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We study image formation with the solar gravitational lens (SGL). We consider a point source
that is positioned at a large but finite distance from the Sun. We assume that an optical telescope
is positioned in the image plane, in the focal region of the SGL. We model the telescope as a convex
lens and evaluate the intensity distribution produced by the electromagnetic field that forms the
image in the focal plane of the convex lens. We first investigate the case when the telescope is
located on the optical axis of the SGL or in its immediate vicinity. This is the region of strong
interference where the SGL forms an image of a distant source, which is our primary interest.
We derive analytic expressions that describe the progression of the image from an Einstein ring
corresponding to an on-axis telescope position, to the case of two bright spots when the telescope is
positioned some distance away from the optical axis. At greater distances from the optical axis, in
the region of weak interference and that of geometric optics, we recover expressions that are familiar
from models of gravitational microlensing, but developed here using a wave-optical treatment. We
discuss applications of the results for imaging and spectroscopy of exoplanets with the SGL.

I. INTRODUCTION

According to Einstein’s general theory of relativity, as light travels in the vicinity of the Sun, light ray trajectories
are bent towards the Sun by an angle of θ = 2rg/b = 1.75 (R⊙/b) arcseconds, where rg is the Schwarzschild radius
of the Sun, b is the trajectory’s impact parameter and R⊙ is the solar radius. In this context, the Sun acts a
lens by focusing light at heliocentric ranges beyond b2/(2rg) = 547.6 (b/R⊙)

2 AU, by amplifying its brightness by
a factor of 4π2rg/λ = 2.11 × 1011 (1µm/λ), where λ is the observable wavelength, and also by naturally providing
an angular resolution of λ/(2R⊙) ∼ 0.2 (λ/1µm) nanoarcseconds [1, 2]. This behavior of the solar gravity field is
known as the solar gravitational lens (SGL) [1–3]. Although the focal region of the SGL begins at large heliocentric
distances, successful deep space missions such as Voyager 1/2 and Pioneer 10/11 demonstrated that the capability
exists to build spacecraft that can travel to the SGL focal region, operate there successfully, while maintaining reliable
communication with the Earth. This opens up the possibility of using the SGL to build an astronomical facility with
tremendous light gathering power and angular resolution [4].
The most conventional concept of exploiting the SGL envisions an optical telescope in the SGL’s image forming

region, looking in the direction of the Sun and observing the Einstein ring formed by light from a distant source
around the Sun. As light from the Sun itself will likely dominate any faint light from a distant source, the optical
telescope must have sufficient angular resolution to resolve the solar disk, to make it possible to block sunlight using
a coronagraph. This necessitates the use of a telescope with a meter-class or larger aperture.
Conceptually, then, the study of the SGL can be broken down into several discrete phases, beginning with the

study of plane waves (i.e., light from a point source at infinity) deflected by a spherical, transparent Sun [2]. Building
on this foundation, we can introduce the opaque solar disk and its shadow region [5, 6], we can study the effects on
light by the solar corona [3, 7], and eventually, we can extend our efforts to study light from extended sources at a
finite distance and the resulting image formed by the SGL [8]. That work led to [9] where we obtained expressions to
characterize the power of the signal that is received by a telescope from a distant object, such as an exoplanet.
The next step is to consider the intensity distribution pattern of this signal that appears in the focal plane of the

optical telescope, as a function of the telescope’s displacement from the optical axis of the SGL. Therefore, our goal in
the present paper is to investigate what such an imaging telescope “sees” both in the immediate vicinity of the focal
line (the imaginary line connecting the distant source to the center of the Sun and extending towards the focal region
on the other side of the Sun) and also far from the focal line, in the geometric optics region. The former is of great
interest for direct high-resolution imaging and spectroscopy of faint sources with the SGL; the latter establishes a
direct connection between our work and studies of gravitational microlensing. This is done to demonstrate the power
of the wave optical treatment in describing the scattering of light on a gravity field. Ultimately, our objective is to
derive expressions that can be used to model anticipated signals from realistic sources, focused and amplified by the
SGL. This is needed for both to evaluate the potential science return from a deep-space mission to the focal region of
the SGL and also to develop a set of requirements needed to design such a mission [4].
Our paper is organized as follows: In Section II, we provide the general approach on how to evaluate the signal
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FIG. 1: The different optical regions of the SGL (adapted from [8]).

that is observed in the focal plane of a telescope and how to evaluate the corresponding intensity distribution pattern
in that focal plane. Section III introduces the SGL and the solution for the electromagnetic (EM) field in the
image plane. We discuss modeling the signal from a point source as it is received in the image plane of an optical
telescope. We consider cases with both small and large departures from the optical axis, while staying within the
strong interference region of the SGL. In Section IV we consider imaging in the geometric optics and weak interference
regions. In Section V we discuss results and avenues for the next phase of our investigation of the SGL.

II. IMAGE FORMATION BY AN OPTICAL TELESCOPE

To describe the imaging process with the SGL, we position an imaging telescope in the strong interference region
formed behind the Sun in the immediate vicinity of the SGL’s optical axis. In the case of a point source, the optical
axis is an imaginary line that connects the point source and the center of the Sun and extends behind the Sun into
strong interference region, see Fig. 1. This is the region where the SGL forms an image of a distant source. We take
the source to be at the distance of z0 from the Sun and position the telescope at heliocentric distance z, see Fig. 2.
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FIG. 2: Imaging a point source with the SGL. The source is positioned on the optical axis at the distance z0 from the Sun.
The image plane is at the heliocentric distance z. Rays with different optical paths produce a diffraction pattern in the image
plane that is observed by an imaging telescope.

