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We use a semianalytic approach that is calibrated to N-body simulations to study the evolution
of self-interacting dark matter cores in galaxies. We demarcate the regime where the temporal
evolution of the core density follows a well-defined track set by the initial halo parameters and the
cross section. Along this track, the central density reaches a minimum value set by the initial halo
density. Further evolution leads to an outward heat transfer, inducing gravothermal core collapse
such that the core shrinks as its density increases. We show that the time scale for the core collapse
is highly sensitive to the outer radial density profile. Satellite galaxies with significant mass loss due
to tidal stripping should have larger central densities and significantly faster core collapse compared
to isolated halos. Such a scenario could explain the dense and compact cores of dwarf galaxies in the
Local Group like Tucana (isolated from the Milky Way), the classical Milky Way satellite Draco,
and some of the ultrafaint satellites. If the ultimate fate of core collapse is black hole formation, then
the accelerated time scale provides a new mechanism for creating intermediate mass black holes.

I. INTRODUCTION

Self-interacting dark matter (SIDM) [1–3] is a com-
pelling framework for explaining the small-scale struc-
ture formation puzzles [4]. SIDM simulations show that
elastic collisions of dark matter particles transfer heat
towards the colder central regions of dark matter halos,
lowering central densities and creating constant density
cores [5–11], which has long been recognized as a means
of alleviating the longstanding core-cusp problem [12, 13].

The core-cusp issue is tricky, because galaxies exhibit a
large diversity of rotation curves [14, 15], while following
an approximate radial acceleration relation [16]. Recent
work has shown that SIDM models with a cross section of
few cm2/g at low velocities can solve these interconnected
problems for spiral galaxies [17, 18].

In this paper, we investigate the evolution of a dark
matter halo in the presence of self interactions using
a semianalytic method, originally developed to study
gravothermal collapse in globular clusters [19, 20] and
later applied to isolated SIDM halos [21, 22]. This
method allow us to track the full halo evolution at scales
≤ 100 pc, which are expensive to achieve with N-body
simulations. We first characterize the full process of
SIDM halo evolution, whereby large cores can be created
today for cross sections of ∼1 cm2/g and the gravother-
mal collapse phase sets in for larger cross sections, as seen
in simulations. We show that this temporal evolution is
accelerated if the outer region of the halo is stripped,
resulting in a higher density core today.

Our key result is that a large cross section leads to
central densities that are higher than for field halos if the
halo has experienced tidal stripping early in its formation
history. Our results are applicable to local group galaxies
that have interacted with the Milky Way (MW) in the
past (such as Tucana) and satellites of the MW (includ-
ing ultrafaint galaxies). The time scale for halo collapse
depends on characteristic density of the initial halo and
the details of the truncation process; thus, gravothermal
collapse will contribute to the diversity of MW satellites,

for similar cross sections that can also explain the di-
versity of spiral galaxies [17, 18]. We also discuss the
possible consequences of core collapse of the SIDM halo
for intermediate-mass black hole formation.

II. GRAVOTHERMAL FLUID MODEL

We consider a spherical halo with a density profile
ρ(r, t) and an enclosed mass of M(r, t) at radius r and
time t. We assume that this halo structure is set very
early on (∼Gyr), as is relevant for the small mass halos
that we focus on in this work. The halo is assumed to
be isotropic and spherically symmetric, and dark matter
is modeled as a thermally conducting fluid in quasistatic
virial equilibrium. The dark matter particles with mass
m self-interact with a cross section per mass σm. They
have a one-dimensional (1D) velocity dispersion v(r, t)
with a corresponding three-dimensional (3D) velocity dis-

persion v3D =
√

3v. The relaxation time is defined as
tr ≡ λ/(av), where λ = 1/(ρσm) is the mean free path

and a =
√

16/π is a coefficient relevant for hard-sphere
scattering of particles with a Maxwell-Boltzmann veloc-
ity distribution [21].

Through self interactions, heat can flow from one re-
gion of the halo to another with a luminosity L(r, t)
through a spherical shell located at radius r. Heat trans-
fer is given by Fourier’s law of thermal conduction,

L

4πr2
= −κ∇T , (1)

where κ is the thermal conductivity. Strictly speaking,
this equation is valid in the short mean-free path (SMFP)

regime in which λ � H, where H ≡
√
v2/(4πGρ)

is the gravitational scale height or Jean’s length. In
this case, κSMFP = (3/2)bρλ2/(amtr) [21], where b =
25
√
π/32 ≈ 1.38 is the effective impact parameter, calcu-

lated in Chapman-Enskog theory [24]. In the long mean-
free path (LMFP) regime in which λ � H, the ther-
mal conduction formula empirically well-describes the



2

102 103 104

r [pc]

10−3

10−2

10−1

100
ρ

[M
�
/p

c3
]

σm = 0.1 cm2/g

σm = 0.5 cm2/g

σm = 1 cm2/g

σm = 5 cm2/g

σm = 10 cm2/g

Pippin CDM

500 1000 1500 2000 2500 3000

r [pc]

