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We explore the effects of incorporating redshift uncertainty into measurements of galaxy clustering and cross-
correlations of galaxy positions and CMB lensing maps. We use a simple Gaussian model for a redshift dis-
tribution in a redshift bin with two parameters, the mean, z0, and the width, σz. We vary these parameters, as
well as a galaxy bias parameter, bg, and a matter fluctuations parameter, σ8, for each redshift bin, as well as the
parameter Ωm, in a Fisher analysis across 12 redshift bins from z = 0 − 7. We find that incorporating redshift
uncertainties degrades constraints on σ8(z) in the LSST/CMB-S4 era by about a factor of 10 compared to the
case of perfect redshift knowledge. In our fiducial analysis of LSST/CMB-S4 including redshift uncertainties,
we project constraints on σ8(z) for z < 3 of less than 5%. Galaxy imaging surveys are expected to have priors
on redshift parameters from photometric redshift algorithms and other methods. When adding priors with the
expected precision for LSST redshift algorithms, the constraints on σ8(z) can be improved by a factor of 2-3
compared to the case of no prior information. We also find that ‘self-calibrated’ constraints on the redshift
parameters from just the auto-correlation and cross-correlation measurements (with no prior information) are
competitive with photometric redshift techniques. In the LSST/CMB-S4 era, we find uncertainty on the redshift
parameters (z0, σz) to be below 0.004(1+z) at z < 1. For all parameters, constraints improve significantly if
smaller scales can be used. We also project constraints for nearer term survey combinations: DES/SPT-SZ,
DES/SPT-3G and LSST/SPT-3G, and analyze how our constraints depend on a variety of parameter and model
choices.

I. INTRODUCTION

Large galaxy imaging surveys provide a wealth of cosmo-
logical information about the Universe. In particular, these
surveys can probe the growth of structure across cosmic time.
Such measurements can distinguish between different models
for the mechanism causing cosmic acceleration [1]. Two spe-
cific probes used by galaxy surveys to study structure growth
are galaxy clustering and weak gravitational lensing. Re-
cent and ongoing imaging surveys using these probes include
the Dark Energy Survey (DES, [2]), the Kilo-Degree Survey
(KIDS, [3]), the Canada-France-Hawaii Telescope Lensing
Survey (CFHTLens, [4]) and the Hyper-Suprime Cam survey
(HSC, [5]). The Dark Energy Survey recently produced the
most comprehensive study of the growth of structure from an
imaging survey [6] using galaxy clustering and weak lensing
measurements from its first year of data ([7], [8], [9]). The
DES Data Release 1 includes more than 300 million galaxies
from the first three years of data [10]. In the next decade, the
constraining power of imaging surveys will increase greatly
when new ground-based surveys such as the Large Synoptic
Survey Telescope (LSST, [11]) and space-based surveys such
as Euclid [12] and the Wide-Field Infrared Survey Telescope
(WFIRST, [13]) begin operations. These future surveys will
find significantly more galaxies and cover a much larger red-
shift range than current surveys. LSST is expected to find on
the order of several billion galaxies [14].

A special case of using gravitational lensing to infer the
structure of matter in the Universe is lensing of the cosmic
microwave background (CMB). The CMB is made up of pho-
tons that have been free streaming since redshift z ≈ 1100
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(see e.g., [15]). CMB lensing thus measures lensing from
matter over nearly the entire lifetime of the Universe, more
than 13 billion years. The first detection of CMB lensing
was found by doing a cross-correlation of radio galaxies from
the NRAO VLA Sky Survey (NVSS) and CMB data from the
Wilkinson Microwave Anisotropy Probe (WMAP) [16]. CMB
lensing has since been detected in a number of ways includ-
ing CMB only methods and cross-correlations with several
tracers of large-scale structure, including the cosmic infrared
background (CIB), quasars, clusters and galaxies detected in
a number of different wavelengths (see [17] or [18] for an ex-
tensive list).

The cross-correlation of galaxy positions and CMB lens-
ing is a particularly useful measurement of cosmic structure.
While CMB lensing maps are impacted by matter back to
z ≈ 1100, they have the disadvantage of having no way to di-
rectly assess the redshift distribution of lenses at any particular
location in the sky. All the information back to z ≈ 1100 is
stacked into one two-dimensional projection. Galaxies, hav-
ing redshift measurements, provide a three-dimensional esti-
mate of a location of matter. However, galaxy clustering alone
suffers from the fact that galaxies do not directly trace the total
underlying distribution of matter in the Universe, but instead
are biased tracers. In galaxy clustering measurements, this
galaxy bias (the relationship between the distribution of galax-
ies and total matter) is degenerate with the overall clumpiness
of the Universe (i.e. σ8) which provides information on com-
peting cosmological models. The cross-correlation of galax-
ies and CMB lensing provides both a measurement of matter
as a function of redshift, and a way to break the degeneracy
of galaxy bias and matter clumpiness. The cross-correlation
also has the advantage of having very different systematic ef-
fects present. Galaxy surveys (of usually optical or infrared
light) and CMB experiments (in the microwave band) operate
in a number of different ways, making correlated systematic
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effects in both surveys unlikely.
These cross-correlations of galaxy clustering and CMB

lensing have been measured by a number of recent experi-
ments (see [19] for a recent list). In particular, [17] and [18]
cross-correlated Dark Energy Survey galaxies in tomographic
redshift bins up to z = 1.2 and z = 0.9, respectively, with
CMB lensing maps from both the South Pole Telescope (SPT)
[20] and the Planck Satellite [15]. Among current measure-
ments, these analyses using a large optical cosmic survey out
to high redshifts (z ∼ 1) most closely mimic the type of mea-
surements we will address in this work. Recently a projec-
tion of the constraining power of a future measurement using
LSST and the planned experiment, CMB-S4 [21] was made
by [22]. However, a critical element that many of these stud-
ies do not incorporate in detail are the effects of redshift uncer-
tainties on these measurements (though [23] and [22] briefly
explore the issue).

While there are spectroscopic galaxy surveys (e.g., BOSS,
[24] and in the future, DESI [25]), many of the best cosmo-
logical constraints (e.g., DES [6]) from galaxy clustering and
gravitational lensing come from larger, deeper imaging sur-
veys which suffer the downside of having only photometric
redshifts from color bands. Much work goes into training
these photometric redshift codes to be as accurate as pos-
sible by using spectroscopic training sets of galaxies (e.g.,
[26], [27] and references therein). The method of spatially
cross-correlating photometric galaxies with smaller samples
of spectroscopic galaxies to infer redshift distributions (also
known as ‘clustering redshifts’) has also seen success (e.g.,
[28], [29], [30], [31] and references therein). However, even
future photometric surveys like LSST expect significant un-
certainty in their redshift distributions due to photometric red-
shift errors. Since LSST will probe higher redshifts than
current surveys like the Dark Energy Survey, the issues sur-
rounding photometric redshifts are likely to be compounded.
Both the typical photometric training methods and the cluster-
ing method need spectroscopic galaxies at the same redshifts
probed by the photometric survey. The photometric methods
also need spectroscopic samples of galaxies with similar mag-
nitude depth for training. Both getting the necessary number
of spectroscopic measurements of galaxy redshifts and insur-
ing that current methods are sufficiently accurate at higher
redshifts will be significant challenges.

Another interesting method to infer redshifts that has
emerged is the idea of ‘self-calibrating’ the redshift measure-
ments from cosmological correlation functions themselves
(e.g., galaxy clustering, weak lensing measurements etc.)
Work by [32] recently explored this idea with several types
of correlation functions while holding cosmology fixed. Such
methods may be needed in the future to supplement the cur-
rent methods of photometric redshift calibration.

In this work, we project cosmological constraints from
measurements of galaxy clustering and cross-correlations be-
tween galaxy positions and CMB lensing for current and fu-
ture surveys. We use a Fisher analysis similar to [22]. Unlike
previous work though, we will include redshift parameters
in the Fisher analysis, and highlight their impacts. Our red-
shift analysis will not focus on catastrophic outliers (as in e.g.

[22]), but the generic uncertainties of a redshift distribution
for a photometric survey, represented by the mean and width
of a Gaussian in each redshift bin. We show that these general
(non-catastrophic) uncertainties have significant impact on a
cosmological analysis.

There are two main objectives of this work: 1. To as-
sess how redshift uncertainties affect the expected cosmolog-
ical constraints from galaxy survey and CMB lensing cross-
correlations (i.e. an extension of [22]) and 2. To assess how
well the self-calibrating approach can constrain redshift dis-
tributions when cosmological parameters are allowed to vary
(i.e. an extension of [32]).

We focus on the cross-correlation of galaxy clustering and
CMB lensing, though we note similar questions could be
asked when including optical weak gravitational lensing data
(i.e. cosmic shear) which can also be cross-correlated with
CMB lensing (for past measurements see [33], [34], [35]).
As an example, [36] uses galaxy clustering, CMB lensing
and cosmic shear measurements together to self-calibrate the
shear multiplicative bias. Since our goals are focused around
the question of redshifts in galaxy surveys, we choose to focus
on just galaxy clustering and CMB lensing, and not focus on
the interplay of shear multiplicative bias, redshifts and other
parameters (see [36] for a brief discussion). For cosmological
constraints, we focus on σ8 as the main parameter that can be
studied with these probes. Focusing on this parameter allows
us to study carefully the impact of redshift uncertainties. Fu-
ture work may incorporate a larger parameter space and set of
measurements.

