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A dynamical quantum simulation of SU(2) non-Abelian gauge field theory on a digital quantum
computer is presented. This was enabled on current quantum hardware by introducing a mapping
of the field onto a register of qubits that utilizes local gauge symmetry while preserving local con-
straints on the fields, reducing the dimensionality of the calculation. Controlled plaquette operators
and gauge-variant completions in the unphysical part of the Hilbert space were designed and used
to implement time evolution. The new techniques developed in this work generalize to quantum
simulations of higher dimensional gauge field theories.

Non-Abelian gauge field theories play a central role
in the description of the known forces of nature. Since
the early 1970’s, the strong interactions that define the
nuclear forces and the dynamics of quarks and gluons
in the early universe are known to emerge from an un-
broken SU(3) local gauge symmetry, defining quantum
chromodynamics (QCD) [1–3]. Similarly, the electroweak
interactions are known to result from the spontaneous
breaking of SU(2)L⊗U(1)Y local gauge symmetries [4–
7]. Great success has been achieved in computing the
properties and low-energy dynamics of hadronic systems
using the numerical technique of lattice QCD [8, 9] on
the world’s largest supercomputers. Current lattice QCD
calculations at the physical quark masses have resulted
from a sustained co-development effort over the last ∼ 50
years. Those developments began with calculations on
small lattices, with unphysical quark masses, and with
large lattice spacings using computers available during
the 1970’s [9]. While good progress is being made in
designing Hilbert spaces for [10–28], creating detailed
hardware-specific proposals for [29–44], and implement-
ing [45–50] quantum field theories on quantum devices,
non-Abelian gauge theories have not yet been simulated
on today’s limited and noisy hardware. It is in the spirit
of the early days of lattice gauge theory that we develop
an improved algorithm to evolve a string of SU(2) pla-
quettes, and use it to simulate a non-Abelian gauge field
theory on IBM’s digital quantum hardware.

The Hamiltonian formulation of lattice gauge theo-
ries [51] includes exponentially-large sectors of unphys-
ical [52] Hilbert space in order to maintain spatially-
local interactions while satisfying gauge constraints. The
hardware error rates and gate fidelities of current NISQ-
era [53] quantum devices, and the lack of error cor-
rection capabilities, allow quantum states to disperse
into these unphysical sectors. To avoid such disper-
sion, previous quantum simulations of lattice gauge the-
ories have employed various procedures to remove the
unphysical Hilbert space from the embedding onto quan-
tum devices [45–47, 50, 54]. However, these techniques
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do not scale efficiently, and a generic description for
multi-dimensional lattices with non-trivial gauge groups
in terms of only local, physical degrees of freedom is
not currently known. A variety of approaches for quan-
tumly simulating gauge theories are being pursued—
reformulating the interactions, lattice structure, and de-
grees of freedom by designing Hilbert space bases of
group elements, Schwinger bosons, duality transforma-
tions, loop variables, tensor networks, and more [23, 25,
26, 30, 36, 39, 51, 55–78]—often with the explicit goal
of mitigating unphysical degrees of freedom. Reductions
have been obtained by solving Gauss’s law, which is re-
lated to loop formulations where the fundamental degrees
of freedom are gauge invariant [58, 64, 79–89]. Pro-
posed for both analog and digital quantum implemen-
tation, progress is being made toward using renormal-
ization group methods to connect quantum link mod-
els [13, 32, 35, 90–94] to continuum theories of impor-
tance [93, 95–97]. Classical numerical explorations of
truncation errors arising from gauge field digitization in
lattice QCD calculations [25], and exploring the use of
the crystal groups associated with SU(3) to discretize
the gluon fields for quantum simulations have begun [28].
Here marks the introduction of an explicit quantum algo-
rithm for digital implementation of dynamics with gen-
eralizable operator structures.

