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Not quite black holes at LIGO
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We provide more evidence of not quite black holes at LIGO. We update and streamline

our previous search strategy and apply it to the 10 BH-BH merger events and the one NS-

NS event. The strategy is aimed at the evenly-spaced resonance spectrum expected from

not quite black holes, given that at low frequencies the radial wave equation describes the

modes of a stretched 1D cavity. We describe various indications of the self-consistency of

the apparent signals across all events in the context of a simple theoretical model. The

merger with the largest final mass, spin and red-shift, GW170729, provides additional

interesting support.

I. INTRODUCTION

A “not quite black hole” is an horizonless object where strong gravity extends out to a radius

just slightly beyond, by a distance δr, the would-be horizon. Such an object is very close to

being a black hole since the distance δr is characterized by the Planck length. The possibility of

having something other than a BH as the endpoint of gravitational collapse is related to having

a UV complete theory, since the interior of these objects probe the UV completion. If this UV

completion involves an action with terms quadratic in the curvature then these not quite BH

solutions exist and are referred to as “2-2-holes” [1, 2]. At the same time quadratic gravity

is an old candidate for a UV complete quantum field theory of gravity, since as such it shares

with QCD the properties of renormalizability and asymptotic freedom [3]. Other properties of

the quantum theory are still being elucidated.

Recently we found 2-2-hole solutions that are sourced by an ordinary relativistic gas [4]

(for further analysis see [5]). The total entropy of the gas turns out to satisfy an area law,

and this entropy is somewhat larger than the entropy of a black hole of the same mass. In

this way 2-2-holes may be preferred as the endpoint of gravitational collapse. Like BHs, they

have no upper limit on their size. Unlike BHs, they have a minimum size where they are cold,
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and these Planck-size objects have an internal structure quite different than the large variety.

This situation is not unlike QCD. The two types of solutions are analogous to the hadrons and

the quark matter states of QCD. The latter states show that the effects of strong interactions

can extend over macroscopically large regions even though the fundamental scale of strong

interactions is microscopic. In the classically scale invariant version of quadratic gravity, the

Planck scale can arise as the scale of strong interactions, just as the QCD scale arises in QCD

[6].

We thus consider the possibility that all BHs in nature are in fact not quite BHs. This is

a conjecture that can be tested, since a gravitational wave signal can distinguish not quite

BHs from BHs. The effective radial description of low frequency waves around the not quite

BHs is that of a 1D cavity. One end of the cavity is at the origin (r = 0) and the other end

is at the angular momentum potential barrier (r = 3M , in units with G = 1). Since the

potential barrier slightly leaks, a pulse that moves back and forth in the cavity can produce

periodic pulses (echoes) observed on the outside [7, 8]. This observation motivated searches

for echoes in LIGO data, beginning with [9]. But the perturbed state of a not quite BH, when

newly formed after a merger, may be more complicated. If it produces something other than

a single pulse moving back and forth, then the simple echo waveform will be replaced by

something else.

A 1D cavity has a more general feature: an evenly-spaced resonance spectrum. This is a

more robust and general search target than actual echoes [10, 11]. We can express the size

of the cavity as a tortoise coordinate distance ∆x . Then the spacing between resonances is

∆ f = 1/(2∆x) = 1/∆t where ∆t is the round trip travel time (the time delay between

the possible echoes). The cavity size is stretched compared to the physical size of the not

quite BH since the dimensionless ratio ∆t/M is large, something like 800 or so. Since an

explicit solution for a rotating not quite BH does not exist yet, we instead use a truncated Kerr

spacetime as an approximation. The truncation means that a boundary or wall is introduced

slightly outside the horizon. ∆x is now the distance between the wall and the potential barrier.

This construction yields no angular momentum barrier at the wall, just as a 2-2-hole has no

angular momentum barrier at its origin. We discuss the known formula for∆t/M in this model

in Section III.

