enhanced final density p, and an empirical approx-
imation to the true numeric solution of Eq. [11] yields:

L~ 02019 + 41ne]? (14)
Pr/2
1 21/471_1/2
to%¢ =In (15)
™ =10 T(})

where I' is the Euler Gamma function and ¢3¢ corre-
sponds roughly to an effective “delayed oscillation time”.
For 10715 < 7 — |©¢| < 1072, this approximation is ac-
curate to within a fractional error of 5%.

Finite-wavenumber modes

Now that we understand the evolution of the zero-mode
©, we turn our attention to the perturbations #,. We be-
gin by also expanding the curvature perturbations into
Fourier modes: ®(t,x) = Y., Pk (t)e"™**. To leading
order in perturbative quantities 0 and ®y, modes with
different k do not interact, and so we may consider each
independently. It is then helpful to introduce another di-
mensionless time coordinate ¢ as well as a dimensionless
measure k of the comoving wavenumber k:

t:k/a
k—\/gH

Note that in a radiation-dominated universe, k is con-
stant and parametrizes how relativistic a perturbation
mode is at t,, ~ 1, i.e. roughly when the axion zero
mode starts oscillating.

Adiabatic fluctuations in the axion field are sourced
by curvature fluctuations ®y, and an exact solution for
these may be found in the linear theory [29] 49]:

2 _ K?/a® 3t
T 2mH 4,

k (16)

cos(tr)  sin(ty)

Pic(te) = 3P0 |~ e
k k

(17)

where ®y  is the primordial value imprinted by infla-
tion. Planck measurements over scales k < 1Mpc™! are

consistent with a Gaussian-distributed curvature with
dimensionless power spectrum Pg(k) = (Pk oPxo) =~
(2.1 x 1079)(k/(0.05 Mpc~1))™~! and a slight spectral
tilt ng — 1 ~ —0.03 [5()]E| For specificity and to elu-
cidate the scale dependence of our mechanism, we will
ignore the spectral tilt and take |®k o] ~ v2.1 x 1079 as
a fiducial amplitude. Note that for ¢t < 1 the curva-
ture perturbations are frozen, but for ¢, = 1 they begin
oscillating and decay as @) t;Q x a2

Now we can finally write the relativistic equation of
motion for axion perturbations 6y in the background of
the zero-mode solution © to Eq. and the curvature
perturbations of Eq.

7.2

1" 3 / _ 7.
O+ gyt |cos(@) + 7 | =5 (kz,tm) ., (18)
~ _ t dPx ., _ .
S (k,tm) =2 [tm T, 0" — oy sm(@)] . (19)

Here the forcing term S is such that even with initial
conditions 6} (0) = 6x(0) = 0, a nonzero 6y will be gener-
ated by the curvature fluctuations. Nonzero initial 6y (0)
will be sourced by inflation and manifest as isocurvature
fluctuations in the CMB. Their absence in Planck mea-
surements of the CMB [51] provides a joint constraint on
f and the inflationary Hubble scale Hi,¢, derived later in
App. [C] and shown in Fig.

Axion density perturbation results

The gauge-covariant axion energy perturbation at
wavenumber k is the fractional energy density per-
turbation minus the velocity potential for the axion
species [29], which can be written as:

_ O'6 +sin(0)h — (0')2 Py

=TT+ (1 —cos(0) (20)
2

At late times, when |9y /Py o| < 1, |O] <« 1, and ¢, > 1,

0k tends to a Newtonian fractional energy density fluc-

tuation dpx/p:

00}, + by

O ¥ ——————
k %(@/)2+%@2

(21)

Note that nearly all of the forcing effects from S occur
early, as @y redshifts as ¢, % oc £,

At this point, we can numerically solve the full set of
equations to obtain i (t,,) for any value of k and initial
misalignment angle ©. In Fig. [3] we show the evolution

3 The dimensionless power spectrum of a scalar s(r) is Ps(k) =
P, (k)k3 /272, where the power spectrum is Ps(k) = V=1 (s(k)2)
and the Fourier transform is s(k) = [, d3r s(r)e= T Py(k) is
independent over the averaging volume V as long as k3V >> 1.
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FIG. 3. Transfer function |6x/®x,0|? of the axion density fluctuation dx relative to the primordial curvature fluctuation ®x o,

as function of rescaled time t,, = mt and dimensionless wavenumber constant k= %/a\/m The left panel has an initial
condition of m — |@¢| = 107'°, while the right panel shows the reference case of a nearly free scalar field with @9 = 0.1. When
7 —]0o| = 107'°, one can see that modes with ko~ get enhanced by up to 10 orders of magnitude soon after the axion enters
the parametric resonance regime (see main text for details). When k < 1ork > 1, for both values of the initial axion field, the
behavior of the density perturbations is similar; dy is suppressed when k> 1, while for k < 1 modes experience logarithmic
growth after they enter the horizon in the radiation dominated era.

of &k (by means of the transfer function |dx/®x o|?) as a
function of time t,, at different rescaled wavenumbers 12:,
for a large-amplitude axion with |©g| = m — 10710 (left
panel) and an axion with a small misalignment amplitude
|©0] = 0.1. In Fig. 4} we fix the time at ¢, = 103, to
highlight the dependence of the transfer function on both
the wavenumber k and the misalignment angle ©q, which
has a one-to-one map with f/fz/ from the discussion
around Eq. [I3] We can classify the qualitative behavior
into three wavenumber regimes:

k < 1: In this regime, the curvature perturbation ®y
enters the horizon at a time t,, ~ 1/k?, long after the
axion has started oscillating (regardless of initial ampli-
tude) at t,, ~ 1. The zero-mode O has already been
damped down to the harmonic regime |0 < 1. In this
regime, an axion behaves as a noninteracting, pressure-
less fluid, whose density perturbations thus grow like
those of CDM—Ilogarithmically with time during radi-
ation domination.

k> 1: Curvature perturbations with high enough
wavenumbers enter the horizon long before the axion
stars oscillating. By the time Hubble friction is reduced
to a point where both © and 6y can start oscillating
(tm 2 1), the curvature perturbation ®y and thus the
forcing term S have been damped away significantly by
the radiation bath, such that §y is suppressed. In addi-

tion, dy oscillates in time (as opposed to the logarithmic
growth for k < 1), since the behavior of the modes is
dominated by a large positive kinetic energy pressure,
further suppressing the structure relative to the CDM
prediction. ~

k ~1: The qualitative behavior of very high-k and
low-k modes is not strongly dependent on the misalign-
ment amplitude. At large misalignment angles |Og| ~ m,
an intermediate regime with new phenomenology ap-
pears. Unlike the free scalar case, where the k ~ 1 case
is a smooth interpolation between the high- and low-
k regimes, a dramatic enhancement in density fluctua-
tions is possible. As Fig. [4 shows, both the maximum
boost in structure and the wavenumber at which this
boost occurs, are monotonically increasing with decreas-
ing m — |©¢| and thus f/ fr/2.

