aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Internal consistency of neutron coherent scattering length
measurements from neutron interferometry and from
neutron gravity reflectometry
W. M. Snow, J. Apanavicius, K. A. Dickerson, J. S. Devaney, H. Drabek, A. Reid, B. Shen, |.
Woo, C. Haddock, E. Alexeev, and M. Peters
Phys. Rev. D 101, 062004 — Published 25 March 2020
DOI: 10.1103/PhysRevD.101.062004


http://dx.doi.org/10.1103/PhysRevD.101.062004

Internal Consistency of Neutron Coherent Scattering Length Measurements from

Neutron Interferometry and from Neutron Gravity Reflectometry

W. M. Snow,'>* J. Apanavicius,! K. A. Dickerson,' J. S. Devaney,! H. Drabek,’
A. Reid,! B. Shen,! J. Woo,! C. Haddock,? E. Alexeev,® and M. Peters*
' Indiana University/CEEM, 2401 Milo B. Sampson Lane, Bloomington, IN 47408, USA

2 Center for Neutron Research, National Institute for Standards and Technology, Gaithersburg, MD 20899, USA

3 University of California, San Diego, La Jolla, CA 92093
4 Massachusetts Institute of Technology, Cambridge, MA 02138

Many theories beyond the Standard Model postulate short-range modifications to gravity which
produce deviations of Newton’s gravitational potential from a strict 1/r dependence. It is com-
mon to analyze experiments searching for these modifications using a potential of the form
V'(r) = —¢Mm[1 + aexp (—r/A)]. The best present constraints on « for A < 100nm come from
neutron scattering and often employ comparisons of different measurements of the coherent neutron
scattering amplitudes b. We analyze the internal consistency of existing data from two different
types of measurements of low energy neutron scattering amplitudes: neutron interferometry, which
involves squared momentum transfers ¢> = 0, and neutron gravity reflectometry, which involves
squared momentum transfers q2 = 8mV,p: where m is the neutron mass and V,p; is the neutron
optical potential of the medium. We show that the fractional difference % averaged over the 7
elements where high precision data exists on the same material from both measurement methods is
[2.2 +1.4] x 107*. We also show that % for this data is insensitive both to exotic Yukawa interac-
tions and also to the electromagnetic neutron-atom interactions proportional to the neutron-electron
scattering length bne and the neutron polarizability scattering amplitude bpo;. This result will be
useful in any future global analyses of neutron scattering data to determine b, and bound « and
A. We also discuss how various neutron interferometric and scattering techniques with cold and
ultracold neutrons can be used to improve the precision of b measurements and make some specific

proposals.

PACS numbers: 11.30.Er, 24.70.4+s, 13.75.Cs

INTRODUCTION AND THEORETICAL
OVERVIEW

Newton’s inverse square law form for the force of grav-
ity between two point-like test bodies is one of the first
quantitative facts learned by students of physics. In
the limit where relativistic effects are negligible, this law
is obeyed with high accuracy over macroscopic distance
scales. Many theoretical speculations, however, propose
that the 1/7? gravitational force law can be greatly mod-
ified at shorter distances. Examples of these speculations
include the idea of compact extra dimensions of space-
time accessible only to the gravitational field, which can
explain the unnaturally small strength of gravity relative
to the other known forces [1-3] and the idea that gravity
might be modified on the length scale of 100 microns cor-
responding to the scale set by the dark energy density [4].
Experiments which search for possible modifications to
gravity at short range are also sensitive to new non-
gravitational interactions of various types. Many exten-
sions to the Standard Model of particle physics produce
weakly-coupled, long-range interactions [5, 6]. Certain
candidates for dark matter in the sub-GeV mass range
can induce Casimir-Polder-type interactions between nu-
cleons [7, 8] with ranges from nuclear to atomic scales.
New sources of information which can probe exotic grav-
ity or other possible exotic interactions on short distance

scales are therefore of fundamental interest.

Many experiments have been conducted to search for
short-range deviations from the 1/r? gravitational force
law [4, 9]. Most of the results from experimental searches
have been analyzed assuming a potential of the form

V'(r) = —G]\/[Tm[l—&—ozexp(—r/)\)] (1)
where G is the gravitational constant, m;o are the
masses of two objects separated by a distance r, and «
and A parametrize the strength of some new Yukawa in-
teraction relative to gravity and the range set by the mass
of the new massive boson whose exchange generates the
new potential. Recent reviews [4, 9] present the existing
limits on o and A, which come from torsion balances [10],
and microcantilevers and techniques adapted from mea-
surements of the Casimir effect [11-14]. Experiments us-
ing laser-levitated dielectric microspheres [15, 16] are also
in progress.

Below 100 nanometers the most stringent experimental
limits for many of these weakly-coupled exotic interac-
tions come from experiments using neutrons. The elec-
trical neutrality of the neutron coupled with its small
magnetic moment and very small electric polarizability
make it insensitive to many of the electromagnetic back-
grounds such as the Casimir effect which can plague ex-
periments that employ test mass pairs made of atoms.



