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Gravitational wave signals from compact astrophysical sources such as those observed by LIGO
and Virgo require a high-accuracy, theory-based waveform model for the analysis of the recorded
signal. Current inspiral-merger-ringdown models are calibrated only up to moderate mass ratios,
thereby limiting their applicability to signals from high-mass ratio binary systems. We present EM-
RISur1dq1e4, a reduced-order surrogate model for gravitational waveforms of 13, 500M in duration
and including several harmonic modes for non-spinning black hole binary systems with mass-ratios
varying from 3 to 10, 000 thus vastly expanding the parameter range beyond the current models.
This surrogate model is trained on waveform data generated by point-particle black hole perturba-
tion theory (ppBHPT) both for large mass-ratio and comparable mass-ratio binaries. We observe
that the gravitational waveforms generated through a simple application of ppBHPT to the com-
parable mass-ratio cases agree surprisingly well with those from full numerical relativity after a
rescaling of the ppBHPT’s total mass parameter. This observation and the EMRISur1dq1e4 sur-
rogate model will enable data analysis studies in the high-mass ratio regime, including potential
intermediate mass-ratio signals from LIGO/Virgo and extreme-mass ratio events of interest to the
future space-based observatory LISA.

Introduction – As the LIGO [1] and Virgo [2] detectors
improve their sensitivity, gravitational wave (GW) detec-
tions [3–9] are becoming routine [10, 11]. In the current
observing run, for example, gravitational-wave events are
now being detected multiple times a month [12]. Among
the most important sources for these detectors are bi-
nary black hole (BBH) systems, in which two black holes
(BHs) radiate energy through GWs, causing them to in-
spiral, merge, and finally settle down into a single black
hole through a ringdown phase.

To date all LIGO/Virgo events show support only for
systems with mass ratios1 q = m1/m2 < 8 [13]. Never-
theless, one should expect to observe larger mass ratio
systems in the future. For example, the first and sec-
ond observing runs [13] have already observed compact
objects over a mass range of 1.3M� to 85M� suggest-
ing combinations involving mass-ratios in the range of
10 to 20 are not unreasonable for LIGO/Virgo to de-
tect, especially, if the lighter member of the binary is
a neutron star or for BBH systems within the accretion
disks of Active Galactic Nuclei [14]. A third generation
(3G) ground-based detector, like the Einstein Telescope
or Cosmic Explorer [15–17], may be able to reach up to
redshifts beyond 10 and with an improved low-frequency
sensitivity limit, implying an increased rate of detection
of BBH events with unequal mass ratios [18, 19]. In-
termediate mass ratio inspirals are also one of the key

1 We use the convention q = m1/m2, where m1 and m2 are the
masses of the component black holes, with m1 ≥ m2.

target sources of the future LISA space-based gravita-
tional wave [20–22] detector along with extreme mass
ratio systems comprised of a small compact body (possi-
bly a neutron star or stellar mass black hole) orbiting a
supermassive black hole (at a galactic center) [21–24].

In all of these cases we need accurate and fast-to-
evaluate inspiral-merger-ringdown (IMR) models cover-
ing a range of large- to extreme- mass ratio systems. Such
models are needed to maximize the science output of data
collected by ground-based detectors or to perform mock
data analysis studies for LISA and 3G detectors.

Successful detection and parameter estimation relies
on being able to compute, from accurate numerical rel-
ativity (NR) simulations, the detailed waveform signal
template for such systems. Because solving the Einstein
field equations for thousands to millions of potential as-
trophysical sources is exceedingly challenging, several ap-
proximate waveform models that are much faster to eval-
uate have been developed [25–40], including an effective
one body model [41, 42] calibrated up to q = 100 using
results from black hole perturbation theory [29]. These
models assume an underlying phenomenology based on
physical considerations, and calibrate any remaining free
parameters to NR simulations. Within the LISA wave-
form modelling community, the computational expense
of perturbation-theory waveforms presents a similar bot-
tleneck. By relying on a combination of approxima-
tions, progress has been make towards the development of
“kludge” models which can generate waveforms quickly
while capturing the qualitative features of extreme mass
ratio inspiral (EMRI) waveforms [43–46].