Parametric resonance

The dramatic growth of fi—and thus d—perturbations
for k ~ 1 modes can be understood in terms of a paramet-
ric resonance instability. After the onset of oscillation,
we can expand to subleading order in the amplitude of
the zero mode, ©, which itself is decreasing slowly, but
on a time scale much slower than the oscillatory time
scale. This turns the zero mode cosmological evolution

equation into one for a damped non-linear harmonic os-
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FIG. 4. Transfer function |di/®ko|*> of the axion density
fluctuation dx relative to the primordial curvature fluctua-
tion Py, at a fixed dimensionless time ¢,, = mt = 1037 as
function of rescaled comoving wavenumber k = %/“\/ﬂ and
initial misalignment angle m — |G| (right axis), or equiva-
lently the axion decay constant f (left axis) relative to the
reference value f,o of Eq. This plot assumes the axion
comprises all of DM and has the cosine potential of Eq.[3] for
which large enhancements manifest only for initial misalign-
ments very close to the top of the potential |©¢| ~ m. This
apparent tuning of initial conditions only serves to delay the
onset of oscillation (see Fig. [p)); it can be explained by nat-
ural dynamics, and is not present for generalized potentials

(Sec. [V).

cillator. Using the Poincaré-Lindstedt method [52], the
zero mode itself can be found to behave according to:
03
192
where @ = 1 — ©2/16.
We can recast Eq. in terms of a damped Mathieu
equation, i.e. a damped harmonic oscillator with a peri-
odically modulated fundamental frequency:
d26, dfy
a e T
where we have defined 7 = 2wt,,. Above, we have ig-
nored the forcing term from Eq. [I9} and identified the
perturbatively small quantities:

O = O cos(Wtyy,) [cos(@t,,) — cos(3wty,)], (22)

(23)

[0 + ecos(T)] Ok = 0,

€= o’ (24)

1 62 k2 B
- =

3T
Eq. has several instability regions; the primary one
at small |e|, and the one of interest to us, is the region

= |00
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FIG. 5. Top panel:
bations dx versus CDM perturbations &

CDM
k

Transfer function ratio of axion pertur-
as a function of

dimensionless wavenumber k and normalized axion decay con-
stant f/fr/2, at a dimensionless time t,,, = 10® shortly after
the modes shown have crossed the horizon, as in Fig. @] On
the right vertical axis, we indicate tm,0, defined as the dimen-
sionless time at which the axion amplitude equals unity; ¢,,,0
has a one-to-one map with f/fr 2 and |©o| discussed around
Egs. [12] [13] [[4] [T5] and 26l Bottom panel: Boost function
G(k,tm) that captures all perturbative parametric resonance
growth until ¢, = 103, and parametrizes the curvature forc-
ing suppression for high-k modes. The analytic function G
is seen to be a reasonably good parametric estimate of the
enhancement (and suppression) of the relative matter power
spectra |0k /05 °M|? calculated numerically.

tm,

tm,



le| > c+4(5—1/4)? corresponding to a parametric varia-
tion of the natural frequency at approximately twice the
natural frequency. The parametric resonance instability
can be understood as a process where the quartic inter-
action converts two zero-mode particles into two finite-
momentum particles with & # 0.

The two exponential growth rate eigenvalues for the
amplitudes of 6y, expressed in the original ¢,, coordi-
nates, are:

_ ~ 2
. 3 02 8k2
+ —
R TR | (1 - tm®2> . (25)

We see that in the limit © — 0 or k& — 0, the 6y
amplitude decays as tfns/ 4, commensurate with the red-
shifting of the zero mode’s energy density redshifting as
02 x t;[?'/ 2 For k > 1, the second term becomes purely
imaginary and produces an additional oscillatory behav-
ior with frequency k?/2t,, that redshifts with time; there
is no parametric resonance growth, just as expected for
relativistic modes.

Axion density perturbations will exhibit exponential

growth when k% ~ t¢,,02/8, i.e. when the root in Eq.

is real. At least one mode will undergo a substantial
growth phase as long as the inequality ©2 > 8/t,, is sat-
isfied at some point. Because the amplitude growth is
exponential in time (with a rate given in Eq. , much
of the parametric resonance amplification is dominated
by the period in which © < lEI For simplicity, we in-
tegrate the growth term of Eq. starting from ¢, o,
defined as the time at which © = 1 (or the energy den-
sity is p ~ m?f2/2), and take ©2 = (t,,, /t;n.0) "3/, For
axions starting near the top of the cosine potential, a
good approximation is

tm,O ~ 0.596 [t?,:c + 41n t:)sc} 4/3 (26)

with £25¢ as in Eq. The boost in axion power from
parametric resonance is

tm,
g(ff,tm):(exp{Q/ dt;, Re [I‘;{R(l},tin)—s—j ]}
tm,0 m
(27)

Curvature fluctuations at high k have already partially
decayed away to a value that is O(1/k?t,, o) smaller than
their maximum by the time the axion starts oscillating at
tm,o (see Eq. , leading to a suppression of the initial
curvature forcing in Eq. We account for this effect
(that is unrelated to parametric resonance) by the mul-
tiplicative suppression factor ¢ = [1 + %thyo/ﬂ]*?

4 As we will show later in the top panel of Fig. some amplifi-
cation also occurs in the nonperturbative regime of © > 1.
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In the top panel of Fig. [5] we plot the exact numerical
results for the relative matter power spectra of axions vs
CDM, at a time t,,, = 10°[] The bottom panel shows the
function G(k,t,,) evaluated at t,, = 103, displaying qual-
itative agreement with |6 /0SPM|? of the top panel, and
justifying the identification of structure growth as due to
a parametric resonance effect. We note that the G func-
tion gives an overestimate to the boost in power at low
k; this difference is due to the forcing of long-wavelength
modes after t,, o, an effect that is also responsible for the
nodes and oscillatory behavior which are present in the
top panel (but not the bottom panel) of Fig.

With the above assumptions and simplifications, the
asymptotic boost in power relative to that in a CDM
scenario, namely G(k) = G(k, t,,, — 00), can be expressed
in closed form:

_exp {2]5\ [tm.o — 4k2 — 4k2arccos [ \/3’570} }

G(k) = (1 N 152;,2,1,(])2

(28)

The parametric resonance shuts off entirely at a time
tm = t3, o/(16k*) or when the perturbation becomes non-
linear; in practice, this asymptotic form is thus reached
rather quickly.

The numerator of Eq. is maximized at k., with:

]Nﬂ* = C]m/tm’() ~ 0.2 tm’o

0-18tm,

~ o ! ~N ——————
Glh) = G exp{€tmo} ~ TG T

(29)

As we will discuss below, the parametric form of the
expressions in Eq. 29 holds for other (time-independent)
potentials as well, with different values for the constants
Cy and §’E| Finally, we note that the boost in halo scale
density B is proportional to the boost in |6|? oc G3/2,
justifying our claim from Eq. [f] up to polynomial correc-
tion factors.

We have so far focused on the case of a cosine po-
tential. However, the parametric resonance instability is
quite generic: there is always an unstable wavenumber
k, as long as the nonlinearities in the potential are large
enough to overcome Hubble friction. For a Lagrangian

5 The axion transfer function |5k/¢’0,k‘2 is as calculated in Fig. [4]
while the CDM perturbation obeys dx/®g k = —9[t,:1 sinty +
t;z costy, —t,:g sintg +Inty — Ci(ty) +vE — 1/2] in this notation,
where Ci is the cosine integral function and ~g is the Euler-
Mascheroni constant [29].

6 The constant Cj = 0.2 is a solution to the transcendental

equation 2Cy = cos/1/(16C%) —1/4, and the constant & =

Cry/1 —4C2 ~ 0.18.



parametrized as £ = f2(96)%/2 — m2f2(62/2 — \0* /4! +

...), the condition for parametric resonance is

26?2 > 8 (30)

tm

For the cosine potential of Eq. A= 1, so given the
scaling of ©2 =~ (t,,/tm.0)"%?, all that is required is a
delay in the onset of axion oscillations from its natural
time scale of ¢,, 0 ~ 1. For a cosine potential—including
for the QCD axion potential in Sec. [[V}—this is achieved
by having the initial misalignment angle close to the top
of the potential, cfr. Egs. and We postpone a
discussion of these peculiar initial conditions to Sec. [V}
Parametric-resonance-fueled growth of density pertur-
bations happens more naturally for “flatter” potentials,
those for which ¢,,, o can be much larger than unity even
for generic initial conditions. We work out two such cases
in Sec. [V] for two axion potentials given by Egs. and
which have A\ = 6 and A = 3, respectively. For gen-
eral potentials, all appearances of ©? in Egs. and
need to be substituted by A©2. The asymptotic boost
factor in the power spectrum, analogous to Eq. can
then be found by performing the integral of Eq. The
results in Eq. 29 remain valid, provided one makes the

replacements Cy — \[S\C’k and & — A\¢’. Note that the
temporal scaling of ©2 is in general different for time-
dependent potentials, such as that of the QCD axion in
Sec. [[V] in which case the integral of Eq. 27] does not
yield Eq. 2§

If one extrapolates the nearly scale-invariant pri-
mordial curvature perturbation spectrum measured by
Planck [50] all the way to small scales, one can expect
fluctuations on the order of ®xo ~ O(107*5). The
extreme growth of density perturbations, illustrated by
transfer functions |0k/®ko|® as large as > 10'% in the
top right of Fig. [d] can thus lead to early nonlinearities
in the axion perturbations and the subsequent possibility
of collapsed structures, which we discuss in Sec. [[TB] In
Sec. we will first work out the evolution of per-
turbations that remain linear long after parametric res-
onance effects cease. In this case, Newtonian linear per-
turbation theory is a good approximation at late times,
when numerical integration of the equations of motion

(Egs. |11) and is computationally expensive.

