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We discuss the optical properties of the solar gravitational lens (SGL). We estimate the power
of the EM field received by an imaging telescope. Studying the behavior of the EM field at the
photometric detector, we develop expressions that describe the received power from a point source
as well as from an extended resolved source. We model the source as a disk with uniform surface
brightness and study the contribution of blur to a particular image pixel. To describe this process, we
develop expressions describing the power received from the directly imaged region of the exoplanet,
from the rest of the exoplanet and also the power for off-image pointing. We study the SGL’s
amplification and its angular resolution in the case of observing an extended source with a modest
size telescope. The results can be applied to direct imaging of exoplanets using the SGL.

I. INTRODUCTION

According to Einstein’s general theory of relativity, the solar gravitational field changes the refractive properties
of spacetime. This causes the trajectories of light to bend towards the Sun, resulting in the solar gravitational lens
(SGL) [1–3]. With significant light amplification and impressive angular resolution of up to 2× 1011 and ∼ 0.5 nano-
arcseconds, correspondingly (both for λ = 1 µm), the SGL may be used to image distant and faint sources. The
impact of the solar corona on the optical properties of the SGL was examined in [4–6]. This study led to a conclusion
that although for radio and microwave frequencies the optical properties of the SGL are severely affected by the
plasma in the solar corona, for visible and infrared wavelengths, the contribution by the solar corona is negligible.
The topic of practical use of the SGL for high-resolution imaging and spectroscopy of distant, faint objects recently
also received significant attention, leading to the novel concept of a mission capable of reaching the focal region of
the SGL and operating there for an extended period of time [7, 8].
Most of the prior work on the SGL dealt with studying the light from point sources at infinite distances from the

lens. In [9], we initiated the discussion of using the SGL to image extended sources positioned at large but finite
distances from the Sun, thus, moving closer to a possible practical use of this natural phenomenon. While considering
the optical properties of the SGL in this case, it was realized that extended sources present an interesting challenge
for imaging with the SGL. This challenge relates to a significant blurring of the images, which results in mixing light
received from many widely separated areas of the surface of the source and distributing it across the entire image.
Several methods of overcoming this challenge were developed. In particular, [10] demonstrated that the blurring can
be removed by relying on modern deconvolution techniques developed to process microlensing images.
In this paper we study the impact of blurring on photometric signals received when imaging extended resolved

sources with a modest size telescope. Our goal is to provide the tools capable of estimating the power of the signal
and the contribution of the blur to that signal. Our paper is organized as follows: Section II introduces the SGL and
the solution for the electromagnetic (EM) field in the image plane. Section III discusses photometric imaging with
the SGL for both point and extended sources. In Section IV we study the realistic amplification of the SGL and its
angular resolution in the case of observing extended sources with a realistic telescope. In Section V we discuss results
and explore avenues for the next phase of our investigation of the SGL.

II. EM FIELD AT THE INTERFERENCE REGION

In [9], we considered light from an extended resolved source positioned at a large but finite distance, r0, from
the Sun. We parameterize the problem using a cylindrical coordinate system (ρ, z, φ), with the z-axis corresponding
to the preferred axis: a line connecting a preselected (e.g., central) point in the source to the center of the Sun.
Furthermore, we characterize points in the image plane and the source plane (both perpendicular to the z-axis) using
vector coordinates x and x

′, respectively.
Considering light, that is to say, a high-frequency EM wave (i.e., neglecting terms ∝ (kr)−1 where k = 2π/λ is

the wavenumber) and for r ≫ rg (where rg = 2GM⊙/c
2 is the Sun’s Schwarzschild radius), for a source positioned

