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In the standard inflationary paradigm, cosmological density perturbations are generated as quan-
tum fluctuations in the early Universe, but then undergo a quantum-to-classical transition. A key
role in this transition is played by squeezing of the quantum state, which is a result of the strong
suppression of the decaying mode component of the perturbations. Motivated by ever improving
measurements of the cosmological perturbations, we ask whether there are scenarios where this
decaying mode is nevertheless still observable in the late Universe, ideally leading to a “smoking
gun” signature of the quantum nature of the perturbations. We address this question by evolving
the quantum state of the perturbations from inflation into the post-inflationary Universe. After
recovering the standard result that in slow-roll (SR) inflation the decaying mode is indeed hope-
lessly suppressed by the time the perturbations are observed (by ∼ 115 orders of magnitude), we
turn to ultra slow-roll (USR) inflation, a scenario in which the usual decaying mode actually grows
on super-horizon scales. Despite this drastic difference in the behavior of the mode functions, we
find also in USR that the late-Universe decaying mode amplitude is dramatically suppressed, in
fact by the same ∼ 115 orders of magnitude. We finally explain that this large suppression is a
general result that holds beyond the SR and USR scenarios considered and follows from a modified
version of Heisenberg’s uncertainty principle and the observed amplitude of the primordial power
spectrum. The classical behavior of the perturbations is thus closely related to the classical behavior
of macroscopic objects drawing an analogy with the position of a massive particle, the curvature
perturbations today have an enormous effective mass of order m2

pl/H
2
0 ∼ 10120, making them highly

classical.

I. INTRODUCTION

Inflation describes a phase of accelerated expansion in the very first moments of the Universe [1, 2]. As a theoretical
paradigm, inflation has been increasingly supported by ever more discriminating data: a small spatial curvature, and
Gaussian, adiabatic, primordial perturbations with a nearly scale-invariant power spectrum have been measured [3].
Nevertheless, the correctness of this paradigm remains debated and, arguably, an unambiguous observational proof
remains elusive [4]. This work aims to contribute to the quest for such an observational proof.

Initially invented to circumvent difficulties in the Friedmann-Lemâıtre-Robertson-Walker model, inflation also pro-
vides a mechanism to generate the primordial density perturbations that grew to form the large-scale structure we
observe today. Importantly, in the inflation paradigm, these perturbations are vacuum quantum fluctuations ampli-
fied by gravitational instability and stretched over cosmological distances. The perturbations we observe today are of
quantum origin. To observationally establish this quantum origin in a direct manner would prove inflation and surely
suggest new observational connections to quantum gravity.

These prospects have motivated studies of the quantum nature of inflationary perturbations since inflation was pro-
posed [5–46]. Recently, novel concepts borrowed from quantum information theory such as the quantum discord were
invoked to capture the quantumness of inflationary perturbations [38, 39, 43], and the connection to Bell inequalities
on cosmological scales was articulated and studied [13, 29, 41, 42, 47, 48].

In this work, we revisit how the quantumness of these perturbations appears, how it evolves in the quantum-to-
classical transition and whether there exist quantum relics we could measure. We will focus on the squeezing1 of the
quantum state that occurs during the quantum-to-classical transition [6]. Since this squeezing is associated with a
strong suppression of the decaying mode, a measurement of this decaying mode would be related to the quantumness
of the initial perturbations (see [49] and references therein for a recent discussion). We thus ask whether there exist
scenarios where this decaying mode could be less suppressed and potentially measurable. We find that it is not the
case and that the suppression is a general result that holds beyond the specific scenarios considered. We explain how

∗Electronic address: olivier.p.dore@jpl.nasa.gov
1 The other process key to any understanding of the quantum-to-classical transition is decoherence due to interactions with the “environ-

ment”, which we briefly discuss at the end of Section II and of Section V.
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it follows from a modified version of Heisenberg’s uncertainty principle and the observed amplitude of the primordial
power spectrum.

We will review in Sec. II the primordial quantum fluctuations in slow-roll inflation, detailing in particular the
squeezing stage and the resulting classical behavior of the associated perturbations. Motivated by the search for
a remaining quantum signature, we discuss in Sec. III the evolution of the quantum state after slow-roll inflation
(i.e. into the late Universe) before discussing quantum signatures in ultra-slow roll inflation in Sec. IV. Inspired by
this example, we discuss in Sec. V how a generalized version of Heisenberg’s uncertainty principle explains the general
suppression of quantum signatures.

II. PRIMORDIAL QUANTUM FLUCTUATIONS IN SLOW-ROLL INFLATION

A. The action

Unless otherwise stated, we work in Planck units, setting in particular c = ~ = 1. For a perfect fluid, the action in
terms of the comoving curvature perturbation, R [50–52], is to second order given by [53, 54],

S =
1

2

∫
dτ d3x

2εm2
pl

c2s
a2
(
R′2 − c2s (∂iR)

2
)

=

∫
dτ
∑
k

1

2
z2(τ)

(
R′kR′−k − c2s k2RkR−k

)
, (1)

where a is the scale factor,

ε ≡ −Ḣ/H2 =
3(1 + w)

2
, (2)

with w = p/ρ the equation of state and a dot indicating a derivative with respect to coordinate time t, cs is the sound
speed, mpl ≡ (8πG)−1/2 the reduced Planck mass, and we have defined the combination,

z(τ) ≡

√
2εm2

pl

c2s
a(τ). (3)

The spatial coordinates in Eq. (1) are comoving coordinates, τ = dt/a is conformal time, and primes denote derivatives
with respect to τ . The action (1) in particular describes the curvature perturbations during single-field inflation[53, 55–
57]. In the second line of Eq. (1), we have expressed R in Fourier space, using the Fourier convention2,

R(x) =
1

V 1/2

∑
k

e−ik·xRk. (4)

The action above thus describes a set of independent3 Fourier modes Rk, with equation of motion,(
z2(τ)R′k

)′
+ c2s k

2 z2(τ)Rk = 0. (5)

B. Quantization

The conjugate momenta to the curvature perturbations are given by,

Πk =
∂S

∂R′−k
= z2(τ)R′k. (6)

2 We here choose the slightly unconventional finite-volume Fourier convention in order to avoid delta functions in the commutation
relations that follow and thus to make the analogy with the simple harmonic oscillator even more direct.

3 More precisely, each pair Rk, R−k describes an independent set of two real-valued variables.
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The perturbations are now quantized by promoting Rk and Πk to operators (marked throughout this paper by )̂ and
by imposing the canonical commutation relations,[

R̂k, Π̂−k

]
= i, etc. (7)

These operators are time-dependent in the Heisenberg picture. We make this time dependence explicit by expanding
R̂k in terms of positive and negative frequency solutions of the equations of motion, fk(τ) and f∗k (τ),

R̂k(τ) = fk(τ) âk + f∗k (τ) â†−k. (8)

Here the operators â†−k and âk are time-independent and we enforce that they satisfy the canonical commutation
relations, [

âk, â
†
k

]
= 1, etc., (9)

by demanding that the conserved Wronskian of the solutions fk(τ) and f∗k (τ) satisfies the normalization,

W (fk, f
∗
k ) ≡ − i

2

(
fk(τ) z2(τ)f∗

′

k (τ)− f∗k (τ) z2(τ)f ′k(τ)
)

=
1

2
. (10)

The choice of mode function fk(τ) then fixes the Fock space defined by the creation and annihilation operators âk
and â†k.

C. Slow-roll inflation

While our discussion so far applied to any action of the perfect fluid form, Eq. (1), we now focus on the case of
slow-roll, single-field inflation. To describe the slow-roll phase, we assume a background arbitrarily close to de Sitter,
with constant Hubble parameter HI and scale factor,

a(τ) =
−1

HI τ
, (11)

and small and constant slow-roll parameter, ε � 1. We will in practice also assume a canonical kinetic term for the
inflaton so that cs = 1, but we will show expressions for general cs. In future sections we will use the action (1) to
describe different scenarios, such as ultra slow-roll inflation and a radiation dominated Universe.

In the slow-roll scenario, the equation of motion (5) has the two independent, real-valued solutions,

RSR
grow,k(τ) ≡ −

√
π

2
x3/2 Y3/2(x) = cosx+ x sinx,

RSR
dec,k(τ) ≡ −

√
π

2
x3/2 J3/2(x) = − sinx+ x cosx, with x ≡ −cs k τ (12)

where Jν and Yν are Bessel function of the first and second kind, respectively. The solutions are named growing and
decaying modes because, after horizon exit, x � 1, the growing-mode solution approaches unity, while the decaying
mode approaches zero (see Section II F, Figure 1).