We focus on the dominant ` = m = 2 gravitational wave mode and obtain the corre-

sponding solution of the Sasaki-Nakamura (SN) equation, and thus obtain the function ψω
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FIG. 1. a) |ψω| as obtained from the SN equation. b) The first five echoes.

that encodes the spectrum at asymptotic infinity [11]. This is a product of a transfer function

K(ω) and a source integral D(ω). The transfer function contains the resonance spectrum that

depends on the mass M and dimensionless spin χ, along with ∆x and a quantity Rwall that

describes the boundary condition. Rwall = −1 is a purely reflecting boundary condition (and is

the analog of the Dirichlet boundary condition found for the spinless 2-2-hole), but we choose

a slightly less negative value, Rwall = −1 + ε, to account for a small amount of damping or

dissipation of the wave as it traverses the material inside the not quite BH.

The source integral D(ω) modulates the resonance spectrum and its dependence on the

initial condition was explored in [11]. The simplest initial condition is a single travelling pulse

originating inside the cavity. The frequency content of the pulse can be characterized by a

function f (ω) that in turn determines the spectral flux density

dE
dω
= 8ω(ω−ω0)| f (ω)|2. (1)

This is negative for 0 < ω < ω0 and we choose f (ω) ∝ exp(−κM2ω(ω −ω0)) according to

the expectation that the lowest energy modes are the most likely to be excited. (With m = 2,

ω0 = χ/r+, where r+ is the horizon radius.) An example of |ψω| is given in Fig. 1a for the

values χ = 2/3, ∆t/M = 800 and κ = 13. Less trivial initial conditions can be modelled with

more travelling pulses and will result in a less smooth envelope for the spikes. This envelope

always vanishes at ω0.

Fromψω the strain waveform in the time domain h(t) can be obtained by an inverse Laplace

transform. As shown in [11], ψω contains a factor of a function c0(ω) that appears in the

transformation of Teukolsky to SN amplitudes. But to obtain the strain h(t) from the output
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of the SN equation ψω, this output must first be divided by c0(ω) before the inverse Laplace

transform is performed [12], and thus the c0(ω) factor is cancelled. The resulting Re(h(t)) is

shown in Fig. 1b where we see irregular echoes for even the simplest of initial conditions.

In [10] a search strategy was developed to target the resonance spectrum. Some evidence

for such spectra was presented for four BH merger events reported early by LIGO. Here we

update this search and apply it to all ten confident detections of BH mergers in the first and

second observing runs [13], using publicly available data [14]. Our goal is to simplify the

strategy and to apply it uniformly to all events. This reduces look elsewhere effects and it

makes our analysis and results more easily reproducible. Another feature of our analysis is

that an optimized bandpass, a purely data-driven quantity, can be compared to the predicted

spectrum for each event.

II. THE SEARCH

The search strategy involves taking a range of whitened data starting at the merger time

and having duration T . Then after a FFT, the absolute value is taken. A complication is that the

gravitational wave arriving at earth has two polarizations which form the real and imaginary

parts of a complex waveform. A LIGO detector, depending on its orientation, projects this

complex waveform into a set of real numbers.

Thus to find the observable version of the signal spectrum, we first must model this projec-

tion, and we do this by taking the real part of the time-domain signal strain waveform h(t).

(Different projections give qualitatively similar results.) Carrying out the steps of the search

strategy on Re(h(t)) gives a “reconstructed” spectrum that we will label as h( f ). This quantity

has an additional dependence on T = NE∆t. NE is the number of echoes, loosely speaking,

since typically any echoes will have already merged by the time T is reached.

We show the resulting |h( f )| in Fig. 2a with NE = 180, M = 50M�. The range of frequencies

over which the resonance spectrum extends is proportional to 1/M , and will thus be different

for every event. NE along with the choice of Rwall, for this example chosen to be −0.995,

controls the overall height of the spikes. Relative to a fixed amount of noise, this overall

height will increase with NE up to roughly NE ∼ 200, after which the highest set of peaks,

the ones that contribute most to a signal, begin to shrink. This behaviour is controlled by the

value of Rwall and it occurs even though the energy radiated per time delay, for instance, is a
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FIG. 2. a) |h( f )| as reconstructed from Re(h(t)) b) The phase of h( f ).
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FIG. 3. a) Five teeth of a uniform comb in frequency space. b) The vector V (r) of length NE is composed
of 23 1’s with location shown and the rest 0’s.

monotonically decreasing function of time.