In this work, the angular momentum basis [51, 55, 56]
is utilized, which is made computationally feasible on
quantum devices by exploiting the local gauge symmetry
to remove the angular momentum alignment variables.
A similar reduction in degrees of freedom has been sug-
gested to be an advantageous mapping for quantum simu-
lations [18], and has been employed in calculations using
matrix product states. The associated qubit mapping,
along with the flexibility of the introduced gauge variant
completion (GVC), has made possible the exploration of
operator structures necessary for generalization to larger
lattices and higher dimensions on current hardware. As
an explicit example, time evolution of a one-dimensional
string of two SU(2) plaquettes is implemented on IBM’s
Tokyo [98] quantum device with employed error mitiga-
tion techniques. The new mappings and techniques that
we introduce here generalize to quantum simulations of
gauge field theories in higher numbers of spatial dimen-
sions.
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The Hamiltonian of spatially-discretized Yang-Mills
gauge theory is [51] (in lattice units)

Ĥ =
g2

2

∑
links

Ê2 − 1

2g2

∑
�

(
�̂ + �̂†

)
(1)

where Ê2 is the local gauge-invariant Casimir operator,
�̂ is the gauge-invariant plaquette operator contracting
closed loops of link operators, and �̂ = �̂† for SU(2). On
a square lattice, the single plaquette operator is

�̂ =

1
2∑

α,β,γ,δ=− 1
2

Ûαβ Ûβγ Ûγδ Ûδα (2)

where Ûαβ is a j = 1/2 link operator with definite start-
ing and ending points oriented around a plaquette. In
the limit of strong coupling, g2 →∞, this Hamiltonian is
dominated by the electric contributions and fluctuations
between configurations of definite link angular momen-
tum vanish. In weak coupling, the magnetic contribu-
tions dominate and a theory of dynamical loops emerges.

The angular momentum basis describes the quantum
state of a generic link by its irreducible representation, j,
and associated third-component projections at the left
and right end of the link in the 2 and 2̄ representa-
tions, |j,m,m′〉 ≡ |j,m〉 ⊗ |j,m′〉, respectively. In one
dimension, SU(2) lattice gauge theory can be spatially
discretized onto a string of plaquettes (see Fig. 1). With
periodic boundary conditions (PBCs), only three-point
vertices contribute to such a plaquette chain. To form
gauge singlets, components of the three links at each ver-
tex are contracted with an SU(2) Clebsch-Gordan coeffi-
cient. While these coefficients are conventionally incorpo-
rated into the state space allowing plaquette operators to
be localized to four active links, the qubit Hilbert space
is more naturally structured as an unconstrained grid.
Thus the Clebsch-Gordan coefficient at each vertex will
be here included in the plaquette operator itself. This
decision delocalizes the plaquette operator at the scale of
immediately neighboring links as shown in Fig. 1, where
the green, circular parts of the operator denote the de-
pendence of the operator on the quantum state of qubits
on neighboring links.

To calculate the plaquette operator, the state is first
structured with Clebsch-Gordans at each vertex such
that the wavefunction has the form

V ∼
∑
b,c,e

〈j1, b, j2, e|q, c〉 |j1, a, b〉⊗|q, c, d〉⊗|j2, e, f〉 , (3)

where indices b, c, and e are located at the vertex. By
focusing on a system with an even number of plaquettes,
matrix elements of the arbitrary plaquette operator may
be determined. The wavefunction of a lattice with an
even number of plaquettes in one dimension with PBCs
in the link angular momenta basis is

|χ〉 = N
∑
{m}

L∏
i=1

〈jti ,mt
i,R, j

t
i+1,m

t
i+1,L|qi,mt

qi〉

〈jbi ,mb
i,R, j

b
i+1,m

b
i+1,L|qi,mb

qi〉
|jti ,mt

i,L,m
t
i,R〉 ⊗ |jbi ,mb

i,L,m
b
i,R〉 ⊗ |qi,mt

qi ,m
b
qi〉 (4)

with jL+1 = j1, mL+1 = m1, and normalization N =∏
i(dim(qi))

−1 with dim(q) = 2q + 1. Referring to the
plaquette string’s ladder structure, on links located as
rungs of the ladder, angular momentum values are la-
beled by q. Thus, a plaquette string is created by two
strings of j-type registers connected periodically by rungs
of q-type registers. The contraction with Clebsch-Gordan
coefficients at each vertex ensures the local gauge singlet
structure required by Gauss’s law. The link operator acts
on the degrees of freedom at each end of a link and is a
source of j = 1/2 angular momentum,