We now choose the standard Bunch-Davies solution for the mode functions,

fk(τ) = −
√
πHI

2(cs k)3/2

√
c2s

2εm2
pl

x3/2H
(1)
3/2(x) =

1√
2cs k

z−1(τ) eix
[
1 +

i

x

]
, (13)

with H
(1)
ν ≡ Jν + i Yν the Hankel function of the first kind. With this choice, the state annihilated by all âk is the

standard Bunch-Davies vacuum, i.e. the lowest-energy eigenstate of the Hamiltonian for modes deep inside the horizon
at early times. To connect more naturally to the real-valued, independent solutions of the equations of motion in the
post-inflationary Universe, we will throughout this paper describe the state in terms of real-valued components of fk,

fk(τ) = Rk,2(τ) + iRk,1(τ). (14)
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The solution during slow-roll inflation, Eq. (13), then corresponds to the growing and decaying solutions,

Rk,1(τ) = aRRSR
grow(τ), Rk,2(τ) = aRRSR

dec(τ), (15)

with normalization,

aR ≡
HI√

2 c
1/2
s k3/2

√
2εmpl

. (16)

The quantum state of the perturbations after slow-roll inflation is fully characterized by the subsequent evolution of
the functions Rk,1(τ) and Rk,2(τ). We have so far given expressions for general sound speed, but from here on we
will assume the canonical value, cs = 1.

We note that we are free to multiply fk(τ) by an arbitrary phase without changing the spectrum of states defined

by âk, â
†
k and, in particular, without changing the Bunch-Davies state of the primordial perturbations. This phase

change is equivalent to a rotation of the vector of real-valued EoM solutions, (Rk,2(τ),Rk,1(τ)). We chose the current
basis because, during inflation, it matches the standard growing and decaying mode solutions, Eq. (12). However, we
will see in Section III and beyond that, when considering the state of the perturbations after inflation, it may be more
convenient to use a rotated basis that corresponds to the standard post-inflationary growing and decaying modes4.

D. Expectation values

We have now fully defined the initial state and its evolution, which is completely described by the solutions Rk,1(τ)

and Rk,2(τ) to the classical equation of motion. The time evolution of the operators R̂k and Π̂k (defined in Eq. 6),
which follows the classical equations of motion, can conveniently be written in terms of the (rescaled) initial operators
as,

R̂k(τ) =
√

2Rk,2(τ) x̂k −
√

2Rk,1(τ) p̂k

Π̂k(τ) =
√

2 z2(τ)R′k,2(τ) x̂k −
√

2 z2(τ)R′k,1(τ) p̂k, (17)

where x̂k = 1√
2

(
âk + â†−k

)
, p̂k = −i 1√

2

(
âk − â†−k

)
. In other words, the statistics of x̂k, p̂k are simply those of the

position and momentum in the ground state of a simple harmonic oscillator with frequency ω = 1. In particular, the
expectation values of its 2-point correlators are given by,

〈x̂k x̂−k〉 = 〈p̂k p̂−k〉 =
1

2
, 〈x̂k p̂−k〉 = −〈p̂k x̂−k〉 =

i

2
. (18)

Eq. (17) is a useful expression for understanding the evolution of expectation values and for gaining an intuitive

understanding of the classical limit (see Section II E). Using this expression, correlators of R̂k(τ), Π̂k(τ) are easily
expressible in terms of the mode functions R1,2(τ) (and expectation values of the harmonic oscillator ground state).
The 2-point functions are given by,

〈R̂k R̂−k〉 = R2
k,1(τ) +R2

k,2(τ)

〈Π̂k Π̂−k〉 = z4(τ)
(
R
′ 2
k,1(τ) +R

′ 2
k,2(τ)

)
〈R̂k Π̂−k〉 = z2(τ)

(
Rk,1(τ)R′k,1(τ) +Rk,2(τ)R′k,2(τ)

)
+
i

2

〈Π̂k R̂−k〉 = z2(τ)
(
Rk,1(τ)R′k,1(τ) +Rk,2(τ)R′k,2(τ)

)
− i

2
. (19)

The above quantities directly give the power and cross-spectra of R and Π.

PR(k) = 〈R̂k R̂−k〉, Pπ(k) = 〈Π̂k Π̂−k〉, etc. (20)

4 As we discuss in Section III and onward, the growing (decaying) mode during inflation does not generally evolve into the exact post-
inflationary growing (decaying) mode, but into a linear combination of the two post-inflationary modes.
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With our (standard) power spectrum convention, the dimensionless curvature power spectrum (i.e. the variance per
e-folding in scale k) is,

∆2
R(k) =

k3

2π2
PR(k) =

k3

2π2

(
R2
k,1(τ) +R2

k,2(τ)
)

(21)

such that during slow-roll inflation,

∆2
R(k) =

k3 a2
R

2π2

((
RSR

grow,k(τ)
)2

+
(
RSR

dec,k(τ)
)2)→ 1

2εm2
pl

(
HI

2π

)2

≡ As, (22)

where the arrow points to the super-horizon limit where RSR
grow,k → 1 and RSR

dec,k → 0. The amplitude factor

k3 a2
R/(2π

2) is thus immediately recognized as the standard expression for the amplitude of the primordial power
spectrum in slow-roll inflation, As (assuming the expression is evaluated at the appropriate “pivot scale”, k∗).

E. The Wigner function

A convenient description of the quantum state of the primordial perturbations, which we will use throughout this
paper, is in terms of the Wigner function (see e.g. [58]). Before introducing the Wigner function, note that so far we
have discussed the perturbations in terms of the complex Fourier modes Rk. Each pair of complex modes Rk, R−k
describes two real-valued modes,

R̂k =
1√
2

(
R̂k,R + i R̂k,I

)
, Π̂k =

1√
2

(
Π̂k,R + i Π̂k,I

)
. (23)

With the above normalization factor of 1/
√

2, all expressions for expectation values in terms of complex modes above
can be directly applied to the real degrees of freedom by simply substituting the latter for the former. For instance,

〈R̂2
k,R〉 = 〈R̂2

k,I〉 = 〈R̂k R̂−k〉, etc. (24)

For ease of notation, but without loss of generality, we from here on consider real degrees of freedom R̂k,R, R̂k,I . We
from here on also drop all k subscripts.

In the Schrödinger picture, the quantum state of each degree of freedom is described by an evolving Gaussian wave
function5 ψ(R), which can be fully specified by the evolution of the mode functions R1(τ) and R2(τ). The Wigner
function (of this pure state) is then defined as,

W (R,Π) =
1

π~

∫
dy e2iπ y ψ∗(R+ y)ψ(R− y), (25)

and contains the same information as the wave function. It has a number of useful properties in common with a
phase-space probability distribution, and therefore we refer to it as a pseudo-phase-space distribution. However,
we caution that the Wigner function is not a true phase-space distribution. First of all, conceptually, a quantum
state simply does not have a well-defined phase-space distribution as R̂ and Π̂ are non-commuting operators. More
concretely, treating W like a phase-space distribution does not in general reproduce the true quantum expectation
values, i.e. ∫

dR dΠW (R,Π)A(R,Π) 6= 〈A(R̂, Π̂)〉, (26)

where A is some function of R and Π. In fact, the Wigner function is not even generally positive-definite.
For the primordial fluctuations, the Wigner function is a bivariate Gaussian (which is positive-definite6),

W (R,Π) =
1

π
Exp

{
−1

2

(
R Π

)
C−1

(
R
Π

)}
, (27)

5 The full wave function is a product of the wave functions of the individual degrees of freedom.
6 Indeed, Gaussian states are the only pure states with a positive-definite Wigner function.
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with covariance matrix,

C =

 〈R̂2〉 Re
(
〈R̂ Π̂〉

)
Re
(
〈R̂ Π̂〉

)
〈Π̂2〉

 , (28)

where the expectation values are the true quantum expectation values given in Eq. (19). The Wigner function above
thus behaves7 like a Gaussian probability distribution describing the real components of the true quantum correlations,∫

dR dΠW (R,Π)A(R,Π) = Re
(
〈A(R̂, Π̂)〉

)
, for A(R̂, Π̂) = R̂2, R̂ Π̂, Π̂2. (29)

Since the operators R̂ and Π̂ follow the classical equations of motion, C evolves as the covariance matrix of a classically
evolving stochastic distribution, and therefore the Wigner function itself evolves as if it were a classical phase-space
distribution8. A useful equivalent formulation is that the real components of the cross- and auto-correlations of R̂ and
Π̂ are fully described by the classical evolution in Eq. (17) if we treat x̂ and p̂ in Eq. (17) as stochastic variables with
Gaussian distribution and covariance matrix C = 1

2 12. Nevertheless, the Wigner function is still not a true phase-
space distribution. First of all, treating it as such does not reproduce the imaginary part of 〈RΠ〉. One might brush

off this issue as R̂ Π̂ is not Hermitian and therefore not an observable, while the expectation value of the Hermitian

operator 1
2

(
R̂ Π̂ + Π̂ R̂

)
is reproduced by treating the Wigner function as a phase-space distribution. However, as

soon as we consider higher order operators, the true quantum expectation values deviate from those obtained from
treating the Wigner function as a phase-space distribution even for Hermitian operators (see e.g. [59]). We will come
back to this more quantitatively in Section II G.

