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Black hole ‘spectroscopy’, i.e. the identification of quasinormal mode frequencies via gravitational
wave observations, is a powerful technique for testing the general relativistic nature of black holes. In
theories of gravity beyond General Relativity perturbed black holes are typically described by a set
of coupled wave equations for the tensorial field and the extra scalar/vector degrees of freedom, thus
leading to a theory-specific quasinormal mode spectrum. In this paper we use the eikonal/geometric
optics approximation to obtain analytic formulae for the frequency and damping rate of the funda-
mental quasinormal mode of a generalised, theory-agnostic system of equations describing coupled
scalar-tensor perturbations of spherically symmetric black holes. Representing an extension of our
recent work, the present model includes a massive scalar field, couplings through the field deriva-
tives and first-order frame-dragging rotational corrections. Moving away from spherical symmetry,
we consider the simple model of the scalar wave equation in a general stationary-axisymmetric
spacetime and use the eikonal approximation to compute the quasinormal modes associated with
equatorial and non-equatorial photon rings.

I. INTRODUCTION

The first direct detections of gravitational waves
(GWs) from coalescing binary black holes by the
LIGO/Virgo collaboration have marked the beginning of
the GW astronomy era [1–3]. This new form of astron-
omy has allowed us to test General Relativity (GR), and
to constrain modifications to it, in a regime where the
theory’s full nonlinearity is manifest for the first time,
see e.g. [4–7].
One of the main goals of present and future GW ob-

servatories is to detect the ‘dying GW notes’ emitted by
the merger remnant as it relaxes to its final state. This
‘ringdown’ is characterized by a set of complex-valued
frequencies known as quasinormal modes (QNMs), which
depend only on the properties of the final black hole, that
is, its mass and spin. The detection of two or more QNMs
would allow us to do black hole ‘spectroscopy’ [8], that
is, to infer the properties of the remnant black hole by its
QNM spectra, analogously to how atomic elements can
be identified by their emission spectra [9–15].
From a fundamental physics standpoint, the most ap-

pealing aspect of black hole spectroscopy is the prospect
of testing the ‘Kerr hypothesis’, which states that all as-
trophysical BHs are described by the Kerr metric [16].
A violation of this hypothesis would hint towards new
physics beyond GR [17]. This has motivated considerable
effort in modeling the QNM spectrum of black holes out-
side the Kerr paradigm, ranging from model-independent
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parametrisations [18–23] to calculations done in specific
beyond-GR theories, e.g. [24–31].

In this paper we continue our programme started
in [32] (hereafter ‘Paper I’), where we used the
eikonal/geometric optics limit to calculate analytically
the quasinormal modes associated with coupled tensor-
scalar systems of wave equations which arise naturally
in theories beyond GR. Our goal is to extend Paper
I in two important directions: (i) by studying a more
general system of equations and (ii) by including the
leading-order slow rotation corrections. We also consider
stationary-axisymmetric spacetimes, where for simplic-
ity, we consider massless scalar field perturbations. We
use the eikonal limit to study the the QNMs of massless
scalar perturbations associated with equatorial and non-
equatorial photon rings which arise in certain non-Kerr
geometries.

The rest of this paper is organized as follows. In Sec. II
we introduce the coupled system of perturbation equa-
tions studied in this paper. In Sec. III we consider the
leading-order eikonal formulae that arises from this sys-
tem and in Sec. IV we introduce an effective potential as-
sociated with these perturbations. The QNM calculation
is completed in Sec. V, where we the consider subleading
order eikonal QNM corrections. These sections consti-
tute the main calculation of this paper and the main
results are summarized in Sec. VI. In the two following
sections we relax some of the assumptions made in the
previous sections. First, in Sec. VII we explore the possi-
bility of noncanonical eikonal QNMs. Next, in Sec. VIII,
we study the scalar eikonal QNMs in generic axisym-
metric and stationary backgrounds. Our conclusions and
possible directions for further work are found in Sec. IX.

Throughout this paper we use geometric units G =
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c = 1. Primes stand for radial derivatives d/dr. For
any function f(r) we use the abbreviation fz ≡ f(rz).
When enclosed within brackets, numeric indices label the
eikonal order of a given function, otherwise they repre-
sent slow-rotation expansions.

II. THE COUPLED WAVE EQUATIONS

We consider perturbed non-GR black holes described
by a general system of wave equations with two cou-
pled scalar-tensor field degrees of freedom {Θ, ψ}. Our
equations are supposed to be theory-agnostic but they
do include, for instance, the perturbation equations
of Schwarzschild black holes within the framework of
the generalised class of scalar-tensor theories discussed
in [19]. Although we assume spherically symmetric black
holes, we can also allow for the possibility of first-order
rotational corrections. After the separation of the angu-
lar part and assuming a ∼ e−iωt time dependence, the
system of coupled equations takes the form,

d2ψ

dx2
+
[
ω2 − 2mωΩ(r)− Vψ(r)

]
ψ = βψ(r)Θ, (1a)

d2Θ

dx2
+ g(r)

dΘ

dx
+
[
ω2 − 2mωΩ(r)− VΘ(r)

]
Θ =

= βΘ(r)ψ + b1(r)
dψ

dx
+ b2(r)

d2ψ

dx2
. (1b)

We have denoted with x = x(r) the tortoise coordi-
nate that eliminates the first order radial derivative in
the equation for the tensorial field ψ. The potential
Vψ in that equation can be assumed to be identical to
the Schwarzschild’s spacetime Regge-Wheeler or Zerilli
potential while the potential for the scalar field Θ (to
which we assign a mass m with associated inverse Comp-
ton wavelength µ ≡ m/~) is allowed to deviate from GR:

Vψ = {VRW, VZ}, (2)

VΘ = f(r)

[
ℓ(ℓ+ 1)

r2
α(r) +

2M

r3
ζ(r) + µ2

]

. (3)

We further assume that the functions {f, g, α, ζ} carry no
ℓ or ω dependence. In contrast, the coupling functions
{βψ, βΘ, b1, b2} are a priori expected to depend on both
of these parameters. For later convenience we define,

βψΘ = βψβΘ, γψΘ = βψb1, δψΘ = βψb2. (4)