35.0

37.5

40.0

42.5

45.0

47.5

v 3
D

[k
m
/s

]

σm = 0.1 cm2/g

σm = 0.5 cm2/g

σm = 1 cm2/g

σm = 5 cm2/g

σm = 10 cm2/gPippin CDM

FIG. 1. Comparison of the semianalytic approach in this work (solid) with the N-body simulation of the Pippin halo in Ref. [23]
(dotted). We show the density profile (left panel) and 3D velocity dispersion (right panel) for SIDM cross sections per mass σm

indicated in the legend. For the semianalytic calculation, we start with an initial density profile matching that of the Pippin
CDM halo (black, dotted) and evolve the halo for 13 Gyr. We set C = 0.75 to best match the properties of the Pippin halos,
particularly the density profiles for σm = 0.5 and 1 cm2/g.

gravothermal collapse of globular clusters with κLMFP =
(3/2)CρH2/(mtr) [19], where C is a calibration param-
eter, described below. We interpolate between these
regimes via κ−1 = κ−1SMFP + κ−1LMFP [21].

Using the above ansatz, we can write the heat conduc-
tion equation in dimensionless variables as:

∂L̃

∂r̃
= −r̃2ρ̃ṽ2

(
∂

∂t̃

)
M̃

ln

(
ṽ3

ρ̃

)
L̃ = −3

2
r̃2ṽ

(
a

b
σ̃2
m +

1

C

1

ρ̃ṽ2

)−1
∂ṽ2

∂r̃
,

(2)

where r̃ ≡ r/rs, ṽ ≡ v/v0, M̃ ≡ M/M0, t̃ ≡ t/t0, σ̃m ≡
σm/(4πr

2
sM
−1
0 ), ρ̃ ≡ ρ/ρs, and L̃ ≡ L/[(GM2

0 )(rst0)
−1

].
We use the mass scale M0 = 4πr3sρs, velocity scale v0 =√
GM0/rs, and time scale t−10 = aσmv0ρs.

We numerically solve Eq. (2) along with the equations
for mass conservation and hydrostatic equilibrium, using
the techniques described in Ref. [25]. See Appendix A
for details of our numerical implementation.

We calibrate C using the Pippin SIDM halos in the
LMFP regime [23]. We solve the gravothermal fluid equa-
tions using the Pippin CDM halo directly [as opposed
to a Navarro-Frenk-White (NFW) fit to it] as our initial
condition. As shown in Fig. 1, we find that C = 0.75 pro-
duces halo density profiles that are in reasonable agree-
ment with those from Pippin for σm ≤ 10 cm2/g, while
the 3D velocity dispersions are systematically lower. The
semianalytic approach enforces hydrostatic equilibrium,
which does not hold in the simulation, particularly for
small cross sections. Nonetheless, the velocity disper-
sions match qualitative features towards the center of the
halo. In particular, for the largest cross sections shown,
the halo is isothermal and the velocity dispersion has a
negative radial gradient.

We note that the calibration depends on the simula-
tion (e.g., isolated halo [22] versus cosmological [23]). As
C controls the importance of the LMFP regime, increas-
ing (decreasing) its value causes a delay (advance) in the
time of core collapse. For the range of σm under consider-
ation, however, mildly changing the calibration does not
strongly affect the agreement in Fig. 1; see Appendix B.
Additionally, deep in the LMFP regime, a change in C
can be compensated by a change in σm. Thus, while
the precise values of σm in our subsequent analyses are
subject to systematic uncertainties of the calibration, our
main results comparing halos with and without trunca-
tion (as we now discuss) still hold.

III. TIDALLY STRIPPED HALOS

We now proceed to investigate the consequences of self
interactions on tidally stripped halos. Tidal effects im-
pact both MW satellites (e.g., Tucana III [26, 27] and
Triangulum II [28]) and field dwarfs (e.g., Tucana [29]).
This process strips away stars and the outer regions of the
subhalo and is thus potentially applicable to the dwarf
galaxies on sufficiently radial orbits that experience sig-
nificant mass loss.

For a profile ρNFW(r) = ρs/[(r/rs)(1 + (r/rs))
2
], we

model the effect of tidal stripping by changing the profile
for r > rt to ρNFW(rt)× (rt/r)

pt , where pt = 5 [30]. This
simple model is meant to illustrate the effects of mass
loss from the outer region, not to represent a realistic
description of SIDM subhalo orbital history. We consider
truncations at rt = rs and 3 rs, corresponding to a halo
mass loss of ∼90% and ∼70%, respectively, for a typical
concentration of 20. A halo truncated at the same rt with
a shallower outer slope of pt = 4 undergoes core collapse
slightly later, but the effect is qualitatively similar to
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FIG. 2. [Left] Central density evolutions for an initially NFW profile (solid) and initially truncated NFW (TNFW) profiles,
with truncation radii rt = rs (dotted) and rt = 3 rs (dashed). These curves apply to halos with σm ≤ 10 cm2/g, for which
the LMFP regime is dominant throughout the majority of the evolution shown here. The central densities reach a minimum
of ρ̃ = 7.1, 3.3 and 2.8 at times t̃ = 4.3, 22, and 45 for the TNFW with rt = rs, TNFW with rt = 3 rs, and NFW profiles,
respectively. Since t0 depends on σm, halos with different values of σm (shown on the top axis, in units of cm2/g) are at
different locations along these evolution curves by today (physical time of 13 Gyr). [Right] Central density evolutions for
σm = 5 cm2/g for an initially NFW profile (solid), an initially TNFW profile with rt = rs (dotted), and an initially NFW
profile truncated at rt = rs after 3 Gyr of evolution (dashed).