The ability of slow neutrons to penetrate macroscopic
amounts of matter and to interact coherently with the
medium allow the quantum amplitudes governing their
motion to accumulate large phase shifts which can be
sensed with interferometric measurements [17-19]. These
features of slow neutron interactions with matter and ex-
ternal fields have been exploited in a number of recent ex-
periments which search for possible new weakly-coupled
interactions of various types [20-33]. This strategy can
succeed despite the uncertainties in our knowledge of the
neutron-nucleus strong interaction. In the slow neutron
regime with kR < 1 where k is the neutron wave vec-
tor and R is the range of the neutron-nucleus strong
interaction, neutron-nucleus scattering amplitudes are
dominated by s-wave scattering lengths which are ac-
curately measured experimentally. This makes coherent
neutron interactions with matter sufficiently insensitive
to the complicated details of the strong nucleon-nucleus
interaction that one can cleanly interpret and analyze
searches for smaller effects. Existing neutron limits on
deviations from the 1/7? gravitational force law between
10~8—107'2 m come from theoretical analyses of the neu-
tron energy and A dependence of neutron-nucleus scat-
tering lengths [34], which have been measured to better
than 0.1% accuracy for a large number of nuclei. Other
experiments have measured the angular distribution of
neutrons scattered from noble gases to search for a devi-
ation from that expected in this theoretically-calculable
system [35, 36]. At shorter distances the best limits come
from the measured energy dependence of neutron-nucleus
cross sections in lead [20, 37] and from very high energy
forward cross section measurements at accelerator facili-
ties [38].

Various authors [20, 34, 39] have conducted analy-
ses of the neutron scattering data to constrain exotic
Yukawa interactions. All used some amount of theoreti-
cal modeling of the neutron Standard Model interactions
in combination with experimental information. In all of
these cases uncertainties in the neutron-atom strong and
electromagnetic interactions still place an ultimate limit
on the sensitivity of these types of searches for possi-
ble new interactions. For the case of slow, unpolarized
neutrons incident upon unpolarized atoms with energies
far from neutron-nucleus resonances, the s-wave neutron-
atom scattering amplitude batom(q) as a function of the
momentum transfer ¢ can be expressed as [40]

batom(q) = b(q) - bneZ[]- - f(q)] + bpol(q) + bY(q) . (2)

The first term b(q) describes the low energy (s-wave)
coherent neutron scattering from the nucleus of the atom
from the neutron-nucleus strong interaction. The sec-
ond term describes the interaction between the inter-
nal radial charge density of the neutron and the electric
field of the atom. It is proportional to the neutron elec-
tron scattering length b,. = —1.345(25) x 1072 fm [41]

and depends on the atomic form factor f(q) of the elec-
tron distribution around a nucleus of charge Z, which is
measured by x-ray scattering. The third term b,01(g) is
proportional to the very small but nonzero electric po-
larizability of the neutron and comes from the neutron
electric dipole moment induced by the very large electric
field near and inside the nucleus. Finally the forth term
by (q) = —fv(q) = mo;LiTBAm comes from apply-
ing the Born approximation to calculate the scattering
amplitude corresponding to the exotic Yukawa interac-
tion potential of interest in this work and from adopting
the convention b = — f historically used in slow neutron
scattering.

In this paper we will analyze the possible effects of
both exotic Yukawa interactions and of electromagnetic
neutron-atom interactions in the context of Eqn. 2.
The different ¢’s used in various neutron-atom scatter-
ing amplitude experiments weight the contributions in
this expression differently. In principle one needs to
perform some type of global analysis of the scattering
data [20, 34, 39, 42] to derive constraints on by (¢q). In
the near future we expect that new more sensitive data
will be available which can enable an improved analysis.
Such a new analysis is beyond the scope of this paper.
For such an improved analysis, however, it would be very
useful to investigate the degree of internal consistency in
the existing data set on coherent neutron scattering am-
plitudes. In this paper we show that we can test the inter-
nal consistency of bytom (¢) measurements using slow neu-
trons in an essentially model-independent way using data
from the two most sensitive neutron optical techniques.
Forward scattering techniques for batom (¢) measurement
such as neutron transmission and neutron interferometry
involve squared momentum transfers ¢> = 0, and neutron
gravity reflectometry involves squared momentum trans-
fers ¢% = 8mVop: where m is the neutron mass and V;;
is the optical potential of the medium. The precision of
both of these methods approaches the 10~% level. Of the
many atomic species which have been measured to high
precision by these techniques, there is a subset where
data exists for the same medium from both techniques.
Furthermore, over the small range of squared momen-
tum transfers 0 < ¢ < 8mV,p and over the meV en-
ergy range spanned by these two measurement methods,
the differences in the neutron-electron interactions term
bneZ[1 — f(q)], the neutron polarizability term bps(q),
and the exotic Yukawa term by (q) are all at least three
orders of magnitude smaller than the present experimen-
tal uncertainties in bgtom(q). Therefore the fractional
% = %, where bgr comes from grav-
ity reflectometry and by comes from neutron interferom-
etry, can be used to judge the internal consistency of
the neutron scattering amplitude data set independently
of one’s knowledge of the neutron electromagnetic and
exotic gravity interactions. The simple geometries and

difference



macroscopic sample sizes used in neutron interferometry
and neutron gravity reflectometry experiments which we
analyze, combined with the availability of analytic so-
lutions to the effects of a weak perturbation of Yukawa
form on these observables, makes it possible to evaluate
the different corrections from a Yukawa interaction an-
alytically to high accuracy for each case. At this level
of precision one must also take into account some small
multiple scattering corrections to the kinematic limit of
neutron optics whose physical origin we briefly review
below.