at a large but finite distance from the Sun, z0, we derived the components of the EM field near the optical axis at
heliocentric distances of z ≥ b2/(2rg), with b being the impact parameter. For a given impact parameter b, up to
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terms of O(ρ2/z2, b/z0) in the EM field’s amplitude, the components of the EM field take the form
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where the z-components of the EM wave behave as (Ez , Hz) ∼ O(ρ/z, b/z0). The quantity z = z(1+z/z0+O(z2/z20))
denotes heliocentric distances along the line connecting the point source and the center of the Sun. Result (1) is valid
for forward scattering when θ + b/z0 ≈ 0, or when 0 ≤ ρ ≤ rg [9].
We can describe the imaging of an extended source. For that, we use the solution for the EM field (1) and study

the Poynting vector, S = (c/4π)
〈

[ReE× ReH]
〉

, that describes the energy flux at the image plane [9]. Normalizing

this flux to an empty spacetime (no gravitational lens present), |S0| = (c/8π)Es

0
2/(z + z0)

2, we define the quantity
called the point-spread function (PSF): µSGL = |S|/|S0|. Thus, we use the PSF of the SGL, expressed as a function of
the location x of a point source at a finite distance from the Sun, and a location x

′ in the image plane:
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As was shown in Fig. 6 of [3], the PSF (2) is surprisingly narrow. Depending on the impact parameter, its first
zero appears at the distance ρSGL0 ≃ 4.5 (λ/1 µm)(b/R⊕) cm from the optical axis (see Eq. (142) in [3]). Thus, to
observe the wave optical behavior of the SGL, a very small telescope with aperture d ∝ ρSGL0 would be required. Such
a small telescope may not be compatible with a coronagraph, as it cannot resolve the disk of the Sun. Increasing
the aperture of the telescope may result in moving outside the wave optics regime. How such an increase affects the
optical properties of the SGL is what we investigate.
Equation (2) allows us to study the image formation process, develop realistic imaging scenarios, and perform

relevant simulations. Considering the distance from the optical axis, ρ = |x + (z/z0)x
′|, we see that away from the

optical axis, when the argument of the Bessel function k
√

2rg/z ρ ≫ 1 is large, the PSF (2) behaves as
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)

, (3)

where b =
√

2rgz is the impact parameter for a given heliocentric distance, z, on the optical axis.
Considering (2) and (3) we can make interesting conclusions. We notice that for a very small telescope that is

positioned exactly on the optical axis, ρ = 0, we may use the expression (2) to describe light amplification. This
maximal amplification, µ0 ≃ 4π2rg/λ = 1.17× 1011 (1µm/λ), can only be realized with a telescope using a cm-scale
aperture. For larger, meter-scale telescopes, the PSF of the SGL may given by (3), which for the same ρ is identical
to (2), but is wavelength independent. Therefore, when a telescope with aperture larger than ∼ 30 cm is used, the
PSF of the SGL achromatic.
In addition, we note that in the image plane, away from the optical axis, the PSF (3) behaves as 1/ρ. Such behavior

results in significant amplification even when observer is ρ ∼ 103 m away from the optical axis, which is the typical
size on an exoplanet image, r⊕, discussed above. This is in contrast with the PSF of a conventional telescope, given
as [9, 11]

µtel =
(2J1(kdρ/2f)

kdρ/2f

)2

∝
1

ρ3
, (4)

which falls off much faster with distance from the optical axis, behaving as µtel ∝ 1/ρ3. Thus, the SGL spreads light
much further from the optical axis than the PSF of a conventional telescope. This behavior of the PSF (2) and (3)
causes significant blurring that needs to be accounted for in image processing.
Next we address the image formation process in the case of two different types of imaging scenarios. In the first

scenario, the observing telescope is used as a photometric detector. In the second case, we investigate the image that
forms inside an observing telescope, on its imaging sensor.