The relevant geometry is described by several parameters, such as x0 being the current position of an optical
telescope in the SGL’s image plane, x, being any point on the same plane, and xi, being a point on the focal plane
of the optical telescope. These positions are given as

{x0} ≡ (x0, y0) = ρ0
(

cosφ0, sinφ0

)

= ρ0n0, (1)

{x} ≡ (x, y) = ρ
(

cosφ, sinφ
)

= ρn, (2)

{xi} ≡ (xi, yi) = ρi
(

cosφi, sinφi

)

= ρini. (3)

To produce images with the SGL, we represent an imaging telescope by a convex lens with focal distance f and
position the telescope in the interference region (see Figs. 1–3). Following [10], the EM field at a particular location
xi = (xi, yi) in the focal plane of the lens is given as

(

Eρ

Hρ

)

=

(

Hφ

−Eφ

)

= E0A(xi,x0)

(

cosφ

sinφ

)

eiΩ(r,t), (4)
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FIG. 3: Imaging a point source with the SGL as seen by a telescope. The telescope is represented by a convex lens with
aperture d and a focal length f . The telescope optics projects an image of the Einstein ring around the Sun in its focal plane.
Positions in the SGL image plane, (x, y), and the telescope’s focal plane, (xi, yi), are also shown.

where Ω(r, t) is the time-dependent phase of a plane wave.
The quantity A(xi,x0) in (4) is the complex amplitude of the EM wave as it observed on the focal plane of the

optical telescope for a particular telescope position of x0. If the amplitude at the entrance of the telescope, A(x,x0),
is known for any location x on the image plane (in the case of imaging with the SGL, this amplitude is well-known,
e.g., see [1, 2, 8]), then the wave’s amplitude at the focal plane of the telescope is determined by the Fresnel–Kirchhoff
diffraction formula [10]:

A(xi,x0) =
i

λ

∫∫

|x|2≤(d/2)2

A(x,x0)e
−i k

2f |x|2 e
iks

s
d2x. (5)

The function e−i k
2f |x|2 = e−i k

2f (x2+y2) represents the action of the convex lens that transforms incident plane waves
into spherical waves focused at the focal point. Assuming that the focal length is sufficiently large compared to the
telescope aperture, we may approximate the optical path s as s =

√

(x − xi)2 + (y − yi)2 + f2 ∼ f +
(

(x − xi)
2 +

(y − yi)
2
)

/2f . This allows us to present (5) as

A(xi,x0) = −eikf(1+x
2
i/2f

2)

iλf

∫∫

|x|2≤( 1
2
d)2

d2xA(x,x0)e
−i k

f (x·xi). (6)

Therefore, the presence of a convex lens is equivalent to a Fourier transform of the complex wave amplitude [10].
Using these results, we can compute the Poynting vector for the EM field emitted by a point source and received at

xi in the telescope image plane. Given the form of the EM field, (4), the Poynting vector will have only one nonzero
component, Sz . Using the overbar to denote time-averaging, we compute Sz from (4) as

Sz(xi,x0) =
c

4π
[ReE× ReH] =

cE2
0

4π

(

Re[A(xi,x0)eiΩ(t)]
)2
. (7)

As a result, once the amplitude of the EM field in the telescope image plane, A(xi,x0), is known, using (7) we can
compute the energy deposited in the image plane and evaluate the corresponding intensity distribution on the focal
plane of the telescope that constitutes the observed image.

III. MODELING THE EM SIGNAL IN THE FOCAL PLANE

A. EM field in the interference region of the SGL

In [8], we considered light from an extended source at a finite distance, r0 from the Sun. We parameterize the problem
using a spherical coordinate system (r, θ, φ) that is aligned with a preferred axis: a line connecting a preselected (e.g.,
central) point in the source to the center of the Sun. We also use a cylindrical coordinate system (ρ, z, φ), with the
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z-axis corresponding to the preferred axis. Also, we characterize points in the SGL image plane according to (1)–(3).
Here we are interested in the details of the image formation process and, thus, consider imaging of a point source.
To describe the imaging process, we consider the EM field in the strong interference region just in front of the

telescope. For that, we consider light, that is to say, a high-frequency EM wave (i.e., neglecting terms ∝ (kr)−1

where k is the wavenumber) and for r ≫ rg (where rg = 2GM⊙/c
2 is the Sun’s Schwarzschild radius) and derive the

components of the EM field near the optical axis. Following [8], we have that for a point source located on the optical
axis at the distance of z0 from the Sun, up to terms of O(ρ2/z2,

√

2rgz/z0), the z-component of the EM field which

moves in the z-direction (Fig. 1) behaves as (Ez , Hz) = O(ρ/z,
√

2rgz/z0), while the other components are given as

(

Eρ

Hρ

)

=

(

Hφ

−Eφ

)

= E0A(x,x0)

(

cosφ

sinφ

)

eiΩ(t), Ω(t) = k
(

r + r0 + rg ln 2k(r + r0)
)

− ωt, (8)

where the amplitude of the EM wave is given as [2, 8]

A(x,x0) =
√
µ0J0

(

k

√

2rg
z

|x+ x0|
)

, µ0 = 2πkrg. (9)

Note that these expressions are valid for forward scattering when θ+ b/z0 ≪
√

2rg/r, or when the deviation from the
optical axis is small, 0 ≤ ρ . rg.
Substituting the complex amplitude A(x,x0) from (9) into expression (6), we see that the amplitude of the EM

field on the focal plane of an imaging telescope takes the following form:

A(xi,x0) = −√
µ0

eikf(1+x
2
i /2f

2)

iλf

∫∫

|x|2≤(d/2)2

d2xJ0
(

α|x+ x0|
)

e−iηi(x·ni), (10)

where we introduced the following convenient notations for the two relevant spatial frequencies:

α = k

√

2rg
z

, ηi = k
ρi
f
, (11)

where α describes the spatial frequency corresponding to the fixed position of the Einstein ring and ηi is the variable
spatial frequency for a particular location on the imaging sensor. As we see below, the interplay between these two
frequencies governs the image formation process in the strong interference region of the SGL.
First, we observe that for optical frequencies, the spatial frequency α introduced by (11) is rather high, behaving

as α = 48.98 (1µm/λ)(650AU/z)
1
2 m−1. We also note that the size of the combination of (αρ0) is what determines

the behavior of the Bessel function in (10). This function’s behavior offers a natural approach to define three regions
exhibiting different optical properties:

1) Very small deviations, characterized by αρ0 ≪ 1, representing displacements from the optical axis where ρ0 is in

the range 0 ≤ ρ0 ≪ 1/α = 2.04 × 10−2 (λ/1µm)(z/650AU)
1
2 m ≈ 2 cm. This is the case when the permitted

displacements are within the central peak of J0, which is well within the nominal telescope aperture of d = 1m;

2) moderate deviations, αρ0 ≈ 1, representing displacements in the range of 1/α ≤ ρ0 ≈ 10/α ≈ 20 (z/650AU)
1
2 cm,

also still less than d/2; and finally

3) large deviations, αρ0 ≫ 1, described as ρ0 > 10/α ≈ 20 (z/650AU)
1
2 cm.