Ûαβ |j, a, b〉 =
∑
⊕J

√
dim(j)

dim(J)
|J, a+ α, b+ β〉

〈j, a, 1

2
, α|J, a+ α〉〈j, b, 1

2
, β|J, b+ β〉 , (5)

which contains non-vanishing contributions only for J =
j± 1

2 [65]. By acting this operator on the above wavefunc-
tion of Eq. (4) and summing over alignment variables,
that matrix elements of the plaquette operator in one
dimension and in the tensor product basis of magnetic
quantum numbers, j, are calculated to be

〈χ··· ,jt,b` ,q`f ,j
t,b
af ,qrf ,j

t,b
r ,···|�̂|χ··· ,jt,b` ,q`i,j

t,b
ai ,qri,j

t,b
r ,···〉 =√

dim(jtai) dim(jtaf ) dim(jbai) dim(jbaf )

×
√

dim(q`i) dim(q`f ) dim(qri) dim(qrf ) (6)

× (−1)j
t
`+j

b
`+j

t
r+j

b
r+2(jtaf+j

b
af−q`i−qri)

×
{
jt` jtai q`i
1
2 q`f jtaf

}{
jb` jbai q`i
1
2 q`f jbaf

}{
jtr jtai qri
1
2 qrf jtaf

}{
jbr jbai qri
1
2 qrf jbaf

}

where the indices jt,b` , q`i, q`f , j
t,b
a , qri, qrf , and jt,br are

used to indicate the j-values relevant for the single pla-
quette operator (as depicted in Fig. 1) and the brack-
ets indicate Wigner’s 6-j symbols. The four registers

jt,b`,r outside the plaquette are not modified by the ac-
tion of the plaquette operator. However, their inclusion
as control registers is necessary to maintain Gauss’s law.
The sums over alignment in each gauge-invariant space
yield a dramatically reduced Hilbert space to be mapped
onto a quantum device, characterized entirely by the |j〉’s
(rather than the |j,m,m′〉’s [18]) incrementing naturally
by half-integers. As a result, the Hilbert space dimen-
sion scales with the number of links, L, as (2Λj + 1)L—
a small asymptotic savings in terms of qubit number,
but an important savings for noisy devices where sur-
vival probabilities in the physical subspace are imper-
fect. This concept is here exemplified by embedding a
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FIG. 1. (top) Diagram of the lattice distribution of

dlog2(2Λj + 1)e-qubit registers and the action of �̂ on SU(2)

plaquettes in one dimension. �̂ operates on the four qubit
registers in the plaquette and is controlled by the four neigh-
boring qubit registers to enforce the Gauss’s law constraint.
(bottom) The plaquette operator with labeled angular mo-
mentum registers.

four dimensional physical subspace into a sixteen dimen-
sional computational space rather than into what would
be a ≥ 54-dimensional Hilbert space in the |j,m,m′〉 ba-
sis. The qubit representation of the periodic plaquette
string is shown on the top panel of Fig. 1, where each
link contains a dlog2(2Λj +1)e-qubit register with Λj the
angular momentum truncation per link.

Quantum circuits were devised for the plaquette oper-
ator with angular momentum truncation Λj = 1/2. For
time evolution beginning in the strong-coupling (empty)
vacuum, the top and bottom j values are equivalent with
this cutoff and the plaquette operator reduces to a five-
qubit operator.

〈j`f q`f jaf qrf jrf |�̂(1/2)|j`i q`i jai qri jri〉

〈00000|�̂(1/2)|0 1
2

1
2

1
2
0〉 1

〈000 1
2

1
2
|�̂(1/2)|0 1

2
1
2
0 1
2
〉 1

2

〈 1
2

1
2
000|�̂(1/2)| 1

2
0 1
2

1
2
0〉 1

2

〈 1
2
0 1
2
0 1
2
|�̂(1/2)| 1

2
1
2
0 1
2

1
2
〉 1

4

TABLE I. Matrix elements of the Λj = 1/2, Hermitian pla-

quette operator �̂(1/2), as calculated in Eq. (6) with jt`,a,r =

jb`,a,r. All other matrix elements between physical states are
zero.