III. PHOTOMETRIC IMAGING OF AN EXTENDED SOURCE

In [9] we established that, in order to produce an image of an astronomical source, we can assume the source to
be noncoherent. Therefore, we need to concern ourselves only with the intensity of light from various points of the
source, not its phase. We consider an extended luminous source at a distance of z0 from the Sun, with light, focused
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by the SGL, detected in an image plane that is at a a distance of z from the Sun. For a source with surface brightness
B(x′, y′) with dimensions of Wm−2sr−1, the power density, I0(x, y), received in the image plane is computed by
integrating the PSF (2) over the surface of the extended source. This can be expressed as
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where B(x′, y′) is a function with compact support, having nonzero values only within the source’s dimensions.
Examining (2), we see that the monopole gravitational lens acts as a convex lens by focusing light, according to

x = −
z

z0
x′, y = −

z

z0
y′. (6)

This expression implies that the lens focuses light in the opposite quadrant in the image plane, reducing the image
size compared to the source by a factor of z/z0 ∼ 1.0 × 10−4 (z/650 AU)(30 pc/z0). The radius of the image of an
Earth-like exoplanet at this distance is

r⊕ =
z
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)

km. (7)

A telescope with aperture d ≪ 2r⊕, centered at a particular point x = (x0, y0) in the image plane, will receive the
signal Pd(x0, y0) =

∫∫

dxdy I0
(

x0+x, y0+ y
)

, where the integration is done within the telescope’s aperture |x| ≤ d/2,
and with |x0 + x| ≤ r⊕. This yields a result that depends on the telescope’s position on the image plane:
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This result represents our starting point for using the SGL for imaging of faint targets positioned at a large but
finite distance from the Sun. As J2

0 (x) behaves as ∝ 1/x, we expect to have nonzero signals at a rather significant
distance from the optical axis. We investigate the effect of this behavior on imaging with the SGL.

A. Point source

Expression (8) is rather complex and, in general, it must be evaluated numerically. However, in the case of a point
source, it can be treated analytically. For this, we represent the density of the surface brightness using the Dirac
delta function as B(x′, y′) = Bsδ(x

′), corresponding to the center of source. With this, we integrate (8) over d2x′ to
obtain:
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To evaluate (9), we introduce a polar coordinate system in the image plane, given by {x} = (ρ, φ) and {x0} = (r0, φ0)
and consider two cases: i) when the telescope is positioned close to the optical axis, so that r0 ≪ d, and ii) when the
telescope is at a large distance away form the optical axis, r0 ≫ d. This allows us to develop approximate solutions
in both cases.
Treating the first case, r0 ≪ d, we approximate the Bessel function in (9) with respect to the small parameter r0/ρ,

and, keeping only the leading term, we integrate this equation as
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To simplify this expression, we use the approximations for the Bessel functions for large arguments [12]:
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FIG. 1: Convolving the source with the SGL. Left: a disk of uniform surface brightness. Right: the image of that disk on the
image plane of the SGL. The blur is evident both within the image and outside of it.

and, taking into account expressions for µ0 from (2), for α from (9), and also accounting for the fact that z/z0 ≪ 1,
we express (10) as

P0(r0) = πBs

( d

z0

)2
√

2rgz

d
, for r0 ≪ d. (12)

This expression shows that the power received by a telescope from a point (i.e., unresolved) source is insensitive to
small deviations from the optical axis in the image plane.
In a similar manner, we consider the case when the telescope is positioned at a large distance from the optical axis,

r0 ≫ d. By expanding the Bessel function in (9) in terms of the small parameter ρ/r0 and keeping only the leading
term, we obtain the following result:
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Using the same approximation for the Bessel functions (11) and expressions for µ0 and α, given by (2) and (9),
correspondingly, and also by accounting for the fact that z/z0 ≪ 1, we present (13) as

P0(r0) = πBs
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, for r0 ≫ d. (14)

This expression clearly exhibits the oscillatory behavior that diminishes as 1/r0 with distance from the optical axis.
Such behavior is consistent with that expected from the PSF of the SGL given by (2).
Results (12) and (14) may be used to estimate the power of the signal received from a distant, unresolved source.