2.  Newtonian treatment

In the subhorizon, nonrelativistic limit, we can study
the evolution of density perturbations using a Newtonian
fluid approach[] This approximation amounts to inte-
grating out the harmonic oscillations of the axion, and

7 See Ref. [53] for an equation-of-motion treatment of the gravita-
tional instability of a self-interacting scalar field.
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makes it feasible to study the evolution over many e-
folds of the Universe’s expansion. We can then stitch our
early-time solution from Sec. [TAT] onto the Newtonian
equations to get the late-time behavior.

At sufficiently late times, namely

1
tm > max {tm,Ov ];':2} ) (31)

a Newtonian fluid approximation becomes appropriate.
Well beyond the onset of axion oscillations ¢,,, > t,, o, we
can average over the effects during one period of the axion
oscillation, as the natural axion frequency is much larger
than the Hubble rate, and we can also treat the nonlin-
earities in the axion potential perturbatively (i.e. only in-
clude effects from the quartic). The inequality ¢,, > 1/ k2
ensures that the perturbation is well within the horizon,
as well as nonrelativistic (k/ma < 1). Both the axion
background density p and its fractional perturbations dy
should then obey standard Newtonian fluid equations.

The zero mode energy density will redshift as p
a=30+%) where w = P/p is the equation of state. For
an axion with a cosine potential, the pressure equals
P = —p?/16m?f? [54]. The fractional density pertur-
bation obeys the differential equation [H5H57]:

21,2
ck

= } S =0 (32)

b + 2H by — {4776*,0 -

where ¢s = /dP/dp is the sound speed of perturba-
tions. It receives a k-dependent kinetic pressure contri-
bution [58], 59] as well as an adiabatic contribution dP/dp
from the quartic nonlinearity:

I
ST 4m?2 8m2f? 4, 16 -

c (33)
For generalized axion potentials with a different quartic
interaction A (cfr. the discussion around Eq. and in
Sec. , the quartic contribution to the sound speed is
to multiplied by .

It is convenient to rewrite Eq.[33]as a differential equa-
tion in the variable y = a/aeq = 21/4\/theq/m:

d?6y 1 3\ dix
1 4 D) ==
1+9) dy? +(y+2) dy
3 kK3 i Mp) Heq 1

+
2y yr 42 f2 o omoyP

] S (34)

which also takes into account the transition of the Uni-
verse from radiation-domination (y < 1) into matter-
domination (y > 1). The initial conditions for this equa-
tion must be found by patching to the solutions from
Sec. at some intermediate time ¢£, which satis-
fies both Eq. and (y?)? = 2t8 Heq/m < 1. In
other words, we choose a patch time long after the field
has started oscillating nonrelativistically but long before



6k

matter-radiation equality. The matching conditions for
the perturbations are then:

ddx

) d7y = 2t} 05

(35)
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Patching our solutions from Sec.[[TAT]allows us to evolve
them out of radiation-domination to the present day,

which we use for many of the observables discussed in

Sec. [

m=10"2teV; m— |0y =1071% ®=2.1%x10"°
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FIG. 6. Evolution of fractional axion energy density fluctu-
ations 0k as afunction of the scale factor for four rescaled
wavenumbers k£ = {0.1,1,3,5}, corresponding to comoving
wavenumbers of k = {9,29, 50,65} Mpc™* for m = 102! eV.
The general-relativistic evolution is patched onto the Newto-
nian one at t,, = 4 X 10*, at the black vertical line. The
k = 5 mode is suppressed and oscillates due to kinetic pres-
sure, while long-wavelength fluctuations (e.g. kK = 0.1) match
onto the CDM predictions (dashed lines). For an axion mis-
alignment angle of [©p| = m1—107'2, the k = 1 mode receives a
boost in structure, causing it to collapse gravitationally earlier
during matter domination, while modes around k = 3 collapse
due to self-interactions and will lead to oscillon production.

We demonstrate this full, patched evolution of a few
representative k-modes in Fig. [6f As long as the patch-
ing procedure satisfies Eq. there is no dependence of
|0k| on the patching time. Indeed, the qualitative behav-
ior of the modes is the same in the Newtonian regime
of Fig. @ the k = 5 density perturbation keeps oscillat-
ing with the same amplitude and a period that steadily
increases (stays constant in log a time), while the & = 1
mode continues to grow in amplitude (with non-negligible
contributions from the third term in Eq. . Modes with
k 2 1 have too much kinetic pressure at matter-radiation
equality to experience this gravitational Jeans instability,
and commence linear growth dy oc a only after a ~ aeqk*.
After matter-radiation equality, all modes with k <1ex-
hibit a gravitational instability, and will undergo linear
growth dx oc a. These modes will eventually become
nonlinear—the topic of discussion in Sec. [[TB]
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B. Nonlinear regime

In the linear regime of Sec. [TA] we have seen that
the amplitude &, of density perturbations with k ~ 1
can experience a rapid burst of growth during radiation
domination, shortly after the field starts oscillating. Pro-
vided the transfer function |6x/®x o|? is less than the in-
verse of dimensionless primordial power Pg (k) at the rel-
evant wavenumber, the perturbations remain linear dur-
ing radiation domination but have much larger values
of |0k| at matter-radiation equality than predicted in a
ACDM universe. They will thus undergo gravitational
collapse—with slight modifications due to kinetic pres-
sure of the scalar field—much earlier than they would
have in ACDM, and will form correspondingly denser
halos (Sec. . If the halos exceed a threshold den-
sity, they will undergo gravothermal collapse, resulting
in a central profile consisting of a steep density cusp cut
off by a soliton in the core (Sec. [IB2)). In even more
extreme cases (e.g. the top-right portion of Fig. {4, a
density perturbation may even go nonlinear and collapse
during radiation domination due to the attractive axion
self-interactions. We devote Sec. [IB 3l to the conditions
for such “quartic collapse”. Finally, in Sec. we
discuss tidal stripping of halos, relevant for late-time ob-
servables discussed in Sec. [TIl

1. Gravitational collapse; halos and solitons

During matter domination, linear axion density per-
turbations grow with the scale factor, dy o a as long
as a 2 daeqmax{l,k*}. Thus for standard primor-
dial power spectra, subhorizon fluctuations will become
nonlinear before the present day (¢ = 1) unless k 2
5. For axions with large misalignment angles, fluctu-
ations with & ~ 1 will go nonlinear earlier than in a
ACDM universe. ACDM simulations show that overden-
sities with solely gravitational interactions form gravita-
tionally self-bound objects—halos—with a density pro-
file well-fitted by a Navarro-Frenk-White (NFW) pro-
file p(r) = 4ps/[(r/rs)(1 + 7/1rs)?] [60]E| The scale ra-
dius 7, scale density ps = p(rs), and scale mass M; =
4 [1° drr?p(r) = 8mp,rd(In4—1) remain approximately
constant for times subsequent to the formation of the
halo [62] [63], and are relatively robust against moder-
ate tidal stripping (see Sec. ﬂ We will therefore
describe axion compact halos, the nonlinear structures

8 We note that the NFW fit has been thoroughly verified only
for nearly scale-invariant power spectra within ACDM contexts,
where one expects many mergers. In light of Sec.[[TB2] it should
definitely not be trusted at radii » < 1/mus for axion DM. A
spike in the power spectrum—a shape more similar to what is
generated by the large-misalignment mechanism—produces cus-
pier halos, with an inner density profile p(r) o 7~3/2 [61].