The setup of this paper is as follows: In Section II, we dis-
cuss the datasets used in this paper and their projected pa-
rameters. In Section III, we discuss how we model and pa-
rameterize redshift distributions when accounting for photo-
metric redshift errors. In Section IV, we outline the projected
power spectra measurements used in this work, and the Fisher
Matrix formalism we use to project constraints on cosmolog-
ical and redshift parameters. In Section V, we show Fisher
constraints from an analysis without redshift uncertainties. In
Section VI, we show our fiducial Fisher analysis incorporat-
ing redshift uncertainties. In Section VII, we explore in de-
tail how our constraints depend on various survey parameters,
including priors on the redshift parameters. In Section VIII,
we explore in more detail how successful our analysis is in
constraining the redshift parameters. In Section IX, we in-
vestigate how changing the cosmological parameters we vary,
including using a single σ8 parameter across all redshifts, al-
ters our constraints. In Section X, we give our conclusions.

II. DATASETS

A. Dark Energy Survey (DES)

The Dark Energy Survey is a 6-year photometric sur-
vey covering 5, 000 deg2 in the g, r, i, z, y bands [2] which
recently completed observations. DES observed from the
Blanco Telescope at the Cerro Tololo Inter-American Obser-
vatory (CTIO) in Chile. We assume a galaxy distribution for



3

0 1 2 3 4 5 6 7

z

0

10

20

30

40

50

60
n(

z)
(a

rc
m

in
−

2 )
LSST
DES

0.1

0.2

0.3

0.4

0.5

0.6

FIG. 1. The expected galaxy redshift distributions from DES (full 6
years of data) and LSST (first 3 years of data) used in this work. The
redshift distributions come from [37] for DES and [22] for LSST.
The inset shows 4 < z < 7.

DES from [37] which gives:

n(z) ∝ (z/z?)
α exp[−(z/z?)

β ] (1)

where for DES the parameters are α = 1.25, β = 2.29 and
z? = 0.88 with the total number of galaxies having a density
of 12 arcmin−2. This redshift distribution is shown in Fig-
ure 1. The full DES will cover 5, 000 deg2, however SPT, the
CMB experiment that will be used for DES cross-correlations
in our projections, only covers 2, 500 deg2, making the ob-
served fraction of the sky fsky = 0.0606 for the power spectra
in our analysis.

B. Large Synoptic Survey Telescope (LSST)

The Large Synoptic Survey Telescope is a 10-year photo-
metric survey based at Cerro Pachón in Chile. It is expected
to start main operations in 2022. Its main Wide-Fast-Deep
survey will cover 18, 000 deg2 (fsky = 0.45) [14]. However,
for our fiducial analysis we will use fsky = 0.5 to more easily
compare with the results in [22]. For the galaxy distribution
in LSST, we match to the prediction used in [22] (their Figure
4) for galaxies with i-magnitude < 27 after 3 years of data,
shown in our Figure 1. When using fsky = 0.5, this prediction
gives a total galaxy density of 58 arcmin−2. The prediction
comes from LSST simulations in [38] for 0 < z < 4. We note
that for z<1, this n(z) matches closely the LSST power law
prediction from [37]. [22] also add galaxies for 4 < z < 7
by extrapolating from recent results from the Subaru Hyper-
Suprime Cam GOLDRUSH program [39] which found more
than half a million candidates for 4 < z < 7 galaxies based on
the dropout technique [40]. Specifically, [22] model the n(z)
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FIG. 2. The CMB lensing noise for the experiments we consider, as
well as the signal of the CMB lensing auto power spectrum, Cκκl .
We use SPT noise estimates from [17] and the CMB-S4 estimate
from [22]. These noise estimates enter our analysis in Equation 8.

from z = 4− 5 by extrapolating from the z < 4 results of the
simulations, and assume a constant number density of 0.14
arcmin2 from z = 5 − 6 and 0.014 arcmin−2 for z = 6 − 7.
The n(z) prediction for z = 4 − 7 is noted by [22] to per-
haps be conservative, as a direct extrapolation of the limited
(100 deg2) GOLDRUSH results would give a factor of 2 more
galaxies in this redshift range.

C. South Pole Telescope SZ Survey (SPT-SZ)

The South Pole Telescope (SPT) is a 10-meter millimeter
wave, wide-field telescope at the Amundsen-Scott South Pole
station in Antarctica [20]. The 2, 500 deg2 SPT-SZ survey is
described in [41]. A CMB lensing map from this survey was
made in [42]. More recently, [43] made a map covering the
full survey, while also including data from the Planck Satellite
[44]. The lensing maps are made using the quadratic estimator
technique [45]. The lensing maps from SPT-SZ are made from
measurements in the 150 GHz band. In this band, the temper-
ature maps have a typical noise of ∆T = 18µK arcmin. For
the expected CMB lensing noise in the auto-power spectrum
(i.e. Nκκ

l ), we use the noise measurement in [17] which used
a version of the maps made in [42]. The measured lensing
noise of the maps in [43] are very similar. The lensing noise
for SPT-SZ as well as the projected noise for the following
two experiments, SPT-3G and CMB-S4, are shown in Figure
2.

D. South Pole Telescope 3G Survey (SPT-3G)

The SPT-3G survey [46] is currently in progress and is the
third generation survey on the South Pole Telescope, follow-
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ing the SPT-SZ survey, and the SPT-Pol survey [47]. We will
not discuss the SPT-Pol survey due to its smaller sky cover-
age than SPT-SZ or SPT-3G. SPT-3G has an improved optical
design allowing for more pixels in the optical plane, and uses
multi-chroic pixels as described in [46]. These improvements
should lower the temperature noise by roughly a factor of ten
compared to SPT-SZ. Like SPT-Pol, SPT-3G will also have
polarization measurements. It will cover the full 2, 500 deg2

which was observed by SPT-SZ. For the projection of SPT-3G
noise, we use an estimate by the South Pole Telescope team
using a minimum-variance estimator combining T, E and B
mode measurements. This estimate is shown in [17]. We show
this projected noise in Figure 2.

E. CMB-S4

The CMB-S4 experiment [48] is a next generation CMB
survey expected to begin within the next decade. It is likely to
have operations in both Antarctica and Chile. The sky cover-
age is still uncertain, though many projections have CMB-S4
covering half the sky, overlapping completely LSST. We will
assume this for our fiducial analysis, giving fsky = 0.5. For
the CMB lensing noise, we use the estimate in [22] and show
this in Figure 2. This estimate assumes ∆T = 1µK arcmin
noise and a minimum variance combination of multiple lens-
ing estimators from the T, E and B mode measurements of a
CMB experiment [48].

III. PARAMETERIZING REDSHIFT DISTRIBUTIONS

A focus of this work is to study the effects of redshift un-
certainty on cosmological projections using galaxy and CMB
lensing surveys. With this in mind, the observed galaxy distri-
butions in a photometric survey like DES or LSST will never
quite look like the redshift distributions mentioned in Sec-
tion II. In a typical photometric survey, galaxies are binned
by photometric redshift. High-density, faint samples of galax-
ies (such as the predicted distribution of i−magnitude < 27
galaxies for LSST in Figure 1) typically have photometric
redshift errors consistent with a Gaussian scatter. For ex-
ample, LSST predicts photometric redshifts with a scatter of
σph = 0.05(1 + z) around the true redshift ([49], [14]).

To simulate what a photometrically selected and binned
redshift distribution looks like, we first take the expected
n(z) from the references in Section II. We then draw galax-
ies from this distribution and assign them photometric red-
shifts, assuming the photometric redshift errors follow σph =
0.05(1 + z), with no bias (i.e. z̄true = z̄ph). We then simu-
late what would be done for a real survey and bin the galaxies
by zph. As can be seen in Figure 3, the true redshift distri-
bution from LSST (the sum of ztrue, not the sum of zph) after
binning by photometric redshifts is nearly Gaussian in shape.
To further show this, in Figure 3 we also plot a Gaussian with
the mean redshift and standard deviation of the redshifts in
the binned n(z). We emphasize that Figure 3 shows only true
redshift distributions, and does not mimic what a photomet-
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FIG. 3. The true redshift distribution and examples of photomet-
ric redshift bins we use. Shown in black is the true n(z) for LSST,
though it actually extends out to z = 7. In blue and green are exam-
ples of the n(z) in photometrically-selected redshift bins. As seen,
e.g., a bin with photometric cutoffs of z = 0.75 and z = 1.0 (blue)
will have its true distribution extend beyond those boundaries (lined
in gray). The modeled true distributions of the binned galaxies are
close to being Gaussians. The dotted lines show Gaussians with the
same mean and standard deviation of the true binned distributions.

ric redshift code would predict. This can be seen for example
in the right binned sample (green) which extends beyond the
photometric borders of the redshift bin, z = 1.0 and z = 1.5.

In current surveys, photometric binning often produces
Gaussian-like true redshift distributions in each bin (e.g., [6])
similar to Figure 3. These true redshift distributions are veri-
fied to some degree by testing photometric redshift codes on
samples of galaxies with spectroscopic redshifts (e.g., [26]) or
using other methods like the cross-correlations of photomet-
ric and spectroscopic galaxies to recover the redshift distribu-
tion of the photometric set (‘clustering redshifts’, e.g., [29],
[30]). However, each of these methods has uncertainties. Ex-
act knowledge of the redshift distribution for a photometric
survey is unlikely.