B. Extended source

Now we consider the process of imaging an extended, resolved source. In the most widely considered, practical
scenario, a kilometer-scale image plane is sampled by a meter-scale telescope that, while it has the resolution required
to employ a coronagraph, is otherwise used as a “light bucket”, collecting light from the exoplanet.
With its PSF (2)–(3), the SGL is not a lens with ideal optical properties. This is demonstrated in Fig. 1, which

shows the result of a numerical integration of (8) that was achieved by convolving a luminous disk of uniform surface
brightness and the PSF of the SGL. Evident in the image is the substantial blurring introduced by the SGL.
To model the behavior seen in Fig. 1, we recognize that the telescope’s aperture is much smaller than the image

size, d ≪ 2r⊕. This leads us to separate the received signal in two parts: the signal received from the directly imaged
region that corresponds to the telescope location in the image plane, and the blur from light received from the rest
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FIG. 2: Imaging of extended resolved sources with the SGL. The concept of a directly imaged region.

of the planet. Based on the SGL’s mapping (8) for a given point (x0, y0) in the image plane (see Fig. 2), the directly
imaged region is in the vicinity of the point (x′

0, y
′
0) = −(z0/z)(x0, y0) in the source plane. Furthermore, given the

telescope aperture d, the directly imaged region in the source plane has the diameter

D =
z0
z
d, (15)

centered at (x′
0, y

′
0). The signal that is received from the exoplanet from areas outside this area is causing the blur.

In the general case, the function B(x′, y′) in Eq. (5) is not known in advance. It characterizes the surface of the
exoplanet that is being observed. Numerical methods of image reconstruction and deconvolution must be used to
reconstruct B(x′, y′) from observed values of Pd(x0, y0) as part of any observational campaign.
To establish limits on the sensitivity of the SGL and minimum criteria for an observing instrument, however,

it is instructive to attempt to evaluate the integral (8) analytically in simple model scenarios. To do that, it is
convenient to express the position of the telescope in the image plane {x0} = (x0, y0) via its counterpart at the
source, {x′

0} = (x′
0, y

′
0); see Fig. 2 for details. Using the mapping (6), we can write:

x0 = −
z

z0
x
′
0. (16)

As a result, (8) takes the following form:
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where the surface brightness density, B(x′, y′), is assumed to be a function with compact support with nonzero values
only within the dimensions of the source, and where α is defined in (9).
We consider the case when the telescope is positioned in the image plane at the distance 0 ≤ r0 ≤ r⊕ from the

center of the image. To appreciate the blur contribution, we present the integral over the source as a sum:

Pexo(x0) = Pdir(x0) + Pblur(x0), (18)

where Pdir(x0) is the power received from the directly imaged region on the source (i.e., for |x′ − x
′
0| ∈ [0, 12D]) and

Pblur(x0) is the power received by the telescope from the rest of the planet (i.e., for |x′ − x
′
0| ∈ [ 12D, ρ⊕(φ

′)]), where
ρ⊕(φ

′) is the radial coordinate of the edge of the source, as seen from the center of the directly imaged region. In
addition, as seen in Fig. 1, even a telescope positioned outside the area in the image plane that corresponds to a direct
image of the exoplanet receives significant light. This case is also discussed below.

1. Power from the directly imaged region

We begin with estimating the power received from the directly imaged region, Pdir(x0), which is given by (17)

Pdir(x0) =
µ0

(z + z0)2
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0

dφ

∫ d
2

0

ρdρ
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1
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0
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α
∣
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′
0)
∣

∣

)

, (19)
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where the integration of over the source is done within the size of the directly imaged region, namely |x′−x
′
0| ∈ [0, 1

2D].
To evaluate (19), we introduce a polar coordinate system in the image plane, given by {x} = (ρ, φ) and {(x′−x0)} =

(r′, φ′). Next, we recognize that within the directly imaged region ηr′ ≤ ρ. Therefore, we may express the Bessel
function in terms of the small parameter η|x′−x