The result of our analysis is quite encouraging. We
find that % for the 7 nuclei which have been precisely
measured using both techniques is consistent with zero
at the 10™* level. This result demonstrates the internal
consistency of the associated data and can be applied to
analyses of neutron data searching for exotic Yukawa in-
teractions from future experiments. We mention some
of the issues that must be carefully considered in any fu-
ture global neutron scattering analysis to constrain exotic
interactions which makes use of a wider dynamic range
of neutron energies and momentum transfers. We also
outline how the sensitivity of this approach to constrain-
ing exotic Yukawa interactions can be improved by about
1—2 orders of magnitude through future higher-precision
coherent neutron scattering length measurements using
neutron interferometry for bt combined with future high-
precision measurements using ultracold neutrons (UCN)
for bgr.

The rest of this paper is organized as follows. We
first present the expressions for the modification of the
neutron optical potential and the neutron interferome-
ter phase shift from a slab of matter in the presence
of an extra Yukawa interaction. Next we present the
correction to the neutron optical reflectivity if one adds
an exotic Yukawa potential to the neutron-atom inter-
action. We estimate the size of the difference between
bar and by from the electromagnetic and Yukawa terms.
We gather the neutron scattering length data for nuclei
which have been measured by both techniques with high
precision and analyze this data to demonstrate their de-
gree of internal consistency. We end by outlining addi-
tional neutron interferometry measurements which can
be compared to the existing neutron gravity reflectome-
try measurements and outline future measurements using
cold and ultracold neutrons.

CORRECTIONS TO THE PHASE SHIFTS
MEASURED IN NEUTRON INTERFEROMETRY
FROM A WEAK YUKAWA POTENTIAL

The most sensitive methods for the measurement of
forward neutron scattering amplitudes comes from per-
fect crystal neutron interferometry, which is described in
great detail in a recent work [43]. Neutron interferometric

measurements of scattering amplitudes employ a Mach-
Zehnder interferometer in which the neutron amplitude
1he™*® is coherently split into two paths and recombined
using perfect crystal dynamical diffraction. The mea-
sured phase shift is dominated by the real part of the neu-
tron optical potential V' (x) and can be expressed as [43]

m

P=—
kh?

V(z)dx (3)
where m is the neutron mass and k is the neutron wave
number. For kR < 1 where R is the range of the neutron-
atom interaction, V' (z) = Vg where Vg is the Fermi pseu-
dopotential from the short-range strong and electromag-
netic interactions of the neutron with the atoms in the
material. In the kinematic limit of the theory of neutron
optics, b is related to Vr by

 27h2Nb
B m

Vi (4)
where NV is the atom number density. The sample geom-
etry used in all neutron interferometry scattering length
measurements employs a rectangular plate of thickness L
whose surface is normal to one of the coherent subbeams
in the interferometer. In the presence of an additional
Yukawa interaction between the neutron and the sample
material with a range L > A > Rgtom We must integrate
the accumulated phase shift from the potential from a
plate of matter of uniform mass density p. Since the
thickness of the samples is much greater than the range
A of the Yukawa interaction, and the neutron transverse
coherence length is very small compared to the transverse
dimensions of the samples in all of the neutron interfer-
ometry scattering length measurements, the potential en-
ergy of a neutron as a function of z, the distance from
the neutron to the plate, can be calculated analytically
for a Yukawa potential by taking the limit of an infinite
planar slab of material as [39, 44]

V(z) = —Vy exp (—|z|/A) (5)
outside the material, and
V(z) =Vr — Vy[2 — exp (—|a[/N)] (6)

inside the material, where V4 = —2Gmmpa)?. By treat-
ing the exotic Yukawa interaction as a weak perturbation
compared to Vg, the additional neutron phase shift from
the Yukawa interaction can be calculated as [44]

—2mVy (L + 2/\)

Ay = 12k (7)

where we have approximated p = Nm. By compari-
son of eqgs. 3, 4, and 7 we can express the effect of the



Yukawa-like deviation from gravity for the case of neu-
tron interferometry in terms of an additional contribution
to the coherent scattering amplitude by. One can split
the effect of the Yukawa interaction shown in eq. 7 into a
“bulk” term, which just adds to the Fermi potential Vg,
and a term from the tail of the Yukawa potential which
extends outside the slab on both ends. From eq. 7 one
can see that the size of the “tail” term for interferome-
try is smaller than the bulk Yukawa term by a factor of
2\/L where L is the sample thickness, of order 1 mm or
greater in neutron interferometry measurements. There-
fore for the range of A < 100nm of interest for neutron
constraints on exotic Yukawa interactions \/L < 1074
and the dominant correction term for by becomes

200GmB AN?

br = 2 (8)

CORRECTIONS TO THE REFLECTIVITY
MEASURED IN NEUTRON GRAVITY
REFLECTOMETRY FROM A WEAK YUKAWA
POTENTIAL

The gravity reflectometry method for the measurement
of scattering amplitudes [45, 46] has also produced n-A
scattering amplitude results of high precision. In this
method one prepares a slow neutron beam which drop in
the gravitational field of the Earth by a height H over
a long evacuated flight path so that all of the neutrons
in the beam gain an extra momentum along the gravita-
tional field corresponding to an energy F = mgH. This
neutron beam is allowed to fall upon a flat mirror made
of the material of interest of neutron optical potential Vi,
which is maintained in liquid form so that the surface is
normal to the direction of the local gravitational field.
When F = Vg the neutrons start to penetrate the mir-
ror and the reflectivity |R|? falls below unity according
to the well-known Fresnel reflectivity formula of optics.
A precise measurement of | R|? as a function of H can de-
termine Vp and therefore the n-A scattering amplitude
bar- A long series of such measurements on many ma-
terials spanning nearly three decades was conducted by
the group of Koester et al. at the FRM research reactor
in Garching, Germany on a specialized neutron beamline
devoted specifically for this purpose. All of the reflectom-
etry data analyzed in this paper comes from this group.