Given the typical case of a Gaussian-like true redshift dis-
tribution when binning by photometric redshifts, we parame-
terize the redshift distributions in our main analysis (Section
VI) with Gaussians of mean z0 and width σz. This makes the
redshift distribution in a bin, i:

n(z)i ∝
1

σz,i
exp[− (z − z0,i)

2

2σ2
z,i

]. (2)

For our fiducial analysis beginning in Section VI, we use
12 tomographic redshift bins with a Gaussian redshift distri-
bution in each bin. These redshift distributions are shown in
Figure 4, along with the full n(z) prediction for LSST from
[22]. The parameters, z0,i and σz,i are shown in Appendix
A, Table I for both LSST and DES. Figure 4 also shows the
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FIG. 4. The 12 Gaussian redshift distributions for our tomographic
redshift bins which will be used in our analysis starting in Section
VI. We list all of the means, z0,i, and widths, σz,i, of these bins
in Appendix A. Also shown is the full n(z) prediction for LSST
from which the Gaussian distributions are estimated in the manner
described in Section III and Figure 3. The inset shows 4 < z <
7. We also show Wκ from Equation 4, which is the CMB lensing
kernel. This parameter weights the redshifts that most efficiently lens
the CMB. The curve for Wκ is normalized to the full n(z) curve.

CMB lensing kernel (described in Equation 4) which shows
what redshifts most efficiently lens the CMB. The lensing ker-
nel peaks at about z ≈ 2. In Section VI and later, we allow
the parameters z0,i and σz,i of each of the Gaussians in Figure
4 to vary in our Fisher analysis (Section IV B). This gives a
simple framework for accounting for redshift uncertainties in
the Fisher analysis and should be accurate in the limit that the
binned redshift distributions are Gaussian.

IV. METHODS

A. Power Spectra

The CMB lensing convergence, κ, in a given line of sight,
n̂, is the integral over all the matter fluctuations that will cause
gravitational lensing:

κ(n̂) =

∫
dzWκ(z)δ(χ(z)n̂, z), (3)

where δ(χ(z)n̂, z) is the overdensity of matter at comoving
distance, χ and redshift, z. The distance kernel, Wκ, is given
by

Wκ(z) =
3

2
ΩmH

2
0

(1 + z)

H(z)

χ(z)

c
[
χ(zcmb)− χ(z)

χ(zcmb)
] (4)

where Ωm is the fraction of the matter density today compared
to the present critical density of the Universe, H0 is the Hub-
ble parameter today, H(z) is the Hubble parameter as a func-
tion of redshift, c is the speed of light and χcmb is the comov-
ing distance to the surface of last scattering where the CMB
was emitted [50].

As galaxies are expected to be biased tracers of matter fluc-
tuations, the galaxy overdensity in a given line of sight is

g(n̂) =

∫
dzW g(z)δ(χ(z)n̂, z). (5)

The kernel, W g , is given by

W g(z) = bg(z)
1

ntot

dn(z)

dz
(6)

where bg(z) is the galaxy bias, the ratio of the overdensity
of galaxies to the overdensity of matter, assumed here to be
independent of scale, ntot is the total number of galaxies in the
sample and dn(z)

dz is the redshift distribution of those galaxies.
At small angular scales, we can use the Limber approx-

imation ([51], [52], see Appendix C) to write the cross
power spectrum of two of our fields, i and j, where i, j ∈
κcmb, gz=0−0.25, gz=0.25−0.5, ... at multipole l as:

Cijl =

∫
dz

c

H(z)

χ(z)2
W i(z)W j(z)P (k =

l

χ(z)
, z) (7)

where P (k = l
χ(z) , z) is the matter power spectrum at

wavenumber k for a given redshift z. We calculate all of
the power spectra using the Planck 2015 flat-ΛCDM cosmo-
logical parameters including external data [53]. These pa-
rameters are h = 0.6774, Ωm = 0.3089, Ωb = 0.04860,
τ = 0.066, ns = 0.9667, As = 2.1413 × 109 at a pivot scale
of k = 0.05 Mpc−1, corresponding to σ8(z = 0) = 0.8159.
The matter power spectrum, P (k, z), is calculated using the
Boltzmann code in the CAMB program ([54], [55]) with the
program Halofit ([56]) to calculate the non-linear regime of
clustering.

The Gaussian covariances for the power spectra, Cl, are:

cov(Cijl , C
i′j′

l ) =
δll′

fsky(2l + 1)
(Ĉii

′

l Ĉjj
′

l + Ĉij
′

l Ĉji
′

l ) (8)

where the upper indices i and j again refer to the different
fields. The power spectra denoted by Ĉ include noise:

Ĉl = Cl(theory) +Nl (9)

where for galaxy auto-correlations, the shot noise term is
Nl = 1/ρ where ρ is the galaxy density per steradian, and
for the CMB lensing auto-correlation, the predicted Nl for
different CMB experiments are shown in Figure 2. For cross-
correlations, Nl = 0.
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FIG. 5. Sample theoretical angular power spectra (Cl) for different
redshift bins (Figure 4) in our analysis. Shown are measurements for
the bins with photometric redshifts between z = 0.75 − 1 and z =
2−2.5. These measurements include galaxy auto-correlations (GG),
cross-correlations between adjacent galaxy redshift bins (GxG) and
cross-correlations of galaxies and CMB lensing (GK). The amplitude
of the Cl curves do not include the noise terms (Equation 7). How-
ever, we use noise levels for the LSST/CMB-S4 era in the error bands
given by the covariance, cov(Cijl , C

ij
l ) in Equation 8. Also shown

is the CMB lensing auto-correlation (KK), the noise levels (Nl) for
the CMB experiments, SPT-SZ and CMB-S4, and the shot noise for
the two galaxy bins in LSST and the z = 0.75 − 1 bin in DES. The
noise levels are represented by dotted or dashed lines.

We note Equation 8 ignores the non-Gaussian corrections
for galaxy clustering and CMB lensing covariance (see e.g.
[57] and [58] for calculations of these terms). In [17], the am-
plitude of non-Gaussian corrections to the covariance are es-
timated by comparing measurements on mock catalogs from
an N-body simulation, and mock catalogs from a Gaussian
random realization of galaxy and CMB lensing fields. The
different covariance estimates from these two tests had negli-
gible impact on their amplitude parameter (similar to σ8) con-
straints. This suggests that the non-Gaussian contributions of
the covariance are minor for these probes at the scales they
used, which were l = 30− 2000, nearly identical to scales we
use.

We show some sample power spectra in Figure 5 for two
of the twelve redshift bins used in the fiducial analysis (Fig-
ure 4). Shown are galaxy auto-correlations, cross-correlations
between galaxy bins, cross-correlations between galaxies and
CMB lensing, and the CMB lensing auto-correlation. The er-
ror bands represent the covariance (Equation 8) estimates of
the LSST/CMB-S4 era. Also shown are some of the relevant
noise levels, Nl, for the different experiments. We can see
that many more of the multipoles of the cross-correlation be-
tween galaxies and CMB lensing are signal dominated in the
LSST/CMB-S4 era compared to the DES/SPT-SZ era.

B. Fisher Matrix

We use a Fisher Matrix formalism similar to [22] (their Sec-
tion VI) to derive constraints on parameters. The Fisher for-
malism assumes all the cosmological information is contained
in the power spectra, which is true in the limit that the fields
are Gaussian. In our fiducial analysis (Section VI), we have 12
tomographic redshift bins of galaxies (Figure 4), and the CMB
lensing field, κ. This gives us N = 13 fields, which means
there are 13 auto-spectra andN(N−1)/2 = 78 cross-spectra,
for a total of 91 spectra. However, we assume the cross-
spectra of non-neighboring redshift bins are zero. 1 This re-
duces the total number of non-zero spectra to 3(N − 1) = 36.

Following [22], we define a large one-dimensional vector
containing all the spectra:

d = (dlmin ,dlmin+1 , ...,dlmax). (10)

For each l,

dl = (C11
l , C

12
l , ..., C

NN
l ) (11)

with N being the number of fields. Since Cijl = Cjil , dl has
N(N + 1)/2 spectra, 91 spectra when N = 13 fields, with
only 36 of these being non-zero as mentioned previously. The
Fisher Matrix is then:

Fab =

lmax∑
l=lmin

∂dl
∂θa

[cov(dl,dl)]
−1 ∂dl
∂θb

(12)

where θ is a parameter that depends on the measurements, dl,
and a, b index the parameters. For our fiducial analysis, we
use lmin = 20 and lmax = 1000 (similar to [22]), though we
test other lmax values. In all cases, we do not bin in l in this
work. This Fisher setup assumes that the fields overlap (i.e.
the CMB and galaxy experiments overlap completely on the
sky), which is the case in the projected experiments of Section
II. The projected error on a parameter, θ, is then:

σ(θa) ≥
√

(F−1)aa. (13)

In Section VII E, we analyze the effects of adding priors to
our analysis. We add priors by substituting:

1 We note that tests suggest our methodology would notably gain preci-
sion by using cross-correlations between non-neighboring redshift bins.
However, we believe our methodology likely overestimates the informa-
tion from such correlations. These correlations are completely sourced by
the tails of the redshift distributions in Figure 4. In our strict 2-parameter
Gaussian model for the redshift distribution in each bin, the tails correlate
with σz and are informative. In a real data set though, the Gaussian ap-
proximation will not be so accurate that information in the tails could tell
you much about the whole distribution (i.e. σz). Therefore, we believe as-
suming zero information from non-neighboring bin correlations is a more
realistic model. We leave research on a more flexible method for utilizing
the tails to future work.
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Faa → Faa +
1

p(θa)
(14)

where p(θa) is the prior on the parameter. When applying pri-
ors, Equation 14 is applied before the Fisher Matrix is inverted
in Equation 13.