pt = 5. We choose ρs = 0.019 M�/pc3 and rs = 2.59 kpc,
obtained from fitting the Pippin CDM profile to an NFW
profile using Colossus cosmology code [31].

IV. TEMPORAL EVOLUTION OF CENTRAL
DENSITY

We focus on the central density ρc, defined as the aver-
age density of the innermost region of the halo specified
in our analysis (at r̃ < 0.01, as described in Appendix A).
We show the evolution of ρc for initially NFW and ini-
tially truncated NFW (TNFW) profiles in the left panel
of Fig. 2. For the cross sections of interest, the halos
remain in the LMFP limit well into the runaway phase
of collapse (the nearly vertical portion of the curves). In
the LMFP regime, Eq. (2) is independent of the value of
σ̃m and thus the gravothermal evolution shown holds for
all σm ≤ 10 cm2/g.

For all three profiles, the central density drops as the
core of the halo forms and rises again as the core begins
to collapse. The minimum core density occurs approxi-
mately when the luminosity L in the central region of the
halo transitions from being negative (positive tempera-
ture gradient) to being positive (negative temperature
gradient). The minimum density for halos with no tidal
stripping is about 3 ρs, independent of cross section. For
the cases with tidal stripping, the collapse time becomes
shorter and the minimum core density is higher. For
the NFW profile, only for cross sections σm >∼ 4 cm2/g
do we find the central density rise as the core begins to
collapse within the lifetime of the Universe. However,
for the TNFW profile with truncation at rt = rs and
rt = 3 rs, cross sections of σm >∼ 0.4 cm2/g and 2 cm2/g,

respectively, have started to collapse by today.
To roughly gauge the impact of infall time, we allow

the halo to evolve as before for period of time before
abruptly truncating it. We neglect the impact of multiple
pericenter passages in our simplified analysis. We show
the central density evolution of a halo truncated at rt =
rs after 3 Gyr (or z ' 2) for an SIDM cross section of
σm = 5 cm2/g in the right panel of Fig. 2. Truncation
times of 3 − 6 Gyr are appropriate for the closest MW
dwarfs [32]. Such an extreme tidal stripping event leads
to almost two orders of magnitude increase in the central
density, showing the importance of this effect for nearby
satellites. Note that an initial truncation at rt = 3 rs
barely alters the central density evolution away from the
NFW case within the lifetime of the Universe, as seen
from the left panel of Fig. 2 for σm = 5 cm2/g.

After truncation, hydrostatic equilibrium significantly
lowers the pressure of the halo beyond the point of trun-
cation, where most of the mass is lost, causing the veloc-
ity dispersion (and thus temperature) to decrease sub-
stantially. Heat flows towards the colder truncated part
of the halo from the region near the scale radius, where
the temperature is highest. As a result, heat is diffused
more quickly within the truncated halo, leading to a
faster formation of the isothermal core and thus an ac-
celerated evolution for core collapse. We provide a more
detailed description of the halo evolution in Appendix C.

V. OBSERVATIONAL CONSEQUENCES FOR
THE LOCAL GROUP

Simulated CDM halos have circular velocities that are
systematically higher than those observed for field dwarf
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galaxies [33] and MW satellites [34], while dark matter
self interactions reduce circular velocities to the observed
range of 10−20 km/s [23]. A notable exception is the field
dwarf Tucana [35, 36], which has been isolated for a long
time (∼ 10 Gyr) but is observed to have a high circular
velocity vcirc ' 33.7 km/s at r1/2 ' 0.28 kpc [33, 36],
even for CDM [11, 33].

Accounting for truncation from tidal stripping, we have
shown that the central density of a halo is larger than
expected from CDM (if it has begun the process of core
collapse), with a correspondingly larger circular veloc-
ity. Indeed, the TNFW halo with a delayed truncation
shown in the right panel of Fig. 2 produces a circular
velocity of vcirc = 34 km/s at the same radius, in line
with observations of Tucana. Our suggestion that Tu-
cana may have experienced large tidal effects early on
is consistent with a proposal to explain the isolation of
Tucana [37], wherein Tucana came in with a companion
and was ejected due to three-body interactions, while the
companion became bound to the MW (and perhaps fully
disrupted). This early ejection scenario also seems con-
sistent with the kinematics of Tucana [35] and the early
cutoff in star formation [38, 39].

