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The null geodesic equation in the Kerr spacetime can be expressed as a set of integral equations
involving certain potentials. We classify the roots of these potentials and express the integrals in
manifestly real Legendre elliptic form. We then solve the equations using Jacobi elliptic functions,
providing the complete set of null geodesics of the Kerr exterior as explicit parameterized curves.

I. INTRODUCTION

Null geodesics form perhaps the most important struc-
ture possessed by a Lorentzian spacetime. The study of
the null geodesic equation in the Kerr geometry began
in 1968 with the seminal work of Carter [1], who used
the separability of its Hamilton-Jacobi formulation to re-
duce it to quadratures. Bardeen [2] initiated the detailed
study of its solution space, which has now been mapped
out in impressive detail [3–5]. Many of the relevant inte-
grals have previously been expressed in elliptic form (no-
tably in Refs. [6–8]), and parameterized solutions using
the Weierstrass elliptic function were given in Ref. [5].

In this paper, we revisit the problem of the classifica-
tion and solution of Kerr null geodesics with the goals of
completeness and convenience. Our results are complete
in that every finite-measure case is considered, and we
give both “integral solutions” (analytic expressions for
the fundamental integrals) as well as explicit parameter-
ized trajectories.1 Moreover, our results are convenient in
that: (1) all expressions are manifestly real, with no “can-
celing” internal imaginary parts; (2) all trajectories are
fully explicit, with no need to solve auxiliary equations
or glue together different solutions at turning points; (3)
the parameterized solutions display the initial conditions
explicitly; and (4) the use of special functions is limited
to the elliptic integrals and Jacobi elliptic functions first
defined two centuries ago. While previous approaches
achieve one or more of these goals, we are unaware of
any previous work that simultaneously attains them all.

Our own interest in this problem was kindled by the
need to understand astronomical observations [9], but we
hope that the results presented herein will find a wider
range of applications. Ideally, the Kerr afficionado will
learn something about the general structure of the null
geodesics, while the busy physicist or astronomer can ob-
tain quick answers to definite questions about the prop-
agation of light around a rotating black hole.

This paper is organized as follows. In Sec. II, we in-
troduce the basic formulas and explain our general ap-
proach. In Sec. III, we classify and solve for the different
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1We do limit our discussion to the Kerr exterior, however.

types of polar motion, before doing the same for the ra-
dial motion in Sec. IV and App. B. We then compare to
previous work in Sec. V. Finally, in Sec. VI, we summa-
rize our results and explain how to use them in practice.

II. GENERAL APPROACH

We work with Boyer-Lindquist coordinates (t, r, θ, φ)
on the spacetime of a Kerr black hole with mass M and
angular momentum J = Ma, and define

Σ(r, θ) = r2 + a2 cos2 θ, ∆(r) = r2 − 2Mr + a2. (1)

The roots of ∆(r) correspond to the outer/inner horizons

r± = M ±
√
M2 − a2. (2)

We assume 0 < a < M throughout the paper. Taking
the non-rotating limit a→ 0 is generally straightforward,
whereas the extremal limit a → M presents some sub-
tleties that we defer to future work.

Let pµ denote the four-momentum of a photon, with
pt > 0 providing the time orientation. The trajectory
possesses three conserved quantities,

E = −pt, L = pφ, (3)

Q = p2θ − cos2 θ
(
a2p2t − p2φ csc2 θ

)
, (4)

corresponding to the energy at infinity,2 angular momen-
tum about the spin axis, and Carter integral, respec-
tively. Only the sign of the energy has physical meaning,
so it is convenient to work with energy-rescaled quantities

λ =
L

E
, η =

Q

E2
. (5)

The four-momentum pµ can then be reconstructed as

Σ

E
pr = ±r

√
R(r), (6a)

Σ

E
pθ = ±θ

√
Θ(θ), (6b)

Σ

E
pφ =

a

∆

(
r2 + a2 − aλ

)
+

λ

sin2 θ
− a, (6c)

Σ

E
pt =

r2 + a2

∆

(
r2 + a2 − aλ

)
+ a
(
λ− a sin2 θ

)
, (6d)

2We exclude the measure-zero set of geodesics with E = 0 exactly.

mailto:sgralla@email.arizona.edu
mailto:lupsasca@fas.harvard.edu


2

where we introduced “potentials”

R(r) =
(
r2 + a2 − aλ

)2 −∆(r)
[
η + (λ− a)

2
]
, (7)

Θ(θ) = η + a2 cos2 θ − λ2 cot2 θ. (8)

The symbols ±r and ±θ indicate the sign of pr and pθ,
respectively. Turning points in the r and θ motions occur
at zeros of the radial and angular potentials R(r) and
Θ(θ), respectively.

There are two closely related ways to proceed with the
solution of these equations. The first is to introduce a
new parameter, the “Mino time” τ [10], defined by3

dxµ

dτ
=

Σ

E
pµ. (9)

This method converts Eqs. (6) into four decoupled ordi-
nary differential equations for xµ(τ). Alternatively, one
may also convert the equations into integral form,

Ir = Gθ, (10)

φo − φs = Iφ + λGφ, (11)

to − ts = It + a2Gt, (12)

where xµs and xµo are “source” and “observer” points, φ
can take any real value (with b(φo−φs)/(2π)c the number
of azimuthal windings of the trajectory), and we define

Ir =

 ro

rs

dr

±r
√
R(r)

, (13a)

Iφ =

 ro

rs

a(2Mr − aλ)

±r∆(r)
√
R(r)

dr, (13b)

It =

 ro

rs

r2∆(r) + 2Mr
(
r2 + a2 − aλ

)

±r∆(r)
√
R(r)

dr, (13c)

Gθ =

 θo

θs

dθ

±θ
√

Θ(θ)
, (13d)

Gφ =

 θo

θs

csc2 θ

±θ
√

Θ(θ)
dθ, (13e)

Gt =

 θo

θs

cos2 θ

±θ
√

Θ(θ)
dθ. (13f)

Here, the slash notation
ffl

indicates that these integrals
are to be understood as path integrals along the trajec-
tory connecting xµs and xµo , such that the signs ±r and ±θ
switch at radial and angular turning points, respectively.
In particular, all the integrals Ii and Gi are monotoni-
cally increasing along the trajectory.

These two approaches are related by the fact that Ir
and Gθ are both equal to the elapsed Mino time,4

τ = Ir = Gθ, (14)

3The geodesic xµ(τ) is future/past-directed according to whether
E is positive/negative. Sending τ → −τ reverses the future/past
direction of the parameterized curve xµ(τ).

4τ is also related to the fractional number of orbits executed [11].

where we set τ = 0 at the source point xµs . The Mino time
approach is more convenient for analyzing individual tra-
jectories, while the integral approach is more useful for
determining general properties.

The elapsed affine time (satisfying dxµ/dσ = pµ) is

σo − σs = Iσ + a2Gt, (15)

where

Iσ =

 ro

rs

r2

±r
√
R(r)

dr. (16)

Our main results are as follows. First, we systemati-
cally classify the roots of the radial and angular poten-
tials, and thereby determine the allowed ranges of the r
and θ motion as a function of the conserved quantities
(λ, η). Then, for each of the cases that may arise, and
for each integral Ii or Gi, we find an antiderivative that
is real and smooth over the relevant range of r or θ. All
of our antiderivatives are reduced to manifestly real Leg-
endre elliptic form. That is, they are expressed in terms
of the (incomplete) elliptic integrals F (ϕ|k), E(ϕ|k), and
Π(n;ϕ|k) of the first, second, and third kind, respectively,
which are real and smooth provided max(k, n) < 1.5

When ϕ = π/2, the integrals become “complete” and
are denoted by K(k) = F (π/2|k), or else by Π(n; k) and
E(k) with the first argument ϕ omitted.

Our notation for antiderivatives will be a calligraphic
version of the original symbol, and we will choose the plus
sign in the integrand. For example, the antiderivative Ir
associated with Ir in Eq. (13a) will satisfy

dIr
dr

=
1√
R(r)

. (17)

These antiderivatives are useful for both the Mino-time
approach and the integral approach. For the Mino-time
approach, we invert the integrals to provide full parame-
terized trajectories xµ(τ) in terms of the initial data (ini-
tial position xµs as well as the initial signs ±r and ±θ).6
For the integral approach, we provide formulas that give
each of the path integrals (13) as a function of the initial
position, initial sign of momentum, final position, and
number of turning points.

III. ANGULAR POTENTIAL AND INTEGRALS

We assume that 0 < θ < π to avoid the singularities of
the spherical coordinate system. In terms of u = cos2 θ,
the angular potential (8) is given by

(1− u)Θ(u) = η +
(
a2 − η − λ2

)
u− a2u2. (18)

5Our conventions are listed in App. A of Ref. [8]; these also match
the built-in implementation in Mathematica 12.

6The full initial derivative can then be reconstructed from Eqs. (6),
showing how this initial value problem is equivalent to the original
second-order initial value problem for the geodesic equation.
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The right-hand side is a quadratic polynomial, whose
roots u± are given by

u± = 4θ ±
√
42
θ +

η

a2
, 4θ =

1

2

(
1− η + λ2

a2

)
. (19)

The four roots of Θ(θ) are thus arccos
(
±√u±

)
, or

θ1 = arccos
(√
u+
)
, (20)

θ2 = arccos
(√
u−
)
, (21)

θ3 = arccos
(
−√u−

)
, (22)

θ4 = arccos
(
−√u+

)
. (23)

Roots coincide when (and only when) u+ = 0, u− = 0,
or u+ = u−. These conditions define curves through
the (λ, η)-plane that divide it up into several regions. In
each such region, the “character” of the potential—that
is, the number of real roots and the sign of the potential
on either side of them—cannot change. As such, we may
determine the character by evaluating a single point in
each region.

Performing this exercise reveals the following structure
(Fig. 1). Motion is allowed in the region where 0 < u+
and u− < 1, and these conditions imply a lower bound

η ≥
{

0 |λ| ≥ a,
−(|λ| − a)

2 |λ| ≤ a. (24)

Within this allowed region, the line η = 0 of double roots
delineates regions with two characters of null geodesic:

A. Ordinary geodesics (η > 0). These admit two real
roots θ1 < π/2 < θ4, with the potential positive in
between them. The photon librates between θ1 and
θ4, crossing the equatorial plane each time.

B. Vortical geodesics (η < 0). These admit four real
roots θ1 < θ2 < π/2 < θ3 < θ4, with the poten-
tial positive in (θ1, θ2) and (θ3, θ4). There are two
distinct motions: one that librates between turning
points (θ1, θ2) in the northern hemisphere, and one
that librates between turning points (θ3, θ4) in the
southern hemisphere.

The measure-zero case η = 0 contains equatorial orbits
with no turning points (a limit of type A motion), as well
as orbits with at most one non-equatorial turning point
θ1,4 (a limit of type B motion, in which θ2,3 → π/2, where
the angular potential develops a double root).