The rotational terms −2mωΩ appearing in the above
equations have been added ‘by hand’ and correspond to
the leading-order spin term of the scalar wave equation in
GR, assuming a stationary-axisymmetric spacetime with
a gtϕ = −Ωr2 sin2 θ metric component (in GR the ‘frame-
dragging’ angular frequency turns out to be Ω = 2J/r3

where J is the black hole’s angular momentum [33]). As
a disclaimer, it should be pointed out that the possible
presence of rotational corrections in the coupling terms
has not been taken into account here. We should also

note that the leading order spin term in the gravitational
equation is expected to be significantly more complicated
than the one assumed here; this can be demonstrated by
taking the slow-rotation limit of the Sasaki-Nakamura
equation in the Kerr spacetime [34] or by deriving from
scratch the Regge-Wheeler and Zerilli equations with
leading-order rotational corrections [35]. However, the
eikonal limit of this term is −2mωΩ + O(ℓ−1) which
means that for the purpose of this work it will suffice
to assume the same rotational term in both equations.
The system (1) includes as a limiting case the pertur-

bation equations discussed in Paper I. Those equations
describe a massless scalar field without rotation and no
couplings through the field derivatives, i.e. µ = Ω =
γψΘ = δψΘ = 0. In addition, the remaining coupling
βψΘ was assumed to be ω-independent.
The eikonal ansatz

ψ(x) = A(x)eiS(x)/ǫ, Θ(x) = B(x)eiH(x)/ǫ, (5)

where ǫ≪ 1 is a bookkeeping parameter, leads to

AeiS/ǫ
[

− (S,x)
2

ǫ2
+ ω2 − 2mωΩ− ℓ(ℓ+ 1)Ṽ − 6M

r
Ṽ

+
i

ǫ

(
2A,x
A

S,x + S,xx

)

+
A,xx
A

]

= βψBe
iH/ǫ, (6)

and

BeiH/ǫ
[

− (H,x)
2

ǫ2
+ ω2 − 2mωΩ− Ṽ

{
ℓ(ℓ+ 1)α+ µ2r2

}

+
i

ǫ

{
2B,x
B

H,x + gH,x +H,xx

}

+
1

B
(B,xx + gB,x)

−2M

r
Ṽ ζ

]

= AeiS/ǫ
[

βΘ − (S,x)
2

ǫ2
b2 + b1A,x + b2A,xx

− i

ǫ

{
2A,x
A

b2S,x + b1S,x + b2S,xx

}]

, (7)

where Ṽ (r) = f(r)/r2. In the canonical case where the
coupling functions vanish at the event horizon and at
infinity, the appropriate QNM boundary conditions for
the phase function are,
{
S

ǫ
,
H

ǫ

}

→ −
√

ω2 − 2mωΩx, as x→ −∞, (8)

S

ǫ
→ ωx,

H

ǫ
→
√

ω2 − µ2 x, as x→ +∞. (9)

The strategy for manipulating the above system is to
solve Eq. (6) for B and insert the result in Eq. (7), ex-
pecting that the amplitudes and the exponential terms
will not appear in the final result (an alternative method
is discussed at the very end of this section). The eikonal
limit is to be taken afterwards in this final expression.
As already discussed in the eikonal calculation of Paper
I, we assume ℓǫ = mǫ = O(1) and ω = O(ℓ) (as first
established by Press [36]). The scalar mass µ is an in-
dependent parameter without any eikonal scaling. How-
ever, we are going to formally treat it as a leading order
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parameter since we would like our model to include scalar
fields with µ ∼ ω. In addition, we work to leading-order

in Ω. The resulting equation coming out of the system
(6)-(7) is:

ω4 + Ṽ
(
ℓ2α+ r2µ2

)
[

ℓ2Ṽ +
(S,x)

2

ǫ2

]

− ω2

[

Ṽ
{
ℓ2(1 + α) + µ2r2

}
+

1

ǫ2
{
(S,x)

2 + (H,x)
2
}
]

+
(H,x)

2

ǫ2
ℓ2Ṽ +

(S,xH,x)
2

ǫ4

− βψΘ − 1

A
(A,xγψΘ +A,xxδψΘ) +

βψ
A
ei(H−S)/ǫ (gB,x +B,xx) +

(S,x)
2

ǫ2
δψΘ − i

ǫ3

[

(gH,x +H,xx) (S,x)
2

+

(
2A,x
A

S,x + S,xx

)

(H,x)
2
]

+
1

ǫ

[

− 2iA,x
A

S,xṼ (ℓ2α+ r2µ2)− iṼ
{
gH,xℓ

2 +H,xxℓ
2 + S,xx

(
ℓ2α+ r2µ2

)} ]

+
1

ǫ2

[

ℓṼ
{
α(S,x)

2 + (H,x)
2
} ]

+ ω2

[

−ℓṼ (1 + α) +
i

ǫ

(

gH,x +
2A,x
A

S,x +H,xx + S,xx

)]

+ ℓṼ 2(2ℓ2α+ r2µ2)

− i

ǫ

[

S,x

(

γψΘ +
2A,x
A

δψΘ

)

+ S,xxδψΘ − 2B,x
A

ei(H−S)/ǫH,xβψ

]

+ 2mΩω
[ 1

ǫ2
{
(S,x)

2 + (H,x)
2
}
− 2ω2

+ Ṽ
{
ℓ2(1 + α) + µ2r2

} ]

+ 2mΩ

[

ℓṼ (1 + α)− i

ǫ

{

H,xx + S,xx + gH,x +
2A,x
A

S,x

}]

= 0 +O
(
ǫ−2
)
. (10)

This expression displays all O(ǫ−4) leading order and
O(ǫ−3) subleading order terms. All O(ǫ−2) terms (and
higher order) have been omitted as they will not play any
role in the subsequent analysis. Notice that all coupling
terms have been retained due to their yet unspecified
eikonal order. Eq. (10) contains a number of residual
coupling terms with the exponential ei(H−S)/ǫ, the am-
plitudes A,B and their derivatives appearing in them.
These terms are clearly undesirable because they inhibit
the proper implementation of the eikonal limit. Fortu-
nately, all these terms can be effectively removed from
the group of leading order terms by placing suitable con-
straints on the eikonal order of the coupling parameters
appearing in them. At the same time, we are interested
in calculating ‘canonical’ QNMs, which have a non-trivial
GR limit. This requirement simply means that no cou-
pling term in (10) should exceed O(ǫ−4). More exotic
scenarios where ω is allowed to scale with a higher power
of ℓ and the coupling terms can exceed O(ǫ−4) are dis-
cussed in Sec. VII.

According to this course of action we can remove the
term ∼ ǫ−1ei(H−S)/ǫ(B,x/A)S,xβψ by assuming βψ ≤
O(ℓ3). This scaling automatically pushes ‘under the
carpet’ the term ∼ βψe

i(H−S)/ǫ(gB,x + B,xx). For the
same reason the removal of the terms ∼ ǫ−2(S,x)

2δψΘ
and ∼ ǫ−1S,xγψΘ is accompanied, respectively, by the
constraints δψΘ ≤ O(ℓ2) and γψΘ ≤ O(ℓ3). These con-
straints will be subject to revision once we move to the
subleading order analysis.

