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Gravitational wave astrophysics relies heavily on the use of matched filtering both to detect
signals in noisy data from detectors, and to perform parameter estimation and tests of general
relativity on those signals. Matched filtering relies upon prior knowledge of the signals expected to
be produced by a range of astrophysical systems, such as binary black holes. These waveform signals
can be computed using numerical relativity techniques, where the Einstein field equations are solved
numerically, and the signal is extracted from the simulation. Numerical relativity simulations are,
however, computationally expensive, leading to the need for a surrogate model which can predict
waveform signals in regions of the physical parameter space which have not been probed directly by
simulation. We present a method for producing such a surrogate using Gaussian process regression
which is trained directly on waveforms generated by numerical relativity. This model returns not
just a single interpolated value for the waveform at a new point, but a full posterior probability
distribution on the predicted value. This model is therefore an ideal component in a Bayesian
analysis framework, through which the uncertainty in the interpolation can be taken into account
when performing parameter estimation of signals.

I. INTRODUCTION

The first detection of gravitational waves in September
2015 was the result not only of advanced detector devel-
opment, but also the development of data analysis tech-
niques which were capable of detecting and characterising
weak signals in noisy data. The most sensitive of these
techniques rely on matched filtering to identify signals,
and these techniques are most effective when accurate
and efficient waveform models are available to produce
template banks.

The production of high-accuracy waveforms is possi-
ble thanks to advances in the field of Numerical Relativ-
ity (NR), in which the full set of Einstein equations are
solved numerically. This can be done reliably for the low-
mass compact binary systems of interest to the current
generation of ground-based gravitational wave observato-
ries, however these simulations are computationally ex-
pensive, and can require thousands of CPU hours to run
in situations where the mass ratios and spins of the black
holes are small. A simulation of a full 350-cycle grav-
itational waveform spanning the entire advanced LIGO
band has been produced [1], however this required several
months of high-performance computing to complete [2],
despite employing numerous techniques to reduce wall-
clock computation time. As a result only around 1000
NR waveforms are available, and most of these are much
shorter than 350 cycles long. Binary black hole (BBH)
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coalescences are described by a number of physical pa-
rameters: the ratio of the two component black holes’
masses, q; the vector of each component’s spin, s1 and
s2; and the time, t, relative to a fixed reference time, for
example the time of coalescence of the binary.

This results in a parameter space with eight dimensions
which is very sparsely sampled. As a result, NR wave-
forms alone are not a practical way to form the tempate
banks required for precise signal parameter estimation.
In addition, the high cost of producing new simulations
is unlikely to significantly change this situation in the
near future.

To overcome this problem there have been significant
efforts to inform analytical models of non-spinning black
hole coalescences with the results of NR simulations of
spinning systems to produce an analytical, phenomeno-
logical approximant which can be rapidly evaluated.
There are two major implementations of analytical mod-
els which are calibrated against NR-derived waveforms,
the Phenom and SEOBNR families of approximants. The
Phenom family have developed from IMRPhenomA [3],
which was capable of producing waveforms for non-
spinning binaries, through to IMRPhenomD [4], which
models spinning, non-precessing binaries.

The Phenom family of waveforms has been developed
to incorporate support for precessing systems through
the IMRPhenomP codes; the latest edition of this is
IMRPhenomPv3 [5], although in this work we will make
use of the slightly older IMRPhenomPv2 [4], which has
extensive support within the pyCBC [6–8] library used
in the preparation of this work. This is composed of
a post-Newtonian approximation to the inspiral period
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of the waveform, and a phenomonological ansatz for the
merger and ringdown periods. The approximant is cal-
ibrated against 19 NR-derived waveforms to produce a
model which has a low mismatch (defined in equation 8)
with the calibration data.

The SEOBNR family provide an alternative approach
to that taken by the IMRPhenomP models, using an
effective one-body approach [9–11] to map the dynam-
ics of a binary into those of a single test particle in
a deformed Kerr metric. In contrast to the piece-wise
approach to building the waveform from the inspiral,
merger and ringdown of the IMRPhenomP models, the
SEOBNR models construct the waveform through a sin-
gle process [12]. A number of models based on the effec-
tive one-body approach exist, ranging from EOBNR which
model non-spinning systems [12, 13] to the SEOBNR
families of model, which can model spinning systems [14–
16], and precession effects [17]. Similarly to IMRPhenom,
these models are calibrated against NR waveforms: for
SEOBNRv3 five waveforms are used for this calibration.

These models can be evaluated quickly, and are thus
suitable for the rapid parameter estimation tasks re-
quired for the detection and characterisation of gravita-
tional waves. However, both the Phenom and SEOBNR
models are affected by systematic uncertainties which are
difficult to quantify in regions of the BBH parameter
space which are not calibrated against NR simulations.