The Wigner function is however a useful tool for describing the quantum-to-classical transition. One way of defining
classical behavior is to require that the properties of the state of the primordial perturbations can be reproduced by
a stochastic phase-space distribution of variables R and Π undergoing classical evolution [6, 8]. If this requirement
is (approximately) satisfied, based on the above discussion, that phase-space distribution must equal the Wigner
function (assuming the above scenario of a Gaussian Wigner function and linear evolution). We can thus quantify the
quantum-to-classical transition by comparing the true properties of the quantum state to those computed by treating
the Wigner function as a phase-space probability distribution. We will see in the next Section that classicality in the
above sense is approached as modes exit the horizon and the Wigner function is squeezed. We will visualize the Wigner
function by its contour of constant χ2 ≡ −2 ln(πW ) = 1 (see e.g. Figure 1), which fully characterizes it because it is
a Gaussian.

F. Squeezing upon horizon exit

Let us now consider the evolution of the mode functions during inflation. We see from Eq. (12) that while the mode
is inside the horizon at early times, |k τ | � 1, R1(τ) and R2(τ) oscillate, with a slowly varying (compared to the
time scale of oscillations) and equal amplitude. After horizon exit however, |k τ | � 1, the growing mode approaches
a non-zero constant, R1 → const., while the decaying mode goes to zero. This behavior is illustrated in the left panel
of Figure 1, which shows the normalized modes a−1

R R1(τ) = RSR
grow(τ) and a−1

R R2(τ) = RSR
dec(τ) as a function of the

number of e-foldings since horizon exit,

eN ≡ a(τ)

a(τ∗)
= (−k τ)−1 =

lk
lH
, (30)

where τ∗ is the time at which the mode k exits the horizon, lk ≡ k−1 is the comoving length scale of the mode and
lH = (aHI)

−1 is the comoving Hubble length scale. The quantity eN thus also gives the ratio of the wavelength of a
mode k to the Hubble scale. At |k τ | � 1, the decaying mode decays like R2 ∝ (−kτ)3 so that the decaying mode is
extremely rapidy suppressed relative to the growing mode,

R1(τ)� R2(τ) for |k τ | � 1 (N > 0) (31)

7 This is in general true for the Wigner function of any Gaussian state undergoing linear evolution.
8 One can show more generally that, for linear equations of motion, the Wigner function obeys the same evolution equations as a classical

phase-space distribution.
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FIG. 1: Left: The growing mode (RSR
grow, red) and decaying mode (RSR

dec, blue) characterizing the quantum state of the primordial
perturbations in slow-roll inflation, as a function of the number of e-foldings of expansion since horizon exit, N . As a mode exits
the horizon (at N = 0), the growing mode approaches a constant, while the decaying mode tends to zero. We have normalized
the modes such that RSR

grow → 1 in the super-horizon limit. Right: The rapid suppression (proportional to ∼ e−3N , where N is
the number of e-foldings since horizon exit) of the decaying mode relative to the growing mode leads to a highly squeezed state,
characterized by a narrow Wigner function. We show (in arbitrary units) Wigner contours of constant χ2 ≡ −2 ln(πW (R,Π))
for various values of `k/`H = eN , the ratio of the mode wavelength to the Hubble scale (see inset). The highly squeezed
super-horizon state behaves classically in the way discussed in the text.

The resulting state is a squeezed state, where R and Π are highly correlated. Indeed, Eq. (28) shows that the

correlation coefficient

∣∣∣∣Re(〈R̂ Π̂〉)/
√
〈R̂2〉〈Π̂2〉

∣∣∣∣ → 1. The Wigner function (cf. Eq. (28)) is thus stretched in the

correlated direction and squeezed in the orthogonal direction, obtaining a cigarillo-like shape, as shown in the right
panel of Figure 1. Specifically, if we define the part of the momentum that is fully correlated with R as,

Πcl(R) ≡ Re(〈R̂ Π̂〉)
〈R̂2〉

R ≈ z2(τ)R′1(τ)

R1(τ)
R, (32)

the Wigner function approaches,

W (R,Π)→ 1√
2πCRR

Exp

{
−1

2
(CRR)−1R2

}
δ(D)(Π−Πcl(R)), (33)

closely approximating a distribution along a single direction in phase-space. A common alternative description of
the squeezed Wigner function is in terms of a squeezing factor r, quantifying how stretched the Wigner function
is, and a squeezing angle θ, quantifying the direction in which it is stretched (both appearing in the singular value
decomposition of the phase-space evolution matrix), see e.g. [8, 39]. However, in this paper we choose to describe the
state in terms of its growing and decaying modes and will not use those squeezing parameters.9

9 We note that Eq. (32) technically does not describe the squeezed direction if the state is squeezed exactly along the Π-axis (which is
not the case during inflation, but is a situation of interest in the late Universe). In that case, the squeezed direction in phase space is
defined by R = 0. An advantage of the description in terms of the standard squeezing parameters is that r is invariant under rotations
in phase space and that it can describe squeezing in any direction, including along the Π-axis (or the R-axis).
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G. Classical behavior due to squeezing

The resulting super-horizon squeezed state can be considered classical in the sense that R̂ and Π̂ effectively commute
in the limit of vanishing decaying mode. From Eq. (17),

R̂(τ) =
√

2R2(τ) x̂−
√

2R1(τ) p̂ ≈ −
√

2R1(τ) p̂ ≡ R̂cl(τ)

Π̂(τ) =
√

2 z2(τ)R′2(τ) x̂−
√

2 z2(τ)R′1(τ) p̂ ≈ −
√

2 z2(τ)R′1(τ) p̂ ≡ Π̂cl(τ), (34)

with [R̂cl, Π̂cl] = 0 (note that, despite the “cl” subscript, R̂cl and Π̂cl are still operators). The commuting components

of the operators, R̂cl and Π̂cl, are given by the growing mode R1 and the non-commuting remainders are suppressed
by the decaying mode10 R2. In the sense that the quantum nature of the perturbations is captured by the lack of
commutation between operators, we may loosely consider the operators R̂cl and Π̂cl as the “classical” components
(hence the subscript). Note that these classical components correspond to the stretched/correlated direction of the

Wigner function in the previous subsection, with Π̂cl ≈ Πcl(R̂).
Suppression of the non-commuting component of the perturbations leads to classical behavior in the concrete

sense that expectation values become extremely well approximated by expectation values of a classical stochastic
distribution. As discussed at the end of Section II E, if we treat R̂ and Π̂ (or equivalently x̂ and p̂ in Eq. (34)) as
variables drawn from a stochastic ensemble (instead of as operators) that evolve classically with probability distribution
equal to the Wigner function, this does not in general reproduce the proper quantum statistics of the system. However,
in the squeezed limit, the classical description in terms of the Wigner function does approach the full quantum
expectation value,

〈A(R̂, Π̂)〉 ≈ 〈A(R̂,Πcl(R̂))〉 =

∫
dR|ψ(R)|2A(R,Πcl(R)) =

∫
dR dΠW (R,Π)A(R,Π), (35)

where we have used that marginalizing the Wigner function over one direction in phase space gives the probability
distribution (i.e. the square of the wave function) of the other direction, and specifically |ψ(R)|2 =

∫
dΠW (R,Π).

For instance, the (absolute value of the) “quantum”, imaginary part of the cross-correlation between R̂ and Π̂,

Im(〈R̂ Π̂〉) = i/2 is now negligible compared to the real part, |Re(〈R̂ Π̂〉)| � 1, which is captured by the classical
description11. Moreover, the classical treatment now reproduces expectation values of higher order statistics to good
approximation (see also [59]). For instance, the observable 4-point function corresponding to the Hermitian operator
1
2 (R̂2 Π̂2 + Π̂2 R̂2) has the quantum expectation value,

1

2
〈R̂2 Π̂2 + Π̂2 R̂2〉 = 3〈R̂2〉 〈Π̂2〉 − 1 = 3

(
R2

1(τ) +R2
2(τ)

)
z2(τ)

(
R
′ 2
1 (τ) +R

′ 2
2 (τ)

)
− 1, (36)

whereas treating the Wigner function as a classical distribution instead gives,

1

2
〈R2 Π2 + Π2R2〉cl = 〈R2 Π2〉cl = 3〈R̂2〉 〈Π̂2〉 − 1

2
. (37)

For the initial vacuum state, we have 〈R̂2〉 〈Π̂2〉 = 1/4 so that the two expectation values have an order unity difference.
Indeed, the quantum expectation value is negative (equal to −1/4), while the classical estimate is still positive (as

it should be). In the squeezed limit, on the other hand, 〈R̂2〉 〈Π̂2〉 ≈ R2
1 z

2R′ 21 � 1/4 so that the relative difference
becomes smaller the more squeezed the state is. We note that the difference of 1/2 between the two expectation

10 This “hiding” of the commutator of R̂ and Π̂ is a general result for squeezed states (i.e. it is not specific to the squeezed state during
slow-roll inflation). A slight subtlety is that, for a general solution of the form Eq. (17), one always has the freedom to redefine R1

and R2 by a rotation without changing the solution (see discussion at the end of Section II C). In the description of the classical limit
in this Section, it is thus implicit that one mode (here R1) is chosen to be the dominant/growing mode, and the other (here R2) the
minimal/decaying mode, so that (the norm in phase space of) R1 is maximally dominant over (the norm of) R2.