We show below that, to high accuracy in our regime of
interest, the presence of a neutron-atom Yukawa poten-
tial just modifies the arguments in the Fresnel reflectiv-
ity expression used to analyze this data while preserving
its functional form. The modification to the formula for
the reflectivity for an exponential potential can be cal-
culated [47] with the exotic Yukawa potential treated as
a perturbation as also done for the neutron interferom-
etry case above. In the limit where the neutron mirror

is treated as an infinite plane, the 1D Schrodinger wave
equation for this potential can be solved exactly. The so-
lutions are proportional to the modified Bessel functions
of the first kind. The reflection amplitude R of a neu-
tron incident upon the surface of the material is given
by demanding continuity of the wave function and its
logarithmic derivative at the surface

G0t (0) F£Indi 4 (2) — Lngo 4 (2)
00, (0) L1ng; 1 (2) — Llng,, —(2) | .—o

where ¢, 1 (¢;,+) and ¢, _ (¢;,—) are the two indepen-
dent solutions to the wave equation outside (inside) of the
material. Since the wave equation is of second order and
we are considering two independent cases, we must have
four independent solutions in total. In the limit where
the neutron interaction energy with the mirror from the
Yukawa interaction is much smaller than the kinetic en-
ergy of the incident neutron, and we restrict ourselves to
the regime of (a-\) parameter space of interest in this
work and where this reflectivity calculation is relevant,
namely A = (1 —100) x 107 m and « below the exist-
ing experimental limits the expression for the reflection
probability |R|? can be written as (see the Appendix)

R=

(9)

|R|* =

- yI=HJH] (10)
1++/1-H/H

where H, = % is the critical height in the presence
of a new Yukawa deviation from gravity proportional to
Vy, and H, < H.

This is the same Fresnel reflectivity formula used by
the Koester group to analyze their data, but with the
critical height H, replaced with H.. The value of the
critical height is determined experimentally when the re-
flectivity curve becomes discontinuous and H. = H. In
the presence of the Yukawa interaction, this height shift
can be expressed in terms of scattering lengths as

mVy
7w N h2

’ m

T OrNR2

x [mgH. +2Vy]| =b+ (11)
where b is the coherent scattering length inferred from
the gravity reflectometry data for the case of no Yukawa
interaction and b’ is the scattering amplitude in the pres-
ence of the Yukawa interaction. We can therefore identify

mVy  2aG m3AN?

T INR2 h2

bcr (12)

and by comparing equations 8 and 12 we see that
by.cr — by,r = 0 to high accuracy. This can be un-
derstood simply. In both cases one can split the effect of
the Yukawa interaction on the observable of interest into



Element A bcr obar Refs.(GR) br Sbr Refs.(T) Ab/bT 5[Ab/bT]
'H 1 -3.7406 0.0011 [55, 73, 77] -3.7384 0.0020 [71] -0.00058 0.00061
’H 2 6.6713 0.0036 [55, 73] 6.6649 0.004 [71] 0.00096 0.00081
C 12 6.6460 0.0012 [55, 77] 6.6484 0.0013 [74] -0.00015 0.00028
0 16 5.8025 0.0041 [55, 73] 5.805 0.004 ([73,74] -0.00043 0.00099
Sn 119 6.2257 0.0019 [72] 6.2220 0.0018 [75] 0.00092 0.00044
Pb 207 9.4031 0.0015 [55, 72, 76] 9.4017 0.002 [80] 0.00015 0.00022
Bi 209 8.5284 0.0011 [55, 72, 81] 8.5201 0.0034 [78, 79] 0.00097 0.00042

TABLE I. A list of the neutron-nucleus scattering length measurements used in this analysis which have been conducted using
the techniques described above. All scattering length units are in fm. The measurements using the gravity reflectometry
method bgr were all performed at the FRM research reactor by the group of Koester et al. The measurements of br all come
from neutron interferometry. The by values for H and D come from the analysis presented in the appendix of Schoen et al. [71].
The scattering length value for C comes from two separate neutron interferometer measurements of 12C and '3C properly
weighted in order to be able to compare to the results from Koester, which used liquids with natural isotopic abundance. The
bar values and the by values include small corrections for neutron optics multiple scattering effects as evaluated by Sears [55]
and Schoen [71]. All of the interferometer measurements except for Schoen et al. were conducted at high enough neutron
energies that these multiple scattering corrections are negligible. The accuracy for the scattering amplitudes achieved by both

techniques is comparable.

a “bulk” term which just adds to the the Fermi potential
Vi and a term from the “tail” of the Yukawa potential
which extends outside the slab. As the bulk term is the
same for both cases it cancels in the difference. The size
of the tail terms for interferometry and gravity reflectom-
etry are not exactly the same, but they are both much
smaller than the bulk Yukawa term by a factor below
1073 in both cases for the range of A < 100 nm of interest
for neutron constraints on exotic Yukawa interactions.