The NRSur family of surrogate models, developed
by Blackman et al. [18–20] employ spline interpolation
to waveforms generated by the SpEC NR code. The
two analysis-ready versions of this model, NRSur4d2s
and NRSur7d2s are capable of producing waveforms for
systems with a mass-ratio < 2 and an effective spin-
parameter < 0.8. In contrast to phenomenological mod-
els, the NRSur models are currently capable of producing
only a small number of cycles of the waveform, being lim-
ited by the length of the NR waveforms off which they are
conditioned. Recent efforts have been made, however, to
produce similar surrogate models which are conditioned
on hybridised waveforms [21]. The number of waveforms
required to produce the surrogate model is also consider-
ably larger than those required for the phenomenological
models, with NRSur7d2s being conditioned on 744 NR
waveforms.

Efforts to account for the systematic uncertainty be-
tween NR waveforms and waveforms produced by phe-
nomenological models have been proposed in which the
uncertainties are modelled by Gaussian process regres-
sion (GPR) [22, 23]. This allows the uncertainty in the
interpolation to be calculated from the posterior predic-
tive distribution of the GPR. This probability distribu-
tion, derived from GPR can be used to marginalise the
likelihood of the observed gravitational wave (GW) data
over waveform uncertainty. This approach was shown
to provide a significant reduction in biases in parame-
ter estimation (PE) compared to using phenomenologi-
cal methods with no attempt to account for the uncer-
tainty [22, 23].

These previous efforts suggested using GPR to model
the difference between NR waveforms and phenomeno-
logical models. We propose to extend this approach by
producing a model of the entire gravitational waveform
using GPR as a surrogate model conditioned only on nu-
merical relativity simulations, without any reference to
a phenomenological model. In comparison to the NRSur
families of surrogate, GPR is capable of not only pro-
ducing an approximant for the waveform throughout the
parameter space, but also an uncertainty on that esti-
mate. We note that our model is not the first to at-
tempt to predict BBH waveforms using GPR, but it is
the most complete. A previous model [24] used GPR,
but this was conditioned on waveforms generated from
the IMRPhenomPv2 phenomenological approximant, and
not NR data, and is not capable of producing generically
spinning waveforms.

GPR is a Bayesian regression technique which relies on
a Gaussian process (GP) prior distribution. A GP can
be considered as a prior over a space of functions, each of
which are considered a potential fitting function to some
set of data. The GP model assumes that the values of
the function evaluated at a certain finite set of points
are draws from a multi-variate Gaussian distribution.
The GP prior is itself defined by a number of assump-
tions about the behaviour of these functions (e.g. their
smoothness). When the GP prior model is conditioned
on data from existing simulations (potentially allowing
for uncertainties in each of the simulations), the result-
ing posterior provides a distribution of functions which
could represent the true model. The mean of this pos-
terior distribution can be used analogously to the single
fitting function which is produced by more conventional
regression techniques, while the variance of the distribu-
tion provides a measure of the goodness-of-fit.

The structure of this publication is as follows. In sec-
tion II we explain the process used for the production of
a waveform surrogate model, and the choice of covariance
function for our model in section II A. Our new model,
named Heron is introduced in section III, with the wave-
forms used to train the model described in section III A,
and a discussion of the complications introduced by using
a large quantity of data is provided in section III B. An
overview of the testing procedures which we used to ver-
ify the output of the model is included in section IV, with
both the results of these tests, and a number of example
waveform outputs are presented in section V.

II. GAUSSIAN PROCESS REGRESSION

A GP represents a distribution of potential functions
which can explain a set of training data (X ,Y), com-
posed of observations, Y, made at locations, X , within
the parameter space of the problem, such that the func-
tion values

y = f(x)
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(for each x ∈ X , y ∈ Y), are modelled as being drawn
from a multivariate normal distribution. As such, the
GP is fully characterised by its mean function, µ(x),
and a covariance function, k(x, x′), which describes the
similarity between two function values at two points in
the parameter space. A GP can be defined with any
positive-definite covariance function, the form of which
encodes prior assumptions about the data, for example
its smoothness and stationarity. Popular choices of co-
variance function include the squared exponential covari-
ance functions, and Matérn covariance functions [23, 25].

It is common to assume the training samples have
mean zero. This causes the mean of the GP to be zero
outside the training set, which, while unphysical, is a rea-
sonable assumption given a lack of data; within the region
described by the training set the mean of the function is
defined by the training data. Making this assumption
allows the mean squared properties of the data to be de-
termined entirely through the covariance function.