Surrogate modeling [47, 48] is an alternative approach
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that doesn’t assume an underlying phenomenology and
has been applied to a diverse range of problems [29, 47–
62]. These models follow a data-driven learning strategy,
directly using waveform training data collected by run-
ning numerically expensive partial differential equation
(PDE) solvers. Surrogate models are accurate in the re-
gion of parameter space over which they were trained
as well as extremely fast to evaluate. For example, for
our model the underlying solver used to generate a single
training waveform takes about 2 hours while its corre-
sponding surrogate can be evaluated in under a second.

Modeling IMR signal templates for black hole binary
systems with moderate to large mass ratios has remained
challenging. One practical reason is that comparable-
mass binaries, a dominant source for currently opera-
tional ground-based detectors, have received significant
attention from the waveform modeling community. Fur-
thermore, this is a parameter regime that is particularly
challenging for NR as the small length scales introduced
by the smaller BH impose a very high grid resolution re-
quirement. In the extreme cases, i.e. when one black hole
is supermassive like those at the center of most galaxies,
the mass-ratio may approach q ∼ 109. These are well
beyond the scope of NR and are typically well-suited for
black hole perturbation theory.

In this Letter we present a surrogate model for gravi-
tational waveforms emitted from non-spinning black hole
binary systems that span an extremely wide range of
mass-ratios, from q = 3 to q = 10, 000. This is the
first surrogate model that covers such a wide range of
mass-ratios. The model includes all of the phases of the
system’s evolution starting from a slow inspiral through
plunge and ringdown, and includes not only the domi-
nant quadrupole mode, but also several of the most im-
portant higher harmonic modes that are especially im-
portant at larger mass ratio [63–67]. The model spans
13, 500M in duration, which for a q = 10 and q = 104

system corresponds to 32 and 144 orbital cycles, respec-
tively. This model can be immediately used in data anal-
ysis studies or phenomenological model building efforts
that involve large-mass ratio systems, and serves as a
proof-of-principle that the surrogate modeling methodol-
ogy developed for LIGO-type sources remain applicable
for LISA-type sources. In future work we will extend our
model to include spinning BHs and more orbits.

The training data we use to build this reduced-
order surrogate model is generated using the point-
particle black hole perturbation theory (ppBHPT) frame-
work, i.e. a high-performance Teukolsky equation [68]
solver code (using a point-particle source) in the time-
domain [69–72]. While black hole perturbation theory’s
domain of validity is typically taken to be very high mass-
ratio binaries, it is interesting to note that a simple rescal-
ing of the mass parameter is sufficient to achieve accu-
rate agreement with NR waveforms for mass-ratios less
than 10. That perturbation-theory waveforms agree at

all with NR for small-mass ratio systems is somewhat re-
markable given that this regime is typically considered
beyond perturbation theory’s domain of validity.
Background on ppBHPT – In the context of the large
mass-ratio limit of a black hole binary system, the sys-
tem’s dynamics can be described using Kerr black hole
perturbation theory. In this approach, the smaller black
hole is modeled as a point-particle with no internal struc-
ture, moving in the space-time of the larger Kerr black
hole. Gravitational radiation is computed by evolving the
perturbations generated by solving the Teukolsky master
equation with a particle-source [69–72].

We implemented this ppBHPT approach in two steps.
First, we compute the trajectory taken by the point-
particle, and then we use that trajectory to compute
the gravitational wave emission. For the first step, the
particle’s motion can be characterized by three distinct
regimes – an initial adiabatic inspiral, in which the parti-
cle follows a sequence of geodesic orbits, driven by radia-
tive energy and angular momentum losses computed by
solving the frequency-domain Teukolsky equation [73–76]
with an open-source code GremlinEq [77–79]; a late-stage
geodesic plunge into the horizon; and a transition regime
between those two [71, 80–82] 2. It should be noted that
our trajectory model does not include the effects of the
conservative or second-order self-force [83], although once
these post-adiabatic corrections are known (see, for ex-
ample, Refs. [84–86]) they could be easily incorporated
to improve the accuracy of the inspiral’s phase.