11 Technically, one could of course consider combinations such as Π̂ − Πcl(R̂), i.e. subtracting out the growing mode component that

commutes with R̂. One is then explicitly probing the squeezed direction in phase space. Expectation values involving such quantities
are still not well described by the classical description, in the sense that the difference between the classical prediction and the quantum
expectation value is large compared to the latter. For instance, 〈R̂ (Π̂−Πcl(R̂))〉 = i/2, while the classical description would give zero.
As we will see, however, the non-commuting/decaying mode component of the perturbations actually becomes very small compared to
any reasonable observational uncertainties, so even for the above expectation value where the “quantum component” dominates, this
component would still be unmeasurably small.
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values traces back to products of two growing mode and two decaying mode contributions, thus confirming that the
classical limit corresponds to R2 � R1.

It is in the above sense that squeezing achieves a quantum-to-classical transition. We stress however that, in
another sense, the state is still very “quantum”: we are still describing the perturbations by a pure quantum state
in a coherent superposition of a (observably) large range of R values. This is very different from the coherent states
(having small quantum spread in both directions in phase space) that are conventionally considered “classical”. The
quantum-to-classical transition by squeezing has thus been called decoherence without decoherence [8].

H. Searching for a remaining “quantum signature”

The decaying mode, which quantifies the non-commuting component of the phase-space operators, thus decribes
deviations from the classical limit in the specific sense discussed above. Therefore, we will use the contribution
from the decaying mode to quantify the quantumness of the inflationary perturbations, and loosely define
the “quantum component” (cf. Eq. (34)),

δR̂qu(τ) ≡
√

2R2(τ) x̂ (38)

δΠ̂qu(τ) ≡
√

2 z2(τ)R′2(τ) x̂ ≈ Π̂(τ)−Πcl(R̂(τ)). (39)

Specifically, we will consider the perturbations in the late Universe, when observations are made, and will quantify
the amplitude of the late-Universe decaying and growing modes. The end goal is to compare the effect of the decaying
mode on R̂ and Π̂ to observational errors (at an order of magnitude level) and to see if there are scenarios where
this “quantum component” may be large enough to be in principle observable. In the standard inflationary scenario,
we will of course recover the well known result that the state is extremely squeezed by the end of inflation and
that moreover, the state gets squeezed even further in the post-inflationary Universe during the many e-foldings of
expansion during which the mode is super-horizon. The result is that in the late-Universe the decaying mode is
suppressed by ∼ 115 orders of magnitude, making it almost comically unobservable. We will then ask whether this
conclusion can be altered in non-standard inflationary scenarios.

To connect more directly to late-Universe observations, we will in this paper directly describe the phase space
in terms of R̂ and its derivative R̂′ (the latter in place of the canonical momentum Π̂ = z2R̂′), and define the

“quantum” and “classical” components of R̂′ analogously to Eqs (34) and (38). We illustrate the extent of the
quantum (and classical) components in the Wigner ellipse (χ2 = 1) in Figure 2. The stretched direction describes the

strong correlation between R̂ and R̂′ and corresponds to the “classical” direction determined by the growing mode.

The extent of the contour in the R direction gives the rms fluctuation ∆R ≡
√
〈R̂2〉 ≈

√
〈R̂2

cl〉 and the extent in

the R′ direction gives the rms fluctuation ∆R′ ≡
√
〈R̂′ 2〉 ≈

√
〈R̂′ 2cl 〉. The “quantum” contribution is responsible

for the non-zero width of the squeezed direction, giving subdominant contributions to the variance in the R and R′
directions.

We caution here that merely detecting the decaying mode (or quantum) component does not in itself consitute
a “smoking gun” of the quantum nature of the fluctuations. For instance, if we detect it in the power spectrum of
R, that same observation can still be decribed in terms of classical, stochastic curvature perturbations occupying
both the growing and decaying mode. However, there will be other observables that can not be reproduced in a
classical description (e.g. 4-point functions) and if the decaying mode is detectably large, those observables may truly
distinguish between the quantum and classical descriptions. In this paper, our first focus is on the first step above,
i.e. can we in principle detect the decaying mode in, say, the power or cross-spectra of R and R′? If we find a scenario
where the answer is yes, it then makes sense to ask what specific, more complicated observations might provide a true
smoking gun of the quantum nature.

An important caveat to the analysis in this paper is that we will ignore decoherence [58] and treat the quantum
state of each mode k as a pure state even in the late Universe. In reality, interactions of a mode with other modes (due
to non-linearity in the action, e.g. [45]), as well as interactions with other degrees of freedom (e.g. [60]), will entangle
each mode with its environment. If we now consider the system constituded by a single mode, it is described by a
mixed state, not a pure state. Thus, the quantum superposition between different values of R becomes incoherent
and effectively, the mode is measured by its environment. We consider our treatment of each mode as a pure state an
idealized scenario and a useful starting point for an understanding of the perturbations in the presence of decoherence.
Moreover, since generally decoherence plays a key role in explaining the quantum-to-classical transition, decoherence
is expected to make the state less “quantum”. Thus, if in the pure state approximation, we cannot find an observable
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R

R
′

∆R

∆R′
δR′

qu

δRqu

FIG. 2: A Wigner ellipse (χ2 = 1, see text) in the squeezed limit, in terms of R and R′. The extent in the R and R′ directions
gives the root-mean-square values of these operators (just like χ2 = 1 contours of a true phase-space distribution would). In
the squeezed limit, the extended direction of the ellipse (dashed line) is described by the growing mode and the growing mode

components of the operators R̂ and R̂′ commute. We thus colloquially refer to the growing mode contribution as the classical
component. The decaying mode describes the non-zero width of the ellipse. Since it is the inclusion of the decaying mode that
causes the non-commutation of R̂ and R̂′, we will loosely refer to the decaying mode as the “quantum” contribution. With
this convention, the “quantum” spread in R and R′, δRqu and δR′qu are as indicated in the Figure and become small relative
to the “classical” spread as the decaying mode gets more and more suppressed and the Wigner ellipse narrower. We stress
that the primordial state under consideration is fully quantum mechanical even in the squeezed limit. We here use the labels
“quantum” and “classical” only in the specific sense explained above and in the text.

quantum signal, this conclusion is not likely to change with the inclusion of decoherence. We will comment more on
the role of decoherence in Section V D.

III. EVOLUTION OF THE QUANTUM STATE AFTER SLOW-ROLL INFLATION

We will now study the evolution of the growing and decaying modes from inflation into the late Universe, where
observations are made, in the standard scenario of single-field slow-roll inflation. For simplicity, we will model the
entire post-inflationary phase as a radiation-dominated (RD) Universe. This will be sufficient for our purposes of
deriving physical insights into the late-Universe quantum signature (or lack thereof). If we do find a potentially
observable signal, we may then consider a less crude description of the late Universe and include the effects of
pressureless matter, neutrinos and dark energy.

We will consider an instantaneous transition where inflation ends at some time τ = −τe < 0. After the transition,
the Universe is taken to be radiation dominated and conformal time continues from τ = τe > 0. With this convention,
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the scale factor (which is continuous through the transition) in the radiation-dominated epoch is,

a(τ) =
τ

He τ2
e

, (40)

where He is the Hubble parameter (also assumed continuous) at the time of the transition τe. In our case, we consider
the de Sitter limit where the Hubble parameter during inflation is constant, H(τ) = HI , so that He = HI . The ratio
of the mode scale to the Hubble scale during RD decreases with time as,

`k
`H

=
a(τ)H(τ)

k
= (k τ)−1 = e2N∗−N , (41)

where N∗ = N(τe) is the number of e-foldings between horizon exit and the end of inflation. Since we assume RD in
the late Universe, it thus takes exactly another N∗ e-foldings after inflation for the mode to enter the horizon again.
By this time, the mode has undergone a total of 2N∗ e-foldings of expansion since horizon exit. We illustrate this in
Figure 3.

During radiation domination, the perturbations are described by the action of a perfect fluid [53] already given in
Eq. (1), where now,

εRD = 3
2 (1 + wRD) = 2, (42)

and the sound speed is,

cRD
s =

√
1

3
. (43)

The equation of motion is given by Eq. (5), which has the two independent solutions given by the spherical Bessel
functions of the first and second kind respectively,

RRD
grow(τ) ≡

sin
(√

1
3 k τ

)
√

1
3 k τ

RRD
dec(τ) ≡

cos
(√

1
3 k τ

)
√

1
3 k τ

. (44)

We have normalized the solutions such that they are of the same order at the time of horizon entry, k τ ∼ 1.