When defining the covariance function for the GP it
is often desirable to specify a number of free hyperpa-
rameters, θ, which allow the properties of the covariance
function (and hence the GP) to be adapted based on the
training data. Bayesian model comparison can be used
to select the GP which optimally describes the data, or
to obtain a posterior distribution on appropriate values
of the hyperparameters. The log-probability that a given
set of function values were drawn from a GP with zero
mean and a covariance matrix Kij = k(x, x′) is

log(p(y|X)) = −1

2
yTK−1y − 1

2
log |K| − n

2
log 2π. (1)

With n the total number of points in the training data.
This quantity is normally denoted the log-evidence or the
log-hyperlikelihood. The model which best describes the
training data may then be found by maximising the log-
hyperlikelihood with respect to the hyperparameters, θ
of the covariance function.

Once the GP has been conditioned on the training data
and the optimal covariance function identified through
model comparison, it is possible to exploit it as a predic-
tive tool, allowing the interpolation of function outputs
between training data. In order to make a prediction us-
ing the GP model we require a new input point at which
the prediction should be made, which is denoted x∗. In
order to form the predictive distribution we must then
calculate the covariance of the new input with the exist-
ing training data, which we denote Kx,x∗ , and the auto-
covariance of the input, Kx∗,x∗ . We then define a new
covariance matrix, K+, which has the block structure

K+ =

[
Kx,x Kx,x∗

Kx∗,x Kx∗,x∗

]
, (2)

for Kx,x the covariance matrix of the training inputs, and
Kx∗,x = KT

x,x∗ .

The predictive distribution can then be found as

p(y∗|x∗,D) = N (y∗|Kx∗,xK
−1
x,xy,Kx∗,x∗−Kx∗,xK

−1
x,xKx,x∗),

(3)
where D is the training data, and N is the normal dis-
tribution.

Equation 3 emphasises the value of the GP approach
to interpolation, as the value returned from the model is
not a single point prediction, but a posterior probability
distribution which describes the uncertainty of the pre-
diction, along with the “best estimate” prediction as the
mean of p(y∗|x∗,D).

A. Choice of covariance function

A covariance function can be designed for any given
GP by considering both the hyperparameters and func-
tional form of the covariance function. A much fuller
discussion of these considerations is given in [23], how-
ever a summary is made here due to the importance of
these considerations in the remainder of this work.

A covariance function must be positive definite, that is,
it returns a value which is non-negative for any element
in its domain. Practically, when working with data, this
means that the covariance function will map any pair of
points in the set of data to a non-negative real number.
We can additionally require a covariance function to be
stationary, in which case it is a function of x1 − x2, and
so invariant to translations in the input space. Further,
if it is a function of |x1 − x2| only is is isotropic, and
invariant to rigid motions within the input space [25].

A straight-forward function of x1 − x2 is a distance
function of the form

d2(x1, x2) =
∑
a,b

(x1 − x2)a(x1 − x2)b. (4)

Such a distance function is stationary, and a covari-
ance function using this distance metric will then be a
stationary GP.

The functional form of the covariance function is im-
portant in defining the prior belief about the form of the
function which generated the training data. A common
choice of covariance function is the exponential squared
covariance function [25],

kSE(d;λ) = exp

(
− d2

2λ2

)
. (5)

For λ the length-scale of the kernel, which can be tuned
as a hyperparameter. A larger value of this parameter
will describe longer scale variations within the data.

The functional form of the squared exponential covari-
ance function implies that the generating function was
infinitely differentiable, however, generalisations of this
covariance function allow the differentiability to be al-
tered through the addition of a further hyperparameter,
allowing the smoothness of the generating function to be
learned during the training of the GP.
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An example of such a covariance function is the general
Matérn covariance function, which has the form

Cν(d; ρ, ν) =
21−ν

Γ(ν)

(
√

2ν
d

ρ

)ν
Kν

(√
2ν
d

ρ

)
, (6)

for Γ the gamma function, Kν the modified Bessel func-
tion of the second kind, and ρ and ν are hyperparame-
ters. A GP which uses this covariance function will be
(ν − 1)-times differentiable [25].

Uncertainty in the training data used to train the GP
can be accounted for by modifying the covariance matrix
appropriately, with K+ of equation 2 becoming

K+ =

[
Kx,x + σ2

i I Kx,x∗

Kx∗,x Kx∗,x∗

]
, (7)

for I the identity matrix, and σi the standard deviation
of the i-th datum.

The predictive distribution then becomes

p(y∗|x∗,D) = N (y∗|Kx∗,x(Kx,x + σ2
i I)−1y,

Kx∗,x∗ −Kx∗,x(Kx,x + Iσi)
−1Kx,x∗).