While the value of plaquette operator matrix elements
connected to the physical Hilbert space are important for
implementation of accurate time evolution, those within
the unphysical space are not. Thus, significant freedom
exists in designing the operator in the unphysical space
to hardware-specifically optimize quantum computation.
Operators with equivalent physical matrix elements but
differing in their unphysical operation will be described as
different gauge variant completions (GVCs) of the same
physical operator. For example, here it is convenient to
use a GVC within the set of Pauli operators to minimize
the quantum gate resource requirements. Observing the

plaquette operator matrix elements in Table I, states are
connected when q`, ja, and qr experience a qubit inver-
sion with a matrix element dependent on the j`, jr-sector.
Such a controlled operator is depicted schematically at
the bottom of Fig. 1 (with top and bottom j’s identified)
and may be written as

�̂(1/2) = Π0XXXΠ0 +
1

2
Π0XXXΠ1 (7)

+
1

2
Π1XXXΠ0 +

1

4
Π1XXXΠ1

with Π0 = 1
2 (I+Z) and Π1 = 1

2 (I−Z), the j = 0( 1
2 ) state

mapped to quantum state |0〉(|1〉), and the Hilbert spaces
ordered as in the heading of Table I. With this GVC,
the plaquette Hamiltonian has 24 non-zero couplings be-
tween unphysical states that would otherwise vanish in
the evaluation of Eq. (6) [99]. One possible digital qubit
implementation of the associated time evolution opera-
tor with the GVC above is shown explicitly in Fig. 4 of
Appendix B. As written, this operator acts equivalently
throughout the one-dimensional string of plaquettes to
implement time evolution of the lattice. We anticipate
that the concept of GVC will play an important role in
quantum simulations of quantum field theories in higher
dimensions, and other physical systems with conserved
quantities or constraints.

Specializing to the two-plaquette system with PBCs,
only the matrix elements in the first and last rows of
Table I remain. The second plaquette operator in the
two-plaquette system reduces to the following four-qubit
operator,

�̂(1/2)
2 = Π0XXX +

1

4
Π1XXX . (8)

Digital implementation of this operator is shown in
Fig. 2. The reduced linear combination structure defined
by the first and fourth rows and columns of the matrix

shown in Eq. (B1) produces the vector β̃ appearing in
Fig. 2. A natural qubit representation of the electric op-
erator is

Ĥ
(1/2)
E =

g2

2

∑
links

3

4

(
I− Z

2

)
, (9)

including 12 non-zero elements in the unphysical Hilbert
space.

Real-time evolution of two plaquettes with PBCs (see
the right panel of Fig. 2) and truncation Λj = 1/2 has
been here implemented on IBM’s quantum device Tokyo,
selected for its available connectivity of a four-qubit loop.
The top panel of Fig. 3 shows time-evolved expectation
values of the energy contributions from the first electric
plaquette calculated with one and two Trotter steps [100].
The electric contributions, being localized in their mea-
surement to the four-dimensional physical subspace, are
well determined after a small number of samples. In
contrast, measuring the energy contributions from the
magnetic Hamiltonian requires increased sampling due
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e−i�̂
(1/2)
2 t =

|j`〉 •
|q`〉

e−iXXXt e−i
1
4
XXXt|ja〉

|qr〉

=

e−iβ̃1Zt

H e−iβ̃2Zt • • H

H • • H

H • • H

FIG. 2. Digital circuit implementation of the plaquette operator centered on ja for a truncated lattice with Λj = 1/2, two

plaquettes, and PBCs as depicted at the right. The angles β̃ defining this circuit are given in Eq. (B1) to be β̃ = (3/8, 5/8).