With the trajectory of the perturbing compact body
fully specified, we then solve the inhomogeneous Teukol-
sky equation in the time-domain while feeding the tra-
jectory information from the first step into the parti-
cle source-term of the equation. In particular, (i) we
first rewrite the Teukolsky equation using compactified
hyperboloidal coordinates that allow us to extract the
gravitational waveform directly at null infinity while also
solving the issue of unphysical reflections from the artifi-
cial boundary of the finite computational domain; (ii)
we take advantage of axisymmetry of the background
Kerr space-time, and separate the dependence on az-
imuthal coordinate, thus obtaining a set of (2+1) dimen-
sional PDEs; (iii) we then recast these equations into
a first-order, hyperbolic PDE system; and in the last
step (iv) we implement a two-step, second-order Lax-
Wendroff, time-explicit, finite-difference numerical evo-
lution scheme. The particle-source term on the right-
hand-side of the Teukolsky equation requires some spe-

2 For the low mass-ratio cases, unsurprisingly, the Ori-Thorne
transition trajectory algorithm doesn’t perform very well. This
results in a small jump in the velocities of the point-particle as it
exits the adiabatic inspiral and also when it begins the plunge.
This jump results in some small unphysical oscillations in the
waveforms, especially in some of the higher-order modes. We
correct for this by using a “smoothening” procedure.
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cialized techniques for such a finite-difference numerical
implementation and, for technical reasons, we set the
spin of the central black hole (a = 10−6) sufficiently
close to zero. Additional details can be found in
our earlier work [69–72] and the associated references.
Our numerical evolution scheme is implemented using
OpenCL/CUDA-based GPGPU-computing which allows
for very long duration and high-accuracy computations
within a reasonable time-frame. Numerical errors in the
phase and amplitude are typically on the scale of a small
fraction of a percent [87] (cf. Fig. 1).
Description of the Surrogate Model EMRISur1dq1e4–
Our surrogate model is built using a combination of
methodologies proposed in previous works [47, 48, 51],
which we briefly summarize here.

We collect our waveform training data by numer-
ically solving the inhomogeneous Teukolsky equation
at 37 different values of the mass ratio q (cf. the
bottom panel of Fig. 1) and for each value of q ex-
tract the harmonic modes, h`,m(t; q), for (`,m) =
{(2, {2, 1}), (3, {3, 2, 1}), (4, {4, 3, 2}), (5, {5, 4, 3})}. Fol-
lowing [51], we enact a time shift and physical rotation
about the z-axis such that (i) each waveform’s time is
shifted such that t = 0 occurs at the peak of the the
(2,2) mode’s amplitude,

∣∣h22∣∣, and (ii) all the modes’
phases are aligned by performing a frame rotation about
the z-axis such that at the start of the waveform φ22 = 0
and φ21 ∈ (−π, 0], where φ22 and φ21 are the phases of
the complex h2,2 and h2,1 modes, respectively. This pre-
processing alignment step ensures that all of the training-
set waveforms now depend smoothly on the parameter q.

After alignment we decompose the waveform into data
pieces which are simpler to model. In our case, we
choose the waveform modes’ amplitude and phase as
our data pieces, and interpolate these onto a time grid
[−13404, 94]M with ∆t = 0.05M. Following Refs. [47, 51],
we construct an empirical interpolant (EI) [88, 89] (an in-
terpolant whose basis and nodes are learned by applying
optimization methods to the training set) for each data
piece; there are 11 modes provided by the ppBHPT solver
and so we construct 22 empirical interpolants in total (cf.
Eq. 3 of Ref. [51]). Note that we model m > 0 modes
only since the negative modes, h`,−m = (−1)`h`,m∗, are
related to the positive modes due to symmetry of the
system under reflections about the orbital plane.

The empirical interpolant gives a compact representa-
tion for each data piece (and hence the full waveform)
in the training set by permitting the full time-series to
be reconstructed through a significantly sparser sampling
defined by the EI nodes. To predict new waveforms not
in the training set, at each EI node we model the data
pieces’ parametric dependence on q with a spline [48].