The inclusion of a small noise term, by setting σ to
a small value, such as 10−6, is often advantageous for
improving the numerical stability of the inversion of the
covariance matrix (Tikhonov regularisation), which can
otherwise become nearly-singular as the total amount of
training data increases.

More complex covariance models can be obtained by
combining simpler covariance functions through addition
or multiplication. This allows the modelling of effects
within the training data which occur at different scale
lengths, or with different properties. For example, if the
training data is produced by a process with a long-term
variation, but within that long-term variation there are
a number of short-term variations, we might model this
as a combination of two covariance functions, specifically
the sum of two exponential squared covariance functions.
Similarly, it is possible to define a GP that uses different
kernels in different dimensions of the parameter space,
allowing the scale length of each dimension to be chosen
individually; for this purpose we might use a kernel that
is a product of different kernels for each dimension. In
the case of a diagonal metric this happens automatically
when using the squared-exponential covariance function,
and covariance functions with similar form, since they
determine the scale of each dimension independently.

B. Training the Surrogate

Then, in order to produce a good fit to the data, and
to accurately estimate the uncertainty of the prediction
from the regression model we performed Bayesian model
selection to determine the optimal value of the covari-
ance function’s hyperparameters. In order to initialise

this process we made a rough guess of appropriate values
for the hyperparameters; we do this by calculating the
average distance between points along each axis in the
data space, and using this as our initial estimate for the
hyperparameter values. Starting from these initial values
we optimised the log-likelihood of the model by varying
the hyperparameter values to determine a maximum a
posteriori log-likelihood.

In order to cope with the large number of training
points, and to increase the speed of the training pro-
cess we used the ADAM [26] optimisation algorithm
to stochastically optimise the log-likelihood using mini-
batches of 100 training points.

While this method of determining, and fixing, the hy-
perparameters of the GP is computationally convenient,
other methods are also possible, including marginalising
over the hyperparameters. However, our method has the
advantage that it is not necessary to evaluate the GPR
model for all of the hyperparameter samples, and can
therefore be evaluated more rapidly.

III. THE HERON MODEL

Using a GPR model, named Heron, trained on NR
data from the Georgia Tech BBH waveform catalogue.
Heron was designed as a surrogate model operating over
the eight dimensions of the BBH parameter space, and
we present it as a proof-of-concept of a GPR-based sur-
rogate for this larger parameter space. The model is con-
structed using a squared-exponential covariance function.
We will demonstrate that this model is capable of produc-
ing waveforms for spinning and precessing BBH systems.

A. Training Data

We constructed our training data for the Heron model
from the strain values of the 132 waveforms in the Geor-
gia Tech Catalogue [27]. These data were acquired in
the LIGO Numerical relativity hdf5 format [28], and the
pycbc package [6–8] was used to produce the (2, 2)-mode
of these waveforms.

Each waveform is parameterised by seven quantities
(the mass ratio and the spin vectors of each component
black hole) in a vector we denote xi. Each strain value,
hi, within the waveform is further parameterised by a
time relative to the maximum strain value in the wave-
form, and thus each training point is parameterised by
an 8-dimensional parameter vector, which we denote xi

′.
This provides us with a training set which has 8 input
dimensions, and a single output dimension, with the form

D =
{

(x′
i, hi)|i = 1, 2, . . . , N

}
for N the total number of strain samples used from all
of the training waveforms. The distribution of training
waveforms throughout the parameter space is shown in
figure 1.



5

Figure 4

Figure 5

Figure 6

Figure 7

10

20

30

m
a
ss

ra
ti

o

−0.5

0.0

0.5

sp
in

1
x

−0.5

0.0

0.5

sp
in

1
y

−1.0

−0.5

0.0

0.5

sp
in

1z

−0.5

0.0

0.5

sp
in

2x

−0.5

0.0

0.5

sp
in

2y

0.5 1.0

mass ratio

−0.5

0.0

0.5

sp
in

2
z

20

40

60

−0.5 0.0 0.5

spin 1x

25

50

75

−0.5 0.0 0.5

spin 1y

20

40

−1 0

spin 1z

25

50

75

−0.5 0.0 0.5

spin 2x

25

50

75

−0.5 0.0 0.5

spin 2y

−0.5 0.0 0.5

spin 2z

10

20

30

FIG. 1. A pair-plot of the parameter space sampling in the Georgia Tech catalogue. The subplots on the diagonals show
the histograms of the distribution of waveforms (as red points) generated with respect to each individual parameter. Three
additional points are displayed on the plot corresponding to the waveform samples shown in the later figures of this paper.