Before proceeding with our eikonal analysis we should
emphasize that another approach to the solution of the
system (6)-(7) consists in the elimination of B together
with its derivatives B,x, B,xx in the latter equation. This
equivalent method leads to the same leading order-results
as the ones we discuss in the following section. The agree-
ment extends to the subleading-order results provided

S,xx = H,xx at the same point where the eikonal formu-
lae are to be evaluated (this is the ‘potential peak’ r = rm
where S,x = H,x = 0, see below for details).

III. LEADING-ORDER EIKONAL ANALYSIS

Having at our disposal the general expression (10) it is
straightforward to isolate the leading order terms:

ω4 − ω2

[

Ṽ
{
ℓ2(1 + α) + µ2r2

}
+

1

ǫ2
{
(S,x)

2 + (H,x)
2
}
]

+ Ṽ
(
ℓ2α+ r2µ2

)
[

ℓ2Ṽ +
(S,x)

2

ǫ2

]

+
(H,x)

2

ǫ2
ℓ2Ṽ

+
(S,xH,x)

2

ǫ4
− β

(0)
ψΘ +

(S,x)
2

ǫ2
δ
(0)
ψΘ − i

ǫ

[

S,xγ
(0)
ψΘ

−2B,x
A

ei(H−S)/ǫH,xβ
(0)
ψ

]

+ 2mΩω

[
1

ǫ2
{
(S,x)

2 + (H,x)
2
}

−2ω2 + Ṽ
{
ℓ2(1 + α) + µ2r2

} ]

= 0, (11)

where we have assumed the following eikonal expansions
for the coupling parameters,

βψΘ = β
(0)
ψΘ
︸︷︷︸

O(ℓ4)

+ β
(1)
ψΘ
︸︷︷︸

O(ℓ3)

+O(ℓ2), (12)

δψΘ = δ
(0)
ψΘ
︸︷︷︸

O(ℓ2)

+ δ
(1)
ψΘ
︸︷︷︸

O(ℓ)

+O(1), (13)
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and

βψ = β
(0)
ψ
︸︷︷︸

O(ℓ3)

+ β
(1)
ψ
︸︷︷︸

O(ℓ2)

+O(ℓ), (14)

γψΘ = γ
(0)
ψΘ
︸︷︷︸

O(ℓ3)

+ γ
(1)
ψΘ
︸︷︷︸

O(ℓ2)

+O(ℓ), (15)

with the underbraces (here and elsewhere in the text)
indicating the eikonal order of the different terms. We
note that the ℓ-scaling of the last two parameters will be
reduced by one order as a consequence of the constraints
placed by Eq. (27), see the following section.
The next step is to assume a ‘peak’ radius r = rm

where S,x = H,x = 0. Then Eq. (11) yields

ω4 − ω2Ṽm
[
ℓ2(1 + αm) + µ2r2m

]
+ ℓ2Ṽ 2

m

(
ℓ2αm + µ2r2m

)

− (β
(0)
ψΘ)m + 2mΩmω

[

Ṽm
{
ℓ2(1 + αm) + µ2r2m

}
− 2ω2

]

= 0. (16)

We observe that the dominant eikonal coupling terms

β
(0)
ψ , γ

(0)
ψΘ and δ

(0)
ψΘ do not contribute to the leading-order

frequency ω. In general βψΘ may be a function of ω. To
account for such possibility we assume that the leading-
order eikonal term can be written as,

β
(0)
ψΘ(r) = β4(r)ℓ

4 + β3(r)ℓ
3ω + β2(r)ℓ

2ω2. (17)

This expansion implicitly assumes that all ω-dependence
arises from time-derivatives of the perturbation variables
and that these derivatives are of second order at most
hence the absence of a ∼ ℓω3 term. With this expansion,
Eq. (16) becomes

ω4 − ω2
[

Ṽm{ℓ2(1 + αm) + µ2r2m}+ ℓ2β2m

]

− ℓ3β3mω + ℓ2
[

Ṽ 2
m(ℓ

2αm + µ2r2m)− ℓ2β4m

]

+ 2mΩmω
[

Ṽm
{
ℓ2(1 + αm) + µ2r2m

}
− 2ω2

]

= 0. (18)

Let us first consider the nonrotating limit (Ω = 0). Al-
though Eq. (18) can be solved analytically in this limit,
the resulting roots are too cumbersome. Instead, we fo-
cus on the simpler case β3 = 0 for which (18) is a bi-
quadratic with roots,

ω2
± =

1

2
ℓ2β2m +

1

2
Ṽm
[
ℓ2(1 + αm) + µ2r2m

]

±
{[

Ṽm{ℓ2(1 + αm) + µ2r2m}+ ℓ2β2m

]2

−4ℓ2
[

Ṽ 2
m(ℓ

2αm + µ2r2m)− ℓ2β4m

]}1/2

. (19)

Switching back to the system with rotation, we use in
(18) the following expansion for the frequency,

ω = σ± = ω± +mΩmω1. (20)

The rotational correction ω1 is easily obtained from the
O(Ω) part of (18),

ω1 =
Ṽm[ℓ

2(1 + αm) + µ2r2m]− 2ω2
±

Ṽm [ ℓ2(1 + αm) + µ2r2m ] + ℓ2β2m − 2ω2
±

= 1± ℓ2β2m

{[

Ṽm{ℓ2(1 + αm) + µ2r2m}+ ℓ2β2m

]2

− 4ℓ2
[

Ṽ 2
m(ℓ

2αm + µ2r2m)− ℓ2β4m

]}−1/2

, (21)

where the second equation follows from using (19).
In order to obtain a fully consistent O(Ω) result for

σ± we need to account for the rotational correction in
rm itself. Decomposing rm as

rm = r0 + r1, r1 = O(Ω), (22)

we ought to Taylor-expand the ω±(rm) roots in Eq. (19):

ω± = ω0 + ω′
0r1 +O(Ω2), ω0 ≡ ω±(r0). (23)

Then,

σ± = ω0 + ω′
0r1 +mΩ0ω1, (24)

where Ω0 = Ω(r0) and ω1 is given by (21) with rm → r0.

