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The Klein-Gordon equation is solved in the curved background spacetime created by a dispersive
gravitational wave. Unlike solutions of perturbed Einstein equations in vacuum, dispersive grav-
itational waves do not travel exactly at the speed of light. As a consequence, the gravitational
wave can resonantly exchange energy with scalar massive particles. Some details of the resonant
interaction are displayed in a calculation demonstrating how relativistic particles (modeled by the
Klein-Gordon equation), feeding on such gravitational waves, may be driven to extreme energies.
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Gravitational waves, propagating perturbations of
spacetime, travel at the speed of light (c) in vacuum.
In certain media however [1, 2], they become dispersive
and their phase and group velocities can differ from c,
in analogy with electromagnetic waves. Pushing for-
ward the gravitational-electromagnetic waves analogy,
one may wonder if the gravitational waves could, then,
resonantly transfer energy to the particles of the medium.
The wave-particle resonant energy exchange is a highly
investigated phenomenon in plasmas, for instance, the
Landau damping or growth [3] of electromagnetic waves
on electrons moving with the phase speed of the wave.
Naturally, this process is possible only when the electro-
magnetic waves disperse, and do not travel quite at the
speed of light. In an analogous fashion, and depending
on the gravitational wave polarization, cyclotron reso-
nances, Alfvén wave resonances, or plasma wave reso-
nances between gravitational waves and relativistic mag-
netized plasmas may be triggered [1]; different nonlinear
mechanisms can also convert energy of the gravitational
waves into electromagnetic energy [4–6].

In this paper, we explore effects, similar to Landau
processes, in the context of dispersive gravitational waves
interacting with spinless massive particles. We show that
under well-defined conditions, the energy of particles can
be resonantly boosted up to very high values, several or-
ders of magnitude higher than the rest–mass energy of
the particle. The studied mathematical model is based
on the Klein–Gordon equation in the curved spacetime
background created by the gravitational wave; we will
assume that the particle does not self–gravitate. The
process of resonant energization of Klein-Gordon parti-
cle/waves through arbitrary amplitude dispersive elec-
tromagnetic waves has been recently reported and serves
as the first paper in the exploration of this class of phe-
nomena [7]. This paper, dealing with the resonant ener-
gization of Klein-Gordon particle/waves by the dispersive
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gravitational waves, develops the subject further.

We start by noticing that gravitational waves prop-
agating in a dispersive medium does not travel at the
speed of light [1, 2, 8–17]. The same effect can occur
if the graviton mass [18–21] is assumed to be non-zero.
In both these cases, the gravitational wave is dispersive.
Independent of the origin of dispersion, propagation of
(non-vacuum like) gravitational waves can be modeled in
a very general fashion. Without loss of generality, we as-
sume a gravitational wave propagating in a z-direction.
We consider a spacetime interval ds2 = gµνdx

µdxµ, with
the metric gµν = ηµν + hµν , where ηµν = (−1, 1, 1, 1)
is the flat spacetime metric, and hµν (hµν ≪ ηµν) is
the perturbation caused by the gravitational wave (from
now c = 1). The nonzero components of the perturbation
metric are h22 = −h33 = h+(χ), and h23 = h32 = h×(χ),
where χ = ω t− k z. Here, ω = ω(k) is the gravitational
wave frequency depending on the wavenumber k, that
propagates in time t and spatial direction z. For a dis-
persive wave, the phase velocity must depart from the
ω = k condition. A model dispersion for a gravitational
wave (propagating in a general medium) will be of the
type

ω2 − k2 ≡ ω2
G 6= 0 , (1)

where ωG signifies a “response” frequency characteristic
of the medium. Depending on the nature of the medium,
this response frequency may or may not be constant. For
specific forms of ωG, one may consult Refs. [1, 2, 8–21].
For a constant response frequency, ω2 > ω2

G > 0, and the
group velocity of the gravitational wave is always less
than the speed of light, ∂ω/∂k = k/(k2 + ω2

G) < 1.

The purpose of this work is to show that the energy of a
relativistic massive quantum particle/wave, can be reso-
nantly boosted in the presence of such a dispersive gravi-
tational wave through the dynamics of Klein-Gordon field
evolving in the background of this perturbed metric. For
the above spacetime metric associated with the gravita-
tional wave, the Klein-Gordon equation ✷Φ = m2Φ may
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be written as

0 = −∂2Φ

∂t2
+

∂2Φ

∂z2
− ωf(χ)

∂Φ

∂t
− kf(χ)

∂Φ

∂z
−m2Φ , (2)

where the curved d’Alembert operator is defined as ✷ =
(1/

√−g)∂µ (
√−ggµν∂ν), and gµν is the inverse metric

(with determinant g). We have also assumed that the
Klein-Gordon field, just like the gravitational wave, de-
pends only on z and t, i.e, Φ = Φ(t, z). In Eq. (7),
f(χ) = (ln

√−g)′, and ′ means the derivative with re-
spect to χ. At O(h2

+,×) order (the first relevant order),
we have f(χ) ≈ −h+h

′
+ − h×h

′
×.