Two examples are given in Fig 2, where we show the
training data and model for the (2, 2) mode’s amplitude
and phase at some randomly selected EI node; by fixing
the time this data is a function of q only. Our data-piece

models are built using degree 2 interpolating splines with-
out any smoothing factors. As shown in Fig. 2 we find
significantly better accuracy when modeling the data af-
ter performing a logarithmic transformation of the inde-
pendent variable. This was first used in Refs. [59, 60], and
we suspect this will be important for any model seeking
to cover large ranges of the mass ratio. The remaining
10 subdominant modes follow the same approach.

When evaluating the surrogate waveform, we first eval-
uate each surrogate waveform data piece at the requested
value of q and use the EI representation to reconstruct the
surrogate prediction for the waveform as a dense time-
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FIG. 1. The bottom subfigure depicts each mode’s rel-
ative error by comparing the surrogate model and the train-
ing data. The relative error is computed from Eq. (3) with
α = 1 and using the appropriate mode in place of where it
says “h22”. The penultimate subfigure shows the numer-
ical truncation errors (orange plus) estimate the quality of
the training waveform data by comparing two numerical sim-
ulations of increasing resolution. We also compared the full
surrogate (including all 11 harmonic modes) and the train-
ing data (black circles) and a leave-one-out cross-validation
(LOOCV) trial surrogate and the training data (blue trian-
gles). The largest LOOCV error is for q = 4, for which the
h+ polarization’s quadrupole mode is shown in the top sub-
figure. The second subfigure reports on the error in the
amplitude and phase for this case; our full surrogate, trained
on the entire data set of 37 waveforms, is more accurate than
the LOOCV diagnostics shown.
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FIG. 2. At each empirical interpolation node we build sur-
rogate models for amplitude, A2,2(q) ≈ A2,2

S (q), and phase
φ2,2(q) ≈ φ2,2

S (q) across the training region. One of the key
methodological improvements pursued here is modeling the
training data after performing a logarithmic transformation
(red asterisk) of the independent variable {ln(q), A2,2(q)} and
{ln(q), φ2,2(q)}. Here we show the LOOCV model error at
q = 100, which leads to nearly two orders of magnitude im-
provement as compared with no transformation (blue trian-
gle). Data for the other harmonic modes and empirical inter-
polation node data show similar improvement.

series. The full surrogate, hS, can be written as

hS(t, θ, φ; q) =
∑
`,m

h`,mS (t; q)−2Y`m(θ, φ) , (1)

where −2Y`m are the spin (−2) weighted spher-
ical harmonics and models for each harmonic
mode (a single complex function), h`,mS (t; q) =

A`,mS (t; q) exp(−iφ`,mS (t; q)), are defined in terms of
models of the amplitude and phases (two real functions).

To assess the surrogate model’s error, we perform some
of the tests described in Ref. [90] using a relative L2-
type norm (we compute the norm of the error through
a time-domain overlap integral with a white-noise curve)
given exactly by Eq. (21) in Ref. [90]. This measures
the full waveform Eq. (1) error over the sphere and au-
tomatically includes error contributions from all of the
harmonic modes. In Fig. 1 we (i) check that the sur-
rogate model can reproduce all 37 ppBHPT waveforms

used to train the surrogate (black circles), (ii) perform a
leave-one-out cross validation study to asses the model’s
ability to predict new waveforms it was not trained on
(blue triangles), and (iii) compare both errors to the nu-
merical truncation error of the Teukolsky solver used to
produce the training data (orange plus). We find that
the model errors remain extremely small over the range
of mass ratios q = 3 to 104, although a they are a bit
larger than the errors in the training data itself. We re-
mind the reader that these comparisons are between the
model, EMRISur1dq1e4, and the output of the Teukolsky
solver. Waveforms generated within the ppBHPT frame-
work are expected to become more accurate as q becomes
large. Next we provide evidence for using ppBHPT wave-
forms even at small mass ratios.
Waveforms from Comparable Mass Binaries using Per-
turbation Theory – We now proceed to compare the model
output with full NR data. This comparison is naturally
restricted to low mass-ratios q ≤ 10. For the high mass-
ratio cases, extensive comparisons with EOB have been
performed previously in the context of the EMRI data it-
self [91], so we do not focus on those cases. Additionally,
there is a lack of models and data for the intermediate
ranges, say from q = 10 to q = 104, so we leave that
domain open for future comparisons.