IV. THE EFFECTIVE POTENTIAL

To complete our leading-order analysis we need to de-
rive an equation for rm, to enable us to calculate σ±. To
do so, we first take a r-derivative of (11) and then set
r = rm (where S,x = H,x = 0), which yields

− ω2
[

Ṽm
(
ℓ2α′

m + 2µ2rm
)
+ Ṽ ′

m

{
ℓ2(1 + αm) + µ2r2m

} ]

+ ℓ2Ṽ 2
m

(
ℓ2α′

m + 2µ2rm
)
+ (Ṽ 2)′mℓ

2
(
ℓ2αm + µ2r2m

)

− (β
(0)
ψΘ)

′
m − ix′m

ǫ

(

S,xxγ
(0)
ψΘ − 2B,x

A
H,xxβ

(0)
ψ ei(H−S)/ǫ

)

m

+ 2mω
[

−2Ω′
mω

2 +ΩmṼm(ℓ
2α′

m + 2µ2rm)

+ (ΩṼ )′m
{
ℓ2(1 + αm) + µ2r2m

} ]

= 0, (25)

where x′ = dx/dr. The third line’s parenthesis term is
clearly undesirable and can only be removed by reducing
by one order the eikonal scaling of the coupling parame-
ters, such that hereafter

{β(0)
ψ , γ

(0)
ψΘ} = O(ℓ2). (26)

By doing so we are also dropping terms proportional
to {B,x, H,x} in the calculation of the previous section.
This has a harmless effect because these terms did not
contribute to the final result.
After the removal of the parenthesis term, Eq. (25)

can be identified as the radial derivative of an effective
potential,

U ′
eff(rm, ω) = 0, (27)
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defined as

Ueff(r, ω) = Veff(r, ω) + VΩ(r, ω), (28)

which we decomposed into nonrotating and rotating con-
tributions, defined respectively as,

Veff(r, ω) = ω2Ṽ
[
ℓ2(1 + α) + µ2r2

]

− ℓ2Ṽ 2
(
ℓ2α+ µ2r2

)
+ β

(0)
ψΘ, (29)

VΩ(r, ω) = 2mωΩ
[

2ω2 − Ṽ
{
ℓ2(1 + α) + µ2r2

}]

. (30)

The peak rm = r0 of the non-rotating system can be
associated with an extremum of the potential Veff , i.e.

V ′
eff(r0, ω0) = 0. (31)

The rotational correction r1 can be obtained by expand-
ing U ′

eff(rm, σ±) = 0 around (r0, ω0). We obtain,

[V ′′
eff r1 + V ′

eff,ω(ω
′
0r1 +mΩω1) + V ′

Ω]0 = 0, (32)

and

r1 = −
(

V ′
Ω +mΩω1V

′
eff,ω

V ′′
eff + ω′

0V
′
eff,ω

)

0

, (33)

where the subscript ‘0’ means that the functions inside
the brackets should be evaluated at (r0, ω0). This com-
pletes our leading-order eikonal analysis of Eqs. (1).

V. SUBLEADING-ORDER EIKONAL

ANALYSIS

After obtaining the leading-order eikonal formulae we
can now proceed to the subleading-order calcualtion. As
in Paper I, carrying the analysis to this order will yield
formulae for the imaginary part and the subleading real
part of the QNM frequencies.
The first step of the subleading analysis is the fre-

quency expansion,

ω = ωR + iωI = ω
(0)
R
︸︷︷︸

O(ℓ)

+ω
(1)
R + iωI
︸ ︷︷ ︸

O(1)

+O(ℓ−1), (34)

ω
(0)
R = σ±. (35)

The coupling functions are still expanded as in (12)-(15)

βψ = β
(0)
ψ
︸︷︷︸

O(ℓ2)

+ β
(1)
ψ
︸︷︷︸

O(ℓ)

+O(1), (36a)

γψΘ = γ
(0)
ψΘ
︸︷︷︸

O(ℓ2)

+ γ
(1)
ψΘ
︸︷︷︸

O(ℓ)

+O(1). (36b)

The subleading equation corresponds to the O(ǫ−3)
part of (10) after the coupling parameters expansions
have been inserted. When evaluated at r = rm that
equation becomes,

− (β
(1)
ψΘ)m + ℓṼ 2

m

[
2ℓ2αm + µ2r2m

]
− ℓṼm(1 + αm)(ω

(0)
R )2 + 2ω

(0)
R ω

(1)
R

[

2(ω
(0)
R )2 − Ṽm

{
ℓ2(1 + αm) + r2mµ

2
} ]

+ i
[

2ω
(0)
R ωI

{

2(ω
(0)
R )2 − Ṽm

[
ℓ2(1 + αm) + r2mµ

2
] }

+ (S,xx)m

{

(ω
(0)
R )2 − Ṽm

(
ℓ2αm + r2mµ

2
)
− (δ

(0)
ψΘ)m

}

+ (H,xx)m

{

(ω
(0)
R )2 − ℓ2Ṽm

} ]

+ 2mΩm

[

ℓṼm(1 + αm)ω
(0)
R + ω

(1)
R

{

Ṽm[ℓ
2(1 + αm) + µ2r2m]

−6(ω
(0)
R )2

}]

+ 2imΩm

[

ωI

{

Ṽm[ℓ
2(1 + αm) + µ2r2m]− 6(ω

(0)
R )2

}

− ω
(0)
R {(S,xx)m + (H,xx)m}

]

= 0. (37)

Eq. (37) has two features worth noticing. First, the

nonrotating part depends only on { β(1)
ψΘ, δ

(0)
ψΘ, µ

2 } while

{ β(0)
ψ , γ

(0)
ψΘ } are absent altogether. Second, the rotat-

ing part depends only on µ2, but implicitly on the β
(0)
ψΘ

through ω
(0)
R . The absence of γ

(0)
ψΘ means that the cou-

pling term b1(dψ/dx) does not contribute to the eikonal
QNM frequency [cf. (4)].

As in Paper I, the imaginary (real) part of (37) will

furnish ωI (ω
(1)
R ). However, the identification of these

two parts requires some prior input for the ω-dependence

of β
(1)
ψΘ and δ

(0)
ψΘ. We first consider the simplest sce-

nario in which these two coupling parameters are real
and frequency-independent.