Similar to Tucana, the MW satellite Draco (dwarf
spheroidal) has a large central density [40], which may
be difficult to explain with cross sections σm > 1 cm2/g,
assuming evolution like a field halo [41]. Draco most
likely had a close pericenter passage according to Gaia
data [42] and hence our arguments would suggest it could
also have enhanced its central density compared to the
field SIDM halo evolution. Note that the presence of the
disk will increase tidal stripping and enhance the effects
we have discussed [43–45].

The ultrafaint satellites of the MW are likely to have
even smaller pericenters [46], owing to their large ve-
locities and closer distances. These galaxies would cer-
tainly have been impacted by the shortened time scales
and higher core densities predicted by our semianalytic
method. A subhalo with Vmax = 10 km/s that is tidally
truncated at r = rs at around z = 2 would evolve to have
a smaller rmax and a denser core by up to an order of mag-
nitude (compared to a similar field SIDM halo) around
30−50 pc radius (typical half light radii for ultra-faints).
The denser core may have a bearing on the survival of
these subhalos [30], and the adiabatic contraction of the
stars (as the SIDM density increases) would impact the
compactness of the stellar distribution.

VI. INTERMEDIATE-MASS BLACK HOLES

We note that the mass in the central region of the halo
remains unaffected by a tidal stripping, which should
only affect the halo at distances near or beyond the scale
radius. Defining the core mass Mcore to be the mass
within a core radius rcore at which ρ(rcore) = 0.1 ρc, we
show the relation between Mcore and v3D,c in Fig. 3 after
the core has begun to collapse. This relation should hold

1023× 1014× 101 6× 101 2× 102

v3D,c
2 [km2/s2]

106

107

108

M
co

re
[M
�

]

σm = 0.1 cm2/g

σm = 0.5 cm2/g

σm = 1 cm2/g

σm = 5 cm2/g

σm = 10 cm2/g

FIG. 3. Core mass as a function of the central 3D velocity dis-
persion for an NFW profile. As the dispersion increases, the
core sheds its mass rapidly while it remains in LMFP regime
(solid). Once the core enters SMFP regime (κSMFP ≤ κLMFP),
the mass loss decreases (dashed). Note that the SMFP phase
of the evolution takes place in a very short amount of time
compared to the LMFP phase. The same process occurs
within the TNFW profiles at much earlier times.

for both truncated and field halos.
When the halo is in the LMFP regime, log(Mcore) de-

creases as log(v3D,c
2) increases, with a slope of −4.17,

in agreement with the self-similar collapse scenario [21].
Eventually, the SMFP heat transfer in the core begins to
take over and the core becomes optically thick, inhibit-
ing the diffusion of heat and mass from the core and thus
resulting in a lower rate of mass loss.

An interesting consequence of the runaway gravother-
mal collapse in the SMFP regime is the possible forma-
tion of a black hole (BH) [25, 47, 48], which may exist to-
day due to accelerated collapse from tidal stripping. If we
define the core mass MSMFP to be the mass within the ra-
dius at which κSMFP = κLMFP, then we can apply previ-
ous work that found d log(MSMFP)/d log(v3D,c

2) ' −0.85
asymptotically [21, 47]. If a BH should form at the
onset of relativistic instability at v3D,c ≈ c/3 [21, 47],
then MSMFP = 107 − 108 M� at v3D,c = 60 km/s (see
Table I in Appendix C) would create BHs with mass
MBH = 30 − 300 M�. This estimate involves a large
extrapolation of our results and should be considered as
motivation for further work rather than a concrete pre-
diction.

Depending on the mass accretion history, these black
holes may grow further. Finally, for rare halos that col-
lapse early (with high concomitant densities), it is pos-
sible that this rapid gravothermal collapse may result in
seeds for supermassive BHs, without assuming σm � 1
for a subdominant dark matter fraction [25, 48].

The exact properties of the SIDM cross section (e.g.,
velocity dependence, dissipative interactions, etc.) may
become relevant as the extrapolation spans over orders
of magnitude in vc, and such interactions could remove
particles from the collapsing core [48–51]. Consideration
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of the angular momentum of SIDM particles may also
require a closer examination of the final stage of collapse.

VII. CONCLUSIONS

We applied the gravothermal fluid model, calibrated to
cosmological SIDM simulations [23], to tidally stripped
halos. We showed that for σm < 10 cm2/g, the halo
core density follows a track defined by the outer halo
parameters (ρs and rs), attaining a minimum value of
∼ 3 ρs. We found that mass loss from the outer regions
can shorten the timescale of this evolution and increase
the minimum SIDM density.