In our fiducial analysis, there are five types of parameters
varied. These include the redshift parameters, z0,i and σz,i,
defined in Equation 2 for each of the redshift bins indexed by
i. We also vary for each redshift bin, bg,i, the amplitude of
the galaxy bias and σ8,i, which measures the amplitude of the
matter power spectrum on scales of 8 h−1 Mpc, where h =
H0/(100 km/sec/Mpc). We use parameterizations similar to
[22] for these latter two parameters. In Equation 5, we model
the galaxy bias, bg(z), as:

bg(z) = bg,i(1 + z). (15)

This formalism matches the general linear behavior of galaxy
bias with (1+z) often seen in flux-limited photometric galaxy
samples (e.g. [59]) while including uncertainty in a single
amplitude parameter in each bin. We implement σ8,i into the
power spectra (Equation 7) by substituting:

P (k, z)→ (1 + si)
2P (k, z) (16)

where si ≡ (σ8,i/σ8,fid − 1) is the fractional difference of σ8

in that bin compared to the fiducial cosmology. The Fisher
analysis is centered on bg,i = 1 and σ8,i = σ8,fid for all red-
shift bins, i. We note that when we calculate the CMB lens-
ing auto-correlation, Cκcmbκcmb

l we apply si from the minimum
and maximum photometric redshift boundaries for each bin
i, though this does not map perfectly to the redshifts of the
galaxies in bin i. 2

The fifth type of parameter we allow to vary is the mat-
ter density of the Universe, Ωm. This parameter enters into
P (k, z), the calculation for H(z) as well as in the CMB lens-
ing kernel, Wκ(z) (Equation 4). When we vary Ωm, we also
vary ΩΛ, the cosmological constant energy density in ΛCDM,
to keep the Universe flat.

The parameters z0,i, σz,i, bg,i and σ8,i are measured in each
redshift bin. Along with Ωm, this gives a total of n=4(N-1)+1
parameters, which is 49 in the case of N=13 fields. The Fisher
matrix will be n x n in size.

2 Since unlike [22], our redshift bins overlap, we must make a choice whether
to tie the definition σ8,i to a specific redshift range or to a specific redshift
binned sample. We choose the latter as that is how many photometric red-
shift binned samples are analyzed (e.g., [17]). However, this does make
how to specifically calculate ∂Cκcmbκcmb

l /∂σ8,i ill-defined since we are
not defining σ8,i over a precise redshift range. In any case, the contribu-
tions of Cκcmbκcmb

l are very minor in the analysis, so we do not think this
impacts the results significantly.
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FIG. 6. The constraints on σ8 in the scenario with no redshift un-
certainty for the LSST/CMB-S4 era. We plot the case with only σ8

and bg allowed to vary in each bin (to be able to compare with the
analysis in [22]) as well as the case with also Ωm being allowed to
vary. For this analysis, we set lmax=1000.

V. RESULTS WITH NO REDSHIFT UNCERTAINTY

We first analyze the results of a Fisher matrix analysis when
there is no redshift uncertainty. We briefly do an analysis that
allows us to compare most directly to the results in [22]. We
use the full n(z) of LSST (black line in Figure 4) and not
the Gaussian redshift distributions as will be used in Section
VI. We divide this n(z) into the 6 tomographic bins used in
[22] with boundaries at z = [0, 0.5, 1, 2, 3, 4, 7]. Since there
is no redshift uncertainty, here our Fisher setup has 6 values
for σ8,i and bg,i and Ωm for 13 parameters. [22] does not vary
Ωm, so we also show results without this parameter. We show
the constraints on σ8 for this setup in Figure 6 when we set
lmax=1000. We show how the results change as a function of
lmax in Figure 7. These constraints are nearly identical to [22]
(their Figure 9) when not including Ωm and about 30 − 60%
larger when varying Ωm. The largest difference in our analysis
here compared to [22] is that we do not include any SDSS or
DESI galaxies at low redshifts as they do. This makes their
constraints in the two lowest redshift bins better.

For our fiducial analysis in Section VI, we will use smaller
redshift bins, splitting each of the bins used in [22] in half,
giving us the 12 redshift bins shown in Figure 4. These
smaller redshift bins are more similar to current analyses
on data, such as from the Dark Energy Survey (e.g., [17],
[6]). The approximation of a Gaussian redshift distribu-
tion as a result of photometric redshift binning (Section III)
is also more accurate for smaller redshift bins. We first
test the effect of the smaller bins while still having no red-
shift uncertainty. We divide the LSST n(z) distribution di-
rectly into twelve tomographic bins with boundaries at z =
[0, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5.5, 7]. Again, we
assume all redshifts can be known directly from the black line
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FIG. 7. Same analysis of σ8 constraints while having no redshift
uncertainty as in Figure 6, but with varying lmax in the LSST/CMB-
S4 era. This allows a direct comparison with the analysis of [22]
(their Figure 9). Our results are very similar. The dotted lines are for
the case when we allow Ωm to vary as well, while the solid lines are
with only varying σ8 and bg.

in Figure 4, and do not use the Gaussian distributions of that
figure yet. In this setup, our Fisher analysis has 12 values for
σ8,i and bg,i and Ωm for 25 parameters. The constraints on σ8

and bg in this setup are shown in Figure 8. We again show the
case with and without Ωm in the figures as well. Compared to
Figure 6, the constraints on σ8 from doubling the number of
redshift bins when not using Ωm are a little worse, as expected
from shrinking the number of galaxies (and thus increasing
the shot noise) in each bin. The constraints for the average of
two smaller bins are about 25−50% worse than the larger bin
of the same redshift range (e.g., comparing the average con-
straint between of z = 0 − 0.25 and z = 0.25 − 0.5 to the
constraint on z = 0 − 0.5). Of course, the benefit of more
bins is gaining more precise information of the full σ8(z). In-
terestingly, when also varying Ωm, the constraints on σ8 have
very little degradation when switching from 6 bins to 12 bins.
With Ωm varying, the constraints on the smaller bins approxi-
mately equal the constraints on the larger bins (Figures 6 and
8). The typical degradation of constraints when dividing into
smaller bins is offset in this case by having a better constraint
on Ωm due to more measurements (12 instead of 6) constrain-
ing Ωm. The constraints go from σ(Ωm) = 0.0007 with 6 bins
to σ(Ωm) = 0.0003 with 12 bins.

VI. RESULTS WITH REDSHIFT UNCERTAINTY

In this section, we show the fiducial analysis of vary-
ing five parameters in the Fisher analysis of Section IV B:
σ8,i, bg,i, z0,i, σz,i in each redshift bin, and Ωm. With 12
redshift bins for our main analysis of an LSST-like sample,
we have 49 parameters. The redshift distributions with central

values of z0,i and Gaussian width σz,i are shown in Figure 4,
and listed in Appendix A.

For our fiducial analysis of the LSST/CMB-S4 era includ-
ing redshift uncertainties, we show our constraints on the vari-
ous parameters in Figures 9-10. Figure 9 shows the constraints
on σ8,i, and bg,i(z), in the cases with and without redshift un-
certainty (i.e. with z0,i and σz,i fixed.) 3 We can see that
the addition of redshift uncertainty in these parameters in-
creases errors on the other parameters by roughly a factor of
ten. We also show the results for the parameters when cross-
correlations of adjacent galaxy bins are not used (labeled as
‘no GxG’). In this case, errors on parameters tend to increase
by another factor of two or more. This highlights the impor-
tance of the cross-correlations between galaxy bins, a mea-
surement that in principle is not necessary when galaxy red-
shifts are known perfectly, and galaxy bins do not overlap in
redshift space.

Figure 10 shows the constraints on the redshift parameters
z0,i and σz,i in each of the 12 photometric bins. We again
also plot the results when not using the galaxy-galaxy cross-
correlations of adjacent redshift bins. As seen in the figure,
the galaxy-galaxy cross-correlations are of particular impor-
tance for σz. The cross-correlations break degeneracies be-
tween σ8, bg and σz that remain when only having galaxy
auto-correlations and galaxy-CMB lensing cross-correlations
for each bin (see Appendix B for more discussion).

We also note that the constraints on Ωm in the scenar-
ios of no galaxy-galaxy cross-correlations, the fiducial anal-
ysis, and the no redshift uncertainty case are σ(Ωm) =
[0.00075, 0.00060, 0.00025] respectively. The improvement
on Ωm with more redshift information is more mild than on
σ8 due to Ωm not being part of the degeneracy of σ8, bg and
σz (Appendix B).

VII. DEPENDENCE ON SURVEY PARAMETERS

A. Example: DES-SPT

In this section, we vary different survey parameters that
affect the precision of the constraints on the five types of
parameters. We first look at a specific example of vary-
ing the survey parameters, using the expected galaxy density
and redshift distributions from the full Dark Energy Survey,
and CMB lensing noise from SPT-SZ and the future SPT-
3G. This represents a nearer term projection for parameters
using our methodology compared to the fiducial analysis of
LSST/CMB-S4.