A. Subleading order analysis with ω-independent

and real β
(1)
ψΘ and δ

(0)
ψΘ

Isolating the real and imaginary parts of (37) we find
respectively

2ω
(0)
R ω

(1)
R

[

2(ω
(0)
R )2 − Ṽm

{
ℓ2(1 + αm) + µ2r2m

} ]

− ℓṼm(1 + αm)(ω
(0)
R )2 − (β

(1)
ψΘ)m

+ ℓṼ 2
m( 2ℓ

2αm + µ2r2m ) + 2mΩm

[

ℓṼm(1 + αm)ω
(0)
R

+ ω
(1)
R

{

Ṽm[ℓ
2(1 + αm) + µ2r2m]− 6(ω

(0)
R )2

} ]

= 0,

(38)
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and

2ω
(0)
R ωI

[

2(ω
(0)
R )2 − Ṽm

{
ℓ2(1 + αm) + µ2r2m

} ]

+ (S,xx)m

[

(ω
(0)
R )2 − Ṽm

(
ℓ2αm + µ2r2m

)
− (δ

(0)
ψΘ)m

]

+ (H,xx)m

[

(ω
(0)
R )2 − ℓ2Ṽm

]

+ 2mΩm

[

ωI

{

Ṽm[ℓ2(1 + αm) + µ2r2m]− 6(ω
(0)
R )2

}

− ω
(0)
R {(S,xx)m + (H,xx)m}

]

= 0. (39)

This pair of equations can be algebraically solved for ω
(1)
R

and ωI . Next, we substitute [cf. Eqs. (20) and (35)]

ω
(0)
R = σ± = ω± +mΩmω1, (40)

and then expand to leading-order in rotation. These
steps lead to:

ωI = − 1

2ω±Wm

{

(H,xx)m

[

ω2
± − ℓ2Ṽm

]

+(S,xx)m

[

ω2
± − Ṽm(ℓ

2αm + µ2r2m)− (δ
(0)
ψΘ)m

]}

+
2mΩm

(2ω±Wm)2
(ω1 − 1) [ (H,xx)mCH + (S,xx)mCS ] ,

(41)

ω
(1)
R =

Bm

2ω±Wm
+

2mΩm

(2ω±Wm)2
(ω1 − 1)Em, (42)

where we defined the auxiliary functions

CH = ω2
±

[

2ω2
± + Ṽm{ℓ2(αm − 5) + µ2r2m}

]

+ ℓ2Ṽ 2
m

[
ℓ2(1 + αm) + µ2r2m

]
, (43)

CS = ω2
±

[

2ω2
± + Ṽm

{
ℓ2(1 − 5αm)− 5µ2r2m

}

− 6(δ
(0)
ψΘ)m

]

+ Ṽm
[
ℓ2(1 + αm) + µ2r2m

]

×
[

Ṽm(ℓ
2αm + µ2r2m) + (δ

(0)
ψΘ)m

]

, (44)

W = 2ω2
± − Ṽ

[
ℓ2(1 + α) + µ2r2

]
, (45)

and

B = ℓṼ
[

ω2
±(1 + α)− Ṽ (2ℓ2α+ µ2r2)

]

+ (βψΘ)
(1)
m ,

(46)

E = −ℓṼ 3(2ℓ2α+ µ2r2)[ℓ2(1 + α) + µ2r2]

− ℓṼ 2ω2
±

[
ℓ2(α2 − 10α+ 1) + (α− 5)µ2r2

]

+ Ṽ
[

β
(1)
ψΘ{ℓ2(1 + α) + µ2r2} − 2ℓ(1 + α)ω4

±

]

.

(47)

To proceed we must calculate the derivatives (S,xx)m
and (H,xx)m, which appear in Eq. (41). To do so, we
first write Eq. (11) in the following equivalent form (after

taking into account the revised ℓ-scaling of the coupling
parameters):

ω4 − Ueff(r, ω) +
(S,x)

2

ǫ2

[

Ṽ (ℓ2α+ µ2r2) + δ
(0)
ψΘ − ω2

]

− (H,x)
2

ǫ2

(

ω2 − ℓ2Ṽ
)

+
(S,xH,x)

2

ǫ4
+

2

ǫ2
mΩω

[
(S,x)

2

+(H,x)
2
]
= 0. (48)

This expression can be subsequently Taylor-expanded
around r = rm with the help of,

S,x(r) ≈ x′m(S,xx)mδr, H,x(r) ≈ x′m(H,xx)mδr,

Ueff(r, ω) ≈ ω4 +
1

2
U ′′
eff(rm, ω)δr

2, (49)

with δr ≡ r− rm. The resulting O(δr2) accurate expres-
sion with ω = σ± is,

− 1

2
U ′′
eff(rm, σ±) +

(x′m)2

ǫ2

[

(S,xx)
2
m

{

Ṽm(ℓ
2αm + µ2r2m)

+(δ
(0)
ψΘ)m − σ2

±

}

− (H,xx)
2
m

(

σ2
± − ℓ2Ṽm

)]

+
2m

ǫ2
Ωmω±(x

′
m)

2
[
(S,xx)

2
m + (H,xx)

2
m

]
= 0. (50)

At this point we need to provide a relation between
(S,xx)m and (H,xx)m. As we did in Paper I, we set

(S,xx)m = (H,xx)m. (51)

The same condition is enforced by the alternative method
discussed at the end of Section II. We can subsequently
solve Eq. (50) for (S,xx)

2
m and then make a slow-rotation

expansion to find

(S,xx)
2
m

ǫ2
= −

(
dr

dx

)2

m

D−1
m

[
1

2
(V ′′

eff)m +mω±Ω
′′
mWm

− 2mω±Ω
′
m(Ṽ

{
ℓ2(1 + α) + µ2r2

}
)′m

−mω±Ωm(ω1 − 1)
Am

Dm

]

, (52)

where (V ′′
eff)m ≡ V ′′

eff(rm, ω±) and

D = 2ω2
± − Ṽ

[
ℓ2(1 + α) + µ2r2

]
− δ

(0)
ψΘ , (53)

A = Ṽ 2(ℓ2α′′ + 2µ2)
[
ℓ2(α− 1) + µ2r2

]

+ 2
[

β
(0)′′
ψΘ − 2(Ṽ ′)2ℓ2

(
ℓ2α+ µ2r2

)]

+ δ
(0)
ψΘ(Ṽ [ℓ2(1 + α) + µ2r2])′′

+ Ṽ
[

2Ṽ ′
(
ℓ2α′ + 2µ2r

) {
ℓ2(α− 3) + µ2r2

}

+ Ṽ ′′
{
ℓ2(α− 1) + µ2r2

}2
]

. (54)

We take the square root so that (S,xx)m > 0 and once
again make a slow-rotation expansion to obtain,

(S,xx)m
ǫ

=
(dr/dx)m
(2Dm)1/2

|(V ′′
eff)m|1/2

[

1− Hm

V ′′
eff(rm, ω±)

]

,

(55)
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where

H = 2mω±Ω
′(Ṽ

{
ℓ2(1 + α) + µ2r2

}
)′

−mω±Ω
′′W +mω±Ω(ω1 − 1)

A
D . (56)

We can now return to Eq. (39) and solve for ωI . We
obtain,

ωI = − (S,xx)m
2ω±Wm

[

Dm − mΩm

ω±Wm
(ω1 − 1) Cm

]