The second case is interesting, but difficult to study analytically. If needed, this case can be studied using numerical
evaluation of the integral in (10). We also note that this case is of limited practical importance for imaging with the
SGL, where we the use of telescopes with meter-class apertures [4].
Fortunately, given the fact that the spatial frequency α is rather large, for a very small displacement ρ0 from the

optical axis, there is a rapid transition between the regimes of the first and third case. Therefore, without a significant
loss of generality we can restrict our study to these two cases: that is, i) the case when the telescope is positioned at a
very small distance with respect to the optical axis or ρ0 ≪ d and ii) the case when the displacement of the telescope
is large or ρ0 ≥ d. To be more specific, the relevant regimes are given by the relationships αr0 ≪ 1 and αρ0 ≫ 1.
Based on the analysis of the point-spread function (PSF) in [2], to satisfy the condition αρ0 ≪ 1, the displacement

from the optical axis must be very small, 0 < ρ0 ≪ 2 (z/650AU)
1
2 cm, all within the central peak of the PSF. Starting

from ρ0 & 0.5 (z/650AU)
1
2 m, we enter the regime of αρ0 ≫ 1.

In the next two subsections, we develop approximate solutions to (10) for these two regimes with their distinct
behavior.
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B. Small displacements from the optical axis

We first consider the situation of small telescope displacements from the optical axis, |x0| ≪ d, also preserving the
inequality, αρ0 ≪ 1. To evaluate the integral (10), utilizing the fact that ρ0 ≪ |x|, we expand |x + x0| to first order
in x0 in the argument of the Bessel function:

|x+ x0| = ρ+O(ρ0). (12)

This allows us to evaluate the resulting integral:

∫ d/2

0

ρdρ

∫ 2π

0

dφJ0(αρ)e
−iηiρ cos(φ−φi) = π

(d

2

)2
(

2

(α2 − η2i )
1
2d

(

αJ0(ηi
1
2d)J1(α

1
2d)− ηiJ0(α

1
2d)J1(ηi

1
2d)
)

+O
(

αρ0
)

)

.(13)

Substituting this result in (10), we obtain the amplitude of the EM wave on the focal plane of the optical telescope:

A(xi) = i
√
µ0

(kd2

8f

)

(

2

(α2 − η2i )
1
2d

(

αJ0(ηi
1
2d)J1(α

1
2d)− ηiJ0(α

1
2d)J1(ηi

1
2d)
)

+O
(

αρ0
)

)

eikf(1+p
2/2f2). (14)

To evaluate the intensity distribution corresponding to the EM signal deposited in the optical telescope’s focal plane,
we use (14) in (7). After averaging over time, we get the time-averaged Poynting vector (i.e., intensity) in the focal
plane of the optical telescope, given to O

(

α2ρ20
)

as:

Sz(ρi) =
cE2

0

8π

(kd2

8f

)2

µ0

(

2

(α2 − η2i )
1
2d

(

αJ0(ηi
1
2d)J1(α

1
2d)− ηiJ0(α

1
2d)J1(ηi

1
2d)
)

)2

. (15)

Expression (15) is always finite, reaching its maximum at the Einstein ring for which ηi = α, see discussion in [8].
Fig. 4 (left) shows the intensity distribution corresponding to the result (15).
Result (15) extends previously known results on the case of imaging with the SGL. In fact, taking the limit of

rg → 0 (or, equivalently α → 0) in (15), and remembering the definitions of µ0 from (9) and of α and ηi from (11),
we obtain the Poynting vector that shows the classic Airy pattern characterizing the optical telescope:

S0
z (ρi) =

cE2
0

8π

(kd2

8f

)2
(

2J1
(

1
2kd

ρi

f

)

1
2kd

ρi

f

)2

. (16)

We note that (15) is also finite when ρi = 0 (or, equivalently, ηi = 0), with the corresponding value computed as

Sz(0) =
cE2

0

8π

(kd2

8f

)2

µ0

(2J1

(

1
2kd

√

2rg
z

)

1
2kd

√

2rg
z

)2

. (17)

From (17) we see that, for rg 6= 0 and αρ0 ≪ 1, the amplification factor at the center of the telescope’s focal plane is
evaluated to be (with an approximation offered for d = O(1 m)):

µ0
det = µ0

(2J1

(

1
2kd

√

2rg
z

)

1
2kd

√

2rg
z

)2

≃ 2.02× 107
( λ

1µm

)2( z

650AU

)
3
2
(1m

d

)3

, (18)

representing a gravitationally-induced bright spot in the focal plane of the optical telescope, the intensity of which is
determined by the wavelength, telescope aperture and distance from the Sun.
For rg → 0, the amplification factor µ0

det reduces to µ0
det = 1 and the result (17) is equivalent to (16) developed

for ρi = 0. One may show that expression (15) is always finite. In fact, even when α − ηi = k(
√

2rg/z − ρi/f) = 0,
it remains finite, describing the Einstein ring as seen by the optical telescope, shown in Fig. 4 (left), at the position
given by

ρi = f

√

2rg
z

. (19)
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FIG. 4: Normalized density plots simulating images that appear on the image sensor of a diffraction-limited 1-m optical
telescope, at the wavelength λ = 1 µm, at 1,000 AU from the Sun, at different positions with respect to the SGL optical axis.
Left: The telescope is positioned on the optical axis, ρ0 = 0, in accordance with Eq. (15). Center: The telescope is positioned
several meters away from the optical axis in the φ0 = −π/4 direction, but still in the region of strong interference, in accordance
with Eq. (33). Right: The telescope is positioned in the region of weak interference, ρ0 & R⊙ from the optical axis, with the
resulting minor and major images (their positions swapped, as expected, by the optical telescope) shown in accordance with
Eq. (63). The Sun is indicated with a dashed (yellow) line, while the Einstein ring is shown as a solid line.