One complication that appears when we attempt to
perform a careful comparison with NR is how to set an
overall mass-scale for the comparison and, more gener-
ally, identify parameters. Indeed, all dimensioned quan-
tities in both ppBHPT and NR frameworks are writ-
ten in terms of a freely-specifiable mass-scale. For
ppBHPT this scale is selected to be the background black
hole spacetime’s mass parameter, while the sum of the
Christodoulou masses of each black hole is the choice im-
plemented in the NR code [92, 93]. If the background
black hole’s mass is set to 1, naively we might expect
the corresponding NR simulation’s total mass (its mass-
scale) to be 1 + 1/q. This straightforward identifica-
tion works well when comparing post-Newtonian and NR
waveforms [92], while only in the limit of large q does the
ppBHPT mass-scale seem to approach the naive one.

To address this uncertainty, we perform a rescaling of
our surrogate model data (t → αt, r → αr) using a
single parameter, α, which, due to coordinate invariance
of GR, describes a physically equivalent solution. This
simultaneous rescaling of r and t may also be interpreted
as keeping the coordinates fixed while modifying the total
mass parameter as M →M/α. In particular, we propose
modifying the ppBHPT surrogate model presented above
according to the formula

h`,mS,α (t; q) = αh`,mS (tα; q) , (2)

where α is set by minimizing the difference

min
α

∫ ∣∣h22S,α(t; q)− h22NR(t; q)
∣∣2 dt∫

|h22NR(t; q)|2 dt
, (3)
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FIG. 3. Waveform difference between numerical relativity and
ppBHPT waveforms before and after rescaling the ppBHPT’s
total mass parameter. Bottom panel: These two figures fo-
cus on the case q = 8. Before rescaling the NR (solid blue)
and ppBHPT (dashed red) waveforms are noticeably different
in both their amplitude and phasing and have an L2 difference
of 7.03 × 10−1. We find the optimum value of the rescaling
parameter to be α = 0.85837 and modify the ppBHPT wave-
form according to Eq. (2). After rescaling the NR and modi-
fied ppBHPT waveforms demonstrate remarkable agreement
with one another. Top panel: We repeat this comparison
procedure for mass ratios 3 ≤ q ≤ 10 where NR data is avail-
able, and compute both the optimal scaling factor and the
L2 difference between waveforms (NR vs scaled ppBHPT) for
each case. In all cases the differences before rescaling are or-
der unity, while the agreement between the rescaled ppBHPT
and NR waveforms is ≈ 1%. The dotted line refers to a naive
value of α = 1/(1 + 1/q) set by including the mass the of
smaller black hole as part of the background spacetime.

between our model and a handful of nonspinning NR
waveform datasets [93–95] for the (2, 2) harmonic mode.
We then fit α(ν)

α(ν) = 1− 1.352854ν − 1.223006ν2

+ 8.601968ν3 − 46.74562ν4
(4)

to a polynomial in ν, which is the symmetric mass
ν = q/(1 + q)2. Details of this parameter are presented
in Fig. 3 alongside the error (computed as Eq. (3)) be-
tween the rescaled surrogate model and NR waveforms.
As expected the rescaling parameter approaches unity as
the mass-ratio increases, and the error decreases accord-
ing to the trend ε(ν) = 0.082111353ν + 0.2698017ν2 +
0.7116969ν3. We conjecture that these fitting formula

will continue to be applicable for values q > 10. To
test our conjecture, we compare our model against a new
q = 15 NR simulation performed using the SpEC code
with recent algorithmic improvements [96, 97]. We find
the (2,2) modes agree to 6.1 × 10−3, which is consistent
with our predicted accuracy formula’s value of 5.8×10−3.
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FIG. 4. Frequency-domain mismatch between NR and
rescaled ppBHPT waveforms using all available modes. The
mismatch computation uses an advanced LIGO design sensi-
tivity curve [98], an upper frequency of 4096 Hz, and a vari-
able lower frequency set to the (2,2) mode’s initial instanta-
neous frequency. We show a result for an inclination angle of
0, while non-zero inclinations are typically a factor of ∼ 1.5
times larger. As expected, the ppBHPT and NR waveforms
show better agreement at larger mass ratios.