, (57)

with

Cm ≡ CH + CS
= − 6ω2

± δ
(0)
ψΘ + 4β

(0)
ψΘ + Ṽ 2

[
ℓ2(α− 1) + µ2r2

]2

+ δ
(0)
ψΘṼ

[
ℓ2(1 + α) + µ2r2

]
. (58)

To obtain Cm we used ω4
± = Veff(rm, ω±) +O(Ω), where

Veff is given by Eq. (29).
Combining Eqs. (57) and (55) leads to,

ωI = − (dr/dx)m
2
√
2ω±

|(V ′′
eff)m|1/2 D

1/2
m

Wm

×
[

1− Hm

(V ′′
eff)m

− mΩm

ω±WmDm
(ω1 − 1) Cm

]

. (59)

Our final task for this subleading order analysis is to
introduce rm = r0 + r1 in (59) and expand around r0:

ωI = F0

[

1− H0

V ′′
eff(r0, ω0)

− mΩ0C0
ω0W0D0

(ω1 − 1)

]

+ F ′
0 r1,

(60)

where we have defined the function [here ω± = ω±(rm)]

F(rm) = − (dr/dx)m
2
√
2ω±

|(V ′′
eff)m|1/2D

1/2
m

Wm
, (61)

which yields the nonrotating limit of ωI at r = r0.

To complete our subleading analysis we also need to

apply the expansion rm = r0 + r1 to ω
(1)
R . The resulting

expression that follows from Eq. (42) is

ω
(1)
R =

B0

2ω±W0

[

1 +
mΩ0

2ω±W0
(ω1 − 1)

E0
B0

]

+

( B
2ω±W

)′

0

r1. (62)

B. Subleading order analysis with ω-dependent and

real β
(1)
ψΘ and δ

(0)
ψΘ

In this more general case, we assume expansions,

δ
(0)
ψΘ = δ2(r)ℓ

2 + δ1(r)ℓω + δ0(r)ω
2, (63a)

β
(1)
ψΘ = β

(1)
3 (r)ℓ3 + β

(1)
2 (r)ℓ2ω + β

(1)
1 (r)ℓω2, (63b)

where the functions {δi(r), β(1)
i (r)} are taken to be real.

We can then use this prescribed ω-dependence in Eq. (37)
and proceed exactly as described in the previous subsec-

tion to obtain ωI and ω
(1)
R . For brevity, we quote only

the final results:

ωI = F0

[

1− 1

V ′′
eff(r0, ω0)

{

2mω0Ω
′
0(Ṽ

{
ℓ2(1 + α) + µ2r2

}
)′0 −mω0Ω

′′
0W0 +mω0Ω0(ω1 − 1)

A0

D0

}]

+
2mΩ0 (dr/dx)0

(2ω0W0)2D1/2
0

|V ′′
eff(r0, ω0)|1/2

[

ℓω0(δ1)0

{

2ω2
±(3− 2ω1)− Ṽ0

[
ℓ2(1 + α0) + µ2r20

]}

+ 4(β
(0)
ψΘ)0(ω1 − 1)

− ℓ2(δ2)0(ω1 − 1)
{

6ω2
0 − Ṽ0

[
ℓ2(1 + α0) + µ2r20

]}

+ Ṽ 2
0 (ω1 − 1)

{
ℓ2(α0 − 1) + µ2r20

}{
ℓ2(α0 − 1) + µ2r20

}

+(δ0)0

{

2ℓ2Ṽ 2
0 (ω1 − 3)

(
ℓ2α0 + µ2r20

)
− 2(β

(0)
ψΘ)0(ω1 − 3)− ω2

0(3ω1 − 5)Ṽ0
[
ℓ2(1 + α0) + µ2r20

]} ]

+ F ′
0 r1,

(64)

ω
(1)
R = G0 +

2mΩ0

(2ω0W0)2
(ω1 − 1)

×
[

−ℓṼ 3
0 (2ℓ

2α0 + µ2r20)
{
ℓ2(1 + α0) + µ2r20

}
− ℓṼ 2

0 ω
2
0

{
ℓ2(α2

0 − 10α0 + 1) + (α0 − 5)µ2r20
}

+ ℓṼ0

{

ℓ4(β
(1)
3 )0 (1 + α0) + ℓ3(β

(1)
2 )0 ω0(1 + α0) + ℓ2

[

ω2
0(β

(1)
1 )0 (1 + α0) + (β

(1)
3 )0µ

2r20

]

+ ℓ(β
(1)
2 )0µ

2r20

−ω2
0

[

2(1 + α)ω2
0 − β

(1)
1 µ2r20

]

+ ℓω0(β
(1)
2 )0µ

2r20

}

+
ℓω0ω1

ω1 − 1

{

2(β
(1)
1 )0ω0 + ℓ(β

(1)
2 )0

}

W0

]

+ G′
0 r1. (65)
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where we defined,

G =
ℓ

2ω±W
[

ω2
±

{

Ṽ (1 + α) + β
(1)
1

}

− Ṽ 2
(
2ℓ2α+ µ2r2

)

+ ℓ2β
(1)
3 + ℓβ

(1)
2 ω±

]

. (66)

The results of the ω-independent case considered in
Sec. VA can be recovered by setting δ0 = δ1 = 0

and β
(1)
2 = β

(1)
1 = 0, and making the identifications

δ2 = δ
(0)
ψΘℓ

−2, β
(1)
3 = β

(1)
ψΘℓ

−3 in Eqs. (64)-(65).

VI. SUMMARY OF EIKONAL FORMULAE

For reference, here we review the eikonal results of
Secs. III-V for the complex QNM frequency ω = ωR+iωI
of the coupled system (1).
The frequency ω has the eikonal form,

ω = ω
(0)
R + ω

(1)
R + iωI +O(ℓ−1), (67)

where each contribution to ω has a nonrotating and ro-

tating contributions. For ω
(0)
R we have:

ω
(0)
R = ω0 + ω′

0r1 +mΩ0ω1, (68)

where ω0 = ω±(r0) is given by Eq. (19) and ω1 by

Eq. (21). As for ωI and ω
(1)
R , they are given by Eqs. (64)

and (65) respectively, when the various coupling func-
tions are allowed to have an ω-dependence. In the par-
ticular case of ω-independent coupling functions, ωI and

ω
(1)
R are given by Eqs. (60) and (62), respectively. To

evaluate these expressions one needs to know the loca-
tion of the effective potential peak rm in the nonrotat-
ing limit r0 [Eq. (31)] and its shift due to rotation r1
[Eq. (33)]. The radius rm = r0 + r1 is defined as the
common extremum of the eikonal phase functions i.e.
(S,x)m = (H,x)m = 0 and the corresponding potential
is given by Eq. (28).
The above results were obtained assuming the follow-

ing eikonal scaling for the coupling functions,

βψΘ = O(ℓ4), βψ = O(ℓ2), (69a)

γψΘ = O(ℓ2), δψΘ = O(ℓ2), (69b)

where, in general, at each ℓk-order, the coupling func-
tions can be expanded in a sum over ℓiωj, such that
i + j = k. These scalings are a necessary condition for
the proper implementation of the eikonal approximation,
see discussion below Eq. (10).
To ensure consistency between two alternative meth-

ods for combining the equations of system (1) in the
eikonal limit, and that the particular limit of Paper I
can be recovered, we imposed (S,xx)m = (H,xx)m on the
phase functions, see Eq. (5).