Equation (15) describes an Einstein ring that is formed in the focal plane of the optical telescope. We demonstrate
this by taking the limit ηi → α in (15), we derive the Poynting vector at the Einstein ring:

Sz(ρ
ER
i ) =

cE2
0

8π

(kd2

8f

)2

µ0

(

J2
0

(

1
2kd

√

2rg
z

)

+ J2
1

(

1
2kd

√

2rg
z

)

)2

. (20)

We can derive the intensity distribution at the Einstein ring seen in the optical telescope’s focal plane. To do that,
we simplify expression (20), by using the approximations for the Bessel functions for large arguments [11]:

J0(x) ≃
√

2

πx
cos(x− π

4 ) +O
(

x−1
)

and J1(x) ≃
√

2

πx
sin(x− π

4 ) +O
(

x−1
)

, (21)

which allow us to express (15), with µ0 from (9), as

Sz(ρ
ER
i ) =

cE2
0

8π

(kd2

8f

)2( 8λz

π2d2

)

. (22)

Comparing this expression to (16), we see that the light on the Einstein ring is amplified by the factor

µER =
8λz

π2d2
= 7.88× 107

( λ

1µm

)( z

650AU

)(1m

d

)2

, (23)

which is independent of rg, as it is already accounted for by the position of the Einstein ring on the detector (19).

C. Large displacements from the optical axis

Next, we consider the case when the telescope is positioned at a large distance from the optical axis, ρ0 ≫ d. To
compute A(xi,x0) in (10), we note that in this region αρ0 ≫ 1, and thus, the Bessel function, J0 can approximated
using (21), which results in

J0(α|x+ x0|) =
1

√

2πα|x+ x0|

(

ei(α|x+x0|−
π
4
) + e−i(α|x+x0|−

π
4
)
)

. (24)

Taking into account the fact that in this region |x| ≪ ρ0, we expand |x+ x0| to first order in x:

|x+ x0| = ρ0 + (x · n0) +O(ρ2), (25)
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where n0 = x0/ρ0 is the unit vector along x0, as given by (1). With (25), we may present (24) as

J0

(

α|x+ x0|
)

=
1√

2παρ0

{(

1− 1

ρ0
(x · n0)

)(

ei(α(ρ0+(x·n0))−
π
4
) + e−i(α(ρ0+(x·n0))−

π
4
)
)

+O
(ρ2

ρ20

)}

. (26)

As a result, using the definitions (1)–(3) and trigonometrical identities, the double integral in (10) takes the form

I(xi,x0) =

∫∫

|x|2≤(d/2)2

d2xJ0(α|x + x0|)e−iηi(x·ni) =

=
1√

2παρ0

{

∫ 2π

0

dφ

∫ d/2

0

ρdρ
(

1− ρ cos(φ− φ0)

ρ0

)(

eiϕ+(x) + eiϕ−(x)
)

+O
(ρ2

r20

)}

, (27)

where the phases ϕ±(x) are

ϕ±(x) = ±(αρ0 − π
4 ) + u± ρ cos

(

φ− ǫ±
)

+O(ρ2), (28)

with the quantities u± and ǫ± are given by the following relationships:

u± =
√

α2 ∓ 2αηi cos
(

φi − φ0

)

+ η2i , cos ǫ± =
±α cosφ0 − ηi cosφi

u±
, sin ǫ± =

±α sinφ0 − ηi sinφi

u±
. (29)

With this parameterization, the integral (27) is easy to evaluate:

I(xi,x0) = π
(d

2

)2 1√
2παρ0

{

ei
(

αρ0−
π
4

)

(2J1(u+
1
2d)

u+
1
2d

− id

2ρ0
cos(φ0 − ǫ+)

2J2(u+
1
2d)

u+
1
2d

)

+

+ e−i
(

αρ0−
π
4

)

(2J1(u−
1
2d)

u−
1
2d

− id

2ρ0
cos(φ0 − ǫ−)

2J2(u−
1
2d)

u−
1
2d

)

+O
(d2

ρ20

)}

. (30)

With this result, the complex amplitude of the EM field (10) takes the form

A(xi,x0) =
√
µ0E0

1√
2παρ0

(kd2

8f

)

ei
(

kf(1+p2/2f2)+π
2

)

×

×
{

ei
(

αρ0−
π
4

)

(2J1(u+
1
2d)

u+
1
2d

− id

2ρ0
cos(φ0 − ǫ+)

2J2(u+
1
2d)

u+
1
2d

)

+

+ e−i
(

αρ0−
π
4

)

(2J1(u−
1
2d)

u−
1
2d

− id

2ρ0
cos(φ0 − ǫ−)

2J2(u−
1
2d)

u−
1
2d

)

+O
(d2

ρ20

)}

. (31)

Substituting this expression for the complex amplitude in (10) and then into (4)–(7), after time averaging, we obtain
the following expression for the Poynting vector on the image plane:

Sz(xi,x0) =
cE2

0

8π

(kd2

8f

)2
√

2rgz

2ρ0
×

×
{(2J1(u+

1
2d)

u+
1
2d

)2

+
(2J1(u−

1
2d)

u−
1
2d

)2

+ 2 sin
(

2αρ0
)2J1(u+

1
2d)

u+
1
2d

2J1(u−
1
2d)

u−
1
2d

−

− d

ρ0
cos(2αρ0)

(α− ηi cos(φi − φ0)

u+

2J1(u−
1
2d)

u−
1
2d

2J2(u+
1
2d)

u+
1
2d

+

+
α+ ηi cos(φ− − φ0)

u−

2J1(u+
1
2d)

u+
1
2d

2J2(u−
1
2d)

u−
1
2d

)