For the analysis below, it will be helpful to have noted
that the following differential equations are satisfied:

(
dθo
dτ

)2

= Θ(θo(τ)), (25)

dGφ
dτ

= csc2[θo(τ)], (26)

dGt
dτ

= cos2[θo(τ)]. (27)

FIG. 1. Regions corresponding to the two types A and B of
allowed polar motion. Vortical (type B) geodesics only exist
around spinning black holes (a > 0).

A. Ordinary motion

We begin with ordinary geodesics (type A with η > 0),
which oscillate between turning points θ− < θ+ given by

θ± = arccos
(
∓√u+

)
, (28)

so that θ− = θ1 ∈ (0, π/2) and θ+ = θ4 ∈ (π/2, π). This
motion is symmetric about the equator and θ+ = π−θ−.

The angular integrals Gθ, Gφ, and Gt were reduced to
manifestly real elliptic form in Ref. [8]. Since u+/u− < 0,
the antiderivatives

Gθ = − 1√
−u−a2

F

(
arcsin

(
cos θ√
u+

)∣∣∣∣
u+
u−

)
, (29)

Gφ = − 1√
−u−a2

Π

(
u+; arcsin

(
cos θ√
u+

)∣∣∣∣
u+
u−

)
, (30)

Gt =
2u+√
−u−a2

E′
(

arcsin

(
cos θ√
u+

)∣∣∣∣
u+
u−

)
, (31)

are real and smooth. Here, we defined

E′(ϕ|k) := ∂kE(ϕ|k) =
E(ϕ|k)− F (ϕ|k)

2k
. (32)

We denote the values over one half-libration with a hat,

Ĝθ =

ˆ θ+

θ−

dθ√
Θ(θ)

=
2√
−u−a2

K

(
u+
u−

)
, (33)

Ĝφ =

ˆ θ+

θ−

csc2 θ√
Θ(θ)

dθ =
2√
−u−a2

Π

(
u+

∣∣∣∣
u+
u−

)
, (34)

Ĝt =

ˆ θ+

θ−

cos2 θ√
Θ(θ)

dθ = − 4u+√
−u−a2

E′
(
u+
u−

)
. (35)

Note that since Gθ = τ is the Mino time, the polar mo-
tion θo(τ) has a Mino-time period of 2Ĝθ.
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1. Inversion for θo(τ)

Now consider the path integral Gθ = τ beginning from
θ = θs. Before the first turning point is reached, we have

τ = Gθ = νθ(Goθ − Gsθ), νθ = sign
(
pθs
)
, (36)

where Giθ indicates the antiderivative Gθ evaluated at the
source (i = s) or observer (i = o). This equation can be
inverted for θo using the Jacobi elliptic sine function,

sn(F (arcsinϕ|k)) = ϕ, (37)

which is odd in its first argument, sn(−ϕ|k) = − sn(ϕ|k).
Combining Eqs. (29), (36), and (37) therefore gives

cos θo√
u+

= −νθ sn

(√
−u−a2(τ + νθGsθ)

∣∣∣∣
u+
u−

)
. (38)

Although Eq. (38) was derived under the assumption that
a turning point has not yet been reached, it in fact con-
tinues properly through turning points to provide the full
parameterized trajectory θo(τ), as follows. Noting that
sn(ϕ|k) oscillates smoothly between −1 and +1 with half-
period 2K(k), we see that Eq. (38) defines a trajectory
θo(τ) that oscillates between θ− and θ+ with half-period

Ĝθ. Thus, it has the correct quantitative behavior at
turning points, and we need only check that it satisfies
the squared differential equation (25), which is easily ver-
ified using the elliptic identities [12]

cn2(ϕ|k) + sn2(ϕ|k) = 1, (39)

dn2(ϕ|k) + k sn2(ϕ|k) = 1. (40)

This completes the proof that Eq. (38) is the unique so-
lution for θo(τ) with initial conditions θo(0) = θs and
sign[θ′o(0)] = νθ.

2. Path integrals as functions of Mino time

We have Gθ = τ by definition, and the other path
integrals may be expressed in terms of Mino time τ as
follows. Before a turning point is reached, we have

Gφ = νθ
(
Goφ − Gsφ

)
, (41)

Gt = νθ(Got − Gst ). (42)

To manipulate these equations, we will invoke a second
inversion formula,

am(ϕ|k) = arcsin(sn(ϕ|k)), |ϕ| ≤ K(k). (43)

where the Jacobi amplitude am(ϕ|k) is defined as the
inverse of the elliptic integral of the first kind F (ϕ|k),

F (am(ϕ|k)|k) = ϕ. (44)

Applying the formula (43) to Eq. (38) yields

arcsin

(
cos θo√
u+

)
= −νθΨτ , (45)

where the (monotonically increasing in τ) amplitude is

Ψτ = am

(√
−u−a2(τ + νθGsθ)

∣∣∣∣
u+
u−

)
, (46)

and the restriction |ϕ| ≤ K(k) is satisfied on account of
our assumption that a turning point has not yet been
reached. Plugging Eq. (45) into Eqs. (41) and (42) as
needed, and noting that both Π(n;−ϕ|k) = −Π(n;ϕ|k)
and E′(−ϕ|k) = −E′(ϕ|k) are odd in ϕ, we then find

Gφ =
1√
−u−a2

Π

(
u+; Ψτ

∣∣∣∣
u+
u−

)
− νθGsφ, (47)

Gt = − 2u+√
−u−a2

E′
(

Ψτ

∣∣∣∣
u+
u−

)
− νθGst . (48)

Although Eqs. (47) and (48) were derived under the as-
sumption that a turning point does not occur, they in
fact extend properly through turning points to give the
complete path integrals Gφ and Gt, as follows. Since
am(ϕ|k), Π(n;ϕ|k) and E′(ϕ|k) are real and smooth
functions of ϕ provided max(k, n) < 1 (satisfied here for
k = u+/u− and n = u+), it follows that the candidate
formulas for Gφ and Gt are real and smooth. Thus, we
need only check the differential equations (26) and (27),
which is straightforward using the identity (40). This
completes the proof that Eqs. (47) and (48) give the full
path integrals (13e) and (13f).

Notice that Eq. (38) may also be put in a similar form
using sn(ϕ|k) = sin(am(ϕ|k)),

cos θo(τ) = −νθ
√
u+ sin Ψτ . (49)

3. Path integrals in terms of turning points

Finally, it is useful for some purposes to express the
path integrals Gi as functions of θs, θo, νθ, and the num-
ber of turning points m encountered along the trajectory.
A general treatment is given in App. A below. For type A
motion, the antiderivatives Gi are odd under interchange
of + and −,

G+i = −G−i , (50)

where the ± denotes evaluation of Gi at θ = θ±. This
property originates from the equatorial reflection sym-
metry Θ(θ) = Θ(π − θ) of the angular potential. The
general result (A10) therefore reduces to

Gi = mĜi + νθ[(−1)mGoi − Gsi ], (51)

for i ∈ {θ, φ, t}, in agreement with Eqs. (80) in Ref. [8].
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It is instructive to examine the relationship between
this formula and the above expressions parameterized by
Mino time. When i = θ, Eq. (51) is the Mino time itself,

τ = mĜθ + νθ[(−1)mGoθ − Gsθ ]. (52)

By using the quasi-periodicity properties

am(ϕ+ 2K(k)|k) = am(ϕ|k) + π, k < 1, (53a)

F (ϕ+ π|k) = F (ϕ|k) + 2K(k), (53b)

Π(n;ϕ+ π|k) = Π(n;ϕ|k) + 2Π(n; k), (53c)

E(ϕ+ π|k) = E(ϕ|k) + 2E(k), (53d)

one can plug Eq. (52) into Eqs. (47), (48), and (49) to
recover Eq. (51) for i ∈ {φ, t}, and verify that θo(τ) = θo,
as required for consistency.

B. Vortical motion

We next turn to vortical geodesics (type B with η < 0),
which oscillate within a single hemisphere determined by

h = sign(cos θ). (54)

The motion lies within a cone θ− < θ+ in the north-
ern hemisphere (h = +1), or θ+ < θ− in the southern
hemisphere (h = −1), with the turning points given by

θ± = arccos
(
h
√
u∓
)
, (55)

so that θ−,+ = θ1,2 for h = 1 and θ+,− = θ3,4 for h = −1.
The angular integrals Gθ, Gφ, and Gt were reduced to

manifestly real elliptic form in Ref. [8]. Since u+/u− > 0,
the antiderivatives

Gθ = − h√
u−a2

F

(
Υ

∣∣∣∣1−
u+
u−

)
, (56)

Gφ = − h

(1− u−)
√
u−a2

Π

(
u+ − u−
1− u−

; Υ

∣∣∣∣1−
u+
u−

)
, (57)

Gt = −h
√
u−
a2
E

(
Υ

∣∣∣∣1−
u+
u−

)
, (58)

are real and smooth, with

Υ = arcsin

√
cos2 θ − u−
u+ − u−

. (59)

Their values over one half-libration are

Ĝθ = h

ˆ θ+

θ−

dθ√
Θ(θ)

=
1√
u−a2

K

(
1− u+

u−

)
, (60)

Ĝφ = h

ˆ θ+

θ−

csc2 θ√
Θ(θ)

dθ

=
1

(1− u−)
√
u−a2

Π

(
u+ − u−
1− u−

; 1− u+
u−

)
, (61)

Ĝt = h

ˆ θ+

θ−

cos2 θ√
Θ(θ)

dθ =

√
u−
a2
E

(
1− u+

u−

)
, (62)

and Ĝθ once again denotes the Mino-time half-period of
the polar motion θo(τ).

1. Inversion for θo(τ)

Now consider the path integral Gθ = τ beginning from
θ = θs. Before the first turning point is reached, we once
again have Eq. (36), which can yet again be inverted
using Eq. (37) to obtain

√
cos2 θo − u−
u+ − u−

= −hνθ sn

(√
u−a2(τ + νθGsθ)

∣∣∣∣1−
u+
u−

)
.

(63)

Solving for cos θo and using the identity (40) yields

cos θo√
u−

= hdn

(√
u−a2(τ + νθGsθ)

∣∣∣∣1−
u+
u−

)
, (64)

where in taking the square root, we chose the branch
h = ±1 to obtain the motion in the correct hemisphere
via Eq. (54). Although Eq. (64) was derived under the as-
sumption that a turning point has not yet been reached,
it in fact continues properly past turning points to pro-
vide the full parameterized trajectory θo(τ), as before.
Noting that when k < 0, dn(ϕ|k) oscillates smoothly be-
tween +1 and +

√
1− k with period 2K(k), we see that

Eq. (64) defines a trajectory θo(τ) that oscillates between

θ− and θ+ with half-period Ĝθ. Thus, it has the correct
quantitative behavior at turning points, and we need only
check that it satisfies the squared differential equation
(25) is satisfied, which is easily verified using the ellip-
tic identities (39) and (40). This completes the proof
that Eq. (64) is the unique solution for θo(τ) with initial
conditions θo(0) = θs and sign[θ′o(0)] = νθ.