B. Computational Complexity

A major drawback of GPR is the need to invert the
covariance matrix in order to produce predictions. Ma-
trix inversion is a computationally intensive task which
scales in memory with N2, for N training points, and
with N3 in time. The standard approach to GPR de-
scribed in equation 3 thus rapidly becomes impractical,

requiring large quantities of memory for even moderately
sized training sets. In order to overcome these scal-
ing problems, approximate GPs simplify the inversion of
the covariance matrix by making simplifying assumptions
about its form. One example is the use of the approx-
imate Hierarchical off-diagonal low rank (HODLR) [29]
inversion method, which allows inversion to be carried
out in O(N log2N) operations. This approach is possi-
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ble because kernels such as the exponential squared ker-
nel produce covariance matrices which can be arranged
to form HODLR matrices. The off-diagonal blocks are
then factorised using partial-pivoted LU decomposition,
and the on-diagonal blocks are factorised using a more ac-
curate algorithm, such as Cholesky decomposition. The
block inverses are then recombined to provide the (ap-
proximate) overall matrix inverse.

This surrogate model makes use of N = 4, 740 training
points, stored as 64-bit floating points, and requiring ap-
proximately 370 kilobytes to store in memory. This leads
to the need to invert a covariance matrix which requires
around 134 gigabytes of memory. To overcome this we
employed the HODLR method for calculating the ma-
trix inverse, using the implementation in the George [29]
Python package.

The use of an approximate method to produce the GP
posterior will introduce additional uncertainties. While
tests conducted in [29] indicate that this additional un-
certainty is likely to be small, we make use of in-sample
testing (see section IV A) to assess the impact of using
this method on the model’s ability to replicate its train-
ing data.

IV. VERIFICATION OF THE GPR MODEL

The sparsity of training data poses a considerable chal-
lenge to the testing and verification of a model such as the
Heron model; conventional approaches to testing such a
model involve setting aside a fraction of the training data
to compare to the model output when evaluated at the
parameter space location of each test datum.

The quantity of numerical relativity waveforms avail-
able at present in the Georgia Tech catalogue makes this
approach difficult, as some regions of the parameter space
are very sparsely sampled, and omitting a training wave-
form in this location may significantly complicate the
process of training the model. To overcome this we have
carried out three separate categories of test on the Heron
model.

In-sample tests: where the entire catalogue of available
training waveforms are used to condition the GPR
used by the model. Waveforms are then produced
from the model at the parameter locations which
correspond to each of the training waveforms, and
the match between the Heron waveform and the
GPR waveform is calculated.

Out-of-sample tests: where a single waveform from
the catalogue is omitted from the set of training
waveforms used to condition the GP,but the hyper-
parameters which were determined during training
of the full model are used . A GPR model is condi-
tioned on a reduced catalogue for each waveform,
the model is retrained to find the optimal
hyperparameters given the reduced dataset,
and the waveform is produced from the reduced

Heron model which corresponds to the omitted NR
waveform. The match is then computed between
these two waveforms.

Tests against phenomenological models: where the
match is computed between waveforms produced
by Heron and by other waveform models, such as
SEOBNRv3 and IMRPhenomPv2.

Each approach to testing has different advantages
and disadvantages, and test for different aspects of the
model’s performance.

For each of the tests we compare the output of the
Heron model with another waveform by calculating the
mismatch between the two waveforms. This is defined as

M(hmodel, hana) = 1−max
t0,φ0

〈hmodel, hana〉√
〈hmodel, hmodel〉〈hana, hana〉

.

(8)
where hmodel and hana are respectively the timeseries pre-
dicted by the GPR model and the analytical phenomeno-
logical approximant, t0 and φ0 are the merger time and
merger phase, and 〈·, ·〉 is the noise-weighted inner prod-
uct between two waveforms, defined as

〈a, b〉 = <
∫ ∞
−∞

ã∗(f)b̃(f)

Sn(f)
df (9)

for ã and b̃ respectively the Fourier transforms of the
timeseries a and b, Sn the amplitude spectral density of
the noise, and f the frequency.

For all of the tests presented in this paper we assume
that the noise is flat across frequencies, that is Sn(f) =
1∀f .

A. In-sample tests

The simplest set of tests which we perform on the
Heron model are in-sample tests, which effectively test
the model’s ability to reproduce its own training data.
For the Heron model this involved computing the mean
waveform from the GP corresponding to each waveform
which was used in the training set. The mismatch was
then calculated between each mean waveform and the
corresponding NR training waveform using the expres-
sion for waveform mismatch, M, given in equation 8.