+O
(d2

ρ20

)}

, (32)

where we used the definitions for µ0, α and ηi from (9) and (11) as well as for u± and ǫ± from (29).
We observe that the ratios involving the Bessel functions in the expression (32) are at most 2J1(x)/x = 1, and only

for x = 0. Given the fact that the spatial frequency α is quite high, for any other value of the argument these ratios
are negligibly small. In addition, the last term in this expression is at most ∝ d/ρ0, which is negligibly small even
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compared to the smallest term (i.e., mixed containing sin 2αρ0). Therefore, the last terms in this expression may be
neglected, allowing us to present a simplified form of Eq. (32):

Sz(xi,x0) =
cE2

0

8π

(kd2

8f

)2
√

2rgz

2ρ0

{(2J1(u+
1
2d)

u+
1
2d

)2

+
(2J1(u−

1
2d)

u−
1
2d

)2

+O
(d2

ρ20

)}

. (33)

Equation (33) describes two spots of light of nearly equal intensity, as shown in Fig. 4 (center). This is what remains
from the Einstein ring as the telescope is displaced at a large distance from the optical axis, but still staying within
the strong interference region of the SGL.
Remembering the definition for u± from (29) and taking the limit ηi → α, we obtain an expression for the Poynting

vector at the Einstein ring to the order of O(d2/ρ20):

Sz(ρ
ER
i , φi,x0) =

cE2
0

8π

(kd2

8f

)2
√

2rgz

2ρ0

{(2J1
(

αd sin 1
2 (φi − φ0)

)

αd sin 1
2 (φi − φ0)

)2

+
(2J1

(

αd cos 1
2 (φi − φ0)

)

αd cos 1
2 (φi − φ0)

)2}

. (34)

Given the fact that the product αd is quite large, Eq. (34) is close to zero everywhere except for two peaks where the
arguments of the two Bessel functions vanish. This vanishing depends on the direction of the displacement from the
optical axis, φ0. As a result, (34) describes two peaks that appear in the optical telescope’s focal plane, at the same
radial distance ρi = ρERi , but in opposite directions, which are given as φi = φ0 and φi = φ0 + π.

IV. IMAGING IN THE GEOMETRIC OPTICS AND WEAK INTERFERENCE REGIONS

If we position the telescope further away from the optical axis, it enters the weak interference region of the SGL (see
Fig. 1), where for any given point source at any point on the image plane, two rays of light are present, corresponding
to the incident and scattered wave [2]. Moving still further from the optical axis, the telescope enters the geometric
optics region of the SGL where at any given point only one ray of light is present, with the other being blocked by
the Sun.
Although a description of the optical properties of the SGL in these regions is of little practical importance insofar

as imaging of distant sources is concerned, it can provide a wave-optical description of microlensing phenomena. Such
a wave-optical description is still largely absent in ongoing microlensing modeling efforts [12–14]. Below, we describe
the relevant EM fields in these two regions and derive the intensity distribution pattern in the focal plane of an
imaging telescope.

A. The EM field in the geometric optics and weak interference regions

In Ref. [8], we considered a high-frequency EM wave (i.e., neglecting terms ∝ (kr)−1) and for r ≫ rg and derived
the components of the EM field in the geometric optics and weak interference regions. As light amplification in
these regions is rather weak, it is sufficient to derive the solution to the highest leading order term in the image field
amplitude. However, as the wavenumber for optical wavelengths, k, is rather large, the phase of the resulting solution
must include all the relevant terms.
For a source at a distance r0 from the Sun, the components of the EM field needed to estimated the flux through

the image plane can be given to the required order in the spherical coordinate system in the following form:

(

Dθ

Bθ

)

=

(

Bφ

−Dφ

)

=

(

cosφ

sinφ

)

e−iωtγ(r, θ) +O(r2g , θ
2, b/z0). (35)

The term γ(r, θ), for large partial momenta, ℓ ≫ 1, following [8], is determined from the following integral:

γ(r, θ) = E0u
eik(r+r0+rg ln 4k2rr0)

kr

∫ ∞

ℓ=kR⋆
⊙

√
ℓdℓ√

2π sin θ
ei
(

2σℓ+ℓ2/2kr̃
)

(

ei(ℓθ+
π
4 ) − e−i(ℓθ+

π
4 )
)

, (36)

where 1/r̃ = 1/r + 1/r0. The radial components of the EM wave behave as (Dr, Br) ∼ O(ρ/z, b/z0) and, thus, they
are negligibly small compared to the other two components (35).
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As was done in [8], we evaluate this integral by the method of stationary phase. To do that, we see that the relevant
ℓ-dependent part of the phase in (36) is of the form

ϕ±(ℓ) = ±
(

ℓθ + π
4

)

+ 2σℓ +
ℓ2

2kr̃
+O

(

r2g , (kr)
−3
)

, (37)

where for ℓ ≫ krg the Coulomb phase shift, σℓ, has the from: σℓ = −krg ln ℓ. The phase is stationary when dϕ±/dℓ = 0,
which implies

±θ − 2rg
b

+
b

r̃
= O

(

r2g , (kr)
−3
)

, (38)

where we used the semiclassical relationship between the partial momentum ℓ and the impact parameter b, given as
ℓ ≃ kb. This quadratic equation yields two families of solutions:

bin = ∓ 1
2

(

r̃θ +
√

r̃2θ2 + 8rg r̃
)

+O(θ3, r2g), and bsc = ∓ 1
2

(

r̃θ −
√

r̃2θ2 + 8rg r̃
)

+O(θ3, r2g), (39)

where bin and bsc are two families of impact parameters describing incident and scattered EM waves, corresponding
to light rays passing by the near side and the far side of the Sun (with respect to the location of the telescope),
correspondingly. After it is diffracted by a point-source gravitational lens, a wavefront is described as the sum of a
gravity-modified plane wave (the incident wave) and a spherical wave centered on the gravitational lensing source (the
scattered wave); see, for instance, Fig. 2 of [2]. The impact parameters (39) correspond to images that appear close
to the Einstein ring on opposite sides of the lens; the “scattered” image, denoted by “sc”, on the far side relative to
the telescope (called the minor image) always appears inside the Einstein ring, and the “incident” image, denoted by
“in” on the near side always appears outside (major image, see [14] for details).