2. Path integrals as functions of Mino time

We have Gθ = τ by definition, and the other path
integrals may be expressed in terms of Mino time τ by
the same method as in the ordinary case above. Before
a turning point is reached, we once again have Eqs. (41)
and (42). Applying the formula (43) to Eq. (63) yields

arcsin

√
cos2 θo − u−
u+ − u−

= −hνθΥτ , (65)

where the (monotonically increasing in τ) amplitude is

Υτ = am

(√
u−a2(τ + νθGsθ)

∣∣∣∣1−
u+
u−

)
, (66)

and the restriction |ϕ| ≤ K(k) is satisfied on account of
our assumption that a turning point has not yet been
reached. Plugging Eq. (65) into Eqs. (41) and (42) as
needed, and recalling that both Π(n;−ϕ|k) = −Π(n;ϕ|k)
and E′(−ϕ|k) = −E′(ϕ|k) are odd in ϕ, we then find
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Gφ =
1

(1− u−)
√
u−a2

Π

(
u+ − u−
1− u−

; Υτ

∣∣∣∣1−
u+
u−

)

− νθGsφ, (67)

Gt =

√
u−
a2
E

(
Υτ

∣∣∣∣1−
u+
u−

)
− νθGst . (68)

Although Eqs. (67) and (68) were derived under the as-
sumption that a turning point does not occur, they in
fact extend properly through turning points to give the
complete path integrals Gφ and Gt, as follows. Since
am(ϕ|k), Π(n;ϕ|k) and E(ϕ|k) are real and smooth func-
tions of ϕ provided max(k, n) < 1 [satisfied here for
k = 1 − u+/u− and n = (u+ − u−)/(1 − u−)], it fol-
lows that the candidate formulas for Gφ and Gt are real
and smooth. Thus, we need only check the differential
equations (26) and (27), which is straightforward using
the identity (40). This completes the proof that Eqs. (67)
and (68) give the full path integrals (13e) and (13f).

Notice that Eq. (64) may also be put in a similar form
using sn(ϕ|k) = sin(am(ϕ|k)) together with Eq. (40),

cos θo(τ) = h
√
u+ + u− cos2 Υτ . (69)

3. Path integrals in terms of turning points

Finally, it is useful for some purposes to express the
path integrals Gi as functions of θs, θo, νθ, and the num-
ber of turning points m encountered along the trajectory.
A general treatment is given in App. A below. Therein,
it was assumed that x− < x+, so we must take x± = θ±
when h = +1 and x± = θ∓ = when h = −1; that is,
x± = θ±h. Similarly, we have H± = G± when h = +1
and H± = G∓ when h = −1; that is, H± = G±h. Our
choice of antiderivatives (56), (57), and (58) have the
property that G+i vanish for both h = ±1. Taking these
facts into account, Eq. (A9) reduces to

Gi =

{
mĜi + νθ(Goi − Gsi ) m even,

(m− hνθ)Ĝi − νθ(Goi + Gsi ) m odd,
(70)

=

[
m− hνθ

1− (−1)m

2

]
Ĝi + νθ[(−1)mGoi − Gsi ],

for i ∈ {θ, φ, t}, in agreement with Eqs. (81) of Ref. [8]
(choosing the upper sign therein).

C. Unified inversion formula

In the ordinary case η > 0, we gave antiderivatives
(29), (30), and (31) involving elliptic integrals with pa-
rameter u+/u−, whereas in the vortical case η < 0, we
gave antiderivatives (56), (57), and (58) involving elliptic
integrals with parameter 1− u+/u−.

Since u+ > 0 and sign(u−) = − sign(η), these choices
ensure that the parameter of any elliptic integral is al-
ways negative, so that the antiderivatives are real and
smooth over the relevant domain. On the other hand, the
parameters exceed unity outside their domain, in which
case the elliptic integrals becomes complex and suffer
branch cut discontinuities. Thus, while an antideriva-
tive in one case is also an antiderivative for the other,
it is not C1 and cannot (in general) be used to compute
definite integrals.

However, the manipulations carried out to check that
the inversion formulas (38) and (64) satisfy the squared
differential equation (25) did not depend on any assump-
tions about the sign of η. That is, each of the inversion
formulas obeys the correct differential equation in both
cases. If these formulas also obey the correct initial con-
ditions θo(0) = θs and sign(θ′o(0)) = νθ in both cases,
then we conclude that they in fact remain valid in both
cases. Checking explicitly, we find that the initial value
is correct, while the initial sign of derivative is incorrect.
However, this is easily adjusted by a simple sign flip, giv-
ing a unified inversion formula,

cos θo(τ) = − sign(η)νθ
√
u+ sin Ψτ , (71)

where Eq. (49) for Ψτ is extended to the vortical case by

Ψτ = am

(√
−u−a2[τ + sign(η)νθGsθ ]

∣∣∣∣
u+
u−

)
, (72)

using Eq. (29) for Gsθ . Regardless of the sign of η, Eq. (71)
satisfies the differential equation (25) with initial condi-
tions θo(0) = θs and sign[θ′o(0)] = νθ, and hence is a cor-
rect formula for the full parameterized trajectory θo(τ).
This equivalence was first derived globally in Ref. [8] us-
ing elliptic identities.

The expressions for θo(τ) correctly extend outside their
domain because they only involve sn(ϕ|k), which is a
meromorphic complex function. On the other hand, this
equivalence breaks down for Gφ and Gt, as they involve
elliptic integrals with branch cuts in the complex plane.

IV. RADIAL POTENTIAL

We now turn to the analysis of the radial potential
R(r), which may be expressed as

R(r) =
(
r2 + a2 − aλ

)2 − ζ∆(r), (73)

with

ζ = η + (λ− a)
2 ≥ 0. (74)

The restriction ζ ≥ 0 follows from the constraints (24)
on the range of η. The trajectories ζ = 0 saturating the
bound (74) are the principal null congruences [4], with
conserved quantities

(λ, η) =
(
a sin2 θ0,−a2 cos4 θ0

)
. (75)
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Since principal null geodesics have u± = cos2 θ0, they
stay at fixed θ = θ0, where both the angular potential
(8) and its derivative vanish, Θ(θ0) = Θ′(θ0) = 0. In this
case, the roots of the radial potential (73) are simply

r = ±ia cos θ0. (76)

For the remainder of this section, we assume that ζ 6= 0,
in which case the bound (74) becomes strict,

ζ > 0. (77)

We now find and classify the roots of the quartic radial
potential (73). We use Ferrari’s method to express the
four roots in a convenient form, and then study the spe-
cial cases in which one or more roots coincide. These
cases define the boundaries between regions of the (λ, η)
parameter space in which the roots display different qual-
itative behaviors.

A. Calculation of roots

We now solve for the roots of the radial potential (73)
in the allowed range (24). The analysis of a quartic poly-
nomial usually begins by performing a simple scaling and
translation to bring it into depressed form,

r4 +Ar2 + Br + C = 0, (78)

which our potential (73) already takes, with coefficients

A = a2 − η − λ2, (79)

B = 2M
[
η + (λ− a)

2
]
> 0, (80)

C = −a2η. (81)

Here, the positivity of B follows from Eq. (77). Ferrari’s
method gives the general solution of the quartic (78) as

r =

±1

√
2ξ0 ±2

√
−
(

2A+ 2ξ0 ±1

√
2B√
ξ0

)

2
, (82)

where the four choices of sign ±1,2 yield the four roots,
and where ξ0 is any root of the “resolvent cubic”

R(ξ) = ξ3 +Aξ2 +

(A2

4
− C

)
ξ − B

2

8
. (83)

To obtain such a root, we first let ξ = t − A/3 to bring
the resolvent cubic into the depressed form

R(t) = t3 + Pt+Q, (84)

with coefficients

P = −A
2

12
− C, (85)

Q = −A
3

[(A
6

)2

− C
]
− B

2

8
. (86)

Cardano’s method then gives

ξ0 = ω+ + ω− −
A
3
, (87)

ξ1 = e2πi/3ω+ + e−2πi/3ω− −
A
3
, (88)

ξ2 = e−2πi/3ω+ + e2πi/3ω− −
A
3
, (89)

as the roots of the original cubic (83), with

ω± =
3

√√√√−Q
2
±
√(P

3

)3

+

(Q
2

)2

(90)

=
3

√

−Q
2
±
√
−43

108
. (91)

In the last step, we introduced the discriminant 43 of
the depressed cubic,

43 = −22P3 − 33Q2. (92)

In Eq. (90), 3
√
x denotes either the real cube root of x,

if x is real, or else, the principal value of the cube root
function (that is, the cubic root with maximal real part).

We have chosen this method for solving the cubic be-
cause it guarantees that ξ0 is always real and positive,

ξ0 > 0. (93)

To see this, consider separately the cases where 43 < 0
and 43 > 0. If 43 < 0, then ω± are real, implying that
ξ0 is real and ξ1 = ξ̄2 are complex conjugates. If 43 > 0,
then ω+ = ω̄− are complex conjugates, implying that all
three roots ξ0, ξ1 and ξ2 are real. In that case, ξ0 is
the largest root, since by the definition of 3

√
x, ω+ has a

larger real part than either of the other two cube roots
of ω3

+ (and likewise for ω−); that is, we have Re[ω±] >

Re[e2πi/3ω±] and Re[ω±] > Re[e−2πi/3ω±]. Thus, in all
cases, ξ0 is the largest real root. Finally, since the orig-
inal polynomial (83) ranges from R(0) = −B2/8 < 0 to
R(+∞) = +∞ over the positive real axis, it always ad-
mits at least one positive real root. This proves that ξ0
is always real and positive (and the largest such root).

We now use this root ξ0 in Ferrari’s formula (82) for
the solution of the quartic. Defining

z =

√
ξ0
2
> 0, (94)

the four roots are obtained in the particularly simple form

r1 = −z −
√
−A

2
− z2 +

B
4z
, (95a)

r2 = −z +

√
−A

2
− z2 +

B
4z
, (95b)

r3 = z −
√
−A

2
− z2 − B

4z
, (95c)

r4 = z +

√
−A

2
− z2 − B

4z
. (95d)
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These names are natural because of the ordering of the
roots, discussed in Sec. IV B below. Notice that

r1 + r2 + r3 + r4 = 0. (96)

This vanishing of the roots’ sum is a general property of
depressed quartics (generalized by Vieta’s formulas).

In the special case of extreme Kerr (a = M), the roots
can also be expressed in the simpler form [13]

r = ±14r ±2

√
(4r ∓1 M)

2
+M(λ− 2M), (97)

4r =
1

2

√
η + (λ−M)

2
=

√
B

8M
, (98)

where the two independent sign choices ±1 and ±2 give
the four roots, but without a clear ordering.