In-sample testing ought to reveal problems with the
choice of hyperparameters in the model, inconsistencies
in the training data itself, and error introduced into the
model through the use of an approximate method for
the inversion of the covariance matrix. Figure 2 plots
the histogram of the mismatch (equal to 1 −M) values
which resulted from these tests against the Georgia Tech
waveforms used as the training data (plotted as the black-
outlined histogram). Reassuringly the mismatch between
the vast majority of the model outputs and the training
data are small. The mean mismatch from these in-sample
tests is 0.003, with 95% of the mismatches falling between
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FIG. 2. The distributions of mismatches between waveforms from the Heron model and each of the NR waveforms from the
Georgia Tech waveform catalogue (black outline histogram) used in the training set using the procedure described in section
IV A. Additionally, the mismatch distributions between waveforms produced at the same parameters as the NR waveforms
by the SEOBNRv3 (red outline histogram), and the IMRPhenomPv2 (blue outline histogram) phenomenological waveform models
are plotted. For comparison the distributions of mismatch between the same Georgia Tech waveforms and the corresponding
waveforms from the SEOBNRv3 and IMRPhenomPv2 models are plotted as filled red and blue histograms respectively.

0.000245 and 0.0124. This implies that the additional er-
ror introduced into the waveform using the approximate
matrix inversion technique is responsible for only a small
mismatch when compared to the NR waveform.

B. Out-of-sample tests

A more rigorous test of a predictive model involves
comparing the model’s output in a region of the parame-
ter space which does not contain a training datum. This
process, known as out-of-sample testing, is difficult for
the Heron model, thanks to the large (seven dimensional)
parameter space, and the small number of available train-
ing waveforms. As a result, removing a substantial frac-
tion of the waveforms in order to produce a set of test
data would be likely to substantially affect the predictive
power of the model.

To overcome this we performed a leave-one-out (LOO)
testing procedure. In order to do this multiple training
datasets are produced; from each a single waveform is
omitted. This reduced dataset is then substituted for the
data on which the full Heron model’s GP is conditioned,
and the model is retrained using the reduced training
set, in order to find the hyperparameter values which
maximise the model’s log-likelihood. The reduced Heron
model is then evaluated at the parameter location corre-
sponding to the omitted waveform, in order to compute
a predicted mean waveform. The mismatch between the
predicted waveform and the omitted NR waveform was

then computed, and the distribution of these mismatches
is plotted in figure 3 as a black-outlined histogram.

The mean mismatch across all of the tests was 0.0369,
with 95% of the mismatches between 0.000922 and 0.226.
A total of 8 tests produce a mismatch greater than 0.1,
and in each case the variance of the returned waveform is
very large, indicating that the model is able to express its
lack of knowledge about these regions of the parameter
space effectively. While this uncertainty could be directly
incorporated into some applications of the model it could
also be used to automatically flag draws from the model
which are of low confidence, and which should not be
relied upon in an analysis.

C. Tests against phenomenological models

It may also be helpful to understand how the outputs
of the Heron model compare to conventional phenomeno-
logical approximants which are in widespread use. To do
this we calculated the mismatch between the output of
the Heron model at the same parameter locations as the
in-sample and leave-one-out tests.

In the left panel of figures 4 and 5, we compare the
waveform computed for different random samples drawn
from the GPR model, the mean of the GPR model and
the IMRPhenomPv2 and SEOBNRv3 waveforms for a non-
spinning configuration (figure 4), an equal-mass configu-
ration with anti-aligned spins (figure 5), and a precess-
ing configuration (figure 6). The distribution of mis-
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FIG. 3. The distributions of mismatches between waveforms from the Heron model and each of the NR waveforms from the
Georgia Tech waveform catalogue (black outline histogram) used in the training set using the LOO testing procedure detailed
in section IV B. Additionally, the mismatch distributions between waveforms from the Heron model and waveforms
produced at the same parameters as the NR waveforms by the SEOBNRv3 (red outline histogram), and the IMRPhenomPv2 (blue
outline histogram) phenomenological waveform models are plotted.

matches between the GPR model predictions and the two
phenomenological approximants are shown in the right
panel of each figure, with matches calculated between the
approximant waveforms and one-hundred sample wave-
forms drawn from the GPR model. In addition, the mis-
match between the mean waveform produced by the GPR
model and each phenomenological model is indicated by
a solid line; it is noteworthy that this mismatch is always
smaller than the mean of the mismatches between the
sample draws and the phenomenological models. This
is a result of the mismatch being a somewhat asym-
metric indicator: the mismatch will always be higher
for a waveform which over-estimates or under-estimates
some feature of the waveform, where the over- and under-
estimates will be averaged through the use of the mean
waveform, producing a lower mismatch.