For θ ≫
√

2rg/r̃, our result is equivalent to the two solutions derived in Sec. IV of [8]. However, the form (39)
allows us to study the behavior of the EM wave in the transition between the two solutions in the region where angle
θ is of the same order as the Einstein deflection angle θ ∼

√

2rg/r̃.
By dividing the solutions (39) by r̃, we may present them in term of the angles θ+ = bin/r̃ and θ− = bin/r̃:

θ+ = 1
2

(
√

θ2 + 4θ2E + θ
)

, and θ− = − 1
2

(
√

θ2 + 4θ2E − θ
)

, (40)

where θE =
√

2rg/r̃ is the Einstein deflection angle. This establishes the correspondence of our analysis in this section
to the well-known modeling of microlensing [12–14]. Expressions (40) lead to the familiar expression to describe the

image magnification of A = (u2 + 2)/(u
√
u2 + 4), where u = θ/θE . Our description allows us to develop the vectorial

description of the microlensing phenomena and, besides magnification, it also allows us to describe light amplification.
Following the approach presented in [8], we again use the method of stationary phase (37) for the first family of

solutions of (39), corresponding to ℓin = kbin. This results in the factor γin(r, θ) corresponding to the incident EM
wave moving towards the interference region:

γin(r, θ) = E0 ain(r̃, θ)e
i
(

k(r+r0+rg ln 4k2rr0)+ϕin(r̃,θ)
)

+O(θ4,
rg
r
θ2), (41)

a2in(r̃, θ) =

(

1
2 (
√

1 + 8rg/r̃θ2 + 1)
)2

√

1 + 8rg/r̃θ2
,

ϕin(r̃, θ) = −k
(

1
4θ
(

r̃θ +
√

r̃2θ2 + 8rg r̃
)

− rg + 2rg ln
1
2k
(

r̃θ +
√

r̃2θ2 + 8rg r̃
)

)

.

Next, we consider the second family of solutions in (39), given by ℓsc = kbsc. It allows us to compute the γsc(r, θ)
factor for the scattered wave, given as

γsc(r, θ) = E0 asc(r̃, θ)e
i
(

k(r+r0+rg ln 4k2rr0)+ϕsc(r̃,θ)
)

+O(θ2,
rg
r
θ2), (42)

a2sc(r̃, θ) =

(

1
2 (
√

1 + 8rg/r̃θ2 − 1)
)2

√

1 + 8rg/r̃θ2
,

ϕsc(r̃, θ) = −k
(

1
4θ
(

r̃θ −
√

r̃2θ2 + 8rg r̃
)

− rg + 2rg ln
1
2k
(

r̃θ −
√

r̃2θ2 + 8rg r̃
)

)

.
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As a result, the components of the incident EM field to the order of O
(

r2g , θ
2, b/z0

)

take the form

(

Dθ

Bθ

)

in/sc

=

(

Bφ

−Dφ

)

in/sc

= E0Ain/sc(r̃, θ)e
i
(

k(r+r0+rg ln 4k2rr0)−ωt
)

(

cosφ

sinφ

)

, (43)

with the complex amplitudes Ain and Asc given as

Ain(r̃, θ) = ain(r̃, θ) exp
[

−ik
{

1
4θ
(

r̃θ +
√

r̃2θ2 + 8rg r̃
))

− rg + 2rg ln
1
2k
(

r̃θ +
√

r̃2θ2 + 8rg r̃
)

}]

, (44)

Asc(r̃, θ) = asc(r̃, θ) exp
[

−ik
{

1
4θ
(

r̃θ −
√

r̃2θ2 + 8rg r̃
))

− rg + 2rg ln
1
2k
(

r̃θ −
√

r̃2θ2 + 8rg r̃
)

}]

, (45)

where the r-components of the EM waves behave as (Er , Hr)in/sc ∼ O(ρ/r, b/r0). Note that if θ ≫
√

2rg/r̃, results
are identical to those reported in [8].
As our concern is the EM field in the image plane, it is convenient to transform these solutions to cylindrical

coordinates (ρ, φ, z), as was done in [2, 8]. Transforming (43) and (45) yields the components of both solutions, to
O(r2g , θ

2, b/r0), in the form

(

Eρ

Hρ

)

in/sc

=

(

Hφ

−Eφ

)

in/sc

= E0Ain/sc

(

r̃, θ
)

ei
(

k(r+r0+rg ln k2rr0)−ωt
)

(

cosφ

sinφ

)

, (46)

where the z-components of the EM waves behave as (Ez, Hz)in/sc ∼ O(ρ/z,
√

2rgz/z0), and where φ is the angle that
corresponds to the rotated z coordinate axis described in [8].
Expressing r̃θ via the angle β = b/r0, where b =

√

2rgz is the impact parameter, and generalizing the resulting
expression to a 3-dimensional case, as was preseted in [8], for a point source on the optical axis [8], we have

r̃θ = r
(

θ + β
)

+O(r3/r20) ≃ |x+ x0|+O(r3/r20) and θ ≃ 1

z
|x+ x0|. (47)

These results allows us to express the complex amplitudes Ain/sc(r, θ) → Ain(x,x0), which is needed for our purposes.