′
0|/|x| ≡ ηr′/ρ ≪ 1, again keeping only the leading term. Remembering

α from (9) and assuming that the density of the source brightness within this region is uniform, B(x′, y′) = Bs, allows
to integrate (19), thus expressing the power received from the directly imaged region as
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Using the approximations for the Bessel functions (11), taking into account expressions for µ0 from (2), for D from
(15), and for α from (9), we can express (20) as

Pdir(r0) = Bs
π2d3

4z

√

2rg
z

. (21)

The power received from the directly imaged region does not depend on the distance to the exoplanet or position of
the telescope in the image plane (as we assumed that the planet has uniform brightness), but it strongly depends on
the telescope aperture, d, and also on the heliocentric distance to the image plane, z. These properties are consistent
with the imaging of unresolved sources [11].

2. Power from the rest of the planet

The power of the blur from the rest of the planet, Pblur(x0), is given by (17), where the integration in the source
plane is done over the rest of the planet that falls outside the directly imaged region. This is a much larger part of the
planet within the boundary |x′ − x

′
0| ∈ [ 12D, ρ⊕(φ

′)], where ρ⊕(φ
′) is the radial coordinate of the edge of the source,

as seen from the center of the directly imaged region:
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To evaluate the blur component (22), we recognize that in most of the area outside the directly imaged region the
following equality is valid: |x| ≪ η|x′−x

′
0|. With this, we can expand the Bessel function in (22) in terms of the small

parameter |x|/(η|x′ − x
′
0|) ≡ ρ/(ηr′) ≪ 1. Keeping only the leading term, we integrate (22) over the image plane as

Pblur(x0) =
µ0
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Next, we introduce a new coordinate system on the source plane, x′′, with the origin at the center of the directly
imaged region: x′ − x

′
0 = x

′′. As the vector x′
0 is constant, dx′dy′ = dx′′dy′′. Next, in the new coordinate system, we

use polar coordinates (x′′, y′′) → (r′′, φ′′). We can see that, in these coordinates, the circular edge of the source, R⊕,
is a curve, ρ⊕(φ

′′), the radial distance of which is given by the following relation:

ρ⊕(φ
′′) =

√

R2
⊕ − r′0

2 sin2 φ′′ − r′0 cosφ
′′. (24)

With this, and assuming that the source in this region may be characterized by a uniform surface brightness density,
B(x′, y′) = Bs, we evaluate (23) as
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)

)}

, (25)

where ρ⊕ = ρ⊕(φ
′′) and D as given by (24) and (15), correspondingly.
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To simplify the integration of (25), we use approximations of the Bessel functions (11), which are valid in this
region. This allows us to express the integrand as

ρ2⊕
2

(

J2
0

(

αηρ⊕
)

+ J2
1

(

αηρ⊕
)

)

−
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8
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)
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)

)
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2D

παη
. (26)

With these results, (25) is evaluated as

Pblur(x0) = Bsπ(
1
2d)

2µ0

z20

D

2παη
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0

dφ′′
(2ρ⊕(φ

′′)

D
− 1

)

. (27)

Expression (27) indicates that for a source with uniform surface brightness, there is no azimuthal dependence of
blur on the telescope’s position within the image and the received power depends only on the separation from the
optical axis. Taking into account expressions for µ0 from (2), for D from (15), for η from (17), and for α from (9),
we can express (27) as

Pblur(r0) = Bs
π2d3

4z

√

2rg
z

(2R⊕

d

z

z0
ǫ(r0)− 1

)

, (28)

where the factor ǫ(r0) is given by the following expression:

ǫ(r0) =
1

2π

∫ 2π

0

dφ′′

√

1−
( r0
r⊕

)2

sin2 φ′′ =
2

π
E

[( r0
r⊕

)2]

, (29)

where E[x] is the elliptic integral [12]. The behavior of ǫ(r0) for the values of r0 ∈ [0, r⊕] is shown in the left-side plot
in Fig. 3.
As a result, expression (28) may be given as