In Fig. 2a we see the two component structure of |h( f )|, which arises due to the real pro-

jection. The lower component originates from what was the negative frequency part of the

original ψω. The relative size of the two components is controlled by the function f (ω),

which as introduced above emphasizes positive frequencies. On the other hand, the source

integral |D(ω)| contains the factor |ω−ω0| that enhances the original negative frequency part

[11]. Thus in our example the negative frequency component in |h( f )| is still comparable in

size to the positive frequency component.

Other echo searches have tended to try to model the full waveform. In frequency space

the full information is in |h( f )| and the phase of h( f ). The latter is displayed in Fig. 2b. In a

standard matched-filter search, the templates must be constructed to match this information

as well. This makes clear why such searches are liable to fail. For a resonance search, only

|h( f )| is needed.

The construction |FFT(whitened data of duration T after merger)| is a data series in the

frequency domain. Onto this we apply a frequency bandpass fmin < f < fmax to model the
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finite extent of the resonance spectrum. Then we multiply by a comb structure characterized

by a spacing between teeth and an overall shift. The comb is uniform, meaning all teeth are

the same with constant spacing, as shown in Fig. 3a.1 We thus first define a vector that is the

result of multiplying the comb onto the data for a fixed comb spacing,

U = mean [|FFT(data)| × comb(shift)] , (2)

where the mean is with respect to the nonzero values. U is a vector in shift space with length

NE. A signal and the correct comb spacing will result in larger values around some shift. Let

V (r) be another vector that represents an idealized bump centered at a shift of r. This is

illustrated in Fig. 3b. Now we can take the two vectors UH and UL, from the Hanford and

Livingston detectors respectively, and form the following quantity,

C = max
r
[Correlation(UH , V (r))× Correlation(UL, V (r))] . (3)

C is our correlation [10] between detectors and it is still a function of the comb spacing∆ f =

1/∆t. A signal shows up as a peak in a plot of C(∆ f ). This will be a sharp peak because the

spacing needs to be tuned to achieve an overlap with the large number of sharp spikes.

The whitening of the original strain data is an important first step in the analysis, and to

obtain the PSD required for whitening, an averaging over 300 segments is performed.2 The

range of data used for obtaining the PSD is larger than the search region, and it is centred on

the midpoint of the search region. The duration of the segments (in seconds) used in each

event is given in Table I below. Allowing a binary choice of .5 or 1 s seems to better treat

the different noise characteristics in different events.3 A trade-off is involved since although

longer segment times will reduce noise on finer-grained frequency scales, it increases the risk

of altering the signal that also occurs on fine-grained scales. One further noise cut is applied ro

the frequency series |FFT(whitened data of duration T after merger)|. Any value in this series

that is more than three times the average value is reduced to the three times value. Such

fluctuations should only occur about 0.1% of the time for Gaussian noise, but in the earlier

events especially, there is substantial non-Gaussian noise. It is fair to assume that the signal

1 This is a simplification of our previous analysis [10].
2 We use the Welch method with the Hanning window and with some overlap and padding turned on. The same

settings are used for all events.
3 Incomplete data for GW151226 prevented the choice of 1 s.



7

spikes are typically not high enough to be much affected by this cut.

III. RESULTS

For a truncated Kerr black hole, the time delay∆t has known dependence on mass M , spin

χ and redshift z [9, 15],

∆t
M
= 4η log(

M
`Pl
) (

1+ (1− χ2)−
1
2

2
) (1+ z). (4)

The redshift factor is due to ∆t and M being measured in the detector and source frames

respectively. ∆t/M is driven large by the large log, due to the presence of the Planck scale.