The accelerated evolution due to tidal stripping opens
up the possibility of intermediate-mass BH formation in
the rapid gravothermal collapse phase in dwarf halos for
σm >∼ 5 cm2/g. The increase in the core density due to
gravothermal collapse could explain the high central den-
sity of the isolated Local Group dwarf Tucana, assuming
it came close to the MW about 10 Gyr ago. The same
arguments suggest that the central dark matter density
of satellites that have come close to the MW disk, like
Draco and the ultrafaint dwarfs, would be enhanced for
large cross sections. In SIDM models with a cross section
per mass of few cm2/g, which are favored by fits to the
rotation curves of field galaxies [18], our results suggest
that the structural properties of satellite galaxies should
be correlated with their orbital histories.
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Appendix A: Numerical implementation

We describe our procedure, which follows that in
Ref. [25], for solving the gravothermal evolution equa-
tions

∂M̃

∂r̃
= r̃2ρ̃ (A1a)

∂(ρ̃ṽ2)

∂r̃
= −M̃ρ̃

r̃2
(A1b)

∂L̃

∂r̃
= −r̃2ρ̃ṽ2

(
∂

∂t̃

)
M̃

ln

(
ṽ3

ρ̃

)
(A1c)

L̃ = −3

2
r̃2ṽ

(
a

b
σ̃2
m +

1

C

1

ρ̃ṽ2

)−1
∂ṽ2

∂r̃
, (A1d)

which describe mass conservation, hydrostatic equilib-
rium, the first law of thermodynamics, and heat con-
duction, respectively, in dimensionless variables. For an

initial density profile of the Navarro-Frenk-White (NFW)
form, the characteristic scales of the halo are the NFW
scale density ρs and radius rs. With these quantities, we
write the dimensionless radius r̃ ≡ r/rs, one-dimensional
(1D) velocity dispersion ṽ ≡ v/v0, cross section per mass
σ̃m ≡ σm/(4πr

2
sM
−1
0 ), density ρ̃ ≡ ρ/ρs, and luminos-

ity L̃ ≡ L/[(GM2
0 )(rst0)

−1
]. We use the mass scale

M0 = 4πr3sρs, velocity scale v0 =
√
GM0/rs, and time

scale t−10 = aσmv0ρs. There are thus two main inputs:
the initial density profile ρinit and the SIDM cross section
per mass σm.

The first step is the discretization of the spherical halo.
We divide the halo into N concentric shells, and the
outer radii of the shells are logarithmically spaced be-
tween r̃min = r̃1 and r̃max = r̃N . In this work, we choose
r̃min = 0.01, r̃max = 100, and N = 400.

Extensive variables associated with the i-th shell are
defined at r̃i: M̃i and Ṽi are the dimensionless mass and
volume contained within the radius r̃i, and L̃i is the di-
mensionless luminosity at r̃i.

Intensive variables of the i-th shell are the dimension-
less density ρ̃i, pressure p̃i, specific energy ũi, and ve-
locity dispersion ṽi; for concreteness, these quantities are
defined at the midpoint of the i-th shell, (r̃i + r̃i−1)/2.
They are also related to one another through the equipar-
tition theorem and ideal gas law: p̃i = ρ̃iṽ

2
i = 2

3 ρ̃iũi.
From the input initial density, it is straightforward to

obtain M̃i and p̃i from Eq. (A1a) and (A1b), respectively.

Given a value of σ̃m, we can determine L̃i from Eq. (A1c).
With all quantities initialized, we evolve the halo by tak-
ing a small heat conduction time evolution step, followed
by adjustments to maintain hydrostatic equilibrium.

To perform the heat conduction time step, we rewrite
Eq. (A1c) as

δũ ' −
(
∂L̃

∂M̃

)
δt̃, (A2)

where the change in density is taken to be negligi-
ble (such that the mass within the shells remains con-
stant) for a sufficiently small time step δt̃. This con-
dition is ensured throughout the calculation by impos-
ing δt̃ to be smaller than the minimum local relaxation
time of the halo by εt(� 1). In particular, we require
δt̃ = εt min0≤i≤N (tr,i/t0), where tr,i is the local relax-
ation time of the i-th shell, and we set εt = 10−4.

The heat conduction causes an increase in the spe-
cific energy, which pushes the halo out of hydrostatic
equilibrium. With the assumption of negligible change
in ρ̃i in this step, the increase in ũi is reflected in the
following step through p̃i = 2

3 ρ̃iũi. To return the halo
to hydrostatic equilibrium, we adjust the shell location
r̃i → r̃′i ≡ r̃i + dr̃i, pressure p̃i → p̃′i ≡ p̃i + dp̃i, and
density ρ̃i → ρ̃′i ≡ ρ̃i + dρ̃i.