Pblur(r0) = Bs
π2d3

4z

√

2rg
z

(2R⊕

d

z

z0
ǫ(r0)− 1

)

. (30)

We can see that for a telescope with modest aperture size, d ≪ 2r⊕ = 2R⊕(z/z0), the blur contribution is much larger
than the power received from the directly imaged region:

Pblur(r0) = Pdir(r0)
(2R⊕

d

z

z0
ǫ(r0)− 1

)

. (31)

The total signal received from the exoplanet is computed by summing up the two contributions as given by (18).
Then, using (21) and (30) we have, to O

(

z/z0
)

:

Pexo(r0) = Pdir(r0) + Pblur(r0) = Bsπ
2d2

R⊕

2z0

√

2rg
z

ǫ(r0), 0 ≤ r0 ≤ r⊕. (32)

Expression (32) is our main result for the case of photometric imaging. It shows that at every pixel, the signal for
the directly imaged region is overwhelmed by the blur. Also, for various pixels, the amount of blur is different. It
is highest for the central region of the image and is about 2/π ≈ 0.64 times smaller when considering pixels close to
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the edge of the image. As we studied the case when the source has a uniform surface brightness, the result (32) is
independent of the azimuthal angle and is a function only of the distance from the optical axis, r0.
For imaging purposes, we shall treat the power received from the directly imaged region as the signal of interest and

the blur from the rest of the planet is the nuisance to signal recovery. Given the SGL’s significant light amplification,
there is a sufficient signal-to-noise ratio that allows for signal extraction from the blurred data. This can be done by
relying on modern deconvolution algorithms [7], capable of image recovery under such conditions.

3. Blur for an off-image telescope position

As we see from Fig. 1, the blurring of the images obtained with the SGL is evident even outside the direct image
of an exoplanet. Therefore, even a telescope positioned at r0 ≥ r⊕ will receive light from the source. In this case, the
blur for the off-image position, Poff(x0), is obtained by integrating over the surface of the source as it is seen from
an off-image coordinate system:

Poff(x0) =
µ0

(z + z0)2

∫ 2π

0

dφ

∫ d
2

0

ρdρ

∫∫

|x′−x
′
0
|≤R⊕

dx′dy′ B(x′, y′)J2
0

(

α
∣

∣x+ η(x′ − x
′
0)
∣

∣

)

. (33)

Expression (33) gives the power of the light received when telescope is located off-image. The same conditions to
derive (23) are valid, so the power received by the telescope takes the same form. The only difference comes from the
fact that we are outside the image, thus, the integration limits change. First, we note that the circular edge of the
source, R⊕, is given by a curve, ρ⊕(φ

′′), the radial distance of which in this polar coordinate system is given as

ρ⊕(φ
′′) = ±

√

R2
⊕ − r′0

2 sin2 φ′′ + r′0 cosφ
′′, (34)

with the angle φ′′ in this case is defined so that φ′′ = 0 when pointing at the center of the source. The angle φ′′ varies
only within the range φ′′ ∈ [φ−, φ+], with φ± = arcsin(R⊕/r

′
0). Given the sign in front of the square root in (34), for

any angle φ′′ there will be two solutions for ρ⊕(φ
′′), given as (ρ−⊕, ρ

+
⊕).

Assuming that the brightness of the source in this region is uniform, B(x′, y′) = Bs, we use (25) and evaluate (33)
for this set of conditions:

Poff(x0) =
µ0

z20
π(12d)

2Bs

∫ φ+

φ−

dφ′′

∫ ρ+

⊕

ρ−

⊕

r′′dr′′J2
0

(

αηr′′
)

=

=
µ0

z20
π(12d)

2Bs

∫ φ+

φ−

dφ′′
{ρ+2

⊕

2

(

J2
0

(

αηρ+⊕
)

+ J2
1

(

αηρ+⊕
)

)

−
ρ−2
⊕

2

(

J2
0

(

αηρ−⊕
)

+ J2
1

(

αηρ−⊕
)