B. Very large displacements from the optical axis

Moving still further away from the optical axis, for angles θ ≫
√

2rg/z̃, we traverse the region of weak interference
toward the region of geometric optics. As discussed in [8], in the region of the geometric optics at any given point on
the image plane we have only the incident ray of light, which is the ray passing on the near side of the Sun with respect
to the telescope; the scattered ray on the opposite side is blocked by the opaque sphere of the Sun [8]. However, in
the region of weak interference at any given point on the image plane both rays are still present [2, 8]. Based on (46),
the incident and scattered EM waves on the image plane are given, in cylindrical coordinates (ρ, φ, z), as

(

Eρ

Hρ

)

in/sc

=

(

Hφ

−Eφ

)

in/sc

= E0Ain/sc

(

x,x0

)

ei
(

k(r+r0+rg ln k2rr0)−ωt
)

(

cosφ

sinφ

)

, (48)

with the complex amplitudes Ain/sc(x,x0) for the incident and scattered waves from (44)–(45), correspondingly. The
z-components of the EM waves behave as (Ez , Hz)in/sc ∼ O(ρ/z, b/z0).
As in this case ρ ≪ ρ0, we may use the approximation given in (25), which allows us to expand (44) and (45), to

terms first order in ρ/r0, yielding the following results:

Ain(x,x0) = ain(ρ0, r̃) exp
(

iδϕin(ρ0, r̃)− i
(

ξin(x · n0) + ηi(x · ni)
)

)

, (49)

Asc(x,x0) = asc(ρ0, r̃) exp
(

iδϕsc(ρ0, r̃) + i
(

ξsc(x · n0)− ηi(x · ni)
)

)

, (50)

with amplitude factors ain/sc(ρ0, r̃) and phases δϕin/sc(ρ0, r̃) (with the upper and lower signs for the “in” and “sc”
waves, correspondingly), are given as

a2in/sc(ρ0, r̃) =

[

1
2 (
√

1 + 8rg r̃/ρ20 ± 1)
]2

√

1 + 8rg r̃/ρ20
, (51)
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δϕin/sc(ρ0, r̃) = −k
(ρ20
4r̃

(

1±
√

1 +
8rg r̃

ρ20
− 4rg r̃

ρ20

)

+ 2rg ln kρ0
1

2

(

√

1 +
8rg r̃

ρ20
± 1
))

. (52)

We note that when the angles θ are large, θ ≫
√

2rg/r̃, and thus, ρ0 ≫
√

2rg r̃, the factors ain/sc in (51) take

their known values (see [8] for details), namely a2in(ρ0, r̃) = 1 +O(rgθ
2, r2g) and a2sc(ρ0, r̃) = (2rg r̃/ρ

2
0)

2 +O(rgθ
2, r2g).

However, our new expressions (51) allow studying the cases when ρ0 ≃
√

2rg r̃.
In addition, the spatial frequencies ξin/sc present in (49)–(50), are defined by (with θ± from (40)):

ξin/sc = k
(

√

1 +
8rg r̃

ρ20
± 1
)ρ0
2r̃

≡ kθ±. (53)

Therefore, to derive the amplitudes of the EM field in the focal plane of the optical telescope, corresponding to (49)
and (50), we need to put these expressions in (6) and evaluate an integral of the type

∫∫

|x|2≤(d/2)2

d2x e−i
(

ξin/sc(x·n0)±ηi(x·ni)
)

. (54)

This can be done analogously to the derivations in Sec. III C. For this we present the phase in (54) as

ξin/sc(x · n0)± ηi(x · ni) = v± ρ cos
(

φ− σ±

)

+O(ρ2), (55)

where, for convenience, we defined

v± =
√

ξ2
in/sc ± 2ξin/scηi cos

(

φi − φ0

)

+ η2i , (56)

cosσ± =
ξin/sc cosφ0 ± ηi cosφi

v±
, sinσ± =

ξin/sc sinφ0 ± ηi sinφi

v±
.

With these definitions, and using the parameterization given in (2), the integral (54) may be evaluated as

∫ 2π

0

dφ

∫ d/2

0

ρdρ e−iv±ρ cos(φ−σ±) = π
(d

2

)2 2J1(v±
1
2d)

v±
1
2d

. (57)

As a result, using (49) and (50) in (6) leads to the following amplitudes of the two EM waves on the optical telescope’s
image plane:

Ain(xi,x0) =
(kd2

8f

){

ain

(2J1(v+
1
2d)

v+
1
2d

)

ei
(

kf(1+x
2
i /2f

2)+δϕin(ρ0,r̃)+
π
2

)

+O(r2g)
}

, (58)

Asc(xi,x0) =
(kd2

8f

){

asc

(2J1(v−
1
2d)

v−
1
2d

)

ei
(

kf(1+x
2
i /2f

2)+δϕsc(ρ0,r̃)+
π
2

)

+O
(rgρ

2
0

r̃3

)}

. (59)

Remembering the time-dependent phase from (48), we substitute this expression in (7) and, after time averaging,
we derive the Poynting vector of the EM wave in the focal plane of the imaging telescope. As a result, in the region
of the geometric optics, where only the incident EM wave is present, the intensity of the EM field in the optical
telescope’s focal plane is derived using (58), resulting in

Sgeom.o.(xi,x0) =
cE2

0

8π

(kd2

8f

)2{

a2in

(2J1(v+
1
2d)

v+
1
2d

)2

+O(r2g)
}

. (60)

Examining (56), we see that because the combination ξin/sc
1
2d may be rather large, expression (60) is almost zero

everywhere except for one point where the argument of the Bessel function vanishes. Taking in (60) the limit ηi → ξin
and considering the case of 2rg r̃/ρ

2
0 → 0 and taking only the leading term in ain, thus taking ain → 1, we have

Sgeom.o.(ξ
in
i ,x0) =

cE2
0

8π

(kd2

8f

)2{(2J1
(

ξind cos
1
2 (φi − φ0)

)

ξind cos
1
2 (φi − φ0)

)2

+O(r2g)
}

. (61)

This expression describes one peak corresponding to the incident wave whose intensity is not amplified by the SGL.
It is for the image that was derived using bin, corresponding ξin, which always appears outside the Einstein ring.
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As in the region of weak interference, both incident and scattered waves are present, the field intensity in the focal
plane of the imaging telescope is derived using the sum of the two solutions, (58) and (59), yielding