B. Classification of roots

We now determine the character (real or complex) and
ordering of the roots {r1, r2, r3, r4} as a function of the
conserved quantities λ and η. The boundaries between
regions of different behaviors correspond to conserved
quantities (λ, η) such that one or more roots coincide,
so we begin by classifying these critical cases.

The maximally degenerate case of all four roots coin-
ciding occurs when the quartic is just proportional to r4,
i.e., when

ř = 0, λ̌ = a, η̌ = 0. (99)

This is the equatorial principal null geodesic, with ζ = 0
and θ0 = π/2 [see Eq. (76)].

Triple roots occur when R′′(r̂) = R′(r̂) = R(r̂) = 0,
which straightforwardly implies

r̂ = M

[
1−

(
1− a2

M2

)1/3
]
∈ (0, r−), (100)

λ̂ = a− r̂2(2r̂ − 3M)

Ma
, (101)

η̂ = 6r̂2 − λ̂2 + a2, (102)

with ζ̂ = 4r̂3/M > 0 satisfying Eq. (77).
Double roots occur when R(r̃) = R′(r̃) = 0, i.e., when

0 =
(
r̃2 + a2 − aλ̃

)2
− ζ∆(r̃), (103)

0 = 4r̃
(
r̃2 + a2 − aλ̃

)
− 2ζ(r̃ −M). (104)

If r̃ = M , then these equations are satisfied if and only if
a = M and λ = 2M , corresponding to the superradiant
bound of an extreme black hole. This is a very interesting
regime that we exclude for present purposes, where we
consider 0 < a < M . Hence, we must have r̃ 6= M , in
which case Eq. (104) can be solved to find

ζ =
2r̃

r̃ −M
(
r̃2 + a2 − aλ̃

)
. (105)

Next, plugging back into the first condition (103) yields

(
r̃2 + a2 − aλ

)[
r̃2 + a2 − aλ̃− 2r̃∆(r̃)

r̃ −M

]
= 0. (106)

Since ζ 6= 0 by assumption, the first term is not allowed
to vanish. Therefore, we are left with

λ̃ = a+
r̃

a

[
r̃ − 2∆(r̃)

r̃ −M

]
. (107)

Back-substituting into Eq. (104) then gives

η̃ =
r̃3

a2(r̃ −M)
2

[
4Ma2 − r̃(r̃ − 3M)

2
]

(108)

=
r̃3

a2

[
4M∆(r̃)

(r̃ −M)
2 − r̃

]
, (109)

with ζ̃ = 4r̃2(r̃ −M)
−2

∆(r̃) > 0 satisfying Eq. (77). The
formulas (107) and (108) describe a curve in the (λ, η)-
space parameterized by the radius r̃. We now determine
the portion of this curve within the allowed region (24).

Its edges occur at η̃ ∈ {0,−(λ̃± a)2} depending on λ̃:

η̃ = 0 : 4Ma2 − r̃(r̃ − 3M)
2

= 0, (110)

η̃ = −(λ̃+ a)2 : Ma2 + r̃2(2r̃ − 3M) = 0, (111)

η̃ = −(λ̃− a)2 : r̃ = r± (112)

Note r̃ = 0 is also valid for η̃ = 0 and η̃ = −(λ̃ − a)2.
The roots of the above cubic polynomials are all real and
can thus be written using the trigonometric formulas

r̃ = 2M + 2M cos

[
2πk

3
+

2

3
arccos

( a
M

)]
, (113)

r̃ =
M

2
+M cos

[
2πk

3
+

2

3
arcsin

( a
M

)]
, (114)

for k ∈ {0, 1, 2}. Eqs. (113) and (114) are the solutions to
the cubic equations in Eqs. (110) and (111), respectively.

Eqs. (113) and (114) together with r̃ = 0 and r̃ = r±
are the complete list of radii where a curve of double
roots may intersect the edge of the allowed region (24).
Examining each case, we find that Eq. (24) is satisfied
only in the ranges

r̃ ∈ [r̃2, r̃3] (outside horizon, defines C+), (115)

r̃ ∈ [r̃u, r̃1] (inside horizon, defines C−), (116)

where we introduced special notation for the four relevant
roots from Eqs. (113) and (114),

r̃u =
M

2
+M cos

[
2π

3
+

2

3
arcsin

( a
M

)]
(117)

r̃1 = 2M + 2M cos

[
2π

3
+

2

3
arccos

( a
M

)]
, (118)

r̃2 = 2M + 2M cos

[
4π

3
+

2

3
arccos

( a
M

)]
, (119)

r̃3 = 2M + 2M cos

[
2

3
arccos

( a
M

)]
. (120)
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FIG. 2. Regions of conserved quantity space corresponding to different qualitative behaviors of the roots of the radial potential.
Here we show the case of spin a/M = 99% and set M = 1. The triple root r̂ is shown with a red dot and the quadruple root ř
with a purple dot. In the low-spin limit a→ 0, regions II and IV disappear, while in the high-spin limit a→M the rightmost
portion of C− merges with C+, so that region II is adjacent to region I.

These real roots have the ordering

r̃u < 0 < r̂ < r̃1 < r− < r+ < r̃2 < r̃3. (121)

The ranges (115) and (116) define two disjoint curves C±
in (λ, η)-space via λ = λ̃(r̃) and η = η̃(r̃) [see Fig. 2].
Note that the range (115) of C+ is equivalent to η̃ ≥ 0, so
the orbits bound at double roots r̃ outside the horizon all
cross the equatorial plane, with the boundary values r̃2
and r̃3 corresponding to prograde and retrograde circular
equatorial (η̃ = 0) orbits, respectively.

Instead of using r̃ as a parameter, we can instead ex-
press the curves as η̃(λ̃) using Eq. (108) and the inversion
of the cubic equation (107). Using the trigonometric cu-
bic formula, we write the roots as

r̃(k)(λ̃) = M + 2M4λ̃ cos

[
2πk

3
+

1

3
arccos

(
1− a2

M2

∆3
λ

)]
,

4λ̃ =

√

1− a(a+ λ̃)

3M2
. (122)

with k ∈ {0, 1, 2}. The relevant inversions are then

C+ : r̃(λ̃) = r̃(0)(λ̃), (123)

C− : r̃(λ̃) =

{
r̃(1)(λ̃) r̃ ∈ [r̃u, r̂],

r̃(2)(λ̃) r̃ ∈ [r̂, r̃1],
(124)

where r̂ denotes the triple root of the radial potential,
given in Eq. (100) above. Plugging these expressions into
Eq. (108) for η̃ gives each segment of the curve as a func-

tion η̃(λ̃). The curve C− has an inflection point at r̃ = 0
and a kink at r̃ = r̂ [see right panel in Fig. 2].

The critical curves C± divide the allowed region of pa-
rameter space into four subregions as depicted in Fig. 2.
Since complex roots appear in conjugate pairs, and all
roots must vary smoothly in the (λ, η)-plane, each subre-
gion corresponds to a definite number of real roots (either
zero, two, or four). Furthermore, the expressions (95) for
the roots {r1, r2, r3, r4} are smooth functions in each sub-
region, so any real roots retain their ordering throughout
a subregion. Moreover, real roots may move through the
inner and outer event horizons only via a double root at
the horizon,7 meaning that real roots also retain their
ordering relative to the horizons within each subregion.
Thus, to determine the character of the roots throughout
any subregion, it suffices to evaluate the formulas (95) at
a single point therein. Doing so results in the general
classification:

I. Four real roots, two outside horizon:
r1 < r2 < r− < r+ < r3 < r4.

II. Four real roots, all inside horizon:
r1 < r2 < r3 < r4 < r− < r+.

III. Two real roots, both inside horizon:
r1 < r2 < r− < r+ and r3 = r̄4.

IV. No real roots: r1 = r̄2 and r3 = r̄4.

7The radial potential is nonnegative at both horizons and positive

at infinity: R(r±) =
(
r2± + a2 − aλ

)2 ≥ 0 and R(±∞) = +∞. As
such, there must always be an even number of real roots in each of
the ranges r < r−, r− < r < r+, and r > r+.
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FIG. 3. The outer critical curve C+ is the boundary between rays with two roots outside the horizon (region I) and with no
roots outside the horizon (regions II, III, IV). As the spin is increased from a = 0 on the left to a = M on the right, the region
of vortical geodesics (lower protrusion) grows in size, while the right side of C+ tucks in and develops a vertical segment. (This
segment maps to the “NHEKline” on the image of an observer [2, 14].) We have set M = 1 in these plots.

Notice that there are never any real roots between the
inner and outer horizons r− and r+. On the critical curve
C+, we have r3 = r4 > r+, while on the portion of C−
in the upper-half plane (η > 0), we have r3 = r4 < r−,

with r̂ = r2 = r3 = r4 < r− at the triple-root (λ̂, η̂).
On the portion of C− in the lower-half plane (η < 0), we
have r1 = r2 < r−, with all four roots coinciding at the
intersection of C− with the horizontal axis η = 0.

The allowed range(s) of r for each of the four cases can
be determined by checking where the radial potential is
positive for a single choice of conserved quantities in each
region. Noting that the potential is always positive at
r → ±∞, the ranges are: r < r1, r2 < r < r3, and r > r4
for cases I and II; r < r1 and r > r2 for case III; and any
value of r for case IV. Restricting to motion outside the
horizon, the relevant ranges are thus:

Ia. r+ < r < r3 (white hole to black hole).

Ib. r4 < r <∞ (scattering).

II, III, IV. r+ < r <∞ (fly in or out).

In case Ia, the ray emerges from the white hole, reaches
a turning point at r = r3, and falls into the black hole.
In case Ib, the ray enters from infinity, reaches a turning
point at r = r4, and returns to infinity. In cases II, III,
and IV, the ray either starts from the white hole horizon
and ends at infinity, or starts from infinity and ends at
the black hole horizon. Fig. 3 illustrates these regions.

C. Radial integrals and inversion

The above classification of the radial motions enables
the radial integrals Ir, Iφ, It, and Iσ to be expressed in

manifestly real elliptic form using standard transforma-
tions. The needed transformations group themselves into
yet another logically distinct set of cases, according to the
turning point(s) of the maximally extended trajectory:8

(1) Case Ia: r2 < r < r3.

(2) Cases Ib and II: r4 < r <∞.

(3) Case III: r2 < r <∞.

(4) Case IV: −z < r <∞.

For each case (1)-(4), we proceed as with the polar mo-
tion above: first, we find smooth real antiderivatives for
each integral; next, we invert Ir = τ to find ro(τ); and
finally, we find expressions for Iφ and It, both as func-
tions of τ and expressed in terms of the number of turning
points. Since the method is essentially the same as in the
polar case (but lengthier), we defer treatment to App. B.
The results are summarized in Sec. VI below.

V. COMPARISON TO PREVIOUS WORK

We now compare our results to previous work. For the
polar motion, the formulas for the roots, classification of
motion types, reduction to elliptic integrals, and inver-
sion for θo(τ) have all appeared before in the literature.