We have introduced the parameter η to characterize the small distance δr from the would-be

horizon out to where strong gravity extends, as follows,

δr ≈
(
`Pl

M

)(η−1)

`Pl ≈
(

M
`Pl

)(2−η)
¯̀

Pl, (5)

where ¯̀
Pl is the proper Planck length. Thus if η is between 1 and 2, then δr is smaller than the

coordinate Planck length `Pl and is larger than the proper Planck length. Because of the many

evenly-spaced spikes, a resonance signal will determine ∆t with negligible error. The LIGO

measurements of M , χ and z for the final BH have more significant errors, and by ignoring

correlations in these errors for simplicity, we can thus determine an η and its error from a

measurement of ∆t.

We find resonance signals for all events. Before elaborating on this we first provide a sum-

mary plot in Fig. 4, where we show our determination of η from all ten BH merger events. The

consistency for a common value of η describing all events is excellent. The value η = 1.72±.06

means that δr ≈ 10−28`Pl ≈ 1012¯̀
Pl. We stress that the size of the error bars has nothing to

do with the strength of the resonance signal for each event. We shall address the question of

signal strengths below.

These results provide a good test of the spin and redshift dependence in (4). This is shown

more clearly in Fig. 5, where the left plot is the same as Fig. 4 but with an enlarged range

of η, while the right plot shows the result when removing the spin and red-shift dependent

factors from (4). The indication of a common value for η is lost, and the individual values of η
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FIG. 4. Determination of η using (4).

rise above 2. Values this large would correspond to δr values that are much smaller than the

proper Planck length, which does not seem reasonable. Thus the data is already supporting

the truncated Kerr BH model in (4). Fig. 5 also draws attention to event GW170729, for which

the three quantities, M , χ and z, are all significantly larger than for the other events.
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FIG. 5. Left: same as Fig. 4. Right: removal of spin and red-shift factors in (4).

We now take a closer look at the analysis and the results for each event. For each event we

will show the predicted spectrum |h( f )|. To simplify the generation of these spectra we assign

one of three spin values to each event. These values are well within the spin uncertainties, and

so we group the ten events as in Table I. There we also give our chosen values of parameters

Rwall and κ for these three groups of events, which along with M , χ, ∆t and NE are used to

obtain |h( f )|.

Except for the binary choice of a whitening parameter, as indicated in Table I, the analysis
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spin (χ) 2/3 0.72 0.81

GW150914 (.5) GW151226 (.8) GW170729 (.5)

GW170104 (1) GW170814 (1)

GW170608 (1) GW170809 (1)

GW151012 (.5) GW170823 (.5)

GW170818 (.5)

Rwall −0.995 −0.994 −0.992

κ 13 10 2

TABLE I. The ten events are grouped according to spin, along with other chosen parameters. The
numbers beside event names are segment durations in seconds used in whitening.

carried out for each event is the exactly the same. There are no other procedures or parameters

that vary between events. We will express the comb spacing∆ f as an integer, n = ∆ f /(1/T ) =

T/∆t. It is respect to n that we determine the correlation between detectors as described

earlier. As we have said, a signal peak should be very sensitive to choice of ∆t. In the process

of determining the true∆t, we can choose T such that the peak location is fixed at a particular

integer value of n = NE, that is that T is NE times the true ∆t.

We then further optimize the signal (the peak height) by varying three quantities: NE and

the upper and lower limits of the bandpass fmin and fmax. For each event shall display the

optimal bandpass as a band on a plot. We also give the optimal NE (as a multiple of ten) and

the measured values of∆ f and∆t/M (where the uncertainty inherent in M is not displayed).

We have already seen that it is the spin and redshift factors that account for the different values

of ∆t/M from different events. The plot will compare the optimal bandpass to the resonance

pattern in |h( f )|. We stress that the optimal bandpass is determined solely from the data,

while the resonance pattern is a theoretical quantity. It is interesting to note the consistency

between the bandpass and the resonance pattern across all events.