The conservation of mass Mi enforces dρ̃i =
−ρ̃i(dṼi/Ṽi), where dṼi is the change in volume asso-
ciated with the shift in radii. The conservation of en-
tropy requires p̃iṼ

5/3
i to be constant after the adjust-
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FIG. 4. Calibrations of C and b using the density profiles (top panels) and 3D velocity dispersions (bottom panels) of the
Pippin halo in Ref. [23]. Reference [51] chose the parameters SC = (C, b) = (0.45, 1.38) (left panels) to match (using an initially
NFW profile) the σm = 50 cm2/g density curve of Pippin by adjusting the LMFP heat transfer parameter C. Our results
use S0 = (0.75, 1.38) (middle panels), which provides a good fit to the density profiles for σm ≤ 10 cm2/g. Calculations with
Sb = (0.75, 0.003) (right panels) lower the density profile for σm = 50 cm2/g, while maintaining agreement with Pippin for
smaller σm values.

ment. Through this process, the discretized form of the
hydrostatic condition becomes

p̃′i+1 − p̃′i
(r̃′i+1 − r̃′i−1)/2

= −M̃i

r̃′2i

ρ̃′i+1 + ρ̃′i
2

(A3)

for i = 1, . . . , N − 1. We define a fixed inner bound-
ary shell r̃0 = 0 with L̃0 = 0 (i.e., no source of heat at
the center of the halo), and we fix the boundary of the
outermost shell such that dr̃N = 0.

When linearized, Eq. (A3) takes up the form of
ai dr̃i−1+bi dr̃i+ci dr̃i+1 = di, where ai, bi, ci, and di are
constants. The result is a set of N − 1 tridiagonal equa-
tions for N − 1 variables dr̃1, . . . , dr̃N−1. After solving
this system of equations, we update all other variables.
The hydrostatic adjustment is repeated in between ev-
ery heat conduction step until max0<i<N |dr̃i/r̃i| < εr is
satisfied, where we set εr = 10−3.

Appendix B: Calibration

In the gravothermal fluid model, the two parameters C
and b need to be calibrated against N-body simulations,
as they adjust the efficiency of the long mean-free path
(LMFP) and short mean-free path (SMFP) heat trans-
fer process, respectively, in Eq. (A1d). Reference [22]
matched the collapse time of pure LMFP evolution (i.e.,
σm

2/b→ 0) to first calibrate C for the case of an initially
self-similar solution of an isolated halo. The value of b
was then decreased from b = 1.38 to 0.25 to match the

collapse times of self-similar halos with larger values of
σm. Instead of matching the collapse times, we determine
the values of C and b by directly comparing the calcu-
lated density profiles after 13 Gyr of evolution against
the corresponding profiles of the Pippin halo, generated
from a cosmological simulation [23].

Figure 4 shows the results of SIDM evolutions with dif-
ferent (C, b) values: S0 = (0.75, 1.38), SC = (0.45, 1.38),
and Sb = (0.75, 0.003). Used in Ref. [51], SC provides a
better match of the density profile for σm = 50 cm2/g
but worsens agreement for lower σm. However, the Pip-
pin halo with σm = 50 cm2/g exhibits signs of core col-
lapse, so we do not use it to calibrate C, which controls
LMFP heat transfer. Instead, we calibrate C against the
Pippin halo for cross sections σm < 50 cm2/g, keeping
b = 1.38 fixed. The profiles with S0 in Fig. 4 show good
agreement for σm ≤ 10 cm2/g, but a clear discrepancy
for σm = 50 cm2/g. We note that the results for S0

and SC are essentially the same for the key points in this
paper.

In the spirit of Ref. [22], we allow for adjustments in
b and find that b = 0.003 lowers the density profile with
σm = 50 cm2/g. This solution, however, never reduces
the density as low as the 10 cm2/g case requires, and
it pushes the early evolution into the SMFP regime. In
addition, the dispersion profile for 10 cm2/g (as well as
σm = 5 cm2/g) does not have the negative radial gradient
at t = 13 Gyr that the simulation exhibits.

In light of the discussion above, we see no compelling
reason to adopt the Sb solution. Instead, the key is-
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FIG. 5. Central density evolution of an initially NFW pro-
file. The evolution for σm ≤ 10 cm2/g is driven by LMFP
heat conduction for t̃ ≤ 374, and the curves align on top of
one another. SMFP heat transfer with σm ≥ 50 cm2/g is
non-negligible near the beginning and the end of the evo-
lution, as indicated by the deviations from the curves for
σm ≤ 10 cm2/g. The dots correspond to t = 13 Gyr for
each σm (dots for σm ≥ 50 cm2/g are outside the plotted
range).

sue is likely that the heat conduction κ−1 = κSMFP
−1 +

κLMFP
−1 does not correctly capture the physics of the

transition between the SMFP and LMFP regimes. We
could generalize this interpolation to κ−α = κLMFP

−α +
κSMFP

−α, such that

L̃ = −3C

2
r̃2ρ̃ṽ3(1 + xα)

−1/α ∂ṽ
2

∂r̃
, (B1)

where x ≡ (aC/b)σ̃2
mρ̃ṽ

2. This generalization would al-
low us to increase C and tune α to obtain a faster evolu-
tion, while decreasing the impact of SMFP regime. We
leave such an investigation for future work.

Appendix C: Halo evolution

In Fig. 5, we show the time evolution of the halo cen-
tral density with various values of σm for an initially
NFW profile. We use the dimensionless time t̃ = t/t0,
so larger values of σm correspond to longer dimension-
less times. For the cross section σm = 10 cm2/g, we
evolve the central density beyond 13 Gyr to show the
gravothermal catastrophe as the central density sharply
rises at t̃ >∼ 350.