9 This is in contrast to the oft-used quantities r2q0, the radius
within which the mean halo density is 200 times the Universe’s,



resulting from axion overdensities, in terms of their scale
quantities Mg and ps, the latter enhanced relative to a
typical CDM halo due to the boost in dx over a small
range in k and thus scale mass M;. We define the scale
potential as the gravitational potential at the scale ra-
dius, namely &, = ®(ry) = —167In(2)Gnpsr2, and use
the scale velocity vy, = +/—®5 as a measure of internal
velocity dispersion.

Gravitational collapse dynamics can be understood
analytically within the Press-Schechter formalism [64],
where a spherical tophat perturbation decouples from the
ambient Hubble flow to form a virialized object at acon,
the scale factor at which linear perturbation theory would
have predicted the fractional overdensity to have equaled
0. ~ 1.686 in a matter-dominated Universe. The virial
density of the resulting halo is approximately 178 times
the mean density of the Universe at acon. A question still
remains about the precise conditions for collapse, because
axion density fluctuations §(r) = (2m)~3 [ d3k d(k)e’k™
are a (initially Gaussian) random field, with overdensities
that are neither spherically symmetric nor even of similar
shape and amplitude. In practical terms, to explore fluc-
tuations at different scales, §(r) is smoothed to a density
field §(r, Rs) over a size Rg using an appropriate window
function W(r —r’, Rg):

5(r, Rg) = /d?’r'W(r —1', Rg)d(r'). (36)

Inspired by the spherical collapse model, the window
function is commonly taken to be a spherical tophat
W(r,Rs) = O(Rs — r)(3/47RZ). One then posits that
a point r is part of a halo of mass M, > Mg =
(47/3) %\ RS when (v, Rs) 2 ..

The variance 0?(Mg) = (§(r, Rs)?) of the density field
at the mass scale of Mg can be written as

2

O | 1wk, ms) 2 (37)

o2 (Ms) = / dn(b) Po (k) | 3

where W(k, Rs) = [d3r W(r, Rs)e ™7 is the Fourier
transform of the window function. In the top panel
of Fig. [7} we show the standard deviation o(Msg) as a
function of the smoothing mass scale Mg for an axion
mass m = 10718 eV and misalignment 7 — |©g| = 10710,
Assuming the fluctuations are Gaussian-distributed, the
collapsed fraction of structures with a smoothing mass
larger than Mg is F(Ms) = erfc[d./v/20(Ms)] in the
extended Press-Schechter formalism. We can then con-
struct a differential collapsed energy density per logarith-

1 3 dpcoll — 0 dF(MS) o
mic smoothing mass 7%= = Ppyamare > and a differ-

and Mago = [;2°° d3r p(r), the mass inside that radius. Both
these quantities increase with scale factor, but can drastically
decrease with tidal stripping (even if the halo is not completely
disrupted).
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ential collapsed fraction that evaluates to:

2
-5

1 deOll em. (38)

B \F be  |dIno(Ms)

Py dinMg Vo7 o(Ms) ‘ dIn Mg
We plot this function in the bottom panel of Fig. [7] for the
same axion parameters as in the top panel. Already at
z = 3000, F(Ms) ~ 1% of perturbations exceed the crit-
ical threshold of §.. The majority of points in space are
in a dense, gravitationally-collapsed halos before redshift
z = 100. Over time, the differential collapsed fraction at
small smoothing masses Mg decreases as halos at these
mass scales become part (i.e. subhalos) of larger halos.

One drawback of the Press-Schechter procedure with
a spherical tophat window function is that it largely fails
to account for halo substructure. For example, d(r, Rg)
can be large even when there is no structure at scales of
order Rg, as long as there is structure on scales bigger
than Rg. Likewise, the differential collapsed fraction of
Eq. 38 does not include structures of mass Mg that are
already assimilated into more massive halos. So while
the above procedure and the results of Fig. [7] are useful
to track parts of the density field’s statistics, they are
crude instruments for extracting the halo spectrum.

The two issues pointed out above—non-isolation
and wundercounting of substructure at the scale Rg—
stem from the fact that the Fourier transform of the
spherical tophat window W(k,Rs) = 3[sin(kRg) —
kRg cos(kRs)]/(kRs)? has nonzero support even for k <
Ry ! Therefore, rather than summing the cumulative
structure above Rg, which is effectively what the spheri-
cal tophat smoothing procedure does, one can also use a
window function that isolates the structure at a length
scale R:

[In(kR/x)]”

W(k,R) = Nexp { 152 (39)
with 6 = 1/2 and a normalization constant N such that
[ dIn(k) |W(k, R)|? = 1. The disadvantage of this win-
dow function is that its volume in real space formally di-
verges, and therefore cannot be interpreted as a smooth-
ing kernel as in Eq. Nevertheless, we find this window
function useful to construct a halo spectrum, i.e. a typical
mass-density relation {Mj, ps}:

47
M, = C’Mgp%MR‘g (40)
ps = Cppdattony;  Geon = {a|o(Rs) = 6.} (41)

with fiducial values of Cjy ~ 1 and C, ~ 200. In other
words, our procedure amounts to smoothing the dimen-
sionless linear power spectrum P(k) in In(k) space, and
taking a typical halo to form when a smoothed 1-sigma
overdensity reaches a value of 6. ~ 1.686. Note that with
our definitions, the total fraction of DM within gravi-
tationally collapsed structures can be larger than unity,
because we are counting a halo and all its subhalos (and
subsubhalos etc.) separately. We expect that if linear
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FIG. 7. Standard deviation of the smoothed axion den-

sity field (top panel) and the resulting differential energy
density fraction in collapsed halos per logarithmic mass bin
(bottom panel), as a function of the smoothing mass scale
Ms = 4?TFpODMRg of the spherical tophat window function
with radius Rs. Our results are plotted for the benchmark
case of m = 1078 eV and 7 — 0] = 10719 also plotted in
Fig. [8] at different redshifts z. Despite our input of a stan-
dard scale-invariant spectrum of curvature fluctuations, O(1)
density perturbations at small scales are already common by
matter-radiation equality. Further growth at these scales oc-
curs during matter domination, albeit slightly delayed rela-
tive to large scales due to effects of kinetic pressure, leading
to a collapsed halo fraction of 56% (82%) by redshift z = 100
(z = 30) entirely in dense halos lighter than 10° Mg. Af-
ter z ~ 30, these halos are assimilated into larger CDM-like
halos.

perturbation theory predicts o2 > 1 at some scale R
with our window function, O(1) of the DM is contained
within structures of mass M; as in Eq. [0} provided they
survive tidal stripping (see Sec. [[IB 4: .
In Fig. we plot the halo spectrum as defined in
Eqgs. [40] and [47] for four different cases, assuming a scale-
invariant primordial curvature power spectrum Py (k) =
2.1 x 1072, We see that the enhancement of density
perturbations at scales with k ~ 1 results in halos that
collapse earlier than in ACDM cosmological history and
can be significantly denser than the ACDM prediction at
comparable scales if 7 — |©¢| < 1. The typical mass of
these overdense halos is thus the one given in Eq.
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Halo Spectra: ®3=2.1x107°, §=1/2
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FIG. 8. Halo spectra in terms of scale mass M, and scale den-
sity ps (as in Egs. and for several different axion masses
m and misalignment angles ©g, as well as the reference CDM
halo spectrum. The thick solid lines are computed with a di-
mensionless smoothing kernel of 5 = 1/2. For m = 10715 eV
and m—|6¢| = 1073, we also display the halo spectrum with a
narrower kernel of & = 1/10 (thin red line), revealing the os-
cillatory behavior of the power spectrum at high wavenumber.
The dashed lines depict the dilute soliton branch of Eq.
the densest possible stable axion configuration, for the same
three axion masses, and the dotted vertical lines indicate the
maximum (critical) soliton mass. The dot-dashed lines delin-
eate the density above which gravothermal catastrophe occurs
inside the halo, resulting in a steep internal density profile (a
cusp cut off by a central soliton).