In the in-sample case the Heron model reproduces the
NR waveforms with substantially lower mismatch than
either phenomenological model. This behaviour is to be
expected, since the Heron model has direct access to the
NR data, where the phenomenological models do not.
It is worth noting that the mismatch for SEOBNRv3 is
consistently smaller than that of IMRPhenomPv2 against
both NR and the Heron model. IMRPhenomPv2 is known
to be accurate over a smaller range of black hole spins
than the SEOBNRv3 model.

We also compare the behaviour of the LOO models
described in section IV B with the two phenomenologi-
cal models. The distributions of mismatches from com-
parison between waveforms from the LOO models and
waveforms produced by each approximant at the same

parameter location as the NR waveform which was omit-
ted from the LOO model, are plotted in figure 3 as blue
and red-outline histograms for the IMRPhenomPv2 and
SEOBNRv3 waveforms respectively. Here we see that the
LOO models are generally in good agreement with the
two approximants, with the mismatches slightly larger
between the LOO models and the approximants than be-
tween the LOO models and the NR waveforms, which is
also seen in the in-sample testing.

V. EXAMPLE WAVEFORMS

While we have discussed at length the various tests
which we carried out on the Heron model, it is valuable
to be able to visually compare the output of this model
with the phenomenological models used in testing.

In the left panel of figures 4 and 5, we compare
the waveform computed for different random samples
from the GPR model, the mean of the GPR model and
the IMRPhenomPv2 and SEOBNRv3 waveforms for a non-
spinning configuration (figure 4) and an equal-mass con-
figuration with anti-aligned spins (figure 5). The distri-
bution of mismatches between the GPR model predic-
tions and the two phenomenological approximants are
shown in the right panel of each figure, with matches
calculated between the approximant waveforms and one-
hundred sample waveforms drawn from the GPR model.

An example of a precessing waveform generated by the
GPR model is also shown in figure 6.

In figure 7 we also show one of the training NR wave-
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forms plotted alongside the mean output of the GPR
model, one-hundred waveform draws from the model, and
waveforms produced from both of the phenomenological
models used for the comparisons in figures 4 to 6.

VI. SUMMARY

We have entered the era of routine GW detection, and
the ability to accurately and rapidly characterise signals
from events such as BBH coalescences will be critical
to understanding the properties of these systems. This
characterisation process relies on the availability of wave-
form templates which are either precomputed prior to the
analysis being run, or can be generated on-the-fly. Highly
accurate waveforms, generated by NR simulations, are
able, and in principal can facilitate accurate inference
on detected signals. However, the expense of produc-
ing them limits their coverage of the parameter space;
as a result of this lack of coverage, and the considerable
time requirements to produce new waveforms, any infer-
ence method which relied solely on NR techniques could
not hope to satisfy the requirement to rapidly charac-
terise signals, and would not be practical in a scenario
where multiple events are detected every month. Phe-
nomenological models, which can be evaluated rapidly,
are available, which attempt to interpolate across a large
volume of the parameter space, but the accuracy of the
waveforms which they produce can be difficult to assess.
This leads to the possibility of introducing biases into the
inferred properties of the system which generated the sig-
nal.

In this paper we have laid-out an approach to improv-
ing the accuracy of gravitational wave parameter estima-
tion in the context of limited template availability by im-
plementing a waveform approximant model using GPR,
providing not only a point-estimate of the waveform at
any point in the BBH parameter space, but also a distri-
bution of plausible waveforms, allowing the uncertainty
of the interpolation to be taken into account during the
analysis. In contrast to previous attempts to produce a
GPR model for GW waveforms, such as [24], our model
is trained on data from the Georgia Tech NR waveform
catalogue, described in section III A.

We introduced GPR in section II as a non-parametric
regression method. This property allows the regression
model to be constructed while making minimal assump-
tions about the form of the waveforms, which are encoded
through the form of the covariance function. We discuss
covariance functions in section II A, In order to reduce
the computational burden of evaluating the model a hi-
erarchical matrix inversion method was used (described
in [29] and discussed in section III B).