There are a few important features to note. First, the
curves for σ ≤ 5 cm2/g align with the σm = 10 cm2/g
curve when extended, indicating that the evolution for
σm ≤ 10 cm2/g occurs in the LMFP regime at times of
interest and is insensitive to the value of σm. Second,
the deviations of the 50 and 100 cm2/g curves away from
the lower σm curves at small values of t̃ indicate SMFP
physics is not negligible at these early times. At late

times, the large σm curves both bifurcate from the self-
similar solution. Finally, for all values of σm we tested,
there is a minimal central density of ρ̃c = 2.8 that the
SIDM halo achieves at t̃ ' 45.

To demonstrate the formation of the core and its sub-
sequent collapse, we consider the evolution of an initially
NFW halo with σm = 5 cm2/g. Figure 6 show snapshots
of the halo density profile, three-dimensional (3D) veloc-
ity dispersion, and luminosity at 5 different times. We
choose the same calibration S0 = (C, b) = (0.75, 1.38)
and halo parameters (ρs = 0.019 M�/pc3 and rs =
2.59 kpc) used in the main text. The state of the halo in
each panel of Fig. 6 is as follows:

1. t̃ = 0: Initial NFW profile. The initial profile
satisfies κSMFP ≥ κLMFP throughout the halo for
σm <∼ 10 cm2/g (cf. Fig. 5). In fact, heat trans-
fer remains dominated by the LMFP physics until
the core of the halo becomes sufficiently dense at
t̃ ' 374.

2. t̃ = 1: Core expansion. Self interactions thermalize
the inner region of the halo, where the mean-free
path λ = 1/(ρσm) is short. As a result, the temper-
ature (∝ ṽ2) near the center begins to increase, and
the particles are pushed towards r ∼ rs. This leads
to the formation of a gradually expanding core.

3. t̃ = 53: Formation of the isothermal core. The lu-
minosity becomes entirely positive (shortly after a
minimum central density of ρ̃c = 2.8 ρs is achieved
at t̃ = 45) after a period of core expansion, result-
ing from the thermalization within the innermost
region of the halo. The core becomes isothermal,
as ṽ is now nearly constant within this region. This
time marks the turnaround of the central density
evolution, seen in the left panel of Fig. 2 and in
Fig. 5.

4. t̃ = 351: LMFP core collapse. The constant-
density core becomes denser as it shrinks in size,
while the density profile maintains its shape since
the evolution is self-similar. The temperature uni-
formly increases within the core such that it re-
mains isothermal. This phase corresponds to the
solid lines in Fig. 3.

5. t̃ = 374.56: SMFP core collapse. The condition
κSMFP ≥ κLMFP is satisfied entirely within the core,
and the halo central density deviates from the self-
similar solution. At the time shown, the SMFP core
has attained its maximum mass. The density and
temperature begins to increase more rapidly within
the SMFP core as the core becomes optically thick
to self interactions. This final phase of evolution is
shown as dashed lines in Fig. 3; the core retains a
substantial amount of its mass until it reaches the
relativistic instability to form a BH.

Figure 7 shows analogous snapshots for the evolution
of an initially truncated NFW (TNFW) profile at rt = rs



8

10−2 10−1 100 101 102

r̃ (= r/rs)

10−9

10−6

10−3

100

103

106
ρ̃

(=
ρ
/ρ

s
),
L̃

(=
L
/L

0
)

t̃= 0 (t= 0 Gyr)
Density

3D Velocity Dispersion

Positive Luminosity

Negative Luminosity

0.2

0.4

0.6

0.8

1.0

√
3
ṽ
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FIG. 6. Snapshots of the halo evolution for an initially NFW profile with cross section per mass σm = 5 cm2/g at times
t̃ = 0, 1, 53, 351, and 374.56. The density profile and luminosity are shown on a log-log scale as functions of the radius.
The 3D velocity dispersion is plotted on a linear-log scale, with the linear axis given on the right. All the quantities are
represented as dimensionless variables, defined below Eq. (A1d), with v0 ' 84 km/s, t0 ' 0.255 Gyr, and L0 ' 1.9 × 107 L�
for ρs = 0.019 M�/pc3 and rs = 2.59 kpc.
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FIG. 7. Same as Fig. 6, but for a halo with an initially truncated NFW profile with rt = rs at t̃ = 0, 1, 5.2, 20, and 52.99.

with σm = 5 cm2/g. We describe the state of the halo in
each panel in the following:

1. t̃ = 0: Initial TNFW profile. The outer region of
the halo (r ≥ rs) is assumed to be tidally stripped
upon formation of an NFW halo, and the density is
suppressed by a factor of (r/rt)

5 beyond the trun-
cation radius. The truncation reduces the pressure
of the halo beyond the truncation radius, due to en-

forcing hydrostatic equilibrium. Although the den-
sity is decreased beyond the truncation radius as
well, the drop in pressure is more drastic, causing
the velocity dispersion (or equivalently, tempera-
ture) profile to decrease as well. Thus, the outer
part of the halo gets significantly colder, and the
temperature peak around r ∼ rs becomes smaller
and narrower compared to the NFW profile with-
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ṽ