As the halos become denser, eventually the de Broglie
wavelength of the gravitationally bound axions becomes
comparable to the size of the halo. At that point, the re-
pulsive kinetic pressure of the axions becomes important
for the dynamics of the halo and the halos transition to
the soliton regime, represented by the dashed line shown
in Fig.[8] These gravitationally-bound axion field config-
urations have been extensively studied in the literature
[B1H42], and we devote App. |A| to a review of some of
their properties. There are, however, two facts that are
quite relevant for the discussion here.

The first is that solitons have a well-defined relation-
ship between mass and density. Defining a soliton’s scale
radius by 75°! = {r|0lnp(r)/0Inr = —2}, we can nu-
merically solve for the ground-state of the Schrodinger-
Poisson equation to find:

o 0.7 Glom® (M) (42)
where p%°! = p(r$°!) and M5! is the mass enclosed within
the scale radius. For a fixed total mass of axions M (with
the scale mass given numerically by M3°! a2 0.4 M), this
soliton state is the unique minimum-energy state, and the
densest energy eigenstate. This one-parameter family of
solutions parametrized by M:°! acts as an upper bound
to the scale density of a stable halo as a function of its
scale radius, and we plot this bound for a few different
axion masses in Fig. |8l For high misalignment angles, it



is possible to saturate this bound, which we also show in
Fig.

The second relevant fact is that the gravitational soli-
ton branch described in the above paragraph has a max-
imum possible mass M (see App. which corresponds
to a maximum scale mass (for an axion with a cosine
potential):

fMp;
m

Msol

s,max

~ 0.4 ML ~ 10 (43)
which we plot on Fig. |8 for each choice of axion mass
m by means of a vertical dotted line. Above this
value, the attractive axion self-interactions overwhelm
the repulsive kinetic pressure and no nonrelativistic,
(metastable) ground state configuration exists. Any suf-
ficiently dense axion configuration above this mass will
collapse within a dynamical time (i.e. an infall time).
Such self-interaction-induced collapses have been studied
previously in Ref. [65]. The large-misalignment mecha-
nism can produce dense solitons at the mass M in Eq.
which is parametrically only slightly below the critical
soliton mass M5%,.., by a factor of ~ (Heq/m)Y/4. We
speculate that mergers and accretion due to the gravi-
tational cooling mechanism of Sec. [TB2] below may tip
them over the edge, thus opening up the possibility for
late-time supercritical soliton collapse into oscillon-like
configurations. We leave a detailed analysis of these phe-
nomena and their impact on detectability to future work.
In Sec. we will study the early-time, direct produc-
tion of oscillon-like states, a process that does not involve
a soliton as an intermediate state.

2. Gravitational cooling

For the halos described above, gravitational cooling
is another process, beyond mergers and accretion, that
can significantly alter their structure. Compact halos
not in the soliton regime can cool and form a soliton
at their center, and solitons already present can accrete
more mass from the cooling of their surrounding halos.
The cooling timescale 7, has been estimated by Ref. [66],
and in terms of the scale quantities defined in Sec.
their expression reads:

Gm3M2 1

P (44)

Tor ~ Cor

where Cgy is an O(1) constant, and M, and p, are
the halo’s scale mass and density, respectively. Here
A ~ log(musrs) is a Coulomb logarithm (with 7, the
scale radius and v, the scale velocity), which we keep for
completeness but which is O(1) for the whole parameter
space, and so does not substantially change the results.
The cooling time scale of Eq. [44] is simply the inverse
rate of gravitational scattering, which is greatly increased
by a bosonic enhancement factor. Indeed, Eq. gives
the rate of gravitational scattering of quasiparticles of
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mass ~ ps )\‘2 and size A\; ~ 1/mus; one can therefore view
the gravitational cooling process as being due to the scat-
tering of the interference fringes of the axion field [67],
which cause O(1) density fluctuations on the scale of the
de Broglie wavelength A;. Ref. [66] finds that after a
timescale of roughly 7, a soliton will spontaneously form
in the halo, and grow in mass on similar time scales, at
least initially.

For moderately enhanced halo scale densities, the soli-
ton that forms initially is much smaller than the halo in
both mass and size (A\s < 75, the “kinetic regime” of
Ref. [66]). Nevertheless, at time ¢ > 74, the backreac-
tion of gravitational cooling on the halo is likely to be se-
vere. Gravitationally bound systems have a negative heat
capacity, so gravitational scattering (or any form of ki-
netic energy exchange for that matter) generically causes
a runaway instability to take place—the “gravothermal
catastrophe”. This phenomenon is known to occur in
globular clusters on a time scale of ~ 3007, [68, [69],
and we expect it to be operative for compact axion halos
as well.

The physical mechanism can be understood as follows:
heat transfer from the dynamically warmer halo core to
the colder periphery of the halo will cause the core to
lose energy, and thus heat up and contract by the nega-
tive heat capacity and the virial theorem. This process
is recursive: the core will continue to collapse (heat up
but shrink in mass Moy while its density peore increases)
by using its immediate outskirts as a heat sink. Ref. [68]
showed that for the case of gravitational scattering, there
is an attractor solution for this process, with the collaps-
ing core expected to leave behind a cuspy halo density
profile of p(r) ~ ps(r/rs)~« for r < rs. Ref. [68] argues
that a takes values between 2 and 2.5, with numerical
simulations favoring a = 2.21. (We expect the halo scale
radius and density to be only moderately increased and
decreased, respectively, by the gravitational cooling pro-
cess.)

In the case of axion dark matter, the core collapse
should be halted when the core reaches a size where re-
pulsive kinetic pressure becomes important, i.e. when the
line { Mcore, Peore } intersects the soliton branch of Eq.
depicted also in Fig. [§] for some benchmark axion param-
eters. The assumption of self-similar collapse combined
with the above reasoning thus allows us to derive a re-
lation between the solitonic core mass and the host halo

mass. The core density and a function of its mass is
Peore X M (3_0‘), resulting in a core soliton of mass:
o\ )
Ar p MZ T\ 0
Mg = | P - (45)
3 G3mS

For a = 2.21, this gives Mcore Mg““, which is to be

contrasted with the expectation of Mg Ms1 /3 for an
isothermal profile, where « = 2. The latter relation ap-
pears to arise in fuzzy DM simulations [70]. We do not
believe this to be in conflict with what we are describ-
ing here. In our mechanism with self-interactions, ps is



drastically enhanced and gravitational cooling is more
efficient than for a free scalar field minimally coupled to
gravity. We point out that a transition from an NFW to
an isothermal profile is expected as the first step in the
gravothermal collapse prOCGSSE

In Fig. [§] we show the minimum halo scale density at
which gravothermal core collapse is expected to occur.
Specifically, the dot-dashed lines are contours at which
Tg._rl = 300 Hy, for the three benchmark axion masses
considered. Halos above this contour, e.g. those with
M, ~ 10* Mg, of the blue halo spectrum in Fig. [8| with
m = 10718V and m — |©p| = 1072, will have their
cores collapse to the soliton branch. Subsequent to this
collapse, the central soliton is expected to accrete and
therefore increase further in mass and density. For axion
decay constants far below fr /2, it may be possible that
this central soliton could accrete to the critical soliton
mass at late times, the point at which a dramatic implo-
sion and bosenova of the type described in Ref. [65] and
App. [A] would take place. For the parameters plotted
in Fig. |8} we do not foresee this scenario to materialize,
as the host halos affected by gravothermal core collapse
are below the critical soliton mass of Eq. but halo
mergers and accretion are possible loopholes to these ar-
guments. Further numerical work is needed to study this
possibility; it is clear, however, that soliton formation is
greatly aided by the initial enhancement of small-scale
structure by our mechanism. Finally, gravitational scat-
tering between compact axion subhalos may also affect
the dynamics of their larger host halos. This aspect is

discussed in Sec. [ITA 6l

8. Quartic collapse; oscillons

At very large misalignment angles, namely m — |Og| <
10~'2 for the cosine potential, it can be deduced from
Fig. [4 that the parametric resonance growth of pertur-
bations can lead the axion field to grow nonlinear on
scales k ~ 1 well before matter-radiation equality. For
the nonperiodic potentials of Sec. [V] the same effects
are obtained for |@g| > 1, as indicated in Figs. [19| and