8In Case IV, the trajectory has no turning point (−∞ < r < ∞),
but the Legendre form of the antiderivative we give is smooth only
over the range −z < r <∞, which covers the exterior since z > 0.
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We provide a unified presentation, introduce a method
of derivation that generalizes to the radial case, and also
give for the first time the Mino-time parameterization of
the path integrals Gφ(τ) and Gt(τ). For the radial mo-
tion, the roots had not been solved for, the classification
of motion types was incomplete, only a subset of the inte-
gral reductions and inversions had been performed, and
formulas for Iφ(τ) and It(τ) had not previously appeared.

We now make a more detailed comparison to a subset
of earlier work. Rauch and Blandford [6] used the stan-
dard substitutions [15] (the same ones we use) to reduce
Ir to Legendre elliptic form in all possible cases. Dexter
& Agol [7] reduced Ir and Gθ to Carlson symmetric form
and found the inversion formulas r(τ) and θ(τ) in a sub-
set of cases. Esteban & Vásquez [16] expressed a subset
of the path integrals explicitly in terms of the number
of turning points, and Kapec & Lupsasca [8] obtained
corresponding (and simplified) expressions for all of the
angular path integrals. We go beyond these works by de-
lineating the regions of conserved quantity space where
each case of radial motion applies, by finding explicit or-
dered expressions for the radial roots, by finding inversion
formulas valid in all cases, and by computing all geodesic
integrals Gθ, Gφ, Gt, Ir, Iφ, It, and Iσ in all cases.

Analytic solutions for xµ(τ) were given previously by
Hackmann [5] using the Weierstrass elliptic function.
These expressions are slightly less explicit than ours,
since they require the computation of an integral to re-
late to given initial data, need manual gluing at some
turning points, and also feature a reference root to be
found in each case. (Our explicit solution for the roots
simplifies the latter task.) The solutions of Ref. [5] also
appear to be less general, since the reference root is as-
sumed to be real, and it is not clear whether the results
extend to case IV, where all roots are complex. However,
Hackmann’s approach goes beyond our work in treating
timelike geodesics as well.

Finally, we note that an approach similar to ours
was followed in Refs. [17, 18] to analyze bound timelike
geodesics in Mino time.

VI. RECIPE FOR TRAJECTORIES

We now explain how to use the results of this paper
to construct a parameterized trajectory for a given set of
initial conditions, excluding certain measure-zero cases.
Beginning with the initial position xµs and momentum pµs ,
one first determines λ and η via Eqs. (3)–(5). Next, one
determines the type of polar motion (type A or B) ac-
cording to whether η is positive or negative, respectively.
One then evaluates the roots {r1, r2, r3, r4} [Eqs. (95)] to
determine the radial case I, II, III, or IV. (One way to
do so is: If r2 is not real, the motion is case IV; If r2 is
real, then the motion is case III, II, or I if r4 is complex,
real but inside the horizon, or real and outside the hori-
zon, respectively.) Next, one determines the substitution
class (1), (2), (3), or (4) according to the following: If

case I, choose (1) or (2) according to whether the initial
radius is less than r3 or greater than r4; if case II, III, or
IV, choose (2), (3), or (4), respectively.

Having determined the appropriate type of polar mo-
tion (A or B) and radial motion (1)-(4), the trajectories
are given in a unified notation in the relevant subsections
of the paper. As an example, we will consider polar type
A and radial type (2) (rays that enter and leave via the
celestial sphere). The solution is given in the notation
xµo (τ), where νθ and νr are the initial signs of the po-
lar momentum pθs and radial momentum prs, respectively.
The polar motion θo(τ) is given in Eq. (38). The radial
motion ro(τ) is given in Eq. (B46). The azimuthal mo-
tion φo(τ) is given by Eqs. (11) and (B2) using Eqs. (B30)
and (47). The temporal motion to(τ) is given by Eqs. (12)
and (B3) using Eqs. (B30) and (48).
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Appendix A: Unpacking path integrals

Consider a “trajectory” x(T ) defined between Ts and
To that periodically oscillates in some range x ∈ [x−, x+].
Given a function h(x) that is real and smooth in this
range (and integrable as the edges are approached), we
may define a path integral

H =

ˆ To

Ts

h(x(T ))

∣∣∣∣
dx

dT

∣∣∣∣ dT. (A1)

Over any segment between adjacent turning points, the
integrand is simply ±h(x) dx, with ± the sign of dx/dT .
We thus abbreviate the integral using the slash notation

H =

 xo

xs

±h(x) dx, (A2)

where x(Ts) = xs and x(To) = xo, while the ± is always
the sign of dx/dT (and hence switches at turning points).
This makes it manifest that the integral depends only
on the initial value xs, the initial sign ν = sign(x′(Ts)),
the final value xo, and the number of turning points p
encountered along the way,

H = H(xs, ν, xo, p). (A3)

We now find explicit expressions for H in terms of these
parameters, as well as any choice of (real and smooth)
antiderivative H(x) such that

dH
dx

= h(x). (A4)
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FIG. 4. Illustration of the four cases considered in Eqs. (A8).

We will use the notation

Hi = H(x = xi), i ∈ {s, o,+,−}. (A5)

The path integral has the quasi-periodicity property

H(p+ 2) = H(p) + 2Ĥ, (A6)

where the other arguments in Eq. (A3) are fixed, while

Ĥ =

ˆ x+

x−

H(x) dx = H+ −H−, (A7)

denotes the path integral over a half-libration. Thus,
it suffices to consider four cases: ν = ± and m ∈ {0, 1}.
These are depicted in Fig. 4. Going through each of these
configurations in turn, we find

ν = +1, p = 0 : H = Ho −Hs, (A8a)

ν = −1, p = 0 : H = Hs −Ho, (A8b)

ν = +1, p = 1 : H = −Hs −Ho + 2H+, (A8c)

ν = −1, p = 1 : H = Hs +Ho − 2H−. (A8d)

Pairing these expressions by their value of p, and then
promoting them to arbitrary integer p using Eq. (A6),
we finally obtain

H =

{
pĤ + ν(Ho −Hs) p even,

pĤ + ν(H+ +H− −Ho −Hs) p odd,
(A9)

which correctly reproduces Eqs. (A8) when p ∈ {0, 1}.
Finally, the even and odd cases can be combined into

H = pĤ + ν

[
(−1)pHo −Hs +

1− (−1)p

2
(H+ +H−)

]
.

(A10)

Appendix B: Radial integrals and inversion

In this appendix, we analyze the radial integrals and trajectories following the approach established in the polar
case in Sec. III. It is convenient to rewrite the radial integrals as

Ir = I0, (B1)

Iφ =
2Ma

r+ − r−

[(
r+ −

aλ

2M

)
I+ −

(
r− −

aλ

2M

)
I−

]
, (B2)

It =
(2M)2

r+ − r−

[
r+

(
r+ −

aλ

2M

)
I+ − r−

(
r− −

aλ

2M

)
I−

]
+ (2M)2I0 + (2M)I1 + I2, (B3)
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where we introduced

I± =

 ro

rs

dr

±r(r − r±)
√
R(r)

, I` =

 ro

rs

r` dr

±r
√
R(r)

, (B4)

for ` ∈ {0, 1, 2}. Note that Ir = I0 and Iσ = I2. The radial trajectory satisfies the squared differential equation
(
dro
dτ

)2

= R(ro(τ)), (B5)

while the radial integrals (B4) satisfy

dI`
dτ

= [ro(τ)]
`
,

dI±
dτ

=
1

ro(τ)− r±
. (B6)

Below we will go through each case (1)-(4) [Sec. IV C], following the basic approach established in our treatment
of the angular integrals in Sec. III above. Each case requires a different substitution of variables to obtain real
and smooth antiderivatives for the integrals.9 Many of the relevant substitutions are summarized in §3.145–3.151 of
Ref. [19], and full details are presented in §250–267 of Ref. [15]. The antiderivatives can be used to calculate the path
integrals as functions of rs, ro, νr, and the number of turning points w encountered along the trajectory via

Ii = (−1)wIoi − Isi , (B7)

where Iji indicates the antiderivative Ii evaluated at the source (j = s) or observer (j = o). Here, we assumed that
the trajectory encounters either no turning points (w = 0) or a single turning point (w = 1), which is appropriate for
our restriction to motion in the black hole exterior.

Preliminaries

For the analysis that follows, it is most convenient to think of the radial potential as a quartic in terms of its roots,

R(r) = (r − r1)(r − r2)(r − r3)(r − r4). (B8)

Throughout this section, we use the notation

rij = ri − rj , (B9)

with i, j ∈ {1, 2, 3, 4,+,−} to represent the four roots of the radial potential, as well as the inner and outer horizons.
In addition, if r3 = r̄4 are complex conjugates, then it is useful to set

r3 = b1 − ia1, r4 = b1 + ia1, a1 =

√
−r

2
43

4
> 0, b1 =

r3 + r4
2

= z > 0, (B10)

where the last equality follows from the explicit expressions (95) for the radial roots, and the following inequality
from Eq. (94). Moreover, if r1 = r̄2 are also complex conjugates, then we likewise set

r1 = b2 − ia2, r2 = b2 + ia2, a2 =

√
−r

2
21

4
> 0, b2 =

r1 + r2
2

= −z < 0. (B11)

Note that the condition r1 + r2 + r3 + r4 = 0 is automatically enforced, as expected from Eq. (96), and also that

b1 > 0 > b2 = −b1, a1 > a2 > 0. (B12)

Lastly, we define once and for all the elliptic parameter

k =
r32r41
r31r42

. (B13)

Note that if all the roots are real, then their ordering ensures that r32r41 − r31r42 = −r43r21 < 0, and hence that

k ∈ (0, 1). (B14)

On the other hand, if two of the roots are complex, then k ∈ C is a pure complex phase, as can be seen by plugging
in Eqs. (B10) into the definition (B13). When all the roots are complex, then k > 1, as can be seen by plugging in
Eqs. (B10) and (B11) into the definition (B13). In these cases, another parameter is needed instead.