)}

. (35)

Similarly to (26), we present the integrand of (35) as

ρ+2
⊕

2

(

J2
0

(

αηρ+⊕
)

+ J2
1

(

αηρ+⊕
)

)

−
ρ−2
⊕

2

(

J2
0

(

αηρ−⊕
)

+ J2
1

(

αηρ−⊕
)

)

=
ρ+⊕(φ

′′)− ρ−⊕(φ
′′)

παη
. (36)

With this results and using (34), expression (35) is evaluated as

Poff(x0) = Bsπ(
1
2d)

2µ0

z20

2

παη2

∫ φ+

φ−

dφ′′
√

r2⊕ − r02 sin
2 φ′′. (37)

Similarly to (27), the result (37) indicates that, for a source with uniform surface brightness, there is no azimuthal
dependence in power received from an off-image telescope position.
Remembering the definitions for µ0 from (2), for D from (15), for η from (17), and for α from (9), we express (37)

to the order of O
(

z/z0
)

as

Poff(r0) = Bsπ
2d2

R⊕

2z0

√

2rg
z

β(r0), r0 ≥ r⊕, (38)

with the factor β(r0) given by the following expression:

β(r0) =
1

π

∫ φ+

φ−

dφ′′

√

1−
( r0
r⊕

)2

sin2 φ′′ =
2

π
E

[

arcsin
r⊕
r0

,
( r0
r⊕

)2]

, (39)
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where E[a, x] is the incomplete elliptic integral [12]. The behavior of β(r0) is shown in the center plot in Fig. 3. The
combined behavior of ǫ(r0) and β(r0) in the relevant range of distances is shown in the right-hand side plot of the
same figure.
Equation (38) describes the light from the source that is present in the image plane outside the direct image of

the exoplanet. The existence of this signal is due to the specific optical properties of the SGL given by its PSF (3)
which, as a function of the distance to the optical axis on the image plane, falls out much more slowly than the PSF
of a regular telescope (4). This fact provides valuable insight for image recovery and the relevant work on prospective
mission planning and development [7, 10].

IV. AMPLIFICATION AND ANGULAR RESOLUTION

If the receiving telescope’s aperture is small, comparable in size to the width of the central peak of the SGL’s PSF
(2), the resulting observations are conducted in the wave optical regime, where the SGL possesses remarkable optical
properties. In this case, the SGL’s magnification and its diffraction pattern are given as

µ0
SGL

=
4π2

1− e−4π2rg/λ

rg
λ

J2
0

(

2π
ρ

λ

√

2rg
z

)

= 1.12× 1011 J2
0

(

48.98
( ρ

1m

)(1µm

λ

)(650AU

z

)
1
2
)

. (40)

The angular resolution in this case is determined from the size of that largest peak of (40) [3]:

δθ0
SGL

= 0.38
λ

√

2rgz
= 0.10

( λ

1µm

)(650AU

z

)
1
2

nas. (41)

However, given the fact that the Sun must be blocked by a coronagraph, using a small telescope that lacks the
angular resolution to resolve the Sun’s disk from the distance of the SGL’s focal region is unpractical. Instead, systems
with 1 m-class apertures are required for this purpose. Such a telescope averages many lobes of the diffraction pattern
[3]. This averaging erases the wave optical behavior of the SGL. Light amplification and angular resolution are
determined by the geometry of the problem. To demonstrate this we note that, in the absence of the SGL, the power
received from an object is given by the following expression:

P 0
exo

= Bsπ(
1
2d)

2πR
2
⊕

z20
. (42)

To evaluate the amplification of the SGL when observing extended resolved sources, in (32), we factor out P 0
exo

given
by (42), and present (32) as

Pexo(r0) = P 0
exo

ASGL(r0), (43)

where ASGL(r0) is the SGL’s light amplification for extended resolved sources:

ASGL(r0) =
2z0
R⊕

√

2rg
z

ǫ(r0) = 2.26× 106 ǫ(r0)
( z0
30 pc

)(650AU

z

)
1
2

. (44)

We note that the result is independent on the wavelength and is determined in full by the geometry of the problem,
the size of the object and position of the telescope in the image plane.
Angular resolution in this case is also determined by geometric considerations and the procedure of image sampling.