10 The scaling relation of Mcore Msl/3 has been extrapolated to
halos heavier than those simulated to place constraints on axions
above 10722 eV [47, [48] in mass. We do not believe these con-
straints should be trusted; the above scaling applies to isother-
mal profiles when the average velocity inside the solitonic core
is equated with the velocity right outside. This core-halo mass
relation should then break down in NFW halos for which the
thermalization radius (the radius within which Tgr ~ HO_1 and
out to which the halo profile now becomes isothermal) is smaller
than the scale radius rs. For particle masses of 10719 eV, this
happens in halos heavier than 107 M, and this cutoff scales as
m~3/2 for other axion masses. Above this halo mass cutoff, cal-
culating the radius for which 74y ~ Hy ! and relating this radius

to the halo mass suggests that Mcore o Mf/w and the extrapo-

lation used in the above references clearly does not apply.
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Density perturbations on these scales can potentially
decouple from the expansion of the universe, leading to
DM structures that collapse solely via self-interactions.
In this section, we numerically examine the conditions in
which this “quartic collapse” can occur and compare our
results with a (very) simple analytic model of the col-
lapse process. We restrict ourselves here to spherically
symmetric fluctuations, but we do not expect qualitative
differences in the collapse condition for O(1) asymmetric
perturbations.

Our numerical procedure involves taking a field config-
uration that consists of a zero-mode background 6y and
a spherically-symmetric Gaussian axion field wavepacket
of radius Ry, o and fractional overdensity dy at the center:

14 Logexp [ ——m (46)
500 €X - )
2 2R?,

where t,,, o is the time at which we start our simulation.
We also switch to a new comoving coordinate system
{tm,Xm} where the axion mass dependence drops out,
and the metric is ds? = m~2(dt2, —t,,dx2,). The dimen-
sionless time coordinate is ¢, = m/2H = mt as before,

O(tm,0,Xm) = 0o

while x,,, = t;ll/ 2mx is a dimensionless spacelike coordi-
nate in which a momentum mode characterized by k has
a wavelength of 27/k. Note that, relative to Eq. [8 we
are ignoring curvature perturbations and that r,, = |x,,|
in Eq. Let us also assume that 0;, 0(tm.0,%Xm) = 0.
We study the evolution of this wavepacket via the full
nonlinear field equation (with spherical symmetry and
without metric perturbations), which in this coordinate
system reads

35 - (a,%m - ria

Um ™t "

8t2m+ >}9+sin90,

(47)

along with the initial condition of Eq. [46] Ignoring the
forcing terms from curvature perturbations in Eq. [I9] be-
comes an increasingly good approximation at late times,
so our real-space, nonlinear simulations with Eq. [47] cap-
ture and thus isolate the effects from the self-interactions
only. They are thus complementary to the linear Fourier
analysis of Sec. We collect specifications of our
numerical method in App.

For certain values of the four parameters 6y, ¢, 0,
do, and R, o, the wavepacket separates from the Hub-
ble flow and collapses into an oscillon-like object with
p/m?f% > 1. In Fig. @ we show the evolution of one such
collapsing configuration. The initially small fractional
overdensity 69 = 0.01 deforms over the course of several
e-folds, decouples from the Hubble flow expansion, and fi-
nally collapses into an oscillon-like structure by ¢, ~ 700.
The oscillon is shrinking in comoving size but is decay-
ing more slowly in physical size R, = %QRm/m. It is
clearly a dynamical object, with periodic bursts of semi-
relativistic scalar radiation that decrease in intensity as
the central object loses energy. The semi-relativistic ra-
diation bursts can be seen as the streaks that fan out as
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p[m*f’] imum J§y needed to collapse into an oscillon as a func-
tion of R,, . We started a suite of real-space simula-

10t tions all at 6y = 1 and several benchmark starting times
tmo = {20,30,40,50,60,70,80,90}, which correspond
to misalignment angles m — |©p| = {5.1 x 1073,2.3 x
107 10=4,9.9x 1076,3.3 x 10~7, 1.1 x 1078, 5.1 x 1019, 2.6 x
102 107,9.9 x 10713}, respectively. In those parameter
10-3 scans, “oscillon collapse” was operationally defined as
p(rm = 0) > m? f? before t,,, = 10, i.e. the central den-
sity exceeding double its starting value of (1+6g)m?f?/2
despite initially decreasing until the configuration be-
ap[m?*f?jcomes nonlinear. In the top panel of Fig. we show
the results of a linear Fourier analysis, using the meth-

10t 0ds of Sec. to evolve axion density perturbations
0k from t,,, = 0 to t,, o for different k, the Fourier dual

of Ry, 0. We took the axion fluctuations to be sourced

10" by adiabatic curvature perturbations of standard size:
102 P2, = 2.1 x 1072, The linear evolution was performed

, for the same parameters as in the bottom panel, i.e. with
initial misalignment angles such that the amplitude of
=107 the zero mode, O, equals unity at tm,0. With a misalign-
ment of T — [@g] < 2.6 x 10711, © = 1 is reached at
Eenc[r?/rfjm.0 2 80, when one-sigma axion overdensities between

100 1 < k < 5 will reach values dx = 0.002 and are rapidly
ot growing. Comparison against the real-space results of

the bottom panel reveals that these perturbations are
10° Jestined to collapse. For these supercritical parameters,
10> the collapse time ¢, con is shortly after the fluctuation
10t becomes nonlinear with only a weak dependence on dy,

1

10”

FIG. 9. Spherically symmetric simulation of the axion field
as a function of dimensionless time t,, and radius r,,, start-
ing from a stationary gaussian wave packet with fractional
overdensity do = 0.01 and radius R,,,0 = 0.64 on top of
a homogeneous background with 8y = 1 at an initial time
tmo = 80, cfr. Eq. [@6] The evolution is governed by the
differential equation of Eq. @ The top panel shows the en-
ergy density p(tm,rm) in units of m?f2, the middle panel the
density difference Ap = |p — poo|, and the bottom panel the
total enclosed energy Eenc(tm,7m) = 4w [;™ 232 ot 7))
in units of f2/m. The dashed line shows the scale of the phys-
ical reduced Compton wavelength m~'. The initially linear
overdensity collapses into an oscillon by t,, =~ 700 and emits
semi-relativistic scalar waves.

T X (tm =ty burss) /2 initially but then slow down due
to the expansion of the Universe. Note that the density
at large comoving radius is redshifting like dark matter:
—-3/2

Poo X tm ' 7. In Sec. and App. E we study the pre-
cise characteristics of the collapse process and the outgo-
ing radiation—both in scalar and gravitational waves—at
higher resolution and without spherical symmetry but in
a static (not expanding) geometry.

In the bottom panel of Fig. we delineate the min-

R0, and ™ — |Og]. It is always several e-folds after
the zero mode starts oscillating, yielding the hard lower

=107 hound of tm,con > 102

We can attempt to capture these quartic collapse dy-
namics in the radiation-dominated era by following a
variational procedure similar to that of Ref. [34], [35]. We
derive an effective equation of motion for the physical size
R, = VPR, /m of the overdensity, and deduce under
which conditions R, — 0 in a finite amount of time. This
procedure is analogous to the standard calculation for
gravitational collapse of a spherical-tophat-shaped over-
density [64], which also reduces the problem from one in
d = 3+ 1 dimensions to one in d = 0 4+ 1 dimension.