To quantify the late-Universe quantum signature, we will expand R̂ and Π̂ (or R̂′) in terms of the above RD growing
and decaying modes, in the same form as Eq. (17). To do this, we first compute the evolution of the inflationary
modes RSR

grow(τ) and RSR
dec(τ) into the radiation dominated epoch, specifically constructing the linear combinations of

RRD
grow(τ) and RRD

dec(τ) that R1(τ) and R2(τ) evolve into.

We thus need to evolve the initial modes through the reheating transition at τe. To do this, we assume a simple toy
model where the curvature perturbations are described by the perfect fluid action (1) at all times, including during
the transition. The transition can then be seen as a simple change in functions ε(τ) = 3

2 (1 + w(τ)) and cs(τ) from

(constant) values (ε, cs) = (εI , 1) to (2,
√

1/3), where εI � 1 is the value during slow-roll inflation. This is a very
simplified decription of reheating (we refer to [1, 61, 62] for more general discussions of matching conditions between
cosmic phases) and neglects any effect that entropy perturbations associated with the Universe having multiple
components might have on R. In the above picture, the general equation of motion, Eq. (5), applies throughout the
transition. In the limit where the transition is instantaneous, or at least occurs on a time scale much shorter than the
Hubble time, it then follows from the equation of motion that R(τ) and its conjugate momentum Π(τ) = z2(τ)R′(τ)
are continuous, so that,

R+ = R− (continuous)

R′+ =

(
2ε/c2s

)
−

(2ε/c2s)+

R′− =
εe
6
R′− =

ε∗
6
R′−, (45)

where − and + indicate the values before and after the transition, respectively, and εe is the inflationary slow-roll
parameter at the time of the transition. In the present scenario, we take ε to be constant during inflation, so that
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FIG. 3: Ratio of the wavelength of a mode with wave number k to the Hubble scale, as a function of the number of e-foldings
of expansion since horizon exit. There are N∗ e-foldings between horizon exit and the end of inflation. We then assume an
instantaneous transition to a radiation dominated hot big bang phase. In a simplified Universe where the Universe remains
radiation dominated (and the number of radiation degrees of freedom is constant), it takes exactly another N∗ e-foldings before
the mode k re-enters the horizon.

in particular εe = ε∗, the value at the time of horizon exit. We will in the next Section consider the ultra-slow-roll
scenario where ε evolves during inflation, so that εe 6= ε∗. We see from the matching conditions in Eq. (45) that the
derivative R′(τ) is discontinuous through the transition.

We can now apply the matching conditions above to the inflationary growing and decaying modes given in Eq. (15)
(and Eq. (12)),

R1(τ) = aRRSR
grow(τ) = −aR

√
π

2
(−k τ)3/2 Y3/2(−k τ) (during SR inflation)

R2(τ) = aRRSR
dec(τ) = −aR

√
π

2
(−k τ)3/2 J3/2(−k τ) (during SR inflation),

so that just after the transition (i.e. at τ = τe), we can write the two phase-space vectors in matrix form as,

E1,2 ≡
(
R1(τe) R2(τe)
R′1(τe) R′2(τe)

)
= aR

(
RSR

grow(−τe) RSR
dec(−τe)

ε∗/6 (RSR
grow)′(−τe) ε∗/6 (RSR

dec)′(−τe)

)
. (46)

To find how R1(τ) and R2(τ) continue to evolve during radiation domination, we express R1(τ) and R2(τ) at τ > τe
as linear combinations of the RD growing and decaying modes,

R1(τ) = aRRD
grow(τ) + bRRD

dec(τ) (during RD)

R2(τ) = cRRD
grow(τ) + dRRD

dec(τ) (during RD). (47)

Finding the coefficients is now a simple linear algebra problem corresponding to applying a basis transformation at
τ = τe with tranformation matrix,

T ≡
(
a c
b d

)
= (ERD)

−1
E1,2, (48)



13

2 1 0 1 2
#e-folds since horizon exit, N

10

5

0

5

10

15

m
o
d
e
 a

m
p
lit

u
d
e
 R

 [
×
a
R
 ]

R1

R2

horizon exit

slow-roll
inflation

0 30 N ∗ 60 90 2N ∗
#e-folds since horizon exit, N

100

10−20

10−40

10−60

10−80

10−100m
o
d
e
 a

m
p
li
tu

d
e
 |R
| [
×
a
R
 ]

horizon exit horizon entry

slow-roll
inflation

radiation
domination

R1

R2

ε ∗e
−3N ∗ ε ∗e

−4N ∗

109 2N ∗ 111 112 113

#e-folds since horizon exit, N

1.0

0.5

0.0

0.5

1.0

m
o
d
e
 a

m
p
lit

u
d
e
 R

 [
×
a
R
 ] R1

R2 × ε−1
∗ e4N ∗horizon entry

radiation
domination

FIG. 4: Evolution of the growing and decaying modes describing the primordial quantum state in a simplified version of the
slow-roll scenario, where the post-inflationary phase is radiation dominated even at late times. Left: Evolution of the normalized
growing mode a−1

R R1 (red) and decaying mode a−1
R R2 (blue) a few e-foldings before and after horizon exit. Center: Evolution

in the super-horizon regime. The decaying mode is suppressed by a factor e−3N∗ during inflation and the basis rotation
associated with the transition to the RD phase (see text) accounts for an additional suppression of order ε∗. During RD, the
decaying mode is suppressed by another factor e−N∗ . Right: Evolution a few e-foldings before and after horizon re-entry during
RD. The decaying mode is rescaled in order to make it visible. In reality it is down by the cumulative suppression factor
∼ ε∗ e−4N∗ . 10−96 (for N∗ ≈ 55). This reflects the standard result that (ignoring decoherence) the state of the perturbations
is extremely squeezed and thus classical in the sense described in the text.

with the E matrices containing the basis vectors as columns and specifically,

ERD =

(
RRD

grow(τe) RRD
dec(τe)

RRD′

grow(τe) RRD′

dec (τe)

)
. (49)

We compute the transformation matrix T by expanding the mode vectors in terms of the small quantity xe =
k τe = e−N∗ � 1, giving to leading order,

a−1
R R1(τ) =

(
1 +O(x2

e)
)
RRD

grow(τ) +

(
−
√

3

27

(
1− 3

2 ε∗
)
x3
e +O(x5

e)

)
RRD

dec(τ) (during RD), (50)

and

a−1
R R2(τ) =

(
−1

3

(
1− 1

2 ε∗
)
x3
e +O(x5

e)

)
RRD

grow(τ) +

(
− ε∗

6
√

3
x4
e +O(x6

e)

)
RRD

dec(τ) (during RD).

The inflationary growing mode R1 thus evolves into the RD growing mode, up to a tiny correction, that at τe is
suppressed by x2

e (recall that, at τe, RRD
dec ∼ x−1

e ). For this mode, R approaches a constant after horizon exit, remains
constant during and after the transition to RD while the mode is super-horizon, and only starts to evolve again when
it enters the horizon at late times.

The inflationary decaying mode, R2, decays as (−k τ)3 while the mode is super-horizon during slow-roll inflation.
Therefore, by the end of inflation, it is already suppressed by a factor x3

e = e−3N∗ relative to the growing mode. For
this reason, most analyses of the primordial perturbations are solely concerned with the behavior of the growing mode.
However, even though it is indeed extremely suppressed in the standard scenario, we here consider the decaying mode
more quantitatively into the RD regime. Interestingly, R2 also predominantly evolves into the RD growing mode.
While at τe, both contributions are of order x3

e, the decaying mode contribution is additionally suppressed by the
slow-roll parameter during inflation, ε∗. This is a direct consequence of the matching conditions, Eq. (45), and in
particular of the discontinuity in R′ at τe. Thus, R2 becomes a constant, proportional to RRD

grow, during radiation

domination. The amplitude of this mode is suppressed by the aforementioned factor ∼ e−3N∗ relative to the mode
R1.

While we could now expand the late-Universe operators R(τ) and R′(τ) in the form of Eq. (17) in terms of the
basis of modes R1 and R2 in Eqs (50) and (51), we still have the freedom of performing a rotation of the form,(

R1

R2

)
→
(
R1′

R2′

)
=

(
cosα sinα
− sinα cosα

) (
R1

R2

)
, (51)

so that Eq. (17) has the same form in the new basis (see discussion at the end of Section II C). Since we want the
decaying mode to represent the minimal non-commuting component of the operators (see Sections II G and II H), we
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use this freedom to define an infinitesimally rotated basis such that R2′ ∝ RRD
dec. In other words, we want this rotation

to subtract out the contribution to R2 proportional to RRD
grow. Choosing sinα = c/a, we obtain,

R1′ ≈ R1 ≈ aRRRD
grow(τ)

R2′ ≈ R2 −
c

a
R1 ≈ −aR

ε∗

6
√

3
e−4N∗ RRD

dec(τ) (52)

(the effect of the rotation on R1′ is suppressed by factors xe), where the second (approximate) equality on each line
gives the leading order12 result in xe. Notice the additional suppression by ε∗ above in R2′ .