Of all possible solutions of Eq. (2), we will focus only
on those that can become “resonant” with the gravita-
tional wave, i.e., those in which the Klein-Gordon field
shares with the gravitational wave the z and t depen-
dence strictly through χ. Thus, the field propagates with
the gravitational wave and a resonance effect can be pro-
duced. After expressing the z and t variation in terms of
χ, and using the dispersion relation (1), Eq. (2) becomes

0 = Φ′′ + f Φ′ +
m2

ω2
G

Φ . (3)

By defining Φ(χ) = (−g)
−1/4

ϕ(χ), Eq. (3) transforms
to

0 = ϕ′′ + ζ2 ϕ , (4)

where

ζ(χ) =

√

m2

ω2
G

− f ′

2
− f2

4
. (5)

Eq. (4) mimics the equation of motion for a harmonic os-
cillator with time-dependent frequency [22, 23]. It can be
readily shown to have the following WKB-type solution
[22],

ϕ(χ) =
1

√

2W (χ)
exp

(

−i

∫

W (χ)dχ

)

, (6)

with the function W defined through the equation

W 2 = ζ2 − W ′′

2W
+

3(W ′)2

4W 2
. (7)

Let us now assume a slowly-varying spacetime, such
that in Eq. (7) the derivatives ofW are small compared to
m/ωG [22]. Also, consider a regime in which ωG remains
essentially constant such that m ≫ ωG, and m/ωG is
larger than any possible spacetime variation of the grav-
itational wave. We could, then, approximate at lowest
order

W ≈ m

ωG
. (8)

Solution (6) signifies that the Klein-Gordon field behaves,
to the leading order, as an harmonic oscillator in a dis-
persive gravitational wave background (8). This simpli-
fication pertains as long as ω, k ≫ ωG, for a dispersive

gravitational wave moving almost at the speed of light.
It further simplifies the solution for the Klein–Gordon
field

Φ(χ) ≈
√

ωG

2m
exp

(

−i
m

ωG
χ

)

(9)

with its associated energy E and momentum P of the
particle

E ≈ mω

ωG
≫ m, P ≈ mk

ωG
. (10)

Since ω ≫ ωG, the energy (10) is much larger than the
rest-mass energy of the massive Klein-Gordon particle;
the Klein-Gordon field is in resonance with the gravita-
tional wave. Notice that this effect cannot occur when
the gravitational wave is not dispersive (when ω = k)
[24]. Thus, resonance of a massive particle-field cannot
take place with a gravitational wave propagating at the
speed of light.
In the light of (10), let us examine the scenario

when the Klein-Gordon system is treated as a quan-
tum field [22, 25]. We write the scalar field as Φ(χ) =
∑

k

[

akuk(χ) + a†
k
u∗
k
(χ)

]

, in terms of annihilation ak

and creation a†
k

operators (with their respective com-
mutation relations). Thus, fields uk and u∗

k
will sat-

isfy Eq. (2) with solution (6). The energy-momentum
tensor for the quantized field Φ is given by Tµν =
∂µΦ∂νΦ − (1/2)gµνg

αβ∂αΦ∂βΦ + (1/2)gµνm
2Φ2, from

which we deduce that T00 = (ω2 + k2)Φ′2/2 − m2Φ2/2,
and T0i = −ωkΦ′2. At the leading order approximation
(8), the normal order Hamiltonian and momentum are
derived to be [22]

:H : =
∑

k

mω

ωG
a†
k
ak , P =

∑

k

mk

ωG
a†
k
ak . (11)

From examining both the classical and the quantized
expressions (Eqs. (10) and (11) respectively), we conclude
the energy-momentum of a scalar field can be strongly
boosted when it is in resonance with a dispersive grav-
itational wave. The condition for this enormous gain is
that, to leading order, the phase velocity v of the scalar
field is equal to the phase velocity of the gravitational
wave (see Ref. [7])

v ∼ E

P
∼ ω

k
. (12)

This condition ensures that the energy of the scalar mas-
sive field can increase under the bound imposed by the
energy-momentum conservation E2 − P 2 = m2, which is
ensured by the dispersion relation (1), and the energy-
momentum solution (10). This is closely related with the
adiabatic invariant E/ζ ≈ ω [23] of Eqs. (3) and (4).
Although much more sophisticated calculations are

needed to calculate the relevant time scale τ for energiza-
tion, we would present here a simple estimate exploiting
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the fact that it is a resonant process controlled by how
close the gravitational wave speed ω/k is to the particle
velocity v. One could expect, using the Landau damping
analogy, that the time taken for the particle to achieve
an energy that corresponds to the velocity v is

τ ∼ 1

H (ω − kv)
, (13)

where ω is given by dispersion relation (1), andH is a nor-
malized function that depends on the gravitational wave
amplitude. If the gravitational wave amplitude were very
large compared to the one of Klein-Gordon field (much
larger than the maximum energy transfer), H will be es-
sentially a constant. But for all finite energy waves, H
will become a function of time, its value will decrease
as the gravitational wave loses its energy to the parti-
cles. The time scale τ , thus, is determined by linear as
well as nonlinear processes: the former affects it through
the gravitational wave energy, allowing that τ increases
with decreasing amplitude. In the following, we will sim-
ply focus in the linear resonant phenomena and assume
a constant H (i.e. gravitational wave energy is large).
The dispersion relation (1) gives ω ∼ k + ω2