CORRECTIONS TO N-A SCATTERING
LENGTHS FROM NEUTRON-ATOM
ELECTROMAGNETIC INTERACTIONS

The remaining sources for the difference Ab =
[(batom,GR — batom,T] between the scattering lengths mea-
sured by these two different methods come from Standard
Model interactions. For the case of slow, unpolarized
neutrons incident upon unpolarized atoms, batom(¢) can
be expressed as [40]

batom(Q) = b(‘]) - bneZ[l -

F(@)] + bpor(q) - (13)

The first term b describes the low energy (s-wave) scat-
tering from the nucleus of the atom from the neutron-
nucleus strong interaction, which has contribution from
both the potential scattering and (for heavier nuclei)
from the low-energy tails from n-A resonance scatter-
ing. The resonances contribute to a slight dependence of
b(q) = bpot + bres on neutron energy through the Breit-
Wigner resonance formula. In the presence of n-A res-
onances the expression for the resonant part b,..; of the
total scattering amplitude becomes [48]

9. Lo
bras = 7 7 - (14)
F 2/€j [(E — Ej) + ZFJ'/Q]

where I', ; and I'; are the neutron width and total width
of the resonance at energy E; and kK = wk/m is the wave
vector in the n-A center of mass system of reduced mass
1, E' is the associated energy in the COM frame, and
g+; = I +1)/(2I +1) and g_; = I/(2I + 1) are the
statistical weight factors for a resonance at energy F; in
the total angular momentum channels J = I +1/2. This
means that the neutron scattering amplitudes that are re-
ported in the literature from slow neutron measurements
are in fact a sum of the potential scattering contribution
and also the tails of all of the other resonances in the
limit £ — 0:

b ST = NS N ¢

'measured - 2kj [(EJ) — ZFJ/2] ( )
and since T scales linearly with k', this expression gives
a finite contribution in the & — 0 limit.

The second term b,.Z(1 — f(g)) describes the inter-
action between the internal radial charge density of the
neutron and the electric field of the atom. It is propor-
tional to the neutron electron scattering length b,. =
—1.345(25) x 1073 fm [41] and depends on the atomic
form factor f(q) of the electron distribution around a
nucleus of charge Z, which is measured by x-ray scatter-
ing and obeys approximately the universal form f(q) =

1 where the element-specific parameter ¢, of

V1+3(q/42)?
order Rjom can be obtained from fitting to the x-ray scat-
tering data. The corresponding form factor from the in-
ternal charge distribution of the nucleus can be expanded

in the small ¢ limit as F(q) = 1— £(¢R’)? where R’ is the




root mean square nuclear charge radius [49]. The third
term bpo1(g) is proportional to the very small but nonzero
electric polarizability of the neutron and comes from the
neutron electric dipole moment induced by the very large
electric field near and inside the nucleus [40, 50-52]. In
the small ¢ limit b, = %[6/5 — mqR/4] where Ze
is the nuclear charge, a.,, is the electromagnetic cou-
pling, and R is the nuclear radius. The first term is
g-independent and is as large as 0.06 fm for uranium.

We can now estimate the size of Ab = bgr — by know-
ing the slightly different energy and momentum trans-
fer ranges accessed in these measurements. The typi-
cal relative sizes of b(q), bneZ[1 — f(q)], and bpoi(g) in
the slow neutron regime for medium-mass nuclei are in
the approximate proportion 1 : 1072 : 1073. The neu-
tron interferometry measurements all possess ¢ = 0 and
were conducted at neutron energies of several meV. The
neutron gravity reflectometry measurements all possess
= 8mVope with g’s below 10~2 inverse Angstroms, and
the energies used on the Koester et al measurements were
centered at 0.5 meV. Using the expressions above we can
see that the contribution to Ab from the b, term is of
order 1079 and that from the b, term is of order 10712,
The contribution from the energy dependence of the tails
of the n-A resonances depends on the details of the res-
onance energies and widths of the particular nuclei. For
the particular list of nuclei used in the analysis of this pa-
per (H, D, C, O, Sn, Pb, and Bi) the light nuclei possess
no n-A resonances, and both Pb and Bi are close in A to
the doubly-magic nucleus 2°8Pb, which possess especially
low level densities near threshold and in particular no
low-lying resonances between 1—10 eV whose tails could
give a visible energy dependence in the meV regime. As
for Sn: three of its isotopes have n-A resonances between
0 — 10 eV [53, 54]: 113Sn (E = 8.3 eV, I';, = 4.5 meV),
H7Sn (B = 1.3 eV, I';, = 0.00011 meV, a p-wave res-
onance), and '9Sn (F = 6.2 eV, I',, = 0.00148 meV).
Using the real part of the resonance formula above one
sees that the contributions to Ab/|b| from the residual
neutron energy dependence of b,..s for Sn over a §E = 10

meV range starting at 0.5 meV is of order 1;52‘”3 , which

res

does not exceed 1076 for any of these resonance param-
eters. This is much smaller than the precision of the b
measurements analyzed in this paper, which do not ex-
ceed 1074,

We conclude that all of the physical effects analyzed
above, both from a possible exotic Yukawa interaction
and from Standard Model interactions, give differences
well below the current measurement precision for the
scattering lengths. Neither exotic Yukawa interactions
nor Standard Model neutron-atom interactions can in-
troduce a visible difference between these two methods
of neutron scattering length measurements. Therefore an
analysis of Ab/|b| from these two methods is a valid test
of the internal consistency of the present experimental

data.