We also wish to give a sense of the size of the signal relative to noise, with the latter being

the square root of the power spectral density, or ASD, for each detector (as was used in the

whitening). To make a comparison of the signal |h( f )| with the noise possible, we shall effec-

tively calculate |h( f )| also as an ASD, but without employing the averaging and windowing

(ie. the Welsh method) that was used to calculate the noise ASD. This is equivalent to produc-

ing |h( f )| through a FFT, but in a way that gives the proper normalization to allow comparison

of signal and noise.
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To help pin down the strength of the signal we inject our time-domain waveform Re(h(t))

into some stretch of strain data from each detector, away from the signal region. By running

this signal plus noise through our analysis we find that the resulting peak on the injected signal

plot can be similar to that on the actual signal plot. This then provides a rough estimate of the

required strength of the signal, and we incorporate this into the normalization of |h( f )| on the

plot. We also provide the corresponding peak value of |h(t)|, where the peak value occurs in

the first echo.4 We do not include the first pulse, that is the pulse before the first echo, in our

injected waveform as this pulse is to be associated with the actual merger and ringdown. The

starting time of our signal region is always taken to be after the ringdown has occurred. Our

plots show separately the small ASD of the first pulse as a black line.

We also show a second plot for each event that shows the distribution of background values

of the correlation along with the size of the correlation at the signal peak. We will discuss this

more in the next section on p-values.

These plots and results are presented below for the five spin 2/3 events first (Figs. 6-10)

and then the four spin 0.72 events (Figs. 11-14). Each figure shows the spectral plot and the

correlation plot. The remaining event GW170729 (Fig. 15) has been flagged above, and we

find that its results are both interesting and different. Here we find two resonance signals, for

two non-overlapping choices of the bandpass. And both of these signals are strong, as seen

from the two correlation plots. Each signal produces its own value of∆ f that happen to be es-

sentially the same. From the displayed |h( f )| we see that the high spin causes the positive and

negative frequency components to become more separated, and the two signals are consistent

with observing these two components separately. When attempting to use a broader bandpass

that would encompass both components, the signal effectively disappears. Given that each

signal has the same resonance spacing, the implication is that the two resonance patterns are

displaced relative to each other, in such a way that the broad uniform comb misses one or the

other. Such a relative shift is natural and it depends sensitively on ω0, which pins the overall

shift of ψω. Since the spin and thus ω0 is not measured accurately enough, this shift cannot

be predicted.

Finally we present results for the NS-NS merger event, GW170817 in Fig. 16. We reported

a resonance signal for this event in [10], but now we pass it through the current analysis. The

4 Our estimate of the peak value assumes the simplest initial perturbation, that of a single pulse moving back

and forth in the cavity. For a more general perturbation, the required peak value of |h(t)| may be substantially

less.
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results remain similar to before. The time scales are shorter for this event and the high sam-

pling rate data (16384 Hz) is used. We use 200 segments of 1/4 s duration for the whitening.

LIGO does not provide the final mass and spin, so here we make choices (M = 2.2M� and

χ = 2/3) that give a sensible looking |h( f )| when compared to the optimal bandpass. The

measured ∆t then corresponds to η = 1.6, and increasing M would decrease η further. We

do not use this event in the analysis of the next section.

P-VALUES

In this section we shall obtain probabilities useful for estimating p-values. By using many

stretches of data we can quite accurately determine the background distribution of our corre-

lation quantity, separately for each event. Then we can we can find the probability of finding

a value at least as high as our signal peak. A p-value of each event should also account for

the fact that the measured ∆t gives an η that is consistent with the nine other events, as per

Fig. 4. So for example if we require that η be within 2σ of its central value, then this gives

the range of ∆t (or a range of n on a signal plot) over which we can look for a background

correlation as high as our signal correlation.

We use data throughout the 4096s segment that contains the merger event, and within this

we use segments of the same length as in the signal analysis with locations chosen randomly

for each detector. The whitening of the data is repeated and the already determined values of

∆t, fmin, fmax and NE are used to produce many background versions of the signal plot. Each

such plot has n ranging from .6 to 1.4 times NE. This procedure has an important benefit,

namely that we can verify that the correlation at the central value, where the peak occurs in

the signal plot, does not have any excess strength in the background plots.5 A correlation that

exists outside the signal region would indicate that it is being generated by noise.

By collecting together all the correlation values from all the background plots, we can then

determine their distribution. We find that a good fit is obtained to a function of the form

xαe−β x , which when normalized is a generalized gamma probability density function Pgg(x).