G/2ω, when
ωG ≪ ω. In addition, for a high–energy relativistic parti-
cle with v ∼ 1, its Lorentz factor γ−2 = 1−v2 ∼ 2(1−v).
Combining the two simplifications coverts Eq. (13) into

τ ∼ 2ωγ2

H (ω2 + γ2ω2
G)

. (14)

One immediately notices that when γ → ∞, the limiting
time for achieving the highest energy permissible given
in (10), takes the simple form

τ(γ → ∞) ∼ 2ω

Hω2
G

, (15)

which is very large for diluted media with ωG ≪ ω. For
a finite time interval, if the particle is boosted up from
γ0 to γ1 > γ0, the time interval for energization is

∆τ = τ(γ1)− τ(γ0) ∼
2ω3

(

γ2
1 − γ2

0

)

H (ω2 + γ2
1ω

2
G) (ω

2 + γ2
0ω

2
G)

.

(16)
For most relevant region where ω/ωG ≫ γ0, γ1 ≫ 1, ∆τ
takes the revealing simple form

∆τ ∼ 2

Hω

(

γ2
1 − γ2

0

)

. (17)

These estimations for the time scale for energization do
not consider the effective dependence upon the gravita-
tional wave amplitude. The proper treatment will be left
for future investigations.
The maximum energy accessible to the particle (in

terms of restored units) is

E

mc2
=

ω

ωG
∼ c

λωG
, (18)

where λ is the wavelength of the gravitational wave. As
an example, let us consider a gravitational wave with a
characteristic wavelength λ ∼ 106[m] (the kind detected
in LIGO [26]) corresponding to frequencies of the order
ω ∼ 300[Hz]. In order to estimate ωG, let us assume
the gravitational wave is propagating in a very dilute
medium. The response frequency, then, can be estimated
to be [13]

ωG ≈
√

4πGE
c2

∼ 10−3√ρ , (19)

where G is the gravitational constant, and E and ρ are
the energy and mass density of the medium. For me-
dia with 103 to 108 nucleons per cubic meter (interstel-
lar gas), then we have mass densities ρ ranging from
10−27[gr/cm3] to 10−22[gr/cm3]. This produce response
frequencies ωG from ∼ 3 × 10−17[Hz] to 10−14[Hz]. For
this medium, the increment in energy (18) of the Klein–
Gordon particle under the above gravitational wave can
range up from E/mc2 ∼ 1019 to ∼ 3× 1016. If the mass
density increases to ρ ∼ 10−12[gr/cm3] (1018 nucleons per
cubic meter), then ωG ∼ 10−9[Hz] and E/mc2 ∼ 3×1011.
For a proton (treated as a scalar massive particle), with
mc2 ∼ 900[MeV], the previous estimation implies that
its energy can reach values from E ∼ 1020[eV] to E ∼
1028[eV], when it enters in resonance with this dispersive
gravitational wave in the corresponding background me-
dia. Those energies are in the range peculiar to the most
energetic cosmic rays.
We, thus, see that the resonance described in (6) and

(8) can produce very energetic massive particles when
the appropriate conditions are met, i.e., when the parti-
cle moves in a very dilute media (ω ≫ ωG) in consonance
with the dispersive gravitational wave, allowing it to ex-
tract energy from the wave, as long as the self–gravitation
of the scalar field is ignored. It must be stressed that the
basic conclusions of resonant energy transfer hold even
for the more general conformally invariant Klein-Gordon
equation ✷Φ = m2Φ + ξRΦ, where R is the Ricci scalar
and ξ a constant. The extra term, modifying the right-
hand side of Eq. (7), does not change the main result
(8).
The proposed process of the energization of spinless

massive particles is bound to be relevant in several as-
trophysical scenarios where gravitational waves are ex-
pected to be present. This process has to be consid-
ered in the context of creating high-energy particles in
astrophysics. Besides, similar effects can be expected in
the interaction of electromagnetic waves with dispersive
gravitational waves. This kind of interactions have been
studied using a background of gravitational waves in vac-
cum [16, 27] and viceversa [28]. A similar effect in the
energization of photons by gravitational waves has been
also reported [16].
We must point out that the gravitational waves con-

sidered in this paper (hµν ≪ ηµν) are basically linear. In
order for them to have sufficient energy to efficiently cat-
apult particles to high energies, they must be high inten-
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sity (see [7] for the electromagnetic case), and therefore
essentially nonlinear. The current calculation, therefore,
must be seen only as an important first step demonstrat-
ing a new possible process. To do a proper energy inven-
tory, a more advanced model of the intense gravitational
waves must be invoked. A detailed study of relativis-
tic fields interacting, resonantly, with dispersive gravita-
tional waves can bear highly promising results, and the
authors are investigating several aspects of this problem.
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