CORRECTIONS TO N-A SCATTERING
LENGTHS FROM MULTIPLE SCATTERING
EFFECTS IN THE NEUTRON OPTICAL
POTENTIAL

Before comparing the scattering lengths determined by
these two methods we must consider some small correc-
tions to the usual kinematic expression for the neutron
optical potential. The physical origin for these modifica-
tions comes from local field corrections and neutron mul-
tiple scattering in the medium and are physically very
similar to the analogous corrections from dispersive ef-
fects for light optics in a dielectric medium. We make
use of an evaluation of these effects performed long ago
by Sears [55]. His correction formulae are consistent with
both previous and subsequent theoretical work using dif-
ferent theoretical approaches [56]. Calculations of mul-
tiple scattering corrections to the kinematic theory of
neutron optics performed in the 80s [57-60] built upon
much earlier work [61-68] and were conducted within the
framework of the traditional multiple scattering theory.
Different calculational methods based on resummation of
dominant subclasses of diagrams important for backscat-
tering [69] and a Lindblad operator treatment developed
to understand decoherence in neutron optics [70] give the
same results. All calculations restore consistency with
the optical theorem and reduce in appropriate limits to
the usual kinematic limit.

As shown by Sears, in the kR < 1 limit of relevance to
this work the dominant correction to the neutron optical
potential can be written in terms of a modified neutron
index of refraction n':

2 NY TNbY
Al Y

where the first two terms are the usual results from
the kinematic theory of neutron optics and the last two
terms come from local field effects and multiple scatter-
ing. J'=Nb [ exp ik - FG(r)[1 — g(r)]d3r for an isotropic
medium, where G(r) = expikr/r is the neutron Green’s
function and g(r) is the pair correlation function for the
atoms in the material, n’ is the real part of the neutron
index of refraction with the multiple scattering correc-
tion, b’ is the neutron scattering length with the multiple
scattering correction, IV is the number density of atoms
in the material, and k is the incident neutron wave vec-
tor. The neutron index of refraction is defined in the
usual way by n = ki, /kour where k;, and ko, are the
neutron wave vectors inside and outside of the medium.
Sears shows that the resulting relationships between the
true real part of the scattering length &’ and the effective
scattering length beg inferred foregoing the multiple scat-
tering corrections is by = b'[1+ J' + ”kpzb /] for interferom-
etry and bgr = V'[1 + J'] for gravity reflectometry. The

n =1 M+J +




correction for the neutron interferometry measurements
performed using thermal neutrons (in the kb < 1 limit)
was found by Sears to be of order 107°, more than one
order of magnitude smaller than the measured accuracy
and therefore negligible. For the cold neutron energies
employed in the gravity reflectometry work the size of
the corrections is at the 1074 level, close to the size of
some of the measurement errors for b. Sears’s scattering
corrections were evaluated with 10% accuracy, which is
about one order of magnitude more accurate than the
scattering length measurement errors and therefore good
enough for our analysis. Thus the precision with which
these two methods of scattering length measurement can
be compared is not yet limited by our knowledge of the
multiple scattering corrections to the kinematic theory of
neutron optics, a fact that will guide how this method to
search for exotic short-range gravitational interactions of
Yukawa form might be improved in the future.

DATA EVALUATION AND ANALYSIS

With these upper bounds on the possible differences
between the neutron scattering lengths measured by in-
terferometry and gravity reflectometry and the correc-
tions to the kinematic theory of neutron optics, we can
test the internal consistency of the existing data. Table I
presents the data set that we analyze to evaluate the
internal consistency of the interferometry and gravity re-
flectometry data. We used all the available high-precision
data for isotopes that have been measured by both tech-
niques. Fig. 1 shows the difference % = bor-br] 55 5

[oT|
function of A. The uncertainties for % for the 7 nuclei

of interest come from the properly weighted sums of the
results quoted in the references. The weighted mean of
these 7 differences is [2.2+1.4] x 107%. We conclude that
this data is internally consistent at the 1.5¢0 level.

Future analyses which make use of new data and also
other high-precision neutron cross section measurements
which extend over a broader range of neutron energies
and momentum transfers can make use of this feature
to help determine an internally-consistent set of values
for by, and b, and constrain « and A. An example of a
successful global analysis of this type was presented long
ago [82] for a broad set of neutron optics and scattering
data for n-A scattering for 6 < A < 60 using a S-matrix
treatment of the potential and resonance scattering pa-
rameters, including a consistent treatment of effects from
sub-threshold resonances.

POSSIBILITIES FOR FUTURE IMPROVEMENTS

One could extend this test of the internal consistency
of these two methods of scattering length measurements
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(bgr-bT)/bT
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FIG. 1. Fractional difference % and between the coherent

scattering amplitude bgr as measured by gravity reflectom-
etry and by as measured by neutron interferometry for the

same media (hydrogen, deuterium, carbon, oxygen, tin, lead,

and bismuth) along with uncertainties in % plotted as a

function of nucleon number A. The weighted mean of these 7
differences is [2.2 + 1.4] x 10*.

if desired by measuring the coherent scattering lengths
of a select set of nuclei and compounds using neutron
interferometry to higher precision than they are known
at present to yield a more sensitive comparison with the
existing results from gravity reflectometry. We suggest
measurements of carbon, carbon tetrachloride, gallium,
and thallium, which can be compared to the already-
measured gravity reflectometry results for Cl, Ga, and
Th. The coherent scattering lengths for these elements
have already been measured by neutron gravity reflec-
tometry to precision near the 10~* level needed for a
sensitive consistency test. Aside from Th, which is poi-
sonous in its pure form, the other materials can be ob-
tained and handled easily in chemically pure form and
with care can be formed into practical neutron inter-
ferometry targets. One can now obtain carbon of suf-
ficient thickness, flatness, and density uniformity for pre-
cision neutron interferometry phase shift measurements
in the form of artificial single crystal diamond plates,
which are available with faces cut parallel to the crystal
planes. CCly is a liquid at room temperature which can
be obtained in high chemical purity and can be placed
in commercially-available rectangular quartz containers,
which produce negligible small angle neutron scattering
and whose internal thickness can be measured to high
absolute accuracy using gauge blocks. Gallium is a lig-
uid at 30 C and therefore can be easily produced with a
very uniform density and cast into a form with flat par-
allel sides. One would of course need to take care with to
avoid and suppress bubbles in the liquid samples. This
set of measurements would help cover the range of nu-
cleon number A more uniformly and could improve the
precision of the consistency test described in this paper.
The statistical accuracy of neutron interferometry phase
shift measurements can approach 10 ppm as was shown



in the measurements of the bound coherent neutron scat-
tering length measurements on silicon [83].