Clearly, the maximal resolution is achieved when we can sample the entire surface of the source, namely when the
number of linear pixels across the surface is given as N0 = 2r⊕/d. In this case, we achieve the highest angular
resolution, δθ0, given as

δθ0 =
2R⊕

N0

1

z0
≡

d

z
= 2.12

( d

1m

)(650AU

z

)

nas. (45)

However, it is hard to achieve such a sampling and thus to obtain such a resolution. It is more realistic to consider
that we will be able to sample the image with N ≤ N0 linear pixels. In this, more conservative case, the angular
resolution, δθN , is

δθN =
2R⊕

N

1

z0
=

2.84

N

(30 pc

z0

)

µas. (46)

Although the realistic light amplification factor of the SGL (44) and the angular resolution (46) that are achievable
using a meter-scale observing telescope in the SGL’s focal region are smaller than the theoretical maxima calculated
in the wave optical regime, the values are still very impressive. These results provide realistic insight into the potential
use of the SGL for imaging of faint distant objects, such as exoplanets.
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FIG. 4: Blur analysis using numerically simulated and analytical results. Points represent the results of the numerical simulation
shown in Fig. 1, shown as a function of r0/r⊕. The red curve is the analytical solution for the factor ǫ(r0) from (29), while
the green curve is thew same for the factor β(r0) from (39). Although, the results were obtained by two completely different
methods, the plot shows nearly perfect agreement.

V. DISCUSSION AND CONCLUSIONS

We studied the image formation process with the SGL and analyzed the power of the EM field received on a
photometric detector of an imaging telescope.
We were able to estimate the power received from a disk with a uniform surface brightness. A telescope with

a modest aperture, d ≪ r⊕, traversing the image plane, will receive signals with different quantities of blur. The
relevant expressions are given by (32) and (38). These expressions can be combined to describe the power of the
received signal as a function of the telescope’s position on the image plane. For a uniform source brightness, the result
depends only on the separation from the optical axis, r0:

P (r0) = Bsπ
2d2

R⊕

2z0

√

2rg
z

µ(r0), with µ(r0) =
{ ǫ(r0), 0 ≤ r0 ≤ r⊕

β(r0), r0 ≥ r⊕
, (47)

where ǫ(r0) and β(r0) are given by (29) and (39), correspondingly. The blur’s contribution is captured by factor µ(r0),
which, outside the directly projected image of the exoplanet, falls-off is ∝ 1/r0, as expected from the PSF of the SGL.
To validate the model (47), we compared it against the blur contribution that corresponds to the numerically

integrated result, shown in Fig. 1. The result of this analysis is shown in Fig. 4. As we can see, our analytical model
is in exact agreement with the results of the numerical simulation. As these two approaches address the problem in
fundamentally different ways, we see the exact match shown in Fig. 4 as a validation of these two newly developed
tools to study imaging with the SGL.
Fig. 4 also highlights the fact that, because of the features of the PSF (2), significant amounts of light from a

faint target may be found in the off-image region. A failure to obtain light from this region can result in a loss of
information, reducing the quality of reconstructed images and introducing noise artifacts. The impact of this behavior
must be studied separately, taking into account the realistic SGL light amplification factor (44) and its relevant angular
resolution (46) that may be achieved when imaging extended sources with a modest size telescope.
Finally, the result (47) may now be used to provide estimates for realistic signal levels that may be expected from

various sources. As such, it will help to develop realistic signal-to-noise estimates that are needed for signal detection,
processing, and image recovery. It may also be used for mission planning and development. The relevant work is
a subject of an on-going study of imaging of exoplanets with the SGL. Results will be published as they become
available.
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