The fit (different for each event) has four parameters, α, β , and a scale and a location pa-

rameter. These parameters are determined by a maximum likelihood estimate directly from

5 The one exception is GW150914 where there is some excess correlation at or close to the central value. This

may be related to how close ∆ f = 3.991 Hz is to 4 Hz, thus suggesting that there is some 4 Hz correlation

generated by noise. This excess correlation is weaker than the signal.
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the correlation values (∼ 20000 values). Typically β is between 0.5 and 1 and the location

parameter is close to vanishing.

A plot for each event shows Pgg(x) (red curve) for the correlations from background. The

histogram is added to indicate how well Pgg(x) fits the data. Also shown are the signal peak

values of the correlation. The signal peak value xsig determines the probability
∫∞

xsig
d x Pgg(x)

that any single background measurement can produce a value of x at least as high. We then

multiply by the number values of n that lie within 2σ of n = NE (explicitly, this number of

values is 0.14NE). The resulting numbers are simple estimates of p-values and they are shown

in Table II.

GW150914 0.008 GW151226 0.014

GW170104 0.33 GW170814 0.098

GW170608 0.038 GW170809 0.081

GW151012 0.0016 GW170823 0.026

GW170818 0.0094 GW170729 0.0010 & 0.0006

TABLE II. Simple p-values for the 10 BBH merger events. These are the probabilities that background
noise can generate the signal peak height or higher for any value of n within 7% (2σ) of NE .

These simple p-values have the advantage of being well-defined and they usefully show

the relative signal strength of the different events. They highlight again the significance of

the GW170729 results. From the individual p-values we can contemplate a global p-value.

Combining p-values is not a completely well-defined procedure and various methods are used.

Combining the 11 p-values in Table II according to the Fisher and Stouffer methods6 (which

assume independence of the p-values to be combined) gives 5×10−11 and 2×10−12 respectively.

We could expect that the individual p-values become somewhat less trustworthy as the

signal value xsig goes further out onto the tail of the distribution, since the analytical Pgg(x) is

being used to extrapolate into this region where there are few background values. Thus the

lowest p-values Table II may have relatively larger uncertainty. To consider the impact of this

on the combined p-value, we can for example add a fixed amount to all the p-values, which

relatively impacts the lowest ones the most. For example when we add 0.005, the combined

p-values become 1×10−8 and 2×10−10. This is just for illustration, and 0.005 seems far more

than needed to account for the PDF uncertainty.

6 The Stouffer method may be the less well known, but it is easy to describe: convert each p-value pi to x i using

pi =
∫∞

x i
d x Pnorm(x), get the combined xc =

∑
i x i/
√

N , and then convert xc back to the combined p-value pc .
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In contrast to our simple p-values, we could consider obtaining p-values by repeating our

entire analysis, many times, on background data. Our search would have to be automated

and be applicable to both signal and background regions. p-values may depend on how this is

accomplished. Although we do not accomplish this here, it would entail specifying the ranges

of quantities, over which they are varied to find the signals. This includes ∆t itself as well

as the frequency bandpass limits fmin and fmax and the integer NE/10. We could then find

the probability for finding a background correlation as high as our signal correlation, for each

event, and thus a set of N p-values (here N = 11). The combined p-value would then be

the probability of observing correlations as extreme as our signal correlations, over the ranges

specified and assuming background only.

But there is more to our signals than the correlation size. For a particular background

that can generate a signal-size correlation, the above mentioned quantities now take whatever

random values the background produces. One then needs to consider the probability that these

random values could display the regularities actually observed in the signals. For ∆t we have

taken the regularity to be the 2σ version of the narrow band in Fig. 4. If this corresponds to

a fraction p1 of the ∆t range actually explored for each event, then the probability would be

∼ pN
1 . For the bandpass, it is the probability that each of fmin and fmax lies in the range that is

compatible with our theoretical spectra, as happens for the signals. We write this probability

as ∼ pN
2 pN

3 . For NE, it is the probability that each event has correlation peaks for a range of

NE (even though we have chosen only one in each case) and that these ranges largely overlap

between events, as happens for the signals (other than GW151226). We write this probability

as ∼ pN−1
4 . The final probability of interest would then be the combined p-value times ∼

(p1p2p3)N pN−1
4 . In fact we could consider increasing the search ranges until the combined p-

value is no longer very small. But then the pi ’s will be small, and we see that the pi ’s do not

have to be very small to imply by themselves a very small final probability.