9Near critical values of the roots, the integrals may be approximated using the method of matched asymptotic expansions [11, 14].
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1. Case (1)

In case (1), all four roots are real and the range of radial motion is r1 < r2 ≤ r ≤ r3 < r4. (In the maximally extended
spacetime, the photon alternates between successive universes.) An appropriate substitution for the evaluation of the
integrals (B4) is then (see Eq. (4) in §3.147 of Ref. [19] and §254 of Ref. [15])

x1(r) =

√
r − r2
r − r1

r31
r32
∈ (0, 1]. (B15)

The parameter (B13) is less than unity, k ∈ (0, 1), and the antiderivatives

I0 = F (1)(r), (B16)

I1 = r1F
(1)(r) + r21Π

(1)
1 (r), (B17)

I2 =

√
R(r)

r − r1
− r1r4 + r2r3

2
F (1)(r)− E(1)(r), (B18)

I± = −Π
(1)
± (r)− F (1)(r)

r±1
, (B19)

are real and smooth, with10

F (1)(r) =
2√
r31r42

F
(

arcsinx1(r)
∣∣∣k
)
≥ 0, (B20)

E(1)(r) =
√
r31r42E

(
arcsinx1(r)

∣∣∣k
)
≥ 0, (B21)

Π
(1)
1 (r) =

2√
r31r42

Π

(
r32
r31

; arcsinx1(r)

∣∣∣∣k
)
≥ 0, (B22)

Π
(1)
± (r) =

2√
r31r42

r21
r±1r±2

Π

(
r±1r32
r±2r31

; arcsinx1(r)

∣∣∣∣k
)
, (B23)

In general, the expression for I2 contains an additional contribution from the antiderivative

r1 + r2 + r3 + r4
2

(
r1F

(1)(r) + r21Π
(1)
1 (r)

)
= 0, (B24)

which in this case vanishes by Eq. (96).

a. Inversion for ro(τ)

Before a turning point is reached, the path integral Ir = τ beginning from r = rs is given by

τ = Ir = νr(Ior − Isr ), νr = sign(prs). (B25)

As in the angular analysis of Sec. III, we may use the Jacobi elliptic sine function to invert this equation. Recalling
that Ir = I0 = F (1)(r), Eqs. (37), (B20), and (B25) can be combined to give

x1(ro) = νr sn
(
X1(τ)

∣∣k
)
, X1(τ) =

√
r31r42

2
(τ + νrIsr ). (B26)

Solving for ro using Eq. (B15), we then find

r(1)o (τ) =
r2r31 − r1r32 sn2

(
X1(τ)

∣∣k
)

r31 − r32 sn2
(
X1(τ)

∣∣k
) , (B27)

10F (1) ≥ 0, E(1) ≥ 0, and Π
(1)
1 ≥ 0 because F (ϕ|k) ≥ 0, E(ϕ|k) ≥ 0 and Π(n;ϕ|k) ≥ 0 whenever ϕ ∈

[
0, π

2

]
, k ∈ [0, 1], and n ∈ [0, 1]. On

the other hand, Π
(1)
± can be negative.
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where we write r
(1)
o to emphasize that this formula for ro(τ) was derived in case (1), even though it will extend to the

other cases with little modification. Although Eq. (B27) was derived under the assumption that a turning point has
not yet been reached, it in fact continues properly through turning points to provide the full parameterized trajectory
ro(τ), as follows. Noting that sn2(ϕ|k) oscillates smoothly between 0 and +1 with period 2K(k), we see that Eq. (B27)
defines a trajectory ro(τ) that oscillates between r2 and r3 with period 2K(k). Thus, it has the correct quantitative
behavior at turning points, and we need only check that it satisfies the squared differential equation (B5), which is
easily verified using the elliptic identities (39) and (40). This completes the proof that Eq. (B27) is the unique solution
for ro(τ) with initial conditions ro(0) = rs and sign[r′o(0)] = νr, which is manifestly real in case (1).

b. Path integrals as a function of Mino time

We have Ir = I0 = τ by definition, and the other path integrals may be expressed in terms of Mino time τ using a
slight extension of the method used in Sec. III for the angular case. Before the first turning point is reached, we have

Ii = νr(Ioi − Isi ), (B28)

where the antiderivatives Ii depend on r primarily through the combination arcsinx1(r). Applying the formula (43)
to Eq. (B26) extends arcsinx1(r) to the (monotonically increasing in τ) amplitude

arcsinx1(r) = am
(
X1(τ)

∣∣k
)
, (B29)

where X1(τ) is as defined in Eq. (B26), and the restriction |ϕ| ≤ K(k) is satisfied on account of our assumption that
a turning point has not yet been reached. Plugging the extension (B29) into Eq. (B28) as needed, we then find

I1 = νr

[
r1F

(1)
τ + r21Π

(1)
1,τ − Is1

]
, (B30a)

I2 = νr

[ |r′o(τ)|
ro(τ)− r1

− r1r4 + r2r3
2

F (1)
τ − E(1)

τ − Is2
]
, (B30b)

I± = νr

[
−Π

(1)
±,τ −

F
(1)
τ

r±1
− Is±

]
, (B30c)

with

F (1)
τ =

2τ√
r31r42

, (B31)

E(1)
τ =

√
r31r42E

(
am
(
X1(τ)

∣∣k
)∣∣∣k
)
, (B32)

Π
(1)
1,τ =

2√
r31r42

Π

(
r32
r31

; am
(
X1(τ)

∣∣k
)∣∣∣∣k
)
, (B33)

Π
(1)
±,τ =

2√
r31r42

r21
r±1r±2

Π

(
r±1r32
r±2r31

; am
(
X1(τ)

∣∣k
)∣∣∣∣k
)
. (B34)

Although these expressions were derived under the assumption that a turning point does not occur, they in fact extend
properly through turning points to give the complete path integrals Ii, as follows. Since am(ϕ|k), F (ϕ|k), E(ϕ|k),
and Π(n;ϕ|k) are real and smooth functions of ϕ provided max(k, n) < 1 (which is the case here), it follows that the
candidate formulas for the Ii are real and smooth. Thus, we need only check the differential equations (B6), which
is straightforward using Eq. (B29) together with the quasi-periodicity properties (53). This completes the proof that
these formulas give the full path integrals (B4).

2. Case (2)

In case (2), all four roots are real and the range of radial motion is r1 < r2 < r3 < r4 ≤ r. An appropriate
substitution for the evaluation of the integrals (B4) is then (see Eq. (8) in §3.147 of Ref. [19] and §258 of Ref. [15])

x2(r) =

√
r − r4
r − r3

r31
r41
∈
[
0,

√
r31
r41

]
⊂ [0, 1). (B35)



16

The parameter (B13) is less than unity, k ∈ (0, 1), and the antiderivatives

I0 = F (2)(r), (B36)

I1 = r3F
(2)(r) + r43Π

(2)
1 (r), (B37)

I2 =

√
R(r)

r − r3
− r1r4 + r2r3

2
F (2)(r)− E(2)(r), (B38)

I± = −Π
(2)
± (r)− F (2)(r)

r±3
, (B39)

are real and smooth, with11

F (2)(r) =
2√
r31r42

F
(

arcsinx2(r)
∣∣∣k
)
≥ 0, (B40)

E(2)(r) =
√
r31r42E

(
arcsinx2(r)

∣∣∣k
)
≥ 0, (B41)

Π
(2)
1 (r) =

2√
r31r42

Π

(
r41
r31

; arcsinx2(r)

∣∣∣∣k
)
≥ 0, (B42)

Π
(2)
± (r) =

2√
r31r42

r43
r±3r±4

Π

(
r±3r41
r±4r31

; arcsinx2(r)

∣∣∣∣k
)
, (B43)

In general, the expression for I2 contains an additional contribution from the antiderivative

r1 + r2 + r3 + r4
2

(
r3F

(2)(r) + r43Π
(2)
1 (r)

)
= 0, (B44)

which in this case vanishes by Eq. (96).

a. Inversion for ro(τ)

Before a turning point is reached, the path integral Ir = τ beginning from r = rs is still given by Eq. (B25). As
usual, we may use the Jacobi elliptic sine function to invert this equation. Recalling that Ir = I0 = F (2)(r), Eqs. (37),
(B25), and (B40) can be combined to give

x2(ro) = νr sn
(
X2(τ)

∣∣k
)
, X2(τ) =

√
r31r42

2
(τ + νrIsr ). (B45)

Solving for ro using Eq. (B35), we then find

r(2)o (τ) =
r4r31 − r3r41 sn2

(
X2(τ)

∣∣k
)

r31 − r41 sn2
(
X2(τ)

∣∣k
) . (B46)

where we write r
(2)
o to emphasize that this formula for ro(τ) was derived in case (2), even though it will extend to

the other cases with little modification. Although Eq. (B46) was derived under the assumption that a turning point
has not yet been reached, it in fact continues properly through the turning point r4 (if encountered) to provide the
full parameterized trajectory ro(τ). (If νr < 0 there is no turning point in the future of the initial data.) Noting that
sn2(ϕ|k) oscillates smoothly between 0 and +1 with period 2K(k), we see that Eq. (B46) defines a trajectory ro(τ)
that correctly bounces when r = r4, where sn2(ϕ|k) = 0. Thus, it has the correct quantitative behavior at the turning
point, and we need only check that it satisfies the squared differential equation (B5), which is easily verified using the
elliptic identities (39) and (40). This completes the proof that Eq. (B46) is the unique solution for ro(τ) with initial
conditions ro(0) = rs and sign[r′o(0)] = νr, which is manifestly real in case (2).

11F (2) ≥ 0, E(2) ≥ 0, and Π
(2)
1 ≥ 0 because F (ϕ|k) ≥ 0, E(ϕ|k) ≥ 0 and Π(n;ϕ|k) ≥ 0 whenever ϕ ∈

[
0, arcsin 1√

n

]
, k ∈ [0, 1], and n ≥ 1.

On the other hand, Π
(2)
± can be negative.
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b. Path integrals as a function of Mino time

We have Ir = I0 = τ by definition, and the other path integrals may be expressed in terms of Mino time τ
using the same method as usual. Before the first turning point is reached, we once again have Eq. (B28), where
the antiderivatives Ii depend on r primarily through the combination arcsinx2(r). Applying the formula (43) to
Eq. (B45) extends arcsinx2(r) to the (monotonically increasing in τ) amplitude

arcsinx2(r) = am
(
X2(τ)

∣∣k
)
, (B47)

where X2(τ) is as defined in Eq. (B45), and the restriction |ϕ| ≤ K(k) is satisfied on account of our assumption that
a turning point has not yet been reached. Plugging the extension (B47) into Eq. (B28) as needed, we then find

I1 = νr

[
r3F

(2)
τ + r43Π

(2)
1,τ − Is1

]
, (B48)

I2 = νr

[ |r′o(τ)|
ro(τ)− r3

− r1r4 + r2r3
2

F (2)
τ − E(2)

τ − Is2
]
, (B49)

I± = νr

[
−Π

(2)
±,τ −

F
(2)
τ

r±1
− Is±

]
, (B50)

with

F (2)
τ =

2τ√
r31r42

, (B51)

E(2)
τ =

√
r31r42E

(
am
(
X2(τ)

∣∣k
)∣∣∣k
)
, (B52)

Π
(2)
1,τ =

2√
r31r42

Π

(
r41
r31

; am
(
X2(τ)

∣∣k
)∣∣∣∣k
)
, (B53)

Π
(1)
±,τ =

2√
r31r42

r43
r±3r±4

Π

(
r±3r41
r±4r31

; am
(
X2(τ)

∣∣k
)∣∣∣∣k
)
. (B54)

Although these expressions were derived under the assumption that a turning point does not occur, they in fact
extend properly through the turning point r4 (if encountered) to give the complete path integrals Ii, as follows. Since
am(ϕ|k), F (ϕ|k), E(ϕ|k), and Π(n;ϕ|k) are real and smooth functions of ϕ provided max(k, n) < 1 (which is the case
here), it follows that the candidate formulas for the Ii are real and smooth. Thus, we need only check the differential
equations (B6), which is straightforward using Eq. (B47) together with the quasi-periodicity properties (53). This
completes the proof that these formulas give the full path integrals (B4).