VII. A MORE EXOTIC CLASS OF QNMS

So far we have been working with the conventional
eikonal scaling ω = O(ℓ). In this section we explore the
implications of assuming a ‘non-Press’ QNM frequency
that scales as ω = O(ℓσ) with σ > 1 while keeping the
same balance ǫℓ = O(1) between the two eikonal parame-
ters. For simplicity, we also assume a non-rotating black
hole. By suspending all previous assumptions about the
eikonal order of the coupling functions, the general ex-
pression (10) now yields the leading order equation,

ω4−β(0)
ψΘ−

i

ǫ

[

γ
(0)
ψΘS,x + δ

(0)
ψΘS,xx

]

+
(S,x)

2

ǫ2
δ
(0)
ψΘ = 0, (70)

where for the reasons explained in Section II we have dis-
carded all terms that depend on A,B and their deriva-
tives. Evaluating this expression at r = rm gives,

ω4 − (β
(0)
ψΘ)m − i

ǫ
(δ

(0)
ψΘ)m(S,xx)m = 0. (71)

This equation offers more than one possibility for obtain-
ing ‘exotic’ QNMs. For instance, assuming the first two

terms to be the dominant ones [i.e. β
(0)
ψΘ = O(ℓ4σ)] in the

eikonal limit we have,

ω4 = (β
(0)
ψΘ)m. (72)

In this case we assume an expansion,

β
(0)
ψΘ = β4(r)ℓ

4σ + β3(r)ℓ
4σ−1ω + β2(r)ℓ

4σ−2ω2. (73)

Then,

ω4 − β2mℓ
4σ−2ω2 − β3mℓ

4σ−1ω − β4mℓ
4σ = 0. (74)

Assuming for simplicity β3 = 0, we find the roots

ω2
± =

1

2
ℓ2σ
[

β2mℓ
2(σ−1) ±

√

4β4m + β2
2mℓ

4(σ−1)

]

.

(75)

Other possibilities include (β
(0)
ψΘ)m = 0 or (δ

(0)
ψΘ)m = 0,

assuming each frequency-dependent coupling term to be
the dominant one in (71).
Clearly, the QNMs discussed in this section, assuming

they exist in some theory of gravity, they should become
degenerate, ω → 0, in the GR limit of our model.

VIII. BEYOND SPHERICAL SYMMETRY

In this section we abandon our basic assumption of
spherical symmetry and go on to consider the axisym-
metric and stationary spacetime

ds2 = gttdt
2+grrdr

2+2gtϕdtdϕ+gθθdθ
2+gϕϕdϕ

2, (76)

where gµν = gµν(r, θ). Given the unavailability of black
hole perturbation equations for a general spacetime of
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this type (even within GR) our analysis here is necessarily
less ambitious than in the previous sections.
Our principal objective is to study the eikonal QNMs

of the massless scalar equation,

∇µ∇µΦ = g−1/2∂µ

[

g1/2gµν∂νΦ
]

= 0. (77)

where g = −det(gµν). As we have already seen, the lead-
ing order terms are supplied by the second-order deriva-
tives of the field,

gµν∂2µνΦ ≈ 0. (78)

Expanding this expression and assuming Φ ∼ eimϕ−iωt

we obtain,

−gttω2Φ+
1

grr
∂2rΦ+

1

gθθ
∂2θΦ+2mωgtϕΦ−m2gϕϕΦ ≈ 0,

(79)
with gtt = −gϕϕ/D, gϕϕ = −gtt/D, gtϕ = gtϕ/D, and
D = g2tϕ − gttgϕϕ. Our eikonal ansatz is,

Φ(r, θ) = A(r, θ)eiS(r,θ)/ǫ, (80)

and at leading order we have,

∂2rΦ ≈ − (S,r)
2

ǫ2
AeiS/ǫ, ∂2θΦ ≈ − (S,θ)

2

ǫ2
AeiS/ǫ. (81)

Taking m ≫ 1 with ǫm ∼ O(1) and ω ∼ O(m), the
leading-order eikonal wave equation yields

gϕϕ
ω2

m2
− D

ǫ2

[
(S,r)

2

grr
+

(S,θ)
2

gθθ

]

+2gtϕ
ω

m
+ gtt = 0. (82)

Assuming the existence of a point (r, θ) = (r0, θ0) where
S,r = S,θ = 0, this equation becomes a binomial for ω/m:

Q(r0, θ0, ω) ≡
(

gϕϕ
ω2

m2
+ 2gtϕ

ω

m
+ gtt

)

0

= 0, (83)

with solutions

ω± = m

(−gtϕ ±D1/2

gϕϕ

)

0

. (84)

Following the logic of the spherical calculation, the equa-
tions for (r0, θ0) can be derived by taking the r and θ
derivatives of (82) and setting ω = ω±, i.e.