The expansion in terms of late-Universe modes R1′ and R2′ explicitly reads,

R̂(τ) =
√

2R2′(τ) x̂−
√

2R1′(τ) p̂ = aR

(
−
√

2
ε∗

6
√

3
e−4N∗ RRD

dec(τ) x̂−
√

2RRD
grow(τ) p̂

)
. (53)

(with the Heisenberg-picture state of the perturbations given by the ground state of the annihilation operator, â =
1√
2
x̂+ i√

2
p̂). This is the main quantitative result of this Section. As discussed in Section II H, we consider R2′ (the

component proportional to x̂ above) to carry the non-commuting “quantum signature” of the primordial perturbations.
The evolution of the normalized growing and decaying modes R1′ and R2′ is shown in Figure 4. The left panel

shows the evolution during inflation before and slightly after horizon exit. To describe the super-horizon evolution, we
switch to a log scale in the middle panel. Finally, the right panel depicts the period slightly before and after horizon
entry during RD. At this time, the decaying mode is suppressed by a factor ∼ ε∗ e

−4N∗ ; the right panel therefore
shows the decaying mode rescaled by the inverse of this factor. In the super-horizon regime, we see that, while the
growing mode is constant, the decaying mode rapidly decays both during inflation and during radiation domination.
The squeezing of the state continues after inflation is over. The decaying mode accrues a suppression of e−3N∗ during
inflation and another factor e−N∗ during RD. The transition from inflation to radiation domination is responsible for
an additional factor of ε∗.

We note that, during inflation, the rotated basis R1′ , R2′ is indistinguishable from the original basis R1,R2 except
near the end of inflation. At this time, R2′ contains a modification relative to R2 that allows it to evolve directly into
the RD decaying mode, cf. Eq. (52). This explains the feature seen in R2′ just before the transition from SR to RD.

The main conclusion is that in the standard inflationary scenario, the decaying mode is suppressed by the factor
∼ ε∗ e

−4N∗ , which is extremely small (since modes observed in the cosmic microwave background and cosmological
large-scale structure typically undergo N∗ ≈ 50− 60 e-foldings of inflation after exiting the horizon). Therefore, the
quantum signal (in the specific sense of this paper) is extremely small and there is no hope for its detection13. The
primordial power spectrum is completely dominated by the growing mode and given by the standard expression,

∆2
R(k) ≈ 1

2ε∗m2
pl

(
HI

2π

)2

RRD 2
grow(τ). (54)

To make the suppression of the decaying mode more quantitative, let us impose that the amplitude of the primordial
(i.e. super-horizon) power spectrum in Eq. (54) reproduces the observed value. For simplicity, and since an order-of-
magnitude estimate suffices for our purposes, we still consider our toy model where the post-inflationary Universe is
always radiation dominated. In that case, we have,

HI = e2N∗ Hre−entry, (55)

where Hre−entry is the Hubble parameter at horizon re-entry. Using the Hubble parameter today for this quantity,
i.e. H0 ≈ 70km/s/Mpc, and inserting the observed value ∆2

R(k) ≈ 2.1 ·10−9 (at the order-of-magnitude level precision
of interest, we do not care that the pivot scale at which the amplitude is measured is not the same as the Hubble
scale today), Eq. (54) then gives,

e4N∗

ε∗
= 4.1 · 10113. (56)

12 Note that this result requires expanding the solutions to higher order in xe than is explicitly written in Eqs (50) and (51).
13 An exception, as long as we are ignoring decoherence, are extremely short modes that exited the horizon very shortly before the end of

inflation (and re-entered not long after). These modes have wavelengths a factor ∼ e−N∗ shorter than the cosmological-scale modes of
interest. If a mode with wavelength equal to the Hubble scale today exited the horizon N ∼ 55 e-foldings before the end of inflation,
the short modes undergoing limited squeezing have wavelengths on the order of hundreds of meters
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FIG. 5: Illustration of effect of the decaying mode on the dimensionless power spectrum of curvature perturbations. We assume
a toy model where the late Universe is dominated by a perfect radiation fluid (so that we can use analytic solutions), and
the power spectrum is evaluated at a time where the sound horizon sobs = cRD

s τobs = 100h−1Mpc, in order to mimic the
acoustic oscillations of the real Universe. We consider a nearly flat primordial spectrum for the growing mode (ns = 0.96) and
the decaying mode amplitude is assigned an arbitrary amplitude (cf. Eqs (58) and (60)). The spectrum is shown for decaying
mode amplitudes ∆dec,p = 0 (black), 10−4 (red dashed) and 3 · 10−4 (blue dashed). The decaying mode, which encodes the
non-commuting component of the operators describing the primordial perturbations, leads to a scale-dependent damping of
the acoustic oscillations.

From Eq. (53), the suppression factor of the decaying mode amplitude relative to the growing mode amplitude is then,

ε∗ e
−4N∗

6
√

3
∼ 2 · 10−115. (57)

The decaying mode is thus suppressed by ∼ 115 (!) orders of magnitude.

Before asking in the following Sections if there are more exotic inflationary scenarios where the “quantum contri-
bution” is not completely negligible, we illustrate in Figure 5 how, if the decaying mode were indeed non-negligible,
it might manifest itself in the power spectrum of R. Consider a generalization of Eq. (53),

R̂(τ) = aR

(√
2 ∆decRRD

dec(τ) x̂−
√

2RRD
grow(τ) p̂

)
, (58)

where we will choose the scale-dependence of aR such that the growing mode contribution to R reproduces a nearly
scale-invariant, but slightly “red” primordial power spectrum,

k3 a2
R(k)

2π2
= 2.1 · 10−9

(
k

kp

)ns−1

, (59)

with specral index ns = 0.96 and pivot scale kp = 0.05h/Mpc [63]. For the decaying mode coefficient, ∆dec, we

assume the same scale-dependence as the actual decaying mode coefficient in Eq. (53), ∆dec ∝ e−4N∗(k) ∝ (k/HI)
4,

i.e.

∆dec(k) ≡ ∆dec,p

(
k

kp

)4

, (60)

but ∆dec,p now is a free amplitude14, that we allow to be larger than the negligible value in the standard calculation

14 As we discuss in detail in Section V, if we assume the perturbations are described by a pure quantum state with the operators x̂ and p̂ as
defined in Section II D, then choosing the decaying mode amplitude to deviate from Eq. (53), is actually inconsistent with the canonical
commutation relations. Here, we simply illustrate what the effect on the curvature power spectrum would be in a general scenario with
non-negligible decaying mode.
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(Eq. (53)).
We still consider a simplified, radiation-only, post-inflationary Universe, and treat the radiation as a perfect fluid.

We evaluate the power spectrum at a time τobs chosen such that the sound horizon sobs ≡ cRD
s τobs = 100h−1Mpc,

approximately the observed sound horizon at the time of baryon-photon decoupling. Thus, while the plot lacks many
real Universe features, such as those due to baryonic and dark matter, it describes acoustic oscillations similar to those
in the actual Universe. The black curve in Figure 5 shows the power spectrum with acoustic oscillations in standard
scenario without the decaying mode (∆dec,p = 0), while the red and blue curves depict the cases of ∆dec,p = 1·10−4 and
3 · 10−4. The decaying mode leads to a damping of the acoustic oscillations because it reduces coherence in the initial
phase of the acoustic oscillations. This damping has an interesting scale dependence, becoming more pronounced on
small scales (large k), because ∆dec(k) ∝ k4.

We stress that the decaying mode signature in the power spectrum in itself does not require a quantum mechanical
explanation. The damping of oscillations in the power spectrum due to the decaying mode can easily be described
in terms of purely classical stochastic perturbations populating both the growing and decaying mode15. As discussed
in Section II H, the damping in Figure 5 is a quantum signature in the following limited sense. If we assume the
primordial perturbations are of quantum origin, the damping is a result of the non-commuting (i.e. decaying mode)
component of the quantum operator. If that damping is large enough to be observable, this non-commuting component
would lead to other signatures in correlation functions beyond the power spectrum that do deviate from what would
be predicted in a classical description. A final caveat we remind the reader of is that we are using a description where
each mode is described as a pure state, independent of other degrees of freedom, while a more realistic description
would include the effect of decoherence due to interactions.