Figure 11 shows the constraints for the four parameters that
exist in each redshift bin for DES+SPT-SZ, LSST+SPT-3G

3 We note that the results for no redshift uncertainty in Figure 9 differ slightly
from Figure 8. This is due to the fact that the underlying galaxy distribu-
tions are slightly different in these two cases. In Figure 8, the underlying
galaxy distribution is the true distribution binned by redshift (i.e. the black
line in Figure 4 separated by the gray lines) similar to [22], while in Figure
9, the galaxy distribution in each bin is a Gaussian (colored lines in Figure
4) with parameters known exactly in the no redshift uncertainty case.
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FIG. 8. Fractional constraints on σ8 and bg as a function of redshift for the case of 12 tomographic redshift bins and no redshift uncertainty.
Plotted are the cases where Ωm is fixed or allowed to vary. The constraints largely weaken with higher redshift as the number density drops,
however at z = 1.25 and z = 4.75, the redshift width of the bin increases, leading to larger numbers of galaxies in the bin and smaller
constraints.
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FIG. 9. Fractional constraints on σ8 and bg for the fiducial case of LSST+CMB-S4, with lmax = 1000, and fsky = 0.5. Shown are the results
with no redshift uncertainty, varying bg,i, σ8,i for each redshift bin, as well as Ωm. Also shown is the fiducial analysis where we include
redshift uncertainty by allowing the parameters z0,i and σz,i to vary in each bin. We also show the case where we have redshift uncertainties,
but do not use the cross-correlations of two adjacent galaxy bins in redshift space (‘no GxG’).

and our fiducial analysis on LSST+CMB-S4. Not shown are
the constraints for the combination of DES+SPT-3G. These
constraints are within 5% of the constraints for LSST+SPT-
3G, in the bins where DES has data (the first 5 data points, up
to z < 1.5), so we do not show them. While the DES/SPT-
SZ constraints are approximately factors of 2-3 weaker than
LSST/CMB-S4, a ≈ 10% constraint on σ8 is still possible in
all of our bins, and should be achievable with these surveys
in the next few years. We show the constraints on Ωm for the
different era analyses in Figure 12. We see that the constraints
on Ωm improve by a factor of about 3-5 from the DES/SPT-SZ

era to the LSST/CMB-S4 era depending on the lmax used. We
also see that all eras of measuring the power spectra used in
this work should improve upon the constraints from the recent
DES year 1 analysis of galaxy clustering and weak lensing
plus other data sets in [6].

B. Dependence on lmax

The largest multipole, lmax (smallest scale), to which these
measurements can be used and modeled is a parameter with
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FIG. 10. The constraints on the mean redshift, z0,i, and the width of the redshift distribution, σz,i, in each redshift bin for our fiducial analysis
of Figure 9. We also show the constraints when the cross-correlations of two adjacent galaxy bins in redshift space are not used (‘no GxG’).

still a fair bit of uncertainty. In [17], lmax = 2000 was used
for correlations of DES science verification data and SPT-SZ.
However, in [60], they realize that a newer version (and per-
haps older versions) of the SPT lensing map are significantly
impacted by TSZ bias. This leads them to only use real space
angular separations of 15′ or greater, roughly equivalent to
using an lmax = 720. In [22], they use lmax = 1000 for their
fiducial projections, but also vary lmax out to 2000. They cite
the issues of modeling non-linear galaxy bias at small scales
(large l) as a concern. [23] also looks extensively at the effects
of modeling small scale non-linear bias on galaxy-CMB lens-
ing cross-correlations. On the other hand, [17] and [59] find
for DES science verification galaxies that linear galaxy bias
is a good approximation in most cases down to lmax = 2000,
even though this can be a factor of 4 smaller than where the
matter power spectrum becomes non-linear.

We chose lmax = 1000 for our fiducial analysis, but vary
it in this section, much like the treatment in [22]. Figure
13 shows the σ8 constraints for varying lmax values for the
LSST/CMB-S4 measurement. We can see that lmax can sig-
nificantly impact the constraints. Increasing lmax from 1000
to 2000 approximately doubles the constraining power for the
z < 1.5 bins, though makes less of a difference in the higher
redshift bins.

C. Dependence on fsky

Another important parameter to study is the overlapping
sky fraction of the surveys, fsky. We show our fiducial analysis
of LSST/CMB-S4 for a range of fsky values in Figure 14. The
constraints on parameters scale as ∼ 1/

√
fsky due to the fac-

tor of fsky in Equation 8. On the far left of the plot, is the value
fsky = 0.061, which is the overlap of DES and SPT. Keeping
all other parameters the same, the increase from this overlap,
to our fiducial value of fsky = 0.5 with LSST and CMB-S4

improves constraints on σ8 by almost a factor of three. This
highlights the importance of having maximal overlap between
CMB-S4, which is still in the planning phases, and LSST. We
also note that based on this scaling, a possibly more realistic
value of fsky = 0.45 (18, 000 deg2) for LSST will degrade
constraints by approximately 5% compared to the results in
our fiducial analyses using fsky = 0.5.

D. Dependence on Measurement Noise

In this section, we study how the σ8 constraints change
when varying the measurement noise, Nl, in Equation 9 for
both CMB lensing and galaxy clustering. The galaxy cluster-
ing noise is determined by the galaxy density of the sample:
Ngg
l = 1/ρ, where ρ has units of galaxies per steradian. The

CMB lensing noise expectations for the three CMB experi-
ments are shown in Figure 2.

In Figure 15, we show the constraints on σ8 for
LSST/CMB-S4 when varying the galaxy density (left) and
CMB lensing noise (right). We vary the galaxy density at all
redshifts by multiplying the LSST n(z) from Figure 4 by a
constant factor. For reference, at the redshifts where DES and
LSST overlap (z < 1), LSST has greater density by about
a factor of 3-5. We vary the lensing noise by multiplying the
fiducial CMB-S4 noise curve (Figure 2) by a constant fac-
tor. SPT-SZ has approximately 50-100 times more noise than
CMB-S4, and SPT-3G has about 3-8 times more noise than
CMB-S4, with the factor changing with l.

We can see that the constraints in Figure 15 only mod-
estly depend on the measurement noise, particularly in go-
ing to lower CMB noise or higher galaxy density than the
fiducial LSST/CMB-S4 prediction. The fiducial LSST and
CMB-S4 noise levels are low enough that the measurements
approach the cosmic variance limit, where Nl → 0. Lower-
ing the noise level further cannot gain much more informa-
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FIG. 11. The Constraints on all four of our redshift bin parameters, σ8,i, bg,i, z0,i and σz,i for each of the survey combinations for our fiducial
analysis including redshift uncertainties. Each of the surveys use lmax = 1000. The correlations with SPT have fsky = 0.061 (2, 500 deg2) and
the correlation of LSST and CMB-S4 has fsky = 0.5 (20, 000 deg2). The results for DES+SPT-3G and LSST+SPT-3G are within 5% of each
other for the redshift bins DES goes up to, so only LSST+SPT-3G is plotted. In general, constraints are better with higher densities and thus
decrease with redshift, though there are exceptions where the bin size is increased in redshift width from the previous bin (e.g., z = 1.25). We
plot here logarithmically on the x-axis to give more space in showing the DES constraints while still showing the full redshift range of LSST.

tion on these measurements, particularly at low redshift. We
show this explicitly in Figure 16 where we show the fractional
difference of the σ8 constraints with a variety of noise esti-
mates to σcv(σ8), the cosmic variance limit of uncertainty on
σ8 when the measurement noise Nl = 0, for two different
redshift bins. LSST/CMB-S4 approaches this limit in most
of the redshift bins (i.e. σfid(σ8)/σcv(σ8) < 1.2 for z < 3).
At higher redshifts, the lower density of galaxies is a more
significant limitation.

In summary, once we are in the LSST/CMB-S4 era, im-
provements on measurement noise will yield very modest
gains compared to improvements on lmax and fsky.

E. Dependence on Redshift Priors

So far, our analysis has assumed no prior information on
any of the cosmological or redshift parameters we vary. In
this section, we see how our results change when adding pri-
ors on the redshift parameters. As mentioned, photometric
surveys like DES and LSST put considerable effort into cali-
brating photometric redshift methods, so any real analysis will
have some level of prior on quantities like z0 and σz. We apply
a range of plausible priors for LSST redshifts to our analysis.
The most recent LSST DESC Science Requirements Docu-
ment [61] provides some targets for redshift priors on galaxy
samples. In it, the precision on the mean redshift of photomet-
ric bins to be used in large-scale structure measurements (in
the full 10-year analyses), σ(z0), is required to be 0.003(1+z)
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FIG. 13. Dependence on lmax for the σ8 constraints. We use the
fiducial parameters of LSST and CMB-S4, including fsky = 0.5.

in order to not significantly degrade cosmological measure-
ments. Similarly, the precision on the width of the redshift
distribution, σ(σz), is required to be 0.03(1 + z) for the same
samples of galaxies. The precision for samples of galaxies to
be used as weak lensing sources are tighter, 0.001(1 + z) and
0.003(1 + z) for the mean and width of the redshift distri-
butions respectively. For some redshift ranges, the priors on
redshifts may be significantly better than these numbers for
LSST. In [62], it is shown that the spatial cross-correlation
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FIG. 14. Dependence on fsky for the σ8 constraints. We use the fidu-
cial parameters of LSST and CMB-S4, including lmax = 1000. The
dependence scales as ∼ 1/

√
fsky. The current observations using

DES and SPT-SZ cover 2,500 deg2 which is fsky = 0.06, the x-limit
of the plot. The combination of LSST and CMB-S4 is expected to
approach 5,000 deg2, which is fsky = 0.5.

of photometric and spectroscopic galaxies (‘clustering red-
shifts’) could yield constraints on both the mean and width of
photometric redshift bins of≈ 0.0004(1+z) for z = 0.5−1.5.
The exact priors available in the LSST era will depend on a
number of factors, including the number, redshift range, and
magnitude depth of spectroscopic samples, the number den-
sity of the photometric samples, the types of galaxies in the
photometric samples and the width of the photometrically se-
lected bins (σz). Each of these factors can make constraints
significantly weaker at higher redshifts.