We present three testing strategies for our GPR model,
in addition to a number of waveforms which have been
produced by it in section IV. We present both the re-
sults of these tests, and make comparisons between the
model’s output and two well-established phenomenologi-

cal models. This difference also occurs between the phe-
nomenological model and the waveform produced from
NR. A number of phenomena are likely to have con-
tributed to this discrepancy. One such difference in the
systematic errors of the NR simulations used to produce
the training data for the GPR model compared to those
used to calibrate the phenomenological models. Addi-
tionally, the relatively small number of waveforms used
to calibrate the phenomenological models compared to
the GPR model are likely to introduce systematic errors
in the waveforms produced by those models. In order to
reduce the effect of systematic errors from NR a larger
model could include waveforms from a number of dif-
ferent NR waveform catalogues, however the addition of
more waveforms will increase the memory requirements
to both train and evaluate the model. Our waveform
model tends towards producing conservative estimates of
the waveform, this is clearly visible in the variance of
the precessing waveform in figure 6. The use of addi-
tional waveforms is likely to improve the confidence of
the model’s prediction.

In order for a GPR-based approach such as this to
be practical for parameter estimation studies using data
from LIGO or Virgo it would be necessary to have a
means of producing waveforms which are capable of mod-
elling a greater amount of the inspiral than our model
can currently provide. One potential approach to solv-
ing this problem is hybridising the output waveform from
our GPR model with waveforms produced from a post-
Newtonian approximant, in a similar manner to that used
by [21]. This would allow us to overcome the need for
much longer waveforms to be used in the training set,
while still allowing the production of waveforms with
lengthier inspirals than our model is currently capable
of.

We note that in this work we have not attempted to
benchmark this model, and compare the times required
to produce sample waveforms from it compared to the
analytical approximates which are currently in regular
use. We expect to address this short-coming in future
work, but acknowledge that a number of optimisations
may be made to allow the model to produce results more
expediently without impacting on its accuracy.

In conclusion, we have demonstrated that GPR is ca-
pable of being used as an interpolant for BBH waveforms,
trained directly off data from NR simulations. While
this method cannot hope to produce waveforms with the
same precision as NR itself, it does account for the uncer-
tainty introduced through interpolation, a feature which
is valuable for preventing the introduction of bias in a
PE analysis.
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FIG. 4. Non-spinning waveform. One hundred draws from the Gaussian process (left panel) for a non-spinning, equal-mass
configuration (s1 = (0, 0, 0), s2 = (0, 0, 0), q = 1.0), shown as light grey lines compared to two analytical phenomenological
approximant models, SEOBNRv3 and IMRPhenomPv2 in red and blue respectively. The mean draw from the Gaussian process is
shown as a grey dashed line, while the associated variance is plotted as a grey-filled region surrounding the mean. In the right
panel the distribution of mismatches between the samples and both phenomenological waveforms are shown, with the vertical
lines representing the mismatch between the mean waveform from the GPR and the phenomenological waveform.
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FIG. 5. Anti-aligned spin waveform. One hundred draws from the Gaussian process (left panel) for a non-spinning, equal-
mass configuration (s1 = (0, 0, 0.6), s2 = (0, 0,−0.6), q = 1.0), shown as light grey lines compared to two phenomenological
approximant models, SEOBNRv3 and IMRPhenomPv2 in red and blue respectively. The mean draw from the Gaussian process is
shown as a grey dashed line, while the associated variance is plotted as a grey-filled region surrounding the mean. In the right
panel the distribution of mismatches between the samples and both phenomenological waveforms are shown, with the vertical
lines representing the mismatch between the mean waveform from the GPR and the phenomenological waveform.
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FIG. 6. Precessing waveform. One hundred draws from the Gaussian process (left panel) for a precessing system, with a
mass ratio q = 0.4, and a spin configuration (s1 = (−0.5,−0.15, 0.3), s2 = (0.5, 0.13, 0.3)), shown as light grey lines compared
to two phenomenological approximant models, SEOBNRv3 and IMRPhenomPv2 in red and blue respectively. The mean draw from
the Gaussian process is shown as a grey dashed line, while the associated variance is plotted as a grey-filled region surrounding
the mean. In the right panel the distribution of mismatches between the samples and both phenomenological waveforms are
shown, with the vertical line representing the mismatch between the mean waveform from the GPR and the phenomenological
waveform.
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FIG. 7. GPR predictions, compared to NR. One hundred draws from the Gaussian process (left panel) for a non-
spinning configuration (s1 = (0, 0, 0), s2 = (0, 0, 0), q = 0.625), shown as light grey lines compared to the phenomenological
approximant models, IMRPhenomPv2 in blue; and SEOBNRv3 in red. The mean draw from the Gaussian process is shown as a grey
dashed line, while the associated variance is plotted as a grey-filled region surrounding the mean. The differences between the
phenomenological model and the GPR model waveforms are seen to also exist between the phenomenological model waveforms
and the NR-derived waveform, plotted here in purple. In the right panel the distribution of mismatches between the samples
and both phenomenological waveforms are shown, with the vertical lines representing the mismatch between the mean waveform
from the GPR and each phenomenological waveform.
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