to the operator’s natural representation in the Pauli-X
basis of the q`, ja, and qr qubit registers—distributing the
wavefunction’s amplitude throughout the Hilbert space.
Results have been corrected for measurement error by
the constrained inversion of a 16-dimensional calibration
matrix informed by preparation of each of the 16 com-
putational basis states prior to calculation. The result-
ing probabilities are linearly extrapolated in the presence
of CNOT gates, post-selected within the gauge-invariant
space, and renormalized. The linear extrapolation is in-
formed by r = 1, 2, where r = 1 is the circuit in Fig. 2 and
r = 2 stochastically inserts a pair of CNOTs accompany-
ing each of the three CNOTs either in the first or second
half of the plaquette operator. The combined noise and
gate fidelity of the device were found to limit the ability
to extrapolate further in CNOT noise, even with a sin-
gle Trotter step. These error mitigation techniques have
allowed calculation of the electric energy associated with
the SU(2) gauge field to the precision obtained after a
single Trotter step.

It is important to determine the feasibility of retaining
gauge-invariant Hilbert spaces with near-term quantum
hardware. For our calculations on IBM’s Tokyo quan-
tum device, before CNOT extrapolation, the (NTrot, r) =
(1, 1) measurements were found to remain in the gauge
invariant space with a survival population of ∼ 45%, as
shown in the bottom panel of Fig. 3. After linear extrap-
olation in the probabilities, this was increased to ∼ 65%,
with survival population decreasing as evolution time in-
creases. The survival population for NTrot = 2 was found
to be ∼ 25%, consistent with loss of quantum coherence
of a four-dimensional physical space embedded onto four
qubits, precluding CNOT extrapolation. This observable
is a diagnostic of the calculation. As it approaches the
decorrelated limit (25%), CNOT extrapolations become
less reliable, leading to the underestimate of systematic
uncertainties in Fig. 3. Because neither the proposed
qubit representation nor the subsequent Trotterization
produce gauge-variant error contributions, the observed
decay of population in the physical subspace is a mea-
sure of the device’s ability to robustly isolate Hilbert
subspaces. This is likely to be an essential capability for
evolving lattice gauge theories and other systems with
conserved quantities, as well as for quantum error cor-
rection.
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FIG. 3. (top) Expectation value of the electric energy
contribution of the first plaquette in the two-plaquette lat-
tice with PBCs and coupling g2 = 0.2 computed on IBM’s
Tokyo. The dashed(purple) and dot-dashed(blue) lines are
the NTrot = 1, 2 Trotterized expectation values, while the
thick gray line is the exact time evolution. (bottom) Mea-
sured survival probability to remain in the physical subspace
for one and two trotter steps, NTrot, and one and two r values
indicating stochastically inserted 2r−1 CNOTs per CNOT in
the digital implementation. Uncertainties represent statistical
variation, as well as a systematic uncertainty estimated from
reproducibility measurements. The icons (defined in Ref. [48])
denote computations performed on quantum devices.

When increasing Λj , the plaquette operator must be
calculated and designed over 8 registers of qubits, each
containing dlog2 (2Λj + 1)e qubits. The classical compu-
tational resources required to define this operator with
Eq. (6) scales with the number of unique non-zero ma-
trix elements, which is polynomial in Λj . When con-
structing the time evolution operator for Λj > 1/2, the
combination of Trotterization and Pauli decomposition of
the 4-register operators in j`,r-controlled sectors gener-
ically generates interactions breaking gauge invariance
[62, 74, 101]. While a unitary operator preserving gauge
invariance exists, it will generically require an exponen-
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tial amount of quantum resources to implement and clas-
sical resources to define. The breaking of gauge invari-
ance will be important to control if this decomposition is
used in future calculations.