The point is that in addition to evidence against the background hypothesis, we are seeing

evidence for the signal hypothesis. The signal hypothesis involves a simple theoretical model

that is predicting how the various quantities in each event should be related, and the data

is largely conforming to these predictions. Returning to our simple p-values, they are being

defined for each event by holding fmin, fmax and NE fixed to their values from the signal region.

We are ignoring both the search ranges of these quantities and how the observed regularities

in these quantities support the signal hypothesis. These are compensating effects and so our
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simple p-values are a sensible first step to assess the significance of our results. Our simple p-

values also ignore the additional evidence for the signal hypothesis coming from GW170729,

namely that the two different bandpasses have produced the same ∆ f .

CONCLUSIONS

LIGO is sensitive to the cavity resonance structure of not quite black holes. This particular

sensitivity to Planck-scale physics is under appreciated. The full signal waveform produced by

a not quite black hole may have too much information and model dependence for a standard

matched-filter analysis. On the other hand the evenly-spaced resonance pattern is robust and

relatively easy to search for. This is the approach taken here.

Evidence is already accumulating from the 10 BH merger events reported in [13]. We have

described the consistency of the measured ∆t values with the mass, spin and red-shift depen-

dence predicted from the simple truncated Kerr BH model. Event GW170729 in particular

is sufficiently different from the other events to provide a good test of the model. We have

highlighted the strength of its signal and the way it may already be showing evidence of the

expected two component structure of the resonance pattern [11]. We have also displayed the

consistency of the data-driven bandpasses with the spectrum predicted for each event in the

same model. The measured∆t values point to a common distance scale δr, with our measured

value being larger than the proper Planck length, δr ≈ 1012¯̀
Pl.

The LIGO data certainly displays non-Gaussian noise, some of it not understood, and some

of it displaying comb-like features reminiscent of our signal. But given the observed regularities

of the signals, and in addition the low p-values, it is now very unreasonable to expect that this

could explain our signals. Our simple p-values are both transparent and able to provide a

sensible first estimate of the significance of our results. The combined p-value is found to be

very small.

We have stressed that our search strategy is uniform across all events. But to define the

strategy, some choices and parameters were fixed once and for all. With the strategy now

frozen, it will be important to apply it to new data. Many new BBH merger events have

already been discovered in the LIGO-Virgo O3 run and it only remains to look at this data. We

have one hope concerning the data. In their continuing efforts to reduce noise with respect

to their merger-signal target, it is to be hoped that LIGO-Virgo does not inadvertently remove
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poorly understood non-Gaussian noise that, as seen here, could harbour new physics.7

7 In this connection we note that a strong resonance signal for event GW170104 as described in [10] was based

on an early O2 data release. This signal weakens considerably when the subsequent GWTC-1 data release [13]
is used instead, and now GW170104 gives our weakest signal. For all events in the present analysis we use

only the GWTC-1 data release.
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FIG. 6. GW150914
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FIG. 7. GW170104
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FIG. 8. GW170608
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FIG. 9. GW151012
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FIG. 10. GW170818
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FIG. 11. GW151226
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FIG. 12. GW170809

0 50 100 150 200 250 300 350
f [Hz]

0.0

0.2

0.4

0.6

0.8

1.0

AS
D

[H
z

1/
2 ]

1e 23

peak |h(t)|
= 5.0e-22

H
L

NE 170

∆ f 4.26Hz
∆t
M

845

χ 0.72

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
GW170809 correlation

0

2

4

6

8
ba

ck
gr

ou
nd

 P
D

F

signal

FIG. 13. GW170814
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FIG. 14. GW170823
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FIG. 15. GW170729
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FIG. 16. GW170817
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