IV. QUANTUM SIGNATURES IN ULTRA-SLOW ROLL INFLATION

So far we have confirmed the standard result that the decaying mode is completely negligible at late times so that
the quantum state of the primordial fluctuations is extremely squeezed and classical. We now move on and ask if we
can construct an inflationary model where the quantum signature is not entirely negligible in the post-inflationary
Universe. The key reason for the classicalization of the primordial perturbations in the standard scenario was the
strong divergence between the growing mode and decaying mode in the super-horizon regime (both during and after
inflation). This motivates us to consider the ultra-slow-roll inflation (USR) scenario, where the roles of the growing
and decaying modes are reversed during inflation [65–70]. We will in this Section repeat the analysis of the previous
Section for the case where the inflationary phase is described by USR and we will compute the resulting quantum
signature. In Section V, we will then use a more general perspective to explain the results in the USR case and we
will use this perspective to draw more model-independent conclusions about the late-Universe quantum signature.

We again consider the scenario of a phase of inflation, with a (quasi-)de Sitter background, followed by a radiation
dominated post-inflationary Universe. The difference with the standard scenario considered earlier, is that we now
assume that the slow-roll parameter ε evolves with time,

ε = ε∗

(
a

a∗

)η
, (61)

where a∗ and ε∗ are the scale-factor and slow-roll parameter at the time of horizon exit, −cskτ∗ = 1 (we will restrict
our attention to the case cs = 1). The case η = 0 corresponds to the standard scenario studied above and USR
corresponds to a rapidly decreasing slow-roll parameter ε [66, 68] (we will show below that η < −3 is of particular
interest with regards to the mode functions). We still assume that, despite the time evolution, during the period of
interest, the slow-roll parameter remains small, ε � 1, so that the background is consistently approximated by de
Sitter. We set cs = 1 during inflation.

For general η, the two normalized independent solutions to the equations of motion during inflation, are

15 Regardless of the connection to a quantum origin, the amplitude of the decaying mode (distribution of initial phases) can be constrained
observationally, as has been done in [49, 64]. Note that the description in terms of primordial quantum fluctuations does lead to an
interesting specific scale-dependence of the amplitude of the decaying mode relative to the growing mode.
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(cf. Eq. (12)),

RUSR
“grow”(τ) ≡ −

√
π

2
xν Yν(x),

RUSR
“dec”(τ) ≡ −

√
π

2
xν Jν(x), with x ≡ −k τ, (62)

and,

ν ≡ 3 + η

2
. (63)

The mode RUSR
“grow” approaches a constant on super-horizon scales. For standard slow-roll inflation, RUSR

“dec” is the

decaying mode. However, if η < −3, RUSR
“dec” becomes an increasing function of time after horizon exit. This means

RUSR
“dec” becomes the dominant mode instead of RUSR

“grow”. This reversal makes mode evolution in USR qualitatively
different from the SR case and is the reason why Maldacena’s consistency conditions can be violated in such models.

Assuming the Bunch-Davies vacuum, the mode functions describing evolution of R̂(τ) in the Heisenberg picture
according to Eq. (17) are,

R1(τ) = aRRUSR
“grow”(τ)

R2(τ) = aRRUSR
“dec”(τ), (64)

with

aR ≡
HI√

2 c
1/2
s k3/2

√
2ε∗mpl

. (65)

Or, in terms of the complex mode function (e.g. [71]),

f(τ) = R2(τ) + iR1(τ) = −
√
πHI

2(cs k)3/2

√
c2s

2ε∗m2
pl

xν H(1)
ν (x). (66)

For slow-roll inflation, the amplitude aR coincides with the definition in Eq. (16). In the case of general η, aR is given
by the same expression as in Eq. (16), but with ε specifically evaluated at horizon exit (since ε is now time-dependent).
The basis of solutions of the equation of motion during radiation domination are as given by Eq. (44) in the previous
Section.

From here on, we will fix η = −6 to follow the simple model with a constant scalar field potential of [66] (see also
[67]). We have above again given the mode functions for general sound speed, but will from here on again restrict
discussion to the case of cs = 1. The resulting scenario of USR inflation followed by radiation domination is intended
as a toy model to see if in principle it is possible for the late-Universe decaying mode to not be heavily suppressed
relative to the growing mode. If so, it is worth making the scenario more realistic. One reason the description of
inflation in the toy model in its current form is not realistic is that it does not reproduce the correct spectral index
ns. For η = −6, the super-horizon behavior of the modes to leading order in −kτ = |k τ | � 1 is,

RUSR
“grow”(τ) =

1

3
+O((−k τ)2) ∼ const.

RUSR
“dec”(τ) =

1

(−k τ)3
+O((−k τ)−1) ∼ e3N . (67)

The RD modes have the asymptotic behavior,

RRD
grow(τ) = 1 +O((k τ)2) ∼ const.

RRD
dec(τ) =

√
3

k τ
+O(k τ) ∼ e−N . (68)

The question is again what linear combination of RRD
grow and RRD

dec do the inflationary modes R1 = aRRUSR
“grow” and

R2 = aRRUSR
“dec” evolve into? Just like in the standard slow-roll scenario, we expect (and will soon confirm) that

the constant inflationary mode RUSR
“grow” evolves into the constant post-inflationary mode RRD

grow, i.e. it simply stays
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FIG. 6: Super-horizon evolution of growing and decaying modes during ultra-slow-roll (USR) inflation (N < N∗) and radiation
domination (N > N∗). In the USR scenario, the growing and decaying modes switch roles compared to standard slow-roll
inflation: the non-constant mode that would be a decaying mode in SR, R2 ∼ RUSR

“dec”, grows rapidly in the super-horizon
regime, whereas the usual growing mode, R1 ∼ RUSR

“grow”(τ), is constant as in SR and evolves into the RD constant mode RRD
grow.

The question is then what does the mode RUSR
“dec” evolve into in the RD regime? If it matches onto the RD decaying mode, as

hinted at above (but note the question mark!), one could imagine late-Universe scenarios where the RD decaying mode is not
or less suppressed and the state is not fully classical, perhaps leaving an interesting observable signature. We address whether
this is the case in Section IV (and Figure 7).

constant on super-horizon scales. In the SR case, the decaying mode R2 = aRRSR
dec (or, really the infinitesimally

rotated mode R2′) evolved into the RD decaying mode RRD
dec, so one might naively expect this to also happen for

USR, despite RUSR
“dec” not actually decaying during USR. If this is the case, then R2 grows relative to R1 during USR

inflation, but would decay afterwards. In that hypothetical scenario, by the time the perturbations are observed (say,
around the time of horizon re-entry), the decaying mode would dominate over the growing mode. We illustrate this
in Figure 6. If this is the case, one could then easily imagine tweaking this model to create a late-Universe state
where the two modes are of the same order at the time of observation. Therefore, in this scenario, one could perhaps
generate perturbations that have a non-negligible remaining quantum signature. This is the motivation for studying
the USR toy model in this Section.

We now look quantitatively what happens by actually evolving the inflationary modes R1, R2 through the USR-
to-RD transition, analogously to the analysis in the previous Section. The matching conditions are,

R+ = R− (continuous)

R′+ =

(
2ε/c2s

)
−

(2ε/c2s)+

R′− =
εe
6
R′− =

ε∗
6
e−6N∗ R′−, (69)

The discontinuity in R′ is again proportional to the slow-roll parameter ε at the time of the transition (i.e. at the end
of inflation). In USR, because ε decays as ε ∝ a−6 through the many e-foldings of inflation, εe is strongly suppressed
relative to the value at horizon exit, ε∗, which is itself assumed to be small.

We now again write the behavior of R1 and R2 during RD as,

R1(τ) = aRRD
grow(τ) + bRRD

dec(τ) (during RD)

R2(τ) = cRRD
grow(τ) + dRRD

dec(τ) (during RD). (70)

Following the same procedure as in Section III, but now with the matrix describing R1 and R2 just after the transition
given by,

E1,2 ≡
(
R1(τe) R2(τe)
R′1(τe) R′2(τe)

)
= aR

(
RUSR

“grow”(−τe) RUSR
“dec”(−τe)

εe/6 (RUSR
“grow”)′(−τe) εe/6 (RUSR

“dec”)′(−τe)

)
, (71)
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FIG. 7: As Figure 4, but with the inflationary phase governed by the ultra-slow-roll scenario. Explicit calculation of the
evolution of the inflationary mode R2 into the RD regime shows shows that it evolves mostly into the RD growing mode (unlike
the hypothetical scenario depicted with the question mark in Figure 6). Expanding in terms of growing and decaying modes
with respect to late-Universe behavior, we find that at the start of the RD phase, the RD decaying mode is suppressed by a
factor ε∗ e

−9N∗ , of which e−3N∗ is due to the growth of R2 during USR inflation, and the remaining ε∗ e
−6N∗ due to the basis

transformation associated with the transition at the end of inflation, leading the mode R1′ to evolve into the RD decaying
mode. As in the standard scenario, super-horizon evolution after inflation contributes another e−N∗ suppression. Thus, even
in the USR scenario, the resulting state of the perturbations is extremely squeezed and quantum effects of the type discussed
in the text are hopelessly suppressed. We explain in Section V that, in single-field inflation, this will in fact be the case no
matter what exotic scenario we consider to modify the behavior of the growing and decaying modes.