We use the numbers mentioned in the previous paragraph
as a broad range of possible priors available in the LSST era.
In Figure 17, we plot how the constraints on σ8,i change for
a range of prior assumptions on z0,i and σz,i. We plot the
different scenarios for both lmax = 1000 and 2000. We use
the simple model of having just z0 priors, just σz priors, or
priors on each of the same magnitude. We make the broad
assumption of having the priors scale as (1 + z). We can see
in Figure 17 that the priors on σz are more important than
the priors on z0 for constraining σ8. This makes sense, as
σz and σ8 both provide an overall scaling to the galaxy auto-
correlations, which have the highest S/N of any of the power
spectra. Meanwhile the dependence on z0 is less degenerate
with σ8 (see Appendix B).

Figure 17 shows that redshift priors can improve the con-
straints on σ8 considerably. For the case of priors of 0.003(1+
z) on both z0 and σz, the constraints on σ8 improve by about
a factor of 2-3 from the no prior information case. When
adding priors of 0.0004(1 + z) predicted from clustering red-
shifts in [62], the constraining power is within 50% of the
no redshift uncertainty scenario (z0 and σz fixed). We thus
see that redshift priors from techniques like clustering red-
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3-8 times the noise of CMB-S4. All other parameters match the fiducial LSST+CMB-S4 analysis, including lmax = 1000.

10−1 100 101

ngal/nlsst,fid

10−1

100

101

102

N
κ
κ

l
/N

κ
κ

l(
cm

b−
S

4,
f
id

)

1.13

1.021.1

1.38

1.07

1.351.53

1.46

1.43

1.52
DES/SPT-SZ

LSST/CMB-S4

z = .75− 1

1.04

1.12

1.20

1.28

1.36

1.44

1.52

1.60

σ
(σ

8)
/σ

cv
(σ

8)

10−1 100 101

ngal/nlsst,fid

10−1

100

101

102

N
κ
κ

l
/N

κ
κ

l(
cm

b−
S

4,
f
id

)

1.11

1.011.1

1.13

1.03

1.051.6

1.58

1.57

LSST/CMB-S4

z = 2− 2.5

1.04

1.12

1.20

1.28

1.36

1.44

1.52

1.60

σ
(σ

8)
/σ

cv
(σ

8)

FIG. 16. Uncertainty on σ8 as a function of galaxy density and CMB lensing noise in units of the fiducial values for LSST and CMB-S4
respectively for two redshift bins, z = 0.75− 1 (left) and z = 2− 2.5 (right). The color values are plotted with respect to the cosmic variance
limit, σcv(σ8) which is the constraint found when setting galaxy density to infinity and CMB noise to 0. Increasing the density or decreasing
the lensing noise beyond the fiducial values make the constraints approach the cosmic variance limit (bottom right of each plot). The fiducial
values for density and noise for LSST/CMB-S4 in each redshift bin, and roughly the noise level for DES/SPT-SZ in the lower redshift bin
are marked with the names of the surveys. We note that the marked point for DES/SPT-SZ is only noting change to the noise levels of those
surveys. The actual constraints from those surveys (e.g. Figure 11) also include the difference in fsky which changes results considerably. This
plot uses fsky = 0.5 throughout. The higher redshift bin shows greater dependence on the galaxy density. This is due to the lower galaxy
density in that bin, leaving more room for improvement in lowering the galaxy shot noise (1/ρ.) We use lmax = 1000 for this comparison.

shifts are very beneficial. This model of priors however is al-
most certainly too optimistic for z > 1.5, where there will be
less spectroscopic galaxies available for the clustering redshift
method. We also see that a prior of 0.03(1 + z) (the current
LSST DESC requirement for σz) adds nearly zero constrain-
ing power for our fiducial analysis of LSST/CMB-S4.

In Figure 18, we show a similar analysis for the DES+SPT-
SZ era for lmax = 1000 and 2000. We project DES redshift
parameter priors on the order of 0.01-0.02 based on recent
calibrations of redshift bins in DES Year 1 cosmological anal-
yses. The weak lensing source galaxies used in [6] and [8]
are separated into photometrically-selected bins. The mean
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FIG. 17. Constraints on σ8 for our fiducial LSST/CMB-S4 analysis when adding priors on redshift parameters. Left: constraints when having
lmax = 1000. Right: constraints when having lmax = 2000. Each curve adds either a prior on z0, on σz or an equal prior on each. We compare
the curves with priors to the fiducial case of no prior information, and the opposite extreme of no redshift uncertainty with z0 and σz fixed in the
Fisher analysis. The priors of 0.003(1 + z) and 0.03(1 + z) come from the LSST DESC SRD requirements ([61]) for z0 and σz, respectively.
The prior of 0.0004(1 + z) is a plausible future achievement by clustering redshifts at low z found in [62].

redshift of these bins are constrained to about an accuracy of
0.02 both in tests of photometric redshift methods on samples
of spectroscopically measured galaxies [26] and in using spa-
tial cross-correlations with spectroscopic galaxies (clustering
redshifts, [30]). These results were fairly constant across red-
shift, so we do not vary our priors with the factor (1 + z)
here. The brighter redMaGiC galaxies used in DES year 1 re-
sults ([63], [7]) had tighter constraints on their mean redshifts
from clustering redshift measurements in [29]. However, the
modeled galaxy densities in our work are much higher than
this brighter sample, making the weak lensing source sample
a more appropriate sample to use for plausible redshift priors.

We overall see a similar dependence on redshift priors
for the DES/SPT-SZ era as in the future LSST/CMB-S4 era.
Tightening the redshift priors brings results closer to the case
of no redshift uncertainty. We again see that σz is more impor-
tant than z0 for constraining σ8. In the DES year 1 analysis
([6] and the others mentioned above), only z0 was constrained.
Figure 18 (left) shows that adding a 0.02 prior on σz to the al-
ready achieved 0.02 prior on z0 would improve constraints on
σ8 for the highest two redshift bins by about 30%. If lmax can
be extended to 2000 (right side of Figure 18), the gains of a
0.02 prior on σz only go up to 15%.

VIII. CONSTRAINTS ON REDSHIFT PARAMETERS

We move from our discussion in Section VII E on the ef-
fect of redshift information back now to constraints on redshift
parameters themselves. We explore the ability of galaxy clus-
tering and galaxy-CMB lensing correlation measurements to
‘self-calibrate’ redshifts (without prior redshift information)
and compare those constraints to photometric redshift tech-

niques. The idea of calibrating redshifts strictly from corre-
lation functions was studied in more detail recently in [32].
A significant difference in this work though is not fixing the
cosmology while solving for redshift parameters.

As mentioned in Section VII E, the Dark Energy Survey is
already calibrating the mean redshift of bins to an uncertainty
of about 0.02. The Large Synoptic Survey Telescope broadly
has a requirement of constraining the mean of redshift bins to
a precision of 0.003(1 + z), though likely that number can be
improved upon at low redshifts as mentioned in Section VII E.
In Figure 19, we compare the LSST DESC SRD [61] required
redshift constraints, and the current DES redshift constraints
to our Fisher analysis of σz and z0 with no prior information
applied. We show results for both lmax = 1000 and 2000 in
Figure 19. The projections on DES from correlations with
SPT beat the current threshold of 0.02 constraints on the red-
shift parameters in the first three redshift bins, even if only
lmax = 1000 can be used. As mentioned previously, currently
DES has only constrained the mean redshift of bins, z0 and not
the width, σz. Work in e.g., [28] suggests constraints on each
parameter should be comparable though from clustering red-
shift measurements with spectroscopic galaxies. For LSST,
the constraints for lmax = 2000 at low redshifts (z < 1.5)
are stronger than the goal 0.003(1+z) uncertainty on z0. For
lmax = 1000, the constraints are weaker than this goal, though
within a factor of 2 for z < 3. All of the constraints for
both lmax values are better than the LSST requirement on σz
of 0.03(1 + z) for large-scale structure analyses.

This result of getting competitive redshift constraints from
only the ‘self-calibration’ of power spectra measurements is
significant. The results in Figure 19 show that most of the cur-
rent LSST DESC SRD requirements can be beaten with this
method, particularly if small scales out to lmax = 2000 can
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FIG. 18. Constraints on σ8 for the surveys DES/SPT-SZ with priors on the redshift parameters. Left: constraints with lmax = 1000. Right:
constraints with lmax = 2000. We compare priors on z0, σz and both parameters with the case of no prior information, and the case of no
redshift uncertainty. We base the priors on recent DES results, and do not vary them with (1 + z), unlike Figure 17.

be used. Even if the constraints of ‘self-calibrating’ redshifts
from power spectra measurements end up merely compara-
ble to traditional methods of photometric redshift estimation
though, this could add significant information to cosmic sur-
veys. A discrepancy could point to systematics in either the
photometric redshift or power spectra measurements. We note
that our methodology is not strictly independent of a photo-
metric redshift code, as it does implicitly assume the use of a
photo-z (or some other) method to bin the galaxies in the first
place, in particular creating bins with a σz smaller than the bin
size. (See [64] for a study on the effects of various bin widths
and σz values for a galaxy clustering analysis.)