3. Case (3)

In case (3), only two roots are real and the range of radial motion is r1 < r2 < r− < r+ ≤ ri with r3 = r̄4. An
appropriate substitution for the evaluation of the integrals (B4) is then (see Eq. (1) in §3.145 of Ref. [19] and §260 of
Ref. [15])12

x3(r) =
A(r − r1)−B(r − r2)

A(r − r1) +B(r − r2)
, (B55)

where [recall Eq. (B10)]

A2 = a21 + (b1 − r2)
2
> 0, B2 = a21 + (b1 − r1)

2
> 0, (B56)

and we must choose the same sign for the square root in A and B. Picking the positive branch results in

A =
√
r32r42 > 0, B =

√
r31r41 > 0. (B57)

12Here, the two references superficially disagree, but they are in fact related by the identity arccosx = 2 arctan

√
1−x2
1+x

, valid for x ∈ (−1, 1].
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Moreover, since r3 + r4 = 2z > 0 [Eq. (B10)] and r1 + r2 = −2z < 0 [Eq. (96)], it follows that r3 + r4 > r1 + r2, and
hence that B2 −A2 = r21(r3 + r4 − r1 − r2) > 0. Therefore, using the fact that r1 < r2 < r,

B > A > 0, α0 =
B +A

B −A > 1, x3(r) =
1− B(r−r2)

A(r−r1)

1 + B(r−r2)
A(r−r1)

∈
(
− 1

α0
, 1

)
⊂ (−1, 1). (B58)

While in this case, the parameter (B13) is a pure phase k ∈ C, we can replace it by a new parameter that is real,
positive, and less than unity:

k3 =
(A+B)

2 − r221
4AB

=
1

2


1 +

a21 + (b1 − r1)(b1 − r2)√
[a21 + (b1 − r1)(b1 − r2)]

2
+ a21r

2
21


 ∈ (0, 1). (B59)

We now invoke the results in §341 of Ref. [15] (though note that we use different conventions for the elliptic integrals).
After correcting an error in the auxiliary formula §361.54 (their f1 is missing a factor of 1

2 ), we find that whenever

j ∈ (0, 1), α2 > 1, ϕ ∈
[
0, π − arccos

1

α

)
, (B60)

so that α2/
(
α2 − 1

)
> j is automatically satisfied, then [using H to denote the Heaviside function]

R1

(
α;ϕ

∣∣j
)

=

ˆ F (ϕ|j)

0

du

1 + α cn(u|j) =

ˆ ϕ

0

dt

(1 + α cos t)
√

1− j sin2 t
(B61)

=
1

1− α2

[
Π

(
α2

α2 − 1
;ϕ

∣∣∣∣j
)
− αf1 + 2H

(
ϕ− π

2

)
Π

(
α2

α2 − 1

∣∣∣∣j
)]
, (B62)

R2(α;ϕ|j) =

ˆ F (ϕ|j)

0

du

[1 + α cn(u|j)]2
=

ˆ ϕ

0

dt

(1 + α cos t)
2
√

1− j sin2 t
(B63)

=
1

α2 − 1

[
F
(
ϕ
∣∣j
)
− α2

j + (1− j)α2

(
E
(
ϕ
∣∣j
)
− α sinϕ

√
1− j sin2 ϕ

1 + α cosϕ

)]

+
1

j + (1− j)α2

(
2j − α2

α2 − 1

)
R1

(
α;ϕ

∣∣j
)
, (B64)

f1 =
p1
2

log

∣∣∣∣∣
p1
√

1− j sin2 ϕ+ sinϕ

p1
√

1− j sin2 ϕ− sinϕ

∣∣∣∣∣ ≥ 0, p1 =

√
α2 − 1

j + (1− j)α2
> 0, (B65)

where we added an integration constant H(ϕ−π/2) to ensure that the formulas remain valid in the domain ϕ > π/2.

Finally, we also introduce the parameters

α± =
Br±2 +Ar±1
Br±2 −Ar±1

= − 1

x3(r±)
. (B66)

Since the conditions (B60) are satisfied by j = k3, α = α0,±, and ϕ = arccosx3(r), the antiderivatives

I0 = F (3)(r), (B67)

I1 =

(
Br2 +Ar1
B +A

)
F (3)(r) + Π

(3)
1 (r), (B68)

I2 =

(
Br2 +Ar1
B +A

)2

F (3)(r) + 2

(
Br2 +Ar1
B +A

)
Π

(3)
1 (r) +

√
ABΠ

(3)
2 (r), (B69)

I± = − 1

Br±2 +Ar±1

[
(B +A)F (3)(r) +

2r21
√
AB

Br±2 −Ar±1
R1

(
α±; arccosx3(r)

∣∣∣k3
)]
, (B70)
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are real and smooth, with13

F (3)(r) =
1√
AB

F
(

arccosx3(r)
∣∣∣k3
)
> 0, (B71)

Π
(3)
` (r) =

(
2r21
√
AB

B2 −A2

)`
R`

(
α0; arccosx3(r)

∣∣∣k3
)
> 0. (B72)

a. Inversion for ro(τ)

Before a turning point is reached, the path integral Ir = τ beginning from r = rs is still given by Eq. (B25), which
in this case can be inverted using the Jacobi elliptic cosine function cn(ϕ|k). This function satisfies

cn(F (arccosϕ|k)) = ϕ, (B73)

and is even in its first argument, cn(−ϕ|k) = cn(ϕ|k). Recalling that Ir = I0 = F (3)(r), Eqs. (B25), (B71), and (B73)
can be combined to give

x3(ro) = cn
(
X3(τ)

∣∣k3
)
, X3(τ) =

√
AB(τ + νrIsr ). (B74)

Solving for ro using Eq. (B55), we then find

r(3)o (τ) =
(Br2 −Ar1) + (Br2 +Ar1) cn

(
X3(τ)

∣∣k3
)

(B −A) + (B +A) cn
(
X3(τ)

∣∣k3
) , (B75)

where we write r
(3)
o to emphasize that this formula for ro(τ) was derived in case (3), even though it will extend to the

other cases with little modification. This trajectory never encounters a turning point outside the horizon, and hence
Eq. (B75) is the unique solution for ro(τ) with initial conditions ro(0) = rs and sign[r′o(0)] = νr, which is manifestly
real in case (3).

b. Path integrals as a function of Mino time

We have Ir = I0 = τ by definition, and the other path integrals may be expressed in terms of Mino time τ using
the same method as usual. Since there are no turning points, we once again have Eq. (B28), where the antiderivatives
Ii depend on r primarily through the combination arccosx3(r). We now invoke the inversion formula

am(ϕ|k) = arccos(cn(ϕ|k)), 0 ≤ ϕ ≤ 2K(k). (B76)

Applying it to Eq. (B74) extends arccosx3(r) to the (monotonically increasing in τ) amplitude

arccosx3(r) = am
(
X3(τ)

∣∣k
)
, (B77)

where X3(τ) is as defined in Eq. (B74), and the restriction 0 ≤ ϕ ≤ 2K(k) is satisfied on the whole range of motion.
Plugging the extension (B77) into Eq. (B28) as needed, we then find

I1 = νr

[(
Br2 +Ar1
B +A

)
F (3)
τ + Π

(3)
1,τ − Is1

]
, (B78)

I2 = νr

[(
Br2 +Ar1
B +A

)2

F (3)
τ + 2

(
Br2 +Ar1
B +A

)
Π

(3)
1,τ +

√
ABΠ

(3)
2,τ − Is2

]
, (B79)

I± = − νr
Br±2 +Ar±1

[
(B +A)F (3)

τ +
2r21
√
AB

Br±2 −Ar±1
R1,τ

(
α±; am

(
X3(τ)

∣∣k3
)∣∣∣k3

)]
− νrIs±, (B80)

13F (3) > 0 and Π
(3)
k > 0 because F (ϕ|j) ≥ 0 and Rk(α;ϕ|j) ≥ 0 whenever ϕ ∈

[
0, π − arccos 1

α

]
, j ∈ (0, 1), and α > 1 (in the case of Rk,

this is manifest from the integrand). Note however that if α < −1, then R1 ≤ 0 changes sign while R2 ≥ 0 does not.
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with

F (3)
τ =

τ√
AB

, (B81)

Π
(3)
`,τ =

(
2r21
√
AB

B2 −A2

)`
R`

(
α0; am

(
X3(τ)

∣∣k3
)∣∣∣k3

)
. (B82)

Since a turning point never occurs, these formulas give the full path integrals (B4).

4. Case (4)

In case (4), there are two pairs r1 = r̄2 and r3 = r̄4 of complex conjugate roots and the range of radial motion
is unbounded. An appropriate substitution for the evaluation of the integrals (B4) is then (see Eq. (4) in §3.145 of
Ref. [19] and §267 of Ref. [15])14

x4(r) =
r − b2
a2

=
r + b1
a2

> 0, (B83)

where we used the fact that b2 = −b1 = −z < 0 [Eq. (B11)], so that r > 0 > −b1 outside the horizon; since a2 > 0
[Eq. (B12)], this guarantees that x4(r) is positive. In principle, we could have equivalently defined x4(r) = (r − b1)/a1,
but then we would also have had to consider negative values of x4(r). The present choice will prove more convenient.

Following Refs. [15, 19], we must also introduce the quantities [recall Eqs. (B10) and (B11)]

C2 = (a1 − a2)
2

+ (b1 − b2)
2
> 0, D2 = (a1 + a2)

2
+ (b1 − b2)

2
> 0, (B84)

which are well-defined up to a choice of sign in the square root. Picking the positive branch results in

C =
√
r31r42 > 0, D =

√
r32r41 > 0, (B85)

from which it then follows that

k =
D2

C2
= 1 +

4a1a2

(a1 − a2)
2

+ (b1 − b2)
2 > 1. (B86)

While the parameter k > 1, we can replace it by a new elliptic parameter that is real, positive, and less than unity:

k4 =
4CD

(C +D)
2 =

4
√
k

(
1 +
√
k
)2 ∈ (0, 1). (B87)

The reduction of the elliptic integrals (B4) to Legendre normal form presented in Refs. [15, 19] further requires15

g0 =

√
4a22 − (C −D)

2

(C +D)
2 − 4a22

∈ (0, 1), (B88)

with the last inequality rendered manifest by the relations [recall from Eq. (B12) that a1 > a2 > 0]

g20 =
1− Z
1 + Z

, Z =
a21 − a22 + (b1 − b2)

2

CD
∈ (0, 1),

√
1− Z2 =

2a1(b1 − b2)

CD
∈ (0, 1). (B89)

We now invoke the results in §342 of Ref. [15] (though note that we use different conventions for the elliptic integrals).
After correcting a typo in the auxiliary formula §361.64 (the second square root in the denominator of f2 should only

include
√

1 + α2), we find that whenever

j ∈ (0, 1), α > 0, ϕ ∈
(
− arctan

1

α
,
π

2
+ arctanα

)
, (B90)

14Here, the two references superficially disagree, but they are in fact related by the arctangent addition formula. However, the use of this
formula in Ref. [15] introduces a discontinuity in the antiderivative, so we instead use its always continuous form given in Ref. [19].