we find to leading order in xe = k τe = e−N∗ � 1,

a−1
R R1(τ) =

(
1

3
+O(x2

e)

)
RRD

grow(τ) +

(
− 1

27
√

3
x3
e +O(x5

e)

)
RRD

dec(τ) (during RD)

a−1
R R2(τ) =

(
x−3
e +O(x−1

e )
)
RRD

grow(τ) +

(
− 1

9
√

3
+O(x2

e)

)
RRD

dec(τ) (during RD). (72)

As expected, we see that the constant mode R1 evolves into the constant, RD growing mode, modulo tiny corrections
of order x2

e = e−2N∗ . A major difference with the SR scenario is that after the end of inflation, the mode R2 is now
the dominant mode, with amplitude a factor ∼ x−3

e = e3N∗ above R1. It evolves predominantly into the RD growing
mode. In the SR scenario, it was also the case that both modes mostly map into RRD

grow, but in the present case, the

RD decaying mode contribution to R2 at τe is suppressed by x2
e = e−2N∗ instead of the more modest factor of ε∗ in

the SR case.
We now again apply a rotation in the basis of modes so that R̂(τ) is expanded in terms of late-Universe (RD)

growing and decaying modes (cf. Eq. (51) and surrounding discussion), maximizing the hierarchy between the two
modes. It is then that the subdominant/decaying mode can be interpreted as the minimal non-commuting component,
or quantum component, as dicussed in Section II H. Concretely, we here apply a rotation that subtracts the RRD

grow

contribution from the subdominant mode R1, i.e. sinα = −a/c, giving16,

R1′(τ) ≈ R1(τ)− a

c
R2(τ) ≈ aR

ε∗

6
√

3
e−7N∗ RRD

dec(τ)

R2′(τ) ≈ R2(τ) ≈ aR e3N∗ RRD
grow(τ), (73)

where the effect of the infinitesimal rotation on R2′ is negligible. The mode R2′(τ) is thus the dominant, growing
mode in the late Universe and R1′(τ) is the decaying mode. This is a reversal with respect to the slow-roll scenario.
Note, however, that we could easily apply an additional 90 degree rotation (R1′ → R2′ , R2′ → −R1′) if we wanted to
match the convention that R1′ is the late-Universe growing mode. We do not do this here. The curvature perturbation

16 This calculation requires expanding the mode coefficients to higher order in xe than what is explicitly written in Eq. (72).
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operator in terms of late-Universe growing and decaying modes thus reads,

R̂(τ) =
√

2R2′(τ) x̂−
√

2R1′(τ) p̂ =
HI√

2 k3/2
√

2ε∗mpl

(
e3N∗ RRD

grow(τ) x̂− ε∗

6
√

3
e−7N∗ RRD

dec(τ) p̂

)
=

HI√
2 k3/2

√
2εempl

(
RRD

grow(τ) x̂− εe

6
√

3
e−4N∗ RRD

dec(τ) p̂

)
. (74)

This is the main quantitative result of this Section.
We show the evolution of the growing mode R2′ and the decaying mode R1′ , the latter encoding the leftover

“quantum” signal, in Figure 7. The left panel shows the period around horizon exit during inflation. The mode R2′

rapidly grows after horizon exit ∝ e3N , and the mode R1′ reaches a constant. The middle panel shows the ensuing
super-horizon behavior and the transition into the (super-horizon) RD regime. Unlike the previously expressed
naive expectation, the non-constant mode R2′ does not evolve into the RD decaying mode, but transitions into
the post-inflationary growing mode, which is constant17. While the constant mode of the inflationary era, R1, also
predominantly evolves into the RD growing mode, the mode in the rotated basis that evolves into the post-inflationary
decaying mode, i.e. R1′ , is a linear combinaton of R1 and R2. This linear combination is equal to R1 until close to the
end of inflation, but just before the transition gets suppressed strongly to match onto the RD decaying mode with the
appropriate amplitude. Thus, during inflation, the decaying mode originally gets suppressed relative to the growing
mode by a factor e−3N∗ , but the transition leads to another factor ε∗ e

−6N∗ = εe. Finally, during the RD phase, the
suppression is exacerbated by the standard additional factor of e−N∗ , leading to a final suppression at horizon entry
of, ε∗ e

−10N∗ . The right panel shows the evolution slightly before and after horizon entry. Since the decaying mode is
heavily suppressed, we have multiplied it by a factor ε−1

∗ e10N∗ to compensate.

In the USR scenario, around the time of horizon re-entry, the decaying mode amplitude is suppressed by a factor ∼
ε−1
∗ e−10N∗ relative to the growing mode. This appears to be an even stronger suppression than the factor ∼ ε−1

∗ e−4N∗

we found in the SR scenario. However, we should compare the two scenarios for fixed primordial amplitude18, to the
observed value As = 2.1 · 10−9 [63]. For USR, the super-horizon amplitude of the primordial power spectrum is (see
Eq. (74)),

∆2
R(k) ≈ 1

2εem2
pl

(
HI

2π

)2

=
e6N∗

2ε∗m2
pl

(
HI

2π

)2

. (75)

Imposing the observed primordial amplitude according to the discussion below Eq. (54), for USR we then have in our
toy model,

e10N∗

ε∗
= 4.1 · 10113. (76)

For SR inflation, the primordial amplitude instead imposed e4N∗/ε∗ = 4.1·10113, so that the decaying mode suppression
factors in the two scenarios are in fact equal. Concretely, the USR suppression factor is (cf. Eq. (74)),

ε∗ e
−10N∗

6
√

3
∼ 2 · 10−115. (77)

Therefore, by requiring that the primordial power spectrum amplitude is the same, we have found that the suppression
of the decaying mode relative to the growing mode is the same ∼ 115 orders of magnitude in both scenarios.

Finally, note from the above discussion that, for fixed value of ε∗, the USR scenario requires a smaller number of
inflationary e-foldings to reproduce the same primordial amplitude, because,(

e4N∗

ε∗

)
SR

=

(
e10N∗

ε∗

)
USR

. (78)

17 It is worth noting here that the USR super-horizon evolution of the dominant mode is very different for the curvature perturbation on
constant energy density hypersurfaces, ζ, than for R. While the latter grows as RUSR

“dec′′ ∝ e3N , the former only grows as ζUSR
“dec′′ ∝ eN

(see e.g. [72]). This means that at the end of the USR phase, the amplitude of ζ is highly suppressed relative to R. Interestingly, this
mismatch is compensated for by the transition. Our matching conditions of continuous R imply a discontinuity in ζ. This step in ζ
assures that, to leading order in gradients, ζ and R coincide in the RD epoch. This is as it should be because during RD, the (dominant
mode of the) perturbation occupies the constant mode.

18 We remind the reader that the ultra-slow-roll scenario is merely a toy model and that, even if we tune parameters to reproduce the
observed primordial scalar amplitude As, the model in its current simple form is inconsistent with other observations such as the scalar
index ns of the primordial power spectrum.
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This is (approximately) reflected on the horizontal axes of Figure 7 by the short duration of inflation relative to the
SR plots.

In summary, while we might have hoped for the hierarchy between growing and decaying mode to be less dramatic
in the USR toy model than in the standard SR scenario, perhaps leaving room for a non-negligible decaying mode
in a more realistic version of the scenario, we find that, if we choose the USR parameters such that they reproduce
the same (growing mode) primordial power spectrum amplitude as in the SR case, the suppression of the decaying
mode turns out to be identical to the suppression seen in the SR scenario. We will show in Section V that this is
not a coincidence, but instead reflects a very general property of the primordial perturbations related to Heisenberg’s
uncertainty principle.

V. GENERAL SUPPRESSION OF QUANTUM SIGNATURES AND HEISENBERG’S UNCERTAINTY
PRINCIPLE

We have shown that even in the unorthodox USR inflation toy model of Section IV, the late-Universe state of the
primordial perturbations is highly squeezed, and the “non-classical” contribution extremely suppressed. We will now
show that, under a simple set of assumptions, this type of cosmic quantum censorship holds generally. The argument
relies on two main assumptions. First, we assume that the late-Universe curvature perturbations are described by a
pure, Gaussian state. This assumption is satisfied if the initial state is Gaussian, all subsequent evolution is linear, and
there is no mixing with additional degrees of freedom such as isocurvature perturbations. In reality, the perturbations
of course undergo interactions with various environments, leading to decoherence, but it is still interesting to consider
the idealized scenario where this is neglected. The second assumption we will use is the observational fact that the
perturbations are dominated by the late-Universe growing mode, with amplitude given by the measured value of the
primordial scalar amplitude As.

A. Derivation in terms of mode functions

Under the Gaussian assumption, in the Heisenberg picture, we write as before (see Eq. (17) and surrounding
discussion),

R̂(τ) =
√

2R2(τ