IX. CONSTRAINTS WITH ALTERNATIVE MODELS

In this section, we look at how our results vary with a couple
simple changes to our fiducial model of keeping all cosmolog-
ical parameters fixed, except for σ8,i in twelve redshift bins,
and Ωm. We consider two alternative models, the first uses a
single σ8 parameter instead of a σ8,i in each of the twelve red-
shift bins. Specifically, this generalizes Equation 16 to have
one value s rather than twelve si values. This model thus al-
lows only a constant scaling of σ8 with respect to the ΛCDM
prediction across all redshifts, rather than the more flexible
twelve σ8,i values.

The second modification we explore is allowing more cos-
mological parameters to vary. We include five extra parame-
ters: the dark energy equation of state parameters w0 and wa,
the Hubble constant, H0, the density parameter for baryons,
Ωb, and the primordial spectral index for curvature perturba-
tions at wavenumber k=0.05 Mpc−1, ns (see e.g. [53] for
more details on parameters). We again vary parameters from
their fiducial values set to the Planck 2015 flat-ΛCDM cos-
mological parameters including external data [53] as shown in

Section IV. The dark energy parameters are varied from their
fiducial ΛCDM values of w0 = −1 and wa = 0. This set of
parameters is similar to those used for exploring weak lensing
surveys in [36]. As with other parameters, we include no prior
information, and just allow the data (galaxy and CMB lensing
correlations) to constrain all parameters simultaneously. For
both of these analyses, we continue to vary parameters in each
of the twelve redshift bins for bg, σz and z0, or just bg in results
labeled ‘no z uncertainty’, as well as Ωm.

Our results for σ8 constraints with these two types of mod-
ifications are shown in Figure 20. Of note, the constraints
from the fiducial analysis of σ8 across the twelve redshift bins
change by only an average of 24 % when adding the five extra
parameters (comparing the blue and green data points). Sim-
ilar to Ωm, since these extra parameters do not have the same
degenerate scaling of σ8, bg, and σz, their inclusion has a rel-
atively minor effect (see Figure 22 in Appendix B 2). In com-
parison, removing the part of the degeneracy either by fixing
σz and z0 (the ‘no z uncertainty’ labeled points) or eliminat-
ing the σ8,i in favor of a single σ8 scaling across all redshift
bins (the four solid lines in Figure 20) makes a much larger
difference in constraining power of σ8.

As expected, when we reduce the parameter space to a sin-
gle σ8 value (‘1σ8’ in Figure 20) rather than twelve σ8,i pa-
rameters (‘Fiducial’) we see significantly increased precision.
The constraint for the single σ8 parameter is about a factor of
20 smaller than the constraints on the low-z redshift bins in
the fiducial analysis.

On the other hand, these results also highlight that mea-
surements of galaxies and CMB lensing are particularly sen-
sitive to measuring σ8 as a function of z. As mentioned, when
adding five additional cosmological parameters to the fiducial
analysis, the σ8,i are only marginally affected, by about 30%.
For the single-value σ8 model though, adding five parame-
ters degrades constraints by almost a factor of 3. Thus in the
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parameter in each of them. ‘5p’ signifies a model where we add
five cosmological parameters which can vary in our Fisher analy-
sis: w0, wa, H0,Ωb and ns. The horizontal lines are constraints in
models where we have just a single σ8 amplitude that affects all red-
shifts (‘1σ8’). For each model, we also show the case where red-
shifts are perfectly known (‘no z uncertainty’) meaning σz and z0 are
not allowed to vary in the Fisher analysis. Compared to the fiducial
analysis, adding cosmological parameters impacts the results far less
than changing the amount of redshift information or to a redshift-
independent σ8 model does. We use lmax = 1000 for this part of the
analysis.

single-value model, priors on a number of different cosmolog-
ical parameters are impactful to using these galaxy and CMB
measurements. In the σ8,i model though, these measurements
give comparable constraints with or without prior information
on these five extra parameters. Instead, the key factor to im-
proved σ8,i constraints is the accuracy of the redshifts, par-
ticularly σz. We note that even for a single-value σ8 model,
a combination of a lensing observable (CMB or otherwise)
is still needed with a galaxy clustering sample to break the
σ8 − bg (galaxy bias) degeneracy.

X. CONCLUSIONS

In this work, we sought to answer two questions: 1. How
are analyses of galaxy clustering and CMB lensing affected
by uncertainties in redshift parameters and 2. Can redshift pa-
rameters be self-calibrated by galaxy and CMB lensing cor-
relations. We found in Section VI that the presence of red-
shift uncertainties can increase errors on e.g., σ8(z) by an or-
der of magnitude. We showed the importance of using the
cross-correlations of different galaxy bins (Cgigjl ), which in
the assumption of perfect redshift knowledge is not a neces-
sary measurement.

Though the redshift uncertainties degrade the analysis, the
projected cosmological constraints are still fairly impressive.
Our fiducial analysis (Figure 11) constrains σ8 in each redshift
bin in the DES/SPT-SZ era to about 10%. For LSST/CMB-
S4, the constraints get down to 2 − 3% at low redshifts
(z < 1.5), and are still below 7% higher at higher redshifts.
Constraints of this level should help in distinguishing between
e.g., ΛCDM and models of modified general relativity as the
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cause of cosmic acceleration. As a comparison, [49] predicts
2% measurements on σ8(z) from z = 0.5 − 3 from LSST
weak lensing and BAO data plus Planck CMB results, and
finds that these constraints could decisively rule out e.g., a
DGP modified GR model [65].

In Section VII, we explored what survey parameters most
affect these measurements of cosmological and redshift pa-
rameters. Among different survey parameters explored in-
dividually, we found the largest dependences on: fsky, lmax
and priors on the redshift parameters. The constraining power
can be doubled or better by increasing lmax from 1000 to
2000 (Figure 13) or with good priors on the redshift param-
eters from other data sources (e.g., Figure 17). The analy-
sis of fsky (Figure 14) shows that the significant increase in
overlap of surveys in the future (LSST/CMB-S4 will have 8
times as much overlapping area as DES/SPT), accounts for
much of the increased precision on σ8. In contrast, we found
that increasing the galaxy density or reducing the CMB lens-
ing noise (Figure 15) beyond expectations for LSST/CMB-S4
only yields marginal improvement since the constraints ap-
proach the cosmic variance limits.

We also showed in Section VIII the constraints on redshift
parameters from the Fisher analysis and compared them to
current and expected constraints on redshift parameters from
photometric redshift techniques (Figure 19). The constraints
projected in this work are comparable to the photometric tech-
niques. This suggests that ‘self-calibration’ of redshift pa-
rameters from cosmological measurements themselves can
be competitive with other techniques. That such constraints
can be achieved simultaneously with cosmological constraints
(i.e. σ8) is an important finding for the feasibility of this
method as a redshift probe. While we did also show in Section
VII that priors expected from clustering redshifts may be com-
parable in performance to perfect redshift knowledge, such
priors will likely only be achieved for low redshifts (e.g. [62]
explores z<1.5). Thus, the ‘self-calibration’ redshifts found in
our study may be vital to higher redshift analyses, and at least
a check for low redshifts.

Finally, in Section IX, we explored some extended mod-
els using different sets of parameters compared to our fiducial
analysis. We found that adding multiple cosmological param-
eters only marginally impacts the results, since most of the pa-
rameters are not degenerate with σ8,i and the redshift width,
σz,i in the different redshift bins. We also found that simpli-
fying to a single-σ8 parameter across redshifts unsurprisingly
leads to smaller constraints, but such a model is also impacted
more by adding extra parameters into the analysis (Figure 20).

A number of assumptions were made in this work that may
need more study in the future. The largest element that was a
focus of this work was the redshift distribution modeling. A
two-parameter Gaussian model may not be sufficient for ac-
curately incorporating redshift distributions and their uncer-
tainties into analyses on data. More work on the resilience of
this model, and extensions to make the model more flexible

should be done. An advantage of the simple model we use
is the strong dependence of the power spectra on the redshift
parameters. This allows for ‘self-calibration’ of redshift pa-
rameters from just the power spectra measurements. A risk
in having too many redshift parameters is creating degenera-
cies where multiple redshift parameters may impact the power
spectra in similar ways. Another effect we do not address
is that of ‘catastrophic redshift errors’ (see e.g., [66]), where
galaxies are placed into a photometric bin significantly offset
from their true redshift. This is unlike our model of an unbi-
ased Gaussian noise added to the redshift estimates in Section
III. Adding such errors to our analysis would also significantly
add to the modeling parameter space. We leave such investi-
gations for future work, though we note that [22] finds that
these types of errors can be constrained from the galaxy clus-
tering and galaxy-CMB lensing correlations, so their impact
may be qualitatively different from the redshift-related degen-
eracies studied here. We also note that there may be inaccu-
racies in our analysis due to using the Limber approximation
(Equation 7) at low-l. This is discussed in Appendix C.