One can in principle improve on the slow neutron beam
reflectometry measurements of Koester et al. by another
1-2 orders of magnitude by instead using ultracold neu-
trons (UCN), which can be confined in material bot-
tles at all angles of incidence and therefore correspond
to neutrons with kinetic energies less than about 300
neV. One could drop UCN onto a flat level sample sur-
face, change its height, and measure the reflectivity curve
as a function of H as in the Koester approach. The
GRANIT UCN spectrometer [84] nearing completion at
the ILL/Grenoble, which is designed to conduct mea-
surements on UCN gravitational bound states [85] and
therefore already possesses a very flat, horizontal sur-
face, could more sharply define the starting height of the
neutrons than Koester et al.’s cold neutron apparatus.
With the new superfluid-helium-based UCN source [86]
installed to supply GRANIT, one could imagine measur-
ing the neutron optical potential using the neutron reflec-
tivity curve with statistical accuracy 1-2 orders of mag-
nitude better than previous work. However the multiple
scattering corrections to the optical potential relation to
the scattering length are much larger for UCN than for
cold neutrons and would need to be evaluated to higher
precision than they are known now to be able to make
full use of such data for our purposes. Good choices for
the material to be used in such a measurement could be
flat perfect crystals with known absolute densities at the
ppm level such as silicon and germanium.

Another neutron measurement technique which could
improve the sensitivity of the search for exotic Yukawa
interactions is gravity resonance spectroscopy [87, 88].
This measurement technique creates coherent superpo-
sitions of bound states of neutrons formed in a poten-
tial from the Earth’s gravity and a flat mirror, and one
can drive and resolve resonance transitions using acous-
tic transducers in a vibrational version of Ramsey spec-
troscopy. The qBOUNCE apparatus has successfully
conducted several measurements, including the proof of
principle measurements demonstrating vibrational Rabi
spectroscopy [89], and has sought different types of ex-
otic interactions [28, 33, 90-92]. The eigenstate energies
of the bouncing UCN would be shifted in the presence
of an exotic Yukawa interactions sourced by the mirror
material [93]. A new version of the qBOUNCE appara-
tus which is designed to implement vibrational Ramsey
spectroscopy and has seen its first signal [94] has recently
been commissioned. One can also consider employing a
Lloyd’s mirror interferometer for neutrons [95-97] as the
interference between the forward-propagating amplitude
and that reflected from the mirror in this type of interfer-
ometer can be sensitive to the exotic Yukawa phase shift
from the mirror surface.

Dynamical diffraction in perfect crystals can measure
b(q) at larger values of ¢ of about an inverse Angstrom.

However in this case many other effects must be cor-
rected for, such as the contributions from the electro-
magnetic neutron-atom interaction proportional to b,
and due to the charge form factor of the electron cloud
in the atom and also those from the Debye-Waller fac-
tor of the crystal, which at finite temperatures will need
to include information on the phonon spectrum as well
as possibly other material properties. The angular dis-
tribution of neutron scattering from noble gas atoms is
sensitive to exotic Yukawa interactions through the ¢
dependence of the form factor in by (q) and has been
used in two recent experiments which have improved the
bounds on exotic Yukawa interactions with ranges near
the Angstrom scale. The recent measurements using this
approach which have improved the upper bounds on «
for X’s below 100 nm can be improved.

Having said all of this however: it is prudent also to
emphasize some of the experimental difficulties and extra
theoretical work which would need to be addressed in any
such attempts to achieve the % = 107" level of precision.
One would certainly need to control and understand both
the chemical purity, the knowledge of the isotopic com-
position of the materials, and possible density nonuni-
formities at an uncommon level of detail. In the case
of perfect crystal neutron interferometry one must worry
about possible corrections from geometric and dynam-
ical diffraction effects in the interferometer blades and
one must control the external influences of the environ-
ment to a severe degree. The theory for the corrections
to the kinematic theory of neutron optics discussed above
would need to be improved, and as these theoretical cor-
rections involve also knowledge of the internal structure
and atom-atom correlations of the material it is likely
that subsidiary measurements using neutron or maybe
xray scattering would need to be performed on the sam-
ples as input to the theory corrections.

CONCLUSION

We present the results of an internal consistency check
on the experimental data from two different types of mea-
surements of slow neutron scattering amplitudes on the
same nuclei, neutron interferometry with ¢> = 0 and
neutron gravity reflectometry with ¢? = 8mVop:. We
show that this consistency check is insensitive to possi-
ble corrections from electromagnetic and (possible) ex-
otic Yukawa interactions in the narrow range of energies
and momentum transfers accessed in these measurement
methods. We show that the existing data is internally
consistent at the 1.50 level. The fractional difference
% averaged over the 7 elements where data exists on
the same material from both measurement methods is
[2.241.4] x10~%. One must take into account some small
corrections to the kinematic theory of neutron optics due
to local field and multiple scattering effects to make this



comparison. We view this exercise as an initial step in a
future global analysis of neutron scattering data to bound
possible exotic Yukawa interactions of the neutron. We
outlined a number of ongoing measurement possibilities
using slow neutrons, some now in progress, which could
be used to improve the sensitivity of neutron-based exotic
interaction searches.