(=
√

3
v
/v

0
)

10−3 10−2 10−1 100 101 102

r̃ (= r/rs)

10−6

10−4

10−2

100

102

104

106

ρ̃
(=

ρ
/ρ

s
),
L̃

(=
L
/L

0
)

t̃= 60.10 (t= 15.3 Gyr)
Density

3D Velocity Dispersion

Positive Luminosity

Negative Luminosity

0.2

0.4

0.6

0.8

1.0

√
3
ṽ
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FIG. 8. Same as Fig. 6, but for a halo with an initially NFW profile, truncated at rt = rs after 3 Gyr of evolution, at t̃ = 11.71,
11.75, 20, 51, and 60.10. The snapshots at t̃ = 11.71 and 11.75 correspond to before and after truncation.

out truncation.

2. t̃ = 1: Core expansion. Compared to the initially
NFW halo in Fig. 6 at the same time, the core
is closer to being fully thermalized due to the less
pronounced peak in velocity dispersion.

3. t̃ = 5.2: Formation of the isothermal core. The
luminosity becomes entirely positive, and the core
expansion halts at a much earlier time than seen
in Fig. 6. As a result, the isothermal core is more
concentrated: its size is smaller, and its density is
higher (ρc ' 7.1 ρs).

4. t̃ = 20: LMFP core collapse. The core contracts
slowly in the same way as seen for the initially NFW
halo in Fig. 6 through the LMFP heat transport.

5. t̃ = 52.99: SMFP core collapse. The halo reaches
the same state as the initially NFW halo at t̃ =
374.56. Collapse occurs 13.5 Gyr after halo for-
mation, implying that such a truncation causes a
gravothermal catastrophe with σm = 5 cm2/g on
timescales relevant for what we may observe today.

Lastly, we show in Fig. 8 analogous snapshots for the
evolution of an initially NFW halo that is truncated at
rt = rs after 3 Gyr with σm = 5 cm2/g. We describe the
state of the halo in each panel in the following:

1. t̃ = 11.71: Before truncation. The halo follows the
evolution of the initially NFW profile (the first two
panels in Fig. 6 are the same for this case). The
negative luminosity within r ≤ rs indicates that
the core is gradually expanding.

2. t̃ = 11.75: After truncation. Compared to the ini-
tially TNFW halo in Fig. 7, the (instantaneous)
late truncation at t̃ = 11.75 (t = 3 Gyr) results
in a slightly different halo configuration. When
the late truncation lowers the temperature of the
halo beyond the truncation radius, the already well-
thermalized core immediately becomes hotter than
the r ∼ rs region where the temperature used to
peak. This flips the sign of the luminosity within
the core from negative to positive and triggers the
core contraction phase seen in the initially NFW
halo after t̃ = 53 in Fig. 6.

3. t̃ = 20: 2 Gyr after truncation. The halo prop-
erties have smoothed out after the sudden trunca-
tion, and the core is gradually contracting under
the LMFP evolution. Although the central density
is lower than the initially TNFW profile at t̃ = 20,
the central velocity dispersion is higher due to the
initial thermalization phase prior to truncation.

4. t̃ = 51: 13 Gyr after the initial formation of the
NFW halo. While the initially NFW halo reaches
the minimum core density around the same time
(panel 3 of Fig. 6), the core of the truncated halo
has a density that is ∼30 times higher.

5. t̃ = 60.10: SMFP core collapse. At 15.3 Gyr, the
innermost region of the halo is undergoing the same
collapse process that its NFW counterpart reaches
at 95.7 Gyr after its formation.

Finally, in Table I, we show the values of the mass of
the SMFP core MSMFP and the 3D velocity dispersion
at the center of the halo v3D,c when MSMFP reaches the
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maximum value. In the main text, we used these values
in the empirical relation [21] to estimate the mass of BH
that forms in the gravothermal collapse in the SMFP
regime for the case of σm = 5 cm2/g. We note that the
last panels of Figs. 6, 7, and 8 show the halo profiles at
these times, the central regions of which have all deviated
from the self-similar evolution.
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Profile t̃f tf [Gyr] MSMFP(t̃f ) [107 M�] v3D,c(t̃f ) [km/s]

NFW 374.56 95.66 5.7 83

TNFW rt = 3 rs 183.39 46.84 4.6 81

TNFW rt = rs after 3 Gyr 60.10 15.34 3.0 59

TNFW rt = rs 52.99 13.53 2.6 61

TABLE I. The core mass and 3D velocity dispersion for various profiles with σm = 5 cm2/g at the time of maximum SMFP-core
formation t̃f , roughly when the condition κSMFP ≤ κLMFP becomes true over the entire core region. Note that this definition
of the core mass MSMFP differs from the core mass Mcore used in Fig. 3. We use MSMFP when extrapolating the empirical
relation found in Ref. [21]
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