For the simulated system, the SU(2) Hilbert space as-
sociated with each link and the spatial lattice are sig-
nificantly truncated. This work represents an early step
along the long road ahead for quantum simulations of
gauge field theories. As Hamiltonian operators are local
in such field theories, thoughtful design and optimization
of quantum operators in small, classically manageable
systems will impact the design and execution of future
quantum simulations of larger dimensionality. The im-
pact of the truncation on the continuous-field system of
two plaquettes (for the value of g2 used in this work) is
presented in Table II of Appendix A. We find that the
employed truncation of Λj = 1/2 leads to a∼ 56% change
to the ground state energy and a much larger change to
the “glueball” mass. A larger value of g2 would lead to
smaller deviations in both quantities, as the system be-
comes more amenable to perturbative methods. At the
selected value of g2, where the system is nonperturbative,
enlarging the simulation to include three qubits per link
(a cutoff of Λj = 7/2), rather than one qubit per link
(Λj = 1/2), causes these low-energy observables to be-
come calculable with an accuracy exceeding 2% using the
basis discussed in this paper. The fidelity of the ground
state in the enlarged simulation is ∼ 90% with respect
to the untruncated ground state. The convergence prop-
erties of this formulation of gauge theories, and others
intended for quantum simulation, are important topics
of future research.

Developing quantum computation capabilities for non-
Abelian gauge field theories is a major objective of nu-
clear physics and high-energy physics research. We have
presented the first quantum simulation of a non-Abelian
gauge field theory on a digital quantum computer, which
required the development of a number of new techniques.
One of the challenges facing such calculations is that the
mapping of the gauge theory onto the register of a digi-
tal quantum computer involves a digitization of the gauge
fields. We have presented calculations of the dynamics
of a one-dimensional SU(2) plaquette string with imple-
mentation on IBM’s Q Experience superconducting hard-
ware. This was made feasible by an improved mapping of
the angular momentum basis states describing link vari-

ables and recognizing the utility of gauge-variant com-
pletions. Our design of the plaquette operator for digital
quantum devices requires local control from qubit reg-
isters beyond the active plaquette. This key feature is
expected to persist in future developments of quantum
computing for gauge theories. Extension of this analytic
reduction beyond one dimension is naturally suited to
lattices with three-point vertices, but generalizes to n-
point vertices and thus to quantum simulations in higher
dimensions. Comparisons, at the level of explicit digi-
tal implementation, of this mapping with proposed al-
ternatives will be of importance for realizing physically-
relevant quantum computations of non-Abelian gauge
theories.
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Appendix A: Two Plaquette Hamiltonian and Data Tables

For the two-plaquette lattice with periodic boundary conditions and truncation Λj = 1/2, the Hamiltonian imple-
mented in the full 16-dimensional Hilbert space with the gauge variant completion (GVC) discussed in the main text



6

is

H(1/2) =
1

2g2



0 0 0 0 0 0 0 −2 0 0 0 0 0 −2 0 0

0 3g4

4 0 0 0 0 −2 0 0 0 0 0 −2 0 0 0

0 0 3g4

2 0 0 −2 0 0 0 0 0 0 0 0 0 − 1
2

0 0 0 9g4

4 −2 0 0 0 0 0 0 0 0 0 − 1
2 0

0 0 0 −2 3g4

4 0 0 0 0 −2 0 0 0 0 0 0

0 0 −2 0 0 3g4

2 0 0 −2 0 0 0 0 0 0 0

0 −2 0 0 0 0 9g4

4 0 0 0 0 − 1
2 0 0 0 0

−2 0 0 0 0 0 0 3g4 0 0 − 1
2 0 0 0 0 0

0 0 0 0 0 −2 0 0 3g4

2 0 0 0 0 0 0 − 1
2

0 0 0 0 −2 0 0 0 0 9g4

4 0 0 0 0 − 1
2 0

0 0 0 0 0 0 0 − 1
2 0 0 3g4 0 0 − 1

2 0 0

0 0 0 0 0 0 − 1
2 0 0 0 0 15g4

4 − 1
2 0 0 0

0 −2 0 0 0 0 0 0 0 0 0 − 1
2

9g4

4 0 0 0
−2 0 0 0 0 0 0 0 0 0 − 1

2 0 0 3g4 0 0

0 0 0 − 1
2 0 0 0 0 0 − 1

2 0 0 0 0 15g4

4 0

0 0 − 1
2 0 0 0 0 0 − 1

2 0 0 0 0 0 0 9g4

2



, (A1)

with matrix elements of the four-dimensional physical subspace highlighted. For the chosen coupling of g2 = 0.2,
the ground state energy density per plaquette, through exact (classical) diagonalization, is calculated to be -3.5658
and the lowest energy gap (the observable associated with the “SU(2)-glueball” mass in the infinite volume limit) is
calculated to be 7.4139. Numerical values for these low-energy observables with increasing Λj truncation are provided
in Table II where percent-level convergence is achieved with three qubits per SU(2) gauge link.