Although we considered possible neutron interactions
of Yukawa form, other theories envision power-law inter-
actions. One could repeat the analysis presented in this
paper for this case as well. Since power-law potentials
fall off much more slowly than the damped exponential
in the Yukawa potential, it is possible that power law po-
tentials could introduce a larger difference between the
neutron interferometry and neutron gravity reflectome-
try scattering amplitudes. In this case it is possible that
the present data may already provide useful model con-
straints. Although we know of no simple analytical so-
lutions for these cases, numerical analysis could be em-
ployed to solve for the modifications to the reflectivity
and the accumulated phase shift in neutron interferome-
try. A comparison with the data presented in this paper
as a function of nucleon number A could then be used to
constrain exotic interactions with power-law forms.
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APPENDIX

The reflection amplitude generalized to include Yukawa interaction was presented by Taketani in terms of modified
Bessel functions of the first kind as [47]:

G0 (0) flndi i (2) — LIngo 4 (2)

R =
¢07_(0) %ln¢i7+(2) - dlzln@,,,(z) 2=0

(17)

where as noted in the text ¢, + (¢i+) and ¢, — (¢;,—) are the two independent solutions to the wave equation
outside (inside) of the material. In the limit where the potential due to non-Newtonian gravity is much smaller than
the kinetic energy, the following approximations can be made in this expression:

¢o,j:(0) ~1— To + iyo,a

dizlnd)o,:t(z) ~ Fiko(1 + 2z, F Z'(yo,a - yo,b))

z=0

~ :l:lkz(l + 21’1 :|: i(yi,a — yi,b))
z=0

d%lnﬁbi,i(z)

where k; , is the neutron wave vector for inside, outside the material, and A is the interaction length for Yukawa-like
gravity. The definitions for the other parameters are:

Ro,i = ky = ko,i>\
r o= —Re g — ko ~oma VgAY mp VyA2
0= 1+k270 T THk2A2 2koh? ) T T (I+(koN)Z)2R2
2
K
Yo,a = 1+(;2 90 = KoZo
_ _1 00 =
Yo,b = 1+ r2 0 — xo/’io
r= R — ki ma Vg _ man)\Q
T T4k27E T T1k2AZ \ 2kih2 ) T (04 (kiA)2)2R2
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Yia = 152 0; = KT
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Yip = 13200 = i/ ki
?
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Substituting into the above expression for the reflectivity R gives

Ra — (1 — To + Z.yo,a) kz(l + 2x; + i(yi,a — yi,b)) — kz(l + 2x; — Z.(yi,a — yi,b)) (18)
1 =26 —Woa) ki(1+22; +1(Yi,a — Yip)) + ki(1+ 225 +i(Yi,a — Yirp))
_ <]- — Ty + Z’yo,a) [kz(l + 2xz) - ko(l + 25Eo)} + Z[kl(yz,a - yi,b) + ko(yo,a - yo,b)} (19)
1—20—1Yo,a [ki(1 +22i) + ko (1 + 22,)] + i[ki(yi,a - yi,b) + ko(yo,a - yo,b)} .

The reflection probability is then given by



[Fi(L+ 225) — ko(1 + 220)]* + [Ki (Yia — Yi) + Ko(Yo,a — Yo,p)]?
[kz(l + 2371) + ko(l + 21’0)]2 + [ki(yi,a - yi,b) + ko(yo,a - yo,b)]2

|R* =

2,2
hokg
2m,

Using

= mygH gives
ko =~/2m2gH/h?.

At the critical height, mgH, = V; + 2V, so we can express k; in terms of H, and H:

R2k2 R2k2
o 2m, VT2V

12

(20)

(22)

where we use the primed critical height H! to denote the usual critical height due to the Fermi potential, V%, with

the addition of the Yukawa-like gravitational potential Vj.

> by = /22 g(H — T/ (23)
The ratio is then given by
k; H!
21— =< 24
. =, (24)
and substituting into Eq. 21 gives
- 12 2
/ H/, / HY,
1- 178 (1 =+ 21‘1') - (1 =+ 2xo) + 1- ﬁc(yi,a - yi,b) + (yo,a - yo,b)]
R = - R ; (25)
1= B 20 + (20| [ B0 = 950) + (o = 30|
- 12 2
\/1-— %(1+2x¢)7(1+2x0) + \/1I;f(nizixi/m)+(x0no:co/mo)}
== T — 5 (26)
\/1—%(14—2%)—&—(14—2%) + \/1—};f(/iixi—xi/m)—l—(mono—xo/na)}
_ 2
H’ H]  k; Ko
V1= 70+ ik*“‘ﬁ@] +7* { 1—i(w‘m>+(‘w+m)}
= = 2 2 (27)
H! H; Kiq Ko
V1-70+ ﬁlg”“ﬂﬂg)] +7° [ 1_5(M_M)+(_M+M>}
where v = m’;‘h/g)‘z is a small parameter proportional to the Yukawa-like gravitational potential V;, and Vj is written

in terms of a coupling parameter ay as V, = Gmy,mp ag)\2/2.



Finally, since v < 1 we can neglect terms proportional to it and rewrite the reflectivity as

IRP = ,
1-H'/H

1_mr
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(28)