In order to derive the equation of motion for R,, we
expand the energy density of the axion field to fourth
order in 6:

o (8,046 (8,0 6
p=mif { 2 o T m (48)

This expression can formally be expanded as a Taylor
series in 0: p = po + ps + pss + .... At every order
in §, we can break down each term into a “mass” and
“interaction” piece, p = p™ + pt corresponding to the
first and last two terms of Eq. respectively. The mass
of the initial state wavepacket (cfr. Eq. [46]) is then:

25
M= /d3Vp§4 ~ %503153/2 R}, (49)



B(tm o) =60=1; ®o=V2.1x10"°

1072
— tmo=20
— tmo=30
1034 — tmo=40
—— tno=50
—— tmo=60

[6k(tm,0)|
=
o
I
.
ENEY
o\B
o
0 N
o o
%
//

107> 4

0.2 0.5 1

0.5001

0.100¢
0.050
S
0.010
~tm,o =70 {
0.005 —d =341 tmo = 80
fffff d=0+1 tmo = 90
0.5 1 5 10
Rm,O
FIG. 10. Top panel: Linear momentum-space analysis of

axion density fluctuations dx as a function of k sourced
by adiabatic curvature perturbations with small amplitude
Do,k = V2.1 x 1079. The evolution is tracked for seven dif-
ferent values of misalignment angles |Oq| (see text) until the
zero mode has amplitude © = 1 at seven corresponding times
tm, 0. Bottom panel: Minimum overdensity do for a spheri-
cally symmetric gaussian wavepacket of radius Ry,,0 (Fourier
dual to I;) to collapse into an oscillon, starting at the same
seven start times t,,,0 at which the zero mode 6y equals unity.
Dashed lines show results based on a (0 + 1)-dimensional re-
duction assuming wavepacket rigidity and mass conservation,
principles which break down badly for small Ry, o due to para-
metric resonance and other relativistic effects.

The combination 025’,{2 is approximately a constant to
zeroth order in §, and in the absence of any dynam-
ics,  and R,, are constant as a function time as well,
such that the physical radius of the wavepacket R, =
Y ’R,, /m is expanding with the Hubble flow. However,
the wavepacket does have nontrivial dynamics due to its
interaction energy, which can be estimated as:

3 int 2
Eint = /d V Pss = M729/2 |:tm ?n — 90:| . (50)

In the subhorizon, nonrelativistic limit, and assuming
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wavepacket rigidityﬂ and mass conservation, the physi-
cal radius of the wavepacket should then obey a Newto-
nian ODE:

. d int

=—— | 1
R, R, { FRW + i } (51)
R, 6 { 6 393]

~Tw TR | n2@ R,

The first term is the leading correction that takes into ac-
count the deceleration of the Universe’s expansion [71],
with ®prw = —(H + H?)R2/2 = R2/8t* during radi-
ation domination. The second term is the leading self-
interaction force. The initial conditions corresponding to
those of Eq. [46] are:

Ry(to) = t3/3rm:  Ry(to) =

(52)

Rp(to) ™
2t0 me (to) ’

where in the latter equation, the first term is due to the
Hubble flow velocity H R, and the second term takes into
account the “spreading” of the wavepacket. Again, we
define a collapsing wavepacket as one for which ik, — 0
in finite time.

In Fig. we depict the critical parameters for col-
lapse using the R, equation with dashed lines. One can
observe that the dichotomy between collapsing and co-
moving configurations of Egs. and is captured by
the simplified dynamics of Egs. [52] and [53] only at large
wavepacket sizes R, o 2 3, and then only approximately.
For smaller wavepacket sizes, the 04 1-dimensional reduc-
tion breaks down spectacularly. As evident from Fig. [9]
the assumption of wavepacket rigidity (constant shape)
is badly violated even in the linear regime. Likewise, the
assumption of mass conservation is also not a good princi-
ple at small R,,, as parametric resonance (see Sec.
can be understood as a process wherein two axions with
zero momentum (the background) are converted into two
axions with finite momentum (part of the perturbation).

Our numerical simulations further show (see App.
for details) that the collapsing structures eventually set-
tle into evaporating oscillons, scalar field configurations
whose dynamics are dominated entirely by the dynamics
of the axion potential, with little influence from grav-
ity. This relaxation happens mainly through scalar wave
emission, some of which can be seen in Fig. )] Os-
cillons have been known to exist generically for poten-
tials containing attractive self-interactions, and they can
be relatively long-lived for some axion potentials, al-
though there is no simple quantitative or qualitative un-
derstanding for their longevity. Our high-resolution sim-
ulations show that the oscillon lifetime in physical units is

(53)

1A “rigid” wavepacket is one whose (in this case Gaussian) shape
is preserved. Wavepacket rigidity assumes that the variational
ansatz that we have used to convert the d = 3 4+ 1 Schrédinger
equation to a d = 0+ 1 equation for the wavepacket size R, is a
good solution to the original equations of motion for a station-
ary state. The middle panel of Fig. @ clearly shows wavepacket
deformation before collapse.



< O(10%) m~1 for the cosine potential, not long enough
to be cosmologically relevantE Since the actual struc-
tures collapsing via these self-interactions are O(1) asym-
metric, they can also emit gravitational waves during
their infall and collapse, which we discuss in Sec. [ITD}

The violent dynamics of the oscillons’ implosion and
evaporation leaves behind regions of axion debris with
O(1) density fluctuations. This is quite analogous to the
case of dissipating oscillons which form or become part
of QCD axion miniclusters, if the Peccei-Quinn phase
transition occurs after inflation (see e.g. Ref. [72]). We
expect that these regions are slightly larger in comov-
ing scale than the original density perturbations, and
that they will gravitationally collapse into ultra-dense
halos and solitons at around matter-radiation equality,
cfr. Sec. We still expect O(1) fraction of DM to
be in these structures; the debris of the oscillons’ decay
will be the bulk of the dense DM matter substructure,
and their signatures will be discussed in Sec. [[T]}

4. Tidal stripping

The halos that result from the parametric-resonance-
fueled growth of axion overdensities are the densest ob-
jects in the Universe upon their initial formation. They
are therefore robust against tidal stripping effects even
as they are assembled into larger DM halos such as those
of galaxies and clusters. However, present-day baryonic
structures such as stars, globular clusters, and the Milky
Way (MW) disk are of course much denser than typical
ambient DM densities. Most of the observational and ex-
perimental signatures of Secs. [[ITA] and [[ITB] rely on the
survival of the halos in our Galaxy, so one needs to ad-
dress the possibility that they are tidally disrupted by the
MW disk or its stellar constituents. We divide our dis-
cussion into two distinct cases, depending on whether the
halo scale radius r is either much smaller (r; < Argar)
or much larger (rs > Arg,,) than the average inter-
stellar separation in the MW disk: Argar ~ pc. For
the intermediate regime ry ~ Arga,, there is no separa-
tion of scales, but it should be approximately correct to
interpolate between the constraints of the two limiting
regimes.

First, we discuss the case of halo scale radii much
smaller than the interstellar separation, the case of inter-
est in particular for the femtohalos of Sec. [[ITB| In this
regime, stellar encounters are brief compared to the (in-
ternal) dynamical time of the halo, so the relevant quan-
tity is the differential velocity kick imparted on axions on

12 As we will discuss in Sec. E the oscillon lifetime can be sig-
nificantly longer than O(10%) m~1! for potentials other than a
cosine and/or for very large oscillons whose evaporation rate is
suppressed by a form factor. This raises the possibility of DM
being comprised of oscillons; some of the potential signatures of
oscillon DM are discussed in Sec. m
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opposite sides of the halo in the impulse approximation:

4GNMstarrs

Av(b) ~ (54)

b2vrel
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b 10_18M@ B@
In the above estimate, we assumed a relative velocity
of vel = 1073 and a solar-mass perturber My, =~
Mg. We also defined a typical impact parameter b as
biyp = (Mgtar/T56) "2 = 0.07 pc, with the surface mass
density of the MW disk at the Sun’s position equaling
Yo ~ 60Mgpc=2. The local density boost factor is

Be = ps/ng. By contrast, the scale velocity of a halo
is vy = /167 In(2)G N ps72, or numerically:

M 13 3 \1/6
~ —13 s 0]
s (2 ) (B)

Comparison of Egs. [54] and [55] shows that a single disk
crossing has little effect on the interior structure of a
moderately overdense halo.