Electric Cutoff (2Λj) Physical Dimension Plaquette Matrix Elements GS Energy Density ∆E

1 4 2 -3.5658 7.4139
2 27 31 -5.6437 2.0970
3 95 192 -6.8020 0.9285
4 304 790 -7.4258 0.5024
5 769 2494 -7.7527 0.3096
6 1784 6537 -7.9159 0.2220
7 3664 15028 -7.9921 0.1929
8 7081 31200 -8.0241 0.1885
9 12704 59894 -8.0355 0.1893
10 21823 107823 -8.0388 0.1900
11 35659 184268 -8.0396 0.1902
12 56420 301326 -8.0398 0.1902

TABLE II. Convergence of the ground state energy density and the energy gap to the first excited state, ∆E, of a two-plaquette
SU(2) lattice with periodic boundary conditions as the truncation in the maximum excitation on any single link, Λj , is increased.
Columns two and three show the number of states included in the basis of physical states below truncation and the number of
non-zero matrix elements in the single plaquette operator.

For the quantum simulated system of two plaquettes with Λj = 1/2, the structure of the ground state wavefunction
is

|ψgs〉 = 0.6943 + 0.1666 + 0.4951

(
+

)
. (A2)

On each link, a single line corresponds to j = 0 and a double line corresponds to j = 1/2. The first electric, single
plaquette operator in the full 16-dimensional space is diagonal

E2
�1

=
g2

2
diag

(
0,

3

4
, 0,

3

4
,

3

4
,

3

2
,

3

4
,

3

2
,

3

2
,

9

4
,

3

2
,

9

4
,

9

4
, 3,

9

4
, 3

)
, (A3)

with matrix elements serving as weights of the measured probabilities in the measurement of the electric energy
expectation value as shown in Fig. 3. The the data appearing in Fig. 3 are presented in Tables III and IV.
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NTrot = 1 NTrot = 2

time 〈HE,�1
〉

0.02 0.009(9)
0.07 0.052(6)
0.12 0.127(7)
0.17 0.201(12)
0.22 0.261(10)
0.27 0.282(7)
0.32 0.278(8)
0.37 0.254(6)

time 〈HE,�1
〉

0.02 0.027(14)
0.07 0.074(14)
0.12 0.124(14)
0.17 0.159(10)
0.22 0.186(15)
0.27 0.177(12)
0.32 0.144(20)
0.37 0.093(18)

TABLE III. Numerical values of the expectation value of the single electric plaquette energy contribution for time evolutions
implemented with 1,2 Trotter steps as measured on IBM’s quantum device Tokyo shown in the top panel of Fig. 3. Uncertainties
represent statistical variation, as well as a systematic uncertainty estimated from reproducibility measurements.

(NTrot, r) = (1, 1) (1,2) (2,1) (2,2) Linear Extrapolation

time Survival Prob.
0.02 0.47(1)
0.07 0.49(2)
0.12 0.48(2)
0.17 0.47(2)
0.22 0.43(1)
0.27 0.41(2)
0.32 0.39(1)
0.37 0.37(1)

time Survival Prob.
0.02 0.29(2)
0.07 0.31(3)
0.12 0.28(2)
0.17 0.27(1)
0.22 0.25(1)
0.27 0.25(2)
0.32 0.23(1)
0.37 0.21(1)

time Survival Prob.
0.02 0.23(1)
0.07 0.24(2)
0.12 0.26(2)
0.17 0.24(1)
0.22 0.25(2)
0.27 0.23(2)
0.32 0.22(1)
0.37 0.22(1)

time Survival Prob.
0.02 0.27(1)
0.07 0.27(1)
0.12 0.24(1)
0.17 0.26(1)
0.22 0.25(2)
0.27 0.26(1)
0.32 0.28(1)
0.37 0.26(1)

time Survival Prob.
0.02 0.630(14)
0.07 0.640(16)
0.12 0.659(25)
0.17 0.647(33)
0.22 0.572(17)
0.27 0.554(14)
0.32 0.535(17)
0.37 0.527(17)