Note that we use precisely the same α parameter to en-
act an analogous rescaling for all the higher-modes too.
Since α has been optimized using the (2,2) mode data,
the subdominant modes do not achieve relative errors as
low as the (2,2) mode. Nevertheless, these higher-modes
are still well modeled and the overall error, including er-
ror contributions from all modes, is nearly the same as
the (2,2)-mode only error (cf. Fig. 3).

As a final test, in Fig. 4 we show a noise-weighted
mismatch (cf. Eq. (22) of Ref. [52]) between NR and
the ppBHPT waveforms using all available modes. We
continue to find good agreement and, as expected, as the
mass ratio increases the mismatch decreases. Finally,
the mismatch between our model and the new q = 15
NR simulation (not shown) is around .01 for the range of
total masses considered.
Summary – In this Letter we present the first surro-
gate model, EMRISur1dq1e4, for gravitational wave sig-
nals (including higher-order modes) from black hole bi-
nary systems over a wide range of mass-ratios. EM-
RISur1dq1e4 can be used to extend the banks of sig-
nal templates for LIGO/Virgo data analysis into larger
mass-ratios, and also serve as a useful tool for mock data
analyses for future observatories. This model is publicly
available as part of both the Black Hole Perturbation
Toolkit [99] and GWSurrogate [100]. Future work should
include obvious extensions to the model such as spin, ef-
fects of eccentricity, and spin-orbit precession.
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We also perform the first comparison between
ppBHPT and NR waveforms, and find that after a rescal-
ing of the ppBHPT’s total mass parameter there is sur-
prisingly remarkable agreement even in the comparable
mass-ratio regime. Note that the ppBHPT calculation
does not incorporate any aspect of the dynamics of the
background geometry within which the waves travel and
nonlinearities beyond radiative corrections to the orbit.
This study, which may offer some insight into the dy-
namics of a black hole binary system itself, is part of a
growing body of evidence, initiated by Le Tiec et al. [101]
(see also Refs. [102–104]), that suggests perturbation the-
ory with self-force corrections are applicable to nearly
equal mass systems [101, 105–109] despite there being no
a priori reason to expect this should be the case. As a
practical matter, our results suggest that perturbation
theory with (post-)adiabatic orbital corrections may be
used to generate accurate late inspiral, merger, and ring-
down waveforms in the q > 10 regime that is especially
challenging for NR.
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4
rrer, A. Taracchini, and

S. Marsat, Phys. Rev. D100, 024002 (2019),
arXiv:1812.08643 [gr-qc].

[63] V. Varma and P. Ajith, Phys. Rev. D96, 124024 (2017),
arXiv:1612.05608 [gr-qc].

[64] J. C. Bustillo, J. A. Clark, P. Laguna, and D. Shoe-
maker, Physical review letters 121, 191102 (2018).

[65] P. T. H. Pang, J. C. Bustillo, Y. Wang, and T. G. F.
Li, Phys. Rev. D 98, 024019 (2018), arXiv:1802.03306
[gr-qc].

[66] T. B. Littenberg, J. G. Baker, A. Buonanno, and B. J.
Kelly, Phys. Rev. D 87, 104003 (2013), arXiv:1210.0893
[gr-qc].

[67] C. Kalaghatgi, M. Hannam, and V. Raymond, arXiv
preprint arXiv:1909.10010 (2019).

[68] S. A. Teukolsky, Astrophys. J. 185, 635 (1973).
[69] P. A. Sundararajan, G. Khanna, and S. A. Hughes,

Physical Review D 76, 104005 (2007).
[70] P. A. Sundararajan, G. Khanna, S. A. Hughes, and

S. Drasco, Physical Review D 78, 024022 (2008).
[71] P. A. Sundararajan, G. Khanna, and S. A. Hughes,

Physical Review D 81, 104009 (2010).
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