There are several other possibly impactful parameters not
addressed in this work which are mentioned in [22], whose
analysis we broadly followed in order to isolate the effects of
adding redshift uncertainty. These factors include non-linear
galaxy bias, non-Gaussian terms in the covariance, redshift
space distortions, biases in the CMB lensing map, and differ-
ences between a Monte Carlo analysis and a Fisher analysis.
[22] also notes that bispectra could add useful information to
an analysis like this.

This work should highlight the importance of incorporat-
ing redshift uncertainty and modeling into cosmological anal-
yses using galaxies and CMB lensing, as well as inspire more
work on ‘self-calibrating’ redshifts with these and other mea-
surements. While we did not use weak gravitational lens-
ing of galaxies (cosmic shear), similar concerns about red-
shift uncertainties and modeling should be studied for using
that probe, and many of the techniques in this work could
be applied. The issue of how to address redshift uncertainty
has never been more important than the upcoming era of
LSST, where we will be probing redshift regimes currently
still sparse in available spectroscopic measurements for cali-
brating photometric redshift techniques.

ACKNOWLEDGEMENTS

RC thanks Josh Frieman, Scott Dodelson, Sam Passaglia,
Chihway Chang, Eric Baxter, Ami Choi, and Ben Hoyle for
useful conversations related to this work. RC is supported by
the Kavli Institute for Cosmological Physics at the University
of Chicago through grant NSF PHY-1125897 and an endow-
ment from the Kavli Foundation and its founder Fred Kavli.

[1] D. Huterer et al., Astroparticle Physics 63, 23 (2015). [2] B. Flaugher, International Journal of Modern Physics A 20,
3121 (2005).

http://dx.doi.org/ 10.1016/j.astropartphys.2014.07.004
http://dx.doi.org/10.1142/S0217751X05025917
http://dx.doi.org/10.1142/S0217751X05025917


18

[3] J. T. A. de Jong et al., The Messenger 154, 44 (2013).
[4] C. Heymans et al., MNRAS 427, 146 (2012).
[5] S. Miyazaki et al., in Ground-based and Airborne Instrumenta-

tion for Astronomy IV , SPIE, Vol. 8446 (2012) p. 84460Z.
[6] T. M. C. Abbott et al. (Dark Energy Survey Collaboration),

Phys. Rev. D 98, 043526 (2018).
[7] J. Elvin-Poole et al., Phys. Rev. D 98, 042006 (2018).
[8] M. A. Troxel et al., Phys. Rev. D 98, 043528 (2018).
[9] J. Prat et al., Phys. Rev. D 98, 042005 (2018).

[10] T. M. C. Abbott et al., ApJS 239, 18 (2018).
[11] LSST Dark Energy Science Collaboration, ArXiv e-prints

(2012), arXiv:1211.0310 [astro-ph.CO].
[12] R. Laureijs et al., arXiv e-prints (2011), arXiv:1110.3193

[astro-ph.CO].
[13] D. Spergel et al., arXiv e-prints (2015), arXiv:1503.03757

[astro-ph.IM].
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Appendix A: Redshift Parameters for each Bin

Throughout this work (beginning in Section VI) we use a
Gaussian redshift distribution in each redshift bin, with mean,
z0,i and width, σz,i. As described in Section III, to estimate re-
alistic parameters for each Gaussian distribution, we start with
the LSST and DES redshift distributions described in Section
II, then apply a photometric redshift error of σph = 0.05(1+z)
and assign each galaxy a photometric redshift. We then bin the
galaxies by this photo-z in the range listed in Table I. Then,
we estimate the mean and standard deviation of the resulting
true redshift distribution of each bin. We use this mean and
standard deviation as the Gaussian parameters z0,i and σz,i
for each redshift bin. We list these parameters, as well as the
resulting galaxy density of each bin in Table I.

Appendix B: Power Spectra Dependence on Parameters

1. Fiducial Parameters

To get a better intuition of which power spectra constrain
which parameters, Figure 21 shows dCl/dθ for the various
combinations of spectra and parameters for the photometric
redshift bins 0.75 < zph < 1.0 and 2.0 < zph < 2.5, with
the redshift parameters listed in Table I. We show two redshift
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TABLE I. Redshift parameters for the assumed Gaussian redshift dis-
tributions of LSST and DES used throughout this work.

LSST Redshift Parameters
Bin z range z0 σz n(z)

(arcmin−2)
1 0-0.25 0.207 0.0746 2.80
2 0.25-0.5 0.401 0.0967 9.55
3 0.5-0.75 0.631 0.107 11.6
4 0.75-1.0 0.871 0.117 9.97
5 1.0-1.5 1.221 0.179 12.8
6 1.5-2.0 1.689 0.184 6.64
7 2.0-2.5 2.178 0.216 2.14
8 2.5-3.0 2.721 0.240 1.11
9 3.0-3.5 3.213 0.251 0.781
10 3.5-4.0 3.706 0.271 0.478
11 4.0-5.5 4.434 0.446 0.512
12 5.5-7.0 5.736 0.391 0.0523

DES Redshift Parameters
Bin z range z0 σz n(z)

(arcmin−2)
1 0-0.25 0.199 0.0770 0.820
2 0.25-0.5 0.403 0.0975 2.79
3 0.5-0.75 0.632 0.105 3.40
4 0.75-1.0 0.859 0.112 2.92
5 1.0-1.5 1.145 0.155 2.07

bins to broadly see trends of how dependence on different pa-
rameters changes with redshift.

We can see for the galaxy auto-power spectra (top row),
which are also the highest S/N spectra, the parameters bg and
σ8 equivalently scale the spectra. We also see that increasing
bg and σz both directly scale the galaxy auto-power spectra
at all scales (in our modeling of no scale-dependent galaxy
bias). Other than a normalization factor of the step sizes in
the plot, for the galaxy auto-spectra, bg, σ8 and σz are degen-
erate. Adding the galaxy-CMB lensing cross-spectra (middle
row), can break the degeneracy of bg and σ8, but has little de-
pendence on σz. The cross-spectra of adjacent galaxy redshift
bins (bottom row) have a large dependence on σz, in a way
that is not degenerate with other parameters. These plots show
that both the galaxy-CMB lensing cross-spectra, and galaxy-
galaxy cross-spectra are necessary to break the degeneracy be-
tween bg, σ8 and σz that arises in the galaxy auto-spectra when
incorporating redshift uncertainties.

We can also see that the parameters z0 and Ωm are largely
not degenerate with other parameters in the galaxy auto-
spectra (top row). For this reason, constraints on these param-
eters are less correlated with e.g., σ8 improvements (Figure
10).

2. Extra Parameters

In Figure 22, we show how the power spectra depend on the
extra parameters used in Section IX, namely w0, wa, H0,Ωb,
and ns along with the fiducial parameters, σ8 and Ωm. We
again show dCl/dθ for the various parameters in two of the

redshift bins, 0.75 < zph < 1.0 and 2.0 < zph < 2.5.
We can see that each of these parameters do not have the

same (constant) scale dependence of σ8. Thus, these parame-
ters are not degenerate with bg, σ8 and σz. This explains why
the extra parameters in Section IX only minimally add to the
projected uncertainty on σ8. The similarity in how these pa-
rameters affect each of the power spectra in Figure 22 is due
to the fact that most of these parameters only affect P (k), and
all of the spectra have similar dependence on P (k) (Equation
7).

Appendix C: Impact of Low-l Limit

In this work, we use the Limber approximation (Equation
7) through out for computational speed. However, it is known
that the approximation breaks down at large scales (low-l,
e.g., [67], [68]). [22] uses the Limber approximation for only
l > 50. We repeated our fiducial analysis (12 bins, 49 param-
eters, no prior information, LSST/CMB-S4) using lmin = 50
instead of 20. We found that our constraints on all parame-
ters for both the lmax = 1000 and 2000 cases degraded by 5%
or less, with the exception of parameters in the three redshift
bins separated by z = [0.75, 1, 1.5, 2] where much of the peak
of the power spectra is in the cut-out range of l = 20− 50. In
these bins, the constraints on σ8 degraded by [19%, 26%, 9%]
and [7%, 14%, 3%] for the lmax = 1000 and 2000 cases re-
spectively. These numbers are thus an upper limit to how
much our results may degrade due to the likely inaccurate use
of the Limber approximation at l = 20− 50.
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FIG. 21. Parameter dependence for the galaxy auto-power spectra (top), galaxy-CMB lensing cross spectra (middle row) and the cross spectra
of two adjacent galaxy bins (bottom row). Shown are the spectra for the redshift bin 0.75 < zph < 1.0 (left) and 2.0 < zph < 2.5 (right).
Dotted lines signify a negative correlation with the parameter and the spectra. For the galaxy cross spectra, the listed bins are the jth bin, and
are cross-correlated with their neighboring lower redshift bins (0.5 < z < 0.75 and 1.5 < z < 2.0 respectively) which are the ith bins in the
bottom row.
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FIG. 22. Parameter dependence for the galaxy auto-power spectra (top), galaxy-CMB lensing cross spectra (bottom) of the redshift bins
0.75 < zph < 1.0 (left) and 2.0 < zph < 2.5 (right). Dotted lines signify a negative correlation with the parameter and the spectra. The
cross-spectra of two adjacent galaxy bins (not shown) look very similar to the galaxy auto-spectra since the dependence on these parameters is
from P (k), thus changing each power spectra similarly. Although the l-dependence of σ8 looks similar to the inverse l-dependence of w0 and
wa, they are different, unlike e.g. σ8 and σz in the auto-spectra of Figure 21.
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