Of course, the halo may experience N disk crossings
over the course of its lifetime, with a minimum expected
impact parameter of byin = biyp/ V/N. The requirement
that Av(bpmin) < vs is equivalent to a mass-independent
lower bound on the scale density, or equivalently the
boost factor:

TGN S2PDu 2 N
> TOTDMNZ & 740 () .
O~ 2 2 ™01 100 (56)

We regard Eq. as a conservative lower bound on the
minimum overdensity necessary to prevent a catastrophic
tidal disruption event for a halo that crosses the disk N
times. Typical halos will have N at most ~ 150, while
those on eccentric orbits or recently accreted onto the
MW could have substantially lower values of N. Instead,
one could consider the process wherein the internal bind-
ing energy per unit mass (—v2/4) of the halo is grad-
ually reduced by dynamical heating of N tidal encoun-
ters, each interaction dumping kinetic energy per unit
mass of vsAv(b), under the assumption of mass conser-
vation. One then arrives at a bound similar to that of
Eq. except stronger by a factor of (4In N)? on the
RHS. However, tidal interactions do cause partial mass
loss—preferentially of particles on more weakly-bound
orbits, leaving behind more deeply bound particles and
a denser halo. Ref. [(3] indicates that even Eq. 56| may
be overly restrictive: a tidal shock energy far exceeding
the halo’s original binding energy can result in a sur-
viving halo fragment. We therefore expect halos with
rs € Argpar to survive tidal interactions inside the Milky
Way if they are only moderately overdense.

In the case of larger subhalos with ry > Arga,,, tidal
survival constraints are relaxed because the subhalos are
effectively probing a lower-density medium; the tidal
forces from individual stars are only strong on scales



much smaller than the subhalo itself, and cannot cause
its entire disruption. In the commonly-adopted simpli-
fied model of Ref. [74], one posits that all mass of subhalo
outside the tidal radius r; is tidally stripped by a spher-
ically symmetric perturber with enclosed mass function
M,(R). If the subhalo is on a circular orbit at radius
R from the center of the host halo, the tidal radius is
implicitly given by:

M(ry) _(5_ dIn M,(R)
b dlnR

T

M,(R
R) R(3 ) e

Above, M(r) is taken to be the enclosed mass function
of the subhalo. If we require that r; > r; on a cir-
cular orbit at the Sun’s radius R ~ 8.3kpc from the
MW with scale radius ¥V ~ 18kpc and scale density
MW~ 2.6 x 1073 Mg pc~? [75], we arrive at the weak
constraint B 2 1.2. Tidal fields from density variations
in the Galactic disk on scales of order the subhalo size
can be significantly larger, as one can generally expect
O(1) overdensities in the disk with mean local density
pd,o ~ 0.087Mgpc2 [75]. Still applying Eq. and
conservatively taking the RHS to be 47pg o, we find that
r¢ > 15 requires that Bg 2 11. Most of the mass is lo-
cated outside the scale radius of an NFW-shaped halo,
so if these inequalities are only barely satisfied, one can
expect survival but with substantial mass loss from tidal

stripping.

III. OBSERVATIONAL PROSPECTS

In Sec. [ we described how the attractive self-
interactions of axion DM at large initial misalignment
give rise to compact halos much denser than the ACDM
expectation at similar scales. In Secs. [[V] and [V] we will
repeat this analysis for the QCD axion and for general-
ized axion potentials, respectively, with similarly boosted
DM power spectra and thus denser halos. When formed,
these halos constitute O(1) fraction of the DM, and their
spatial distribution will trace the ambient DM density.

In this section, we describe how we expect DM phe-
nomenology to change in our scenario. We divide the
observable signatures of compact axion halos into four
categories. In Sec. [[ITA] we consider direct gravitational
interactions between these halos and astrophysical ob-
jects such as stars. These include perturbations in stellar
phase space distributions, various gravitational lensing
signatures, and potentially-observable dynamical friction
effects. The rough region of affected parameter space is
shaded in blue in Fig.[I] and the reader interested in the
key results of this section should focus first on Fig.

We then move in Sec. to a discussion of how such
compact halos affect DM direct detection experiments
that search for nonminimal axion couplings to the SM.
This is relevant for high axion masses (shown by the green
region in Fig. [1)), and the key results are summarized in
the final two paragraphs of Sec. [[IIB] as well as Fig.
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In particular, we point out the importance of these effects
for the QCD axion (see also Sec. .

We next consider indirect gravitational effects on bary-
onic structures and early star formation in Sec. m
These are relevant only for the lightest axions (with
masses less than O(1071%) eV), a region shaded in brown
in Fig. [T} and we report the key findings on star forma-
tion in Fig. In the final paragraph of this section we
also discuss effects observable in Lyman-a forests, and
why current constraints on ultralight dark matter do not
apply and must be reanalyzed in our case.

Finally, in Sec. [[ITD] we study the extreme case when
collapse happens well before matter-radiation equality
and oscillons are formed. The collapsing structures
will emit gravitational waves and form a stochastic
GW background, and for light axions (masses less than
O(10~ %) eV), this background may be detectable in the
future. We shade the affected region of parameter space
in orange in Fig. |1} and Fig. [15| contains our estimates of
power in the stochastic background as well as the poten-
tial reach of upcoming experiments.

A. Direct gravitational interactions

The compact halos formed through the large-
misalignment mechanism can be large enough to grav-
itationally bend or magnify the light emitted by astro-
physical objects as they move in front of them, or to
gravitationally affect the motion of nearby stars as they
move through the Galactic halo. Here we analyze these
effects in detail, and Fig. summarizes the parameter
space that each effect probes as a function of the halo
scale mass M, and the halo scale density ps. Purely
from the minimal coupling to gravity, there are discovery
prospects for halos seeded by large-misalignment axions
with masses as high as m ~ 107%eV. We note that most
of the effects in Fig. do not rely on subhalos that
transit the MW disk or can only probe relatively dense
subhalos, and are thus robust to tidal stripping.

We begin in Sec. [ITAT] by discussing how compact
subhalos perturb local stars. In Sec. we show that
the most powerful probe in a large part of the parameter
space is astrometric weak lensing. DM subhalos’ lensing
of stellar light can appear as a distortion of the apparent
motion of stars. We consider two types of observables,
one based on the apparent velocity of background lumi-
nous sources such as distant stars or quasars (blue curves
in Fig. , the other based on apparent stellar accelera-
tions (red curves in Fig. [11)).

In Secs. [ITA3] [ITA4] and [ITAH] we discuss signa-
tures of DM subhalos that rely mainly on strong gravi-
tational lensing, where lensing produces significant mag-
nification and multiple images of the lensed object. We
find that DM subhalos within our galaxy are generically
too diffuse to satisfy the strong lensing criterion, but that
for some rare extragalactic stars, located behind critical-
lensing caustics of galactic clusters, can lead to observ-
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FIG. 11. Astrophysical probes of direct gravitational effects from compact halos, parametrized in terms of their sensitivity to
halo scale mass M, and scale density ps. Above the dashed (dotted) green line, compact subhalos would produce observable
velocity kicks in stellar streams (the Galactic disk). The green region outlines the best-fit parameters of one such tentative
impact on the GD-1 stream. In the dark gray region, these kicks can be strong enough to eject stars from the Galactic disk or
even halo. Above the solid (dashed) blue line, astrometric lensing by compact halo induces localized distortions in the proper
motion p of background sources that are observable by Gaia (SKA). Likewise, correlations in stellar proper accelerations «
induced by astrometric weak lensing are detectable by Gaia (Theia) above the solid (dashed) red line. On the purple line,
the halo scale radius equals the typical distance traveled over a 9-year observation time, demarcating the transition between
transient and enduring lensing effects for unmagnified sources. Inside the gold-colored solid (dashed) line, an observable fraction
of GW events at aLIGO (LISA) will be diffracted. Photometric irregularities in the microlensing light curve of highly magnified,

caustic-transiting stars may be observable above the orange line.

able signatures in a very wide range of parameter space
(Sec.|IIT A 4)). For extragalactic halos that al