TABLE IV. Survival probabilities in the physical subspace as measured on IBM’s quantum device Tokyo shown in the bottom
panel of Fig. 3. The label indicates (NTrot, r) values. The linear extrapolation is determined by extrapolation of computational
basis state probabilities in r for NTrot = 1. Uncertainties represent statistical variation, as well as a systematic uncertainty
estimated from reproducibility measurements.

Appendix B: Plaquette Operator for Λj = 1/2 Lattices of Arbitrary Plaquette Number in One Dimension

While the circuit implementation of the plaquette operator has been shown in Fig. 2 for the two-plaquette truncated
lattice with periodic boundary conditions and Λj = 1/2, the operator for lattices of larger size may be implemented
with 14 nearest-neighbor CNOT entangling gates as shown in Fig. 4. This circuit is a massaged version of the circuit

1

e−i�̂
(1/2)t =

|j`〉 • •
|q`〉 H • • • • H

|ja〉 H • • • • H

|qr〉 H e−iZβ1t • • e−iZβ4t • • H

|jr〉 e−iZβ2t e−iZβ3t

FIG. 4. Digital circuit implementation of the plaquette operator centered on ja for a truncated lattice with Λj = 1/2. The
circuit elements appearing in this circuit are the Hadamard, CNOT, and Z-axis single-qubit rotation implementing a Z-to-X
basis change, a controlled bit flip, and a relative phase, respectively.

of four two-qubit-controlled X ⊗X ⊗X operators with coefficients {1, 1/2, 1/2, 1/4} for control states |0〉, |1〉, |2〉, |3〉
in the combined Hilbert space of j` and jr. Just as in the main text, rotations are defined by linear combinations of
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�̂(1/2) matrix elements, as established in Ref. [48], described by the following matrix structure:

~β =

 1 1 1 1
1 −1 −1 1
−1 −1 1 1
−1 1 −1 1


−1 1

1/2
1/2
1/4

 , β̃ =

(
1 1
−1 1

)−1(
1

1/4

)
, (B1)

such that ~β = (3/16, 1/16, 3/16, 9/16) and β̃ = (3/8, 5/8).

Appendix C: Alternate Plaquette Gauge Variant Completion

The optimality of the operator decomposition in the physical subspace is hardware-specific. For simple comparison
to the GVC used on superconducting hardware in this work, a more-näıve choice of plaquette operator implementation
for the two-plaquette lattice would be to use the operator exactly as defined by the matrix elements in Eq. (6)
with no modifications in the unphysical space (i.e., different charge superselection sectors). In this case, the Pauli
decomposition contains eight operators

�̂ =

(
5

32
I +

3

32
Z

)
⊗X ⊗X ⊗X +

(
− 3

32
I− 5

32
Z

)
⊗X ⊗ Y ⊗ Y

+

(
− 5

32
I− 3

32
Z

)
⊗ Y ⊗X ⊗ Y +

(
− 3

32
I− 5

32
Z

)
⊗ Y ⊗ Y ⊗X , (C1)

and it remains convenient for the Trotterization that these eight operators commute. However, the number of CNOT
gates required to implement this operator increases by a factor of four compared to the operator structure of Fig. 2,
implemented now in four different bases

e−i�̂
(1/2)
2 t =

|j`〉 • •
|q`〉

e−i
8
32XXXt e−i

2
32XXXt ei

8
32XY Y t e−i

2
32XY Y t|ja〉

|qr〉

· · ·

· · ·

• •

ei
8
32Y XY t ei

2
32Y XY t ei

8
32Y Y Xt e−i

2
32Y Y Xt

. (C2)

This makes clear that the quantum resources for operator implementation depends even on the unphysical details of
the calculation design—the choice of gauge invariant completion allows hardware-specific optimization leveraging this
sensitivity.
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