Sweak.int.(xi,x0) =
cE2

0

8π

(kd2

8f

)2{

a2in

(2J1(v+
1
2d)

v+
1
2d

)2

+ a2sc

(2J1(v−
1
2d)

v−
1
2d

)2

+

+2 cos
(kρ0
2r̃

√

ρ20 + 8rg r̃ + 2krg ln

√

ρ20 + 8rg r̃ + ρ0
√

ρ20 + 8rg r̃ − ρ0

)

ainasc

(2J1(v+
1
2d)

v+
1
2d

)

(

2J1(v−
1
2d)

v−
1
2d

)

+O
(rgρ

2
0

r̃3

)}

. (62)

Similar simplifying assumptions based on the behavior of the ratios involving the Bessel function 2J1(v±
1
2d)/v±

1
2d

in these regions that led to (33), are applicable here. Therefore, the intensity distribution pattern in the weak
interference region takes the following simplified form

Sweak.int.(xi,x0) =
cE2

0

8π

(kd2

8f

)2{

a2in

(2J1(v+
1
2d)

v+
1
2d

)2

+ a2sc

(2J1(v−
1
2d)

v−
1
2d

)2

+O
(rgρ

2
0

r̃3

)}

. (63)

This expression describes two peaks of uneven brightness, conventionally called major and minor images (see right
figure in Fig. 4), with the major image depending on v+ from (56) (and, thus, its behavior is driven by θ+ characteristic
of the incident wave) that appears outside the Einstein ring and the minor image given by the v−-dependent term (and
thus on θ− corresponding to the scattered wave) that appears inside the Einstein ring. This is the typical behavior
observed in the microlensing experiments. The image described by Eq. (63) is the inverted image that appears in the
focal plane of the convex lens. This behavior is evident in Fig. 4 (right).
To derive the intensity distribution in the vicinity for the Einstein ring, similarly to (61), we take the limit in

ηi → ξin/sc in the expression (63) and again considering the case of 2rg r̃/ρ
2
0 → 0 and taking only the leading term in

ain/sc from (51), namely ain → 1 and asc → 2rg r̃/ρ
2
0, we obtain

Sweak.int.(ξ
ER±
i ,x0) =

cE2
0

8π

(kd2

8f

)2{(2J1
(

ξind cos
1
2 (φi − φ0)

)

ξind cos
1
2 (φi − φ0)

)

)2

+
(2rg r̃

ρ20

)2(2J1
(

ξscd sin
1
2 (φi − φ0)

)

ξscd sin
1
2 (φi − φ0)

)

)2}

, (64)

with the superscript ER± indicates that the two peaks that are located outside and inside of the Einstein ring,
correspondingly. Similarly to Eq. (34), Eq. (64) is close to zero everywhere except for these two peaks. The peaks
are oriented in the φ0 direction. Furthermore, as it can be seen from the known behavior of the first Bessel function,
the result remains finite even when the denominator in the second term inside the curly braces vanishes: the peaks
described by this expression remain well-behaved everywhere in the region of weak interference, describing a light
signal of finite intensity.

V. DISCUSSION AND CONCLUSIONS

We have studied the image formation process with the SGL and analyzed the intensity distribution of the EM field
received from a point source at the focal plane of an optical imaging telescope placed in the focal region of the SGL.
We first considered the SGL’s region of strong interference. It is in this region, in the immediate vicinity of the

SGL optical axis, where an image of a distant source is formed by the SGL. A commonly discussed mission concept
[4] envisions an optical telescope that will scan this region by moving laterally. Such a telescope must have sufficient
angular resolution in order for it to benefit from a coronagraph, blocking out light from the Sun. The telescope will
be able to capture an image of the Einstein ring that forms around the Sun from light received from a distant source.
Investigating the propagation of the light field first through the SGL and then through the telescope optics, we were
able to reconstruct the Einstein ring that appears in the focal plane of the telescope. We also verified that in the limit
of vanishing solar gravitational field, the well-known Airy-pattern of the optical telescope emerges. Thus, our results
extend all previously known results in the case of a monopole gravitational field.
As the telescope moves from the optical axis, it briefly passes through a region, characterized by diminishing partial

arcs of the Einstein ring, where the integral expression that describes the amplitude of the image field can only be
solved numerically. Outside this region, the partial arcs swiftly shrink to two spots, appearing on opposite sides of the
Sun. This behavior was also successfully reconstructed analytically. Thus we were able to obtain analytic expressions
for the image formed by an optical telescope in all the cases important for practical applications of the SGL for
imaging distant sources.
In addition, we also considered a telescope situated at large distance away from the optical axis, both in the

weak interference region (where two images of uneven brightness, on both sides of the Sun, are still present) and
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the geometric optics region (characterized by only one image, as light rays on the opposite side of the Sun are now
blocked by the opaque solar disk.) We were able to provide a wave-optical treatment for gravitational microlensing
phenomena, analytically reconstructing the asymmetric location of the two images and their uneven brightness.
As a result, we were able to describe the image formation process in all three regions of practical importance

for imaging with the SGL, namely the strong and weak interference regions, and the region of geometric optics.
Starting from the strong interference region, we see that in the case of very small deviations, characterized by
αρ0 ≪ 1 and representing displacements in the range of 0 ≤ ρ0 ≪ 1/α ≈ 2

√

(z/650AU) cm, an observer will
see the intensity distribution in the form of the Einstein ring (15) that is formed in the focal plane of an optical
telescope. As the telescope moves further away from the optical axis, an observer would first see the Einstein ring
break into two arcs positioned on opposite sides of the Sun. And then, for large deviations, αρ0 ≫ 1, described as
ρ0 > 10/α ≈ 20

√

(z/650AU) cm, these arcs eventually morph into two peaks of identical brightness given by (33).
As ρ0 continues to increase, the two peaks move away from each other. The factor in front of the second term in

(63) leads to the eventual disappearance of the second term. Ultimately, however, this image is hidden by the Sun,
and we enter the region of geometric optics characterized by (60).
With the results derived in this paper, we are now at the position where we may begin to consider practical

applications of the SGL. The next step is to evaluate the signals that one may expect from various relevant sources.
The same expressions may also be used to derive and study the instrument and mission requirements for a prospective
mission to the focal region of the SGL. This work is underway and results, when available, will be reported elsewhere.
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