15This definition agrees with Ref. [19] (g0 = tanα) and Ref. [15] (g20 = g21), except that a2 replaces a1 because our x4(r) is (r − b2)/a2

instead of (r − b1)/a1. Unfortunately, g0 = ±
√
g20 exhibits a sign ambiguity in the choice of branch for the square root. This has led some

authors such as Dexter & Agol [7] to prefer the use of Carlson’s symmetric integrals, which notably do not suffer from this sign ambiguity
[20]. However, in the present case, picking the positive branch in the formulas of Ref. [15] always yields the correct answer.
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so that
(
1 + α2

)(
1− j + α2

)
> 0 is automatically satisfied, then [using H to denote the Heaviside function]

S1

(
α;ϕ

∣∣j
)

=

ˆ F (ϕ|j)

0

du

1 + α sc(u|j) =

ˆ ϕ

0

dt

(1 + α tan t)
√

1− j sin2 t
(B91)

=
1

1 + α2

[
F
(
ϕ
∣∣j
)

+ α2Π
(

1 + α2;ϕ
∣∣j
)
− αf2 + 2α2H

(
ϕ− π

2

)
Π
(

1 + α2
∣∣j
)]
, (B92)

S2(α;ϕ|j) =

ˆ F (ϕ|j)

0

du

[1 + α sc(u|j)]2
=

ˆ ϕ

0

dt

(1 + α tan t)
2
√

1− j sin2 t
(B93)

= − 1

(1 + α2)(1− j + α2)

[
(1− j)F

(
ϕ
∣∣j
)

+ α2E
(
ϕ
∣∣j
)

+
α2
√

1− j sin2 ϕ(α− tanϕ)

1 + α tanϕ
− α3

]

+

(
1

1 + α2
+

1− j
1− j + α2

)
S1

(
α;ϕ

∣∣j
)
, (B94)

f2 =
p2
2

log

∣∣∣∣∣
1− p2
1 + p2

1 + p2
√

1− j sin2 ϕ

1− p2
√

1− j sin2 ϕ

∣∣∣∣∣ ≥ 0, p2 =

√
1 + α2

1− j + α2
> 0, (B95)

where we added an integration constant H(ϕ−π/2) to ensure that the formulas remain valid in the domain ϕ > π/2.
Finally, we also introduce the parameters

g± =
g0x4(r±)− 1

g0 + x4(r±)
. (B96)

Since the conditions (B90) are satisfied by j = k4, α = g0,±, and ϕ = arctanx4(r) + arctan g0, the antiderivatives

I0 = F (4)(r), (B97)

I1 =

(
a2
g0
− b1

)
F (4)(r)−Π

(4)
1 (r), (B98)

I2 =

(
a2
g0
− b1

)2

F (4)(r)− 2

(
a2
g0
− b1

)
Π

(4)
1 (r) + Π

(4)
2 (r), (B99)

I± =
g0

a2[1− g0x4(r±)]

[
F (4)(r)− 2

C +D

(
1 + g20

g0[g0 + x4(r±)]

)
S1

(
g±; arctanx4(r) + arctan g0

∣∣∣k4
)]
, (B100)

are real and smooth, with16

F (4)(r) =
2

C +D
F
(

arctanx4(r) + arctan g0

∣∣∣k4
)
> 0, (B101)

Π
(4)
` (r) =

2

C +D

[
a2
g0

(
1 + g20

)]k
Sk

(
g0; arctanx4(r) + arctan g0

∣∣∣k4
)
. (B102)

a. Inversion for ro(τ)

Before a turning point is reached, the path integral Ir = τ beginning from r = rs is still given by Eq. (B25), which in
this case can be inverted using the Jacobi elliptic tangent function sc(ϕ|k) = sn(ϕ|k)/ cn(ϕ|k). This function satisfies

sc(F (arctanϕ|k)) = ϕ, (B103)

and is odd in its first argument, sc(−ϕ|k) = sc(ϕ|k). Recalling that Ir = I0 = F (4)(r), Eqs. (B25) and (B101) can be
combined to give

F
(

arctanx4(ro) + arctan g0

∣∣∣k4
)

= X4(τ), X4(τ) =
C +D

2
(νrτ + Isr ). (B104)

16F (4) > 0 and Π
(4)
2 > 0 because F (ϕ|j) ≥ 0 and S2(α;ϕ|j) ≥ 0 whenever ϕ ∈

[
0, π

2
+ arctanα

]
, j ∈ (0, 1), and α > 0 (in the case of S2, this

is manifest from the integrand). On the other hand, S1 (and therefore Π
(4)
1 > 0) can in principle be negative as r →∞ and x4(r)→ π

2
.
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At this stage, we need to invoke the arctangent addition formula

arctanx+ arctan y = arctan

(
x+ y

1− xy

)
+ nπ, n ∈ Z, (B105)

(with the precise value of the integer n depending on the range of x, y ∈ R), to reexpress the last equation as

X4(τ) = F

(
arctan

(
g0 + x4(ro)

1− g0x4(ro)

)
+ nπ

∣∣∣∣k4
)

= F

(
arctan

(
g0 + x4(ro)

1− g0x4(ro)

)∣∣∣∣k4
)

+ 2nK(k4), (B106)

where the last step follows from the quasi-periodicity property F (ϕ+nπ|k) = F (ϕ|k) +2nK(k) of the elliptic integral
of the first kind [see Eqs. (53)]. Thus, we have established that

F

(
arctan

(
g0 + x4(ro)

1− g0x4(ro)

)∣∣∣∣k4
)

= X4(τ)− 2nK(k4), (B107)

for some integer n ∈ Z. Applying the formula (B103), it then results that

g0 + x4(ro)

1− g0x4(ro)
= sc

(
X4(τ)− 2nK(k4)

∣∣∣k4
)

= sc
(
X4(τ)

∣∣k4
)
, (B108)

where in the last step, we used the periodicity property sc(ϕ + 2K(k)|k) = sc(ϕ|k). Solving for ro using Eq. (B83),
we then find

r(4)o (τ) = −a2
[
g0 − sc

(
X4(τ)

∣∣k4
)

1 + g0 sc
(
X4(τ)

∣∣k4
)
]
− b1, (B109)

where we write r
(4)
o to emphasize that this formula for ro(τ) was derived in case (4), even though it will extend to the

other cases with little modification. This trajectory never encounters a turning point outside the horizon, and hence
Eq. (B109) is the unique solution for ro(τ) with initial conditions ro(0) = rs and sign[r′o(0)] = νr, which is manifestly
real in case (4).

b. Path integrals as a function of Mino time

We have Ir = I0 = τ by definition, and the other path integrals may be expressed in terms of Mino time τ using
the same method as usual. Since there are no turning points, we once again have Eq. (B28), where the antiderivatives
Ii depend on r primarily through the combination arctanx4(r) + arctan g0. We now invoke the inversion formula

am(F (ϕ|k)|k) = ϕ. (B110)

Applying it to Eq. (B104) extends arctanx4(r) + arctan g0 to the (monotonically increasing in τ) amplitude

arctanx4(r) + arctan g0 = am
(
X4(τ)

∣∣k
)
, (B111)

where X4(τ) is as defined in Eq. (B104). Plugging the extension (B111) into Eq. (B28) as needed, we then find

I1 = νr

[(
a2
g0
− b1

)
F (4)
τ −Π

(4)
1,τ − Is1

]
, (B112)

I2 = νr

[(
a2
g0
− b1

)2

F (4)
τ − 2

(
a2
g0
− b1

)
Π

(4)
1,τ + Π

(4)
2,τ − Is2

]
, (B113)

I± =
νrg0

a2[1− g0x4(r±)]

[
F (4)
τ − 2

C +D

(
1 + g20

g0[g0 + x4(r±)]

)
S1,τ

(
g±; am

(
X4(τ)

∣∣k
)∣∣∣k4

)]
− νrIs±, (B114)

with

F (4)
τ =

2τ

C +D
, (B115)

Π
(4)
`,τ =

2

C +D

[
a2
g0

(
1 + g20

)]`
S`

(
g0; am

(
X4(τ)

∣∣k4
)∣∣∣k4

)
. (B116)

Since a turning point never occurs, these formulas give the full path integrals (B4).
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5. Unified inversion formula

Although the inversion formulas r
(i)
o (τ) derived in the four cases (1)-(4) appear superficially different, their expres-

sions (B27), (B46), (B75), and (B109) are in fact mathematically equivalent after certain sign flips in νr. Thus, either
one may be used across all four cases (with appropriate sign flips), even though it is only manifestly real in its own
domain of definition.

To prove this, it suffices to show that for each i ∈ {1, 2, 3, 4}, the function ro(τ) = r
(i)
o (τ) always satisfies the squared

differential equation (B5) with the correct initial position. One can then check the initial sign of the derivative and
send νr → −νr if necessary. For instance, for the inversion formula (B46) derived in case (2), one has

dr
(2)
o

dτ
=
r31r41r43

√
r31r42 sn

(
X2(τ)

∣∣k
)

cn
(
X2(τ)

∣∣k
)

dn
(
X2(τ)

∣∣k
)

[
r31 − r41 sn

(
X2(τ)

∣∣k
)]2 , (B117)

R
(
r(2)o (τ)

)
=
r331r

2
41r

2
43r42 sn2

(
X2(τ)

∣∣k
)[

1− sn2
(
X2(τ)

∣∣k
)][

1− k sn2
(
X2(τ)

∣∣k
)]

[
r31 − r41 sn

(
X2(τ)

∣∣k
)]4 . (B118)

These expressions manifestly satisfy Eq. (B5), in light of the elliptic identities (39) and (40). Hence, r
(2)
o (τ) remains

valid in all cases, up to a possible sign flip in νr.
17 We can fix the sign ambiguity in νr by careful examination of

Eq. (B117). By construction, the initial sign of the radial momentum in case (2) is sign(prs) = νr. An explicit but
tedious computation reveals this to still hold in cases (3) and (4); on the other hand, a sign flip is required for case
(1), in which sign(prs) = −νr. Thus a unified inversion formula holding in all cases is

r(2)o (τ) =
r4r31 − r3r41 sn2

(
X2(τ)

∣∣k
)

r31 − r41 sn2
(
X2(τ)

∣∣k
) , X2(τ) =

√
r31r42

2
(τ + ανrIsr ). (B119)

where α = −1 in case (1) and α = +1 in all other cases (2)-(4). Here, Isr refers to the case (2) antiderivative (B36).
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