Q,r(r0, θ0, ω±) = 0 = Q,θ(r0, θ0, ω±). (85)

Inspection of these equations reveals that the QNMs (84)
are the ones associated with the spacetime’s photon rings,
equatorial or non-equatorial alike, see [37] for more de-
tails. Indeed, the geodesic potential for photons is

Vgeod(r, θ, b) =
1

D

(
gttb

2 + 2gtϕb+ gϕϕ
)
, (86)

where b is the impact parameter. With the familiar
eikonal identification

ω± =
m

b
, (87)

the preceding conditions (83) and (85) are equivalent to

Vgeod = 0, Vgeod,r = 0, Vgeod,θ = 0, (88)

that describe a photon ring of radius r = r0 located at a
latitude θ = θ0. For example, as discussed in Ref. [37],
such photon rings appear above some spin threshold in
two very familiar non-separable stationary-axisymmetric
metrics, the Johannsen-Psaltis [38] and Hartle-Thorne
spacetimes [39, 40]. In these two examples the emergence
of non-equatorial photon rings appears to be closely re-
lated to the two-lobed shape of the event horizon [37].
Eq. (82) could admit more solutions than the ones asso-

ciated with photon rings. An example is provided by the
Kerr spacetime where the ‘non-equatorial’ QNMs with
|m| < ℓ are known to be associated with non-equatorial
spherical photon orbits in the eikonal limit [41, 42]. Given
the intimate relation between the existence of spherical
orbits and the separability of the geodesic equations (see
Ref. [37] for a detailed discussion) it is not surprising
that the separability of (82) is the key reason behind the
presence of another family of eikonal QNM solutions.
As a case in point we hereafter assume a Kerr metric

and write S(r, θ) = Sr(r) + Sθ(θ). Then Eq. (82) indeed
separates, leading to the pair of equations,

(∆Sr,r)
2 = a2 +∆C +

1

2
λ2
[
2r4 + a4 + (3r + 2M)a2r

]

− 4aMrλ ≡ R(r, λ, C), (89)

(Sθ,θ)
2 = −

(

C +
1

sin2 θ

)

+ a2λ2
(

cos2 θ − 1

2

)

, (90)

where C is the separation constant and λ ≡ ω/m. It
is easy to see that the angular equation can be matched
term-by-term to the angular photon geodesic equation,

u2θ = Q− b2 cot2 θ + a2 cos2 θ, (91)

where Q = Q/E2 is the rescaled Carter constant and
b = L/E is the impact parameter (E,L are the orbital
energy and angular momentum per unit mass). The two
equations are identical if we identify,

λ =
1

b
, C = −1− λ2

(

Q+
1

2
a2
)

,
Sθ,θ
λ

= uθ. (92)

Using the same relations between eikonal and geodesic
parameters we can show that the radial equation (89)
exactly matches the radial geodesic photon equation [43].
Assuming a radius r = r0 where Sr,r(r0) = 0, we have,

R0 = λ2
[
r40 + (r0 + 2M)a2r0 −∆0Q

]
− 4aMr0λ

− r0(r0 − 2M) = 0,

1

2
R′

0 = λ2
[
2r30 + (r0 + 2M)a2 − (r0 −M)Q

]

− 2aMλ+M − r0 = 0. (93)
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These are the same equations that describe a spherical
photon orbit of radius r0 with parameters b,Q given by
the previous relations. The best way of proceeding is to
work with the combination R0 − r0R

′
0 = 0. This yields,

λ20 =
r20

r20(3r
2
0 + a2)− (r20 − a2)Q . (94)

We can subsequently solve R0 = 0 with respect to the
linear λ term, take its square and substitute λ2 → λ20.
The outcome of this exercise is,

Q0 =
r30 [ 4a

2M − r0(r0 − 3M)2 ]

a2(r0 −M)2
. (95)

Using this in (94),

λ0 =
ω0

m
=

a(r0 −M)

r20(r0 − 3M) + a2(r0 +M)
. (96)

These expressions, with their exact correspondence to
spherical photon orbits, represent the leading-order
eikonal formulae for non-equatorial Kerr QNMs. An
analysis along these lines could be carried out for any
other separable spacetime, for example, the deformed
Kerr metric of Ref. [44].

IX. CONCLUDING REMARKS

This paper’s eikonal analysis of the fundamental QNM
of spherically symmetric black holes generalises the re-
sults of Paper I [32] by considering additional couplings
between the tensorial gravitational field and the (poten-
tially massive) scalar field and, to some extent, the pres-
ence of slow rotation.
The resulting eikonal expressions, although somewhat

unwieldy and markedly more complicated than those of
Paper I, should encompass a large class of black holes be-
yond GR. The algebraic complexity of our results is the
main reason why we have not attempted a similar anal-
ysis (although such analysis should be feasible) for the
coupled system of three black hole perturbation equa-
tions that appear in generalised vector-tensor [19] and in
Einstein-Maxwell-dilaton theories [29]. As was the case
for the perturbation equations of Paper I, we have been
able to show that the eikonal QNM can be associated
with the peak of an effective potential although no cor-
respondence to a geodesic photon ring appears to exist
(this issue was explored in detail in [32]).
As a secondary objective of our eikonal analysis, we

have explored the possibility of having ‘exotic’ QNMs;
the frequency of such modes is only a function of the cou-
pling parameters that appear in the perturbation equa-
tions and becomes trivial (i.e. ω → 0) in the GR limit.

Our toy model of eikonal scalar QNMs in a stationary-
axisymmetric black hole spacetime has revealed a number
of interesting properties. There is a class of modes associ-
ated with geodesic photon rings; these rings are typically
found in the equatorial plane (as in the Kerr spacetime)
but could also appear in pairs off the equatorial plane (as
in, for example, the Johannsen-Psaltis spacetime [38]).
As thoroughly discussed in Ref. [37], these non-equatorial
photon rings are likely to be the hallmark of geodesi-
cally non-separable spacetimes describing non-Kerr black
holes. As far as we are aware, this paper provides the first
calculation (albeit within the eikonal approximation) of
the QNMs associated with these photon rings. If black
holes with non-equatorial photon rings exist, their ring-
down signals could show interference between the ring-
down signals of the individual photon rings.
The second class of QNMs in stationary-axisymmetric

black holes is the one associated with non-equatorial
spherical photon orbits. These orbits/modes appear pro-
vided the spacetime is separable with a Carter-like con-
stant; in the case of Kerr black holes, they correspond to
the well-known ‘non-equatorial’ |m| < ℓ modes. Similar
QNMs could characterize the black holes of dynamical
Chern-Simons gravity where geodesic motion has been
conjectured to be endowed with a higher-than-two rank
Killing tensor [45].
The present work could be extended in a number of

ways. The most obvious one is the application of our
eikonal formulae to black holes of particular theories of
gravity where QNM numerical data are available. Un-
fortunately, a full numerical solution of the wave equa-
tions considered in this paper is still lacking in the lit-
erature. The only comparison performed so far concerns
the less general equations of Paper I which can be used
to model the QNMs of Schwarzschild black holes in dy-
namical Chern-Simons gravity. The outcome of this ex-
ercise has demonstrated the relatively high accuracy of
the eikonal results. Another interesting possibility is to
implement the eikonal formulae as a generic parametrised
scheme with the aim of constraining the coupling between
the tensor and scalar degrees of freedom. Thinking fur-
ther ahead, the eikonal techniques of this paper should
be directly applicable to the perturbation equations de-
scribing rapidly rotating black holes beyond GR when
such equations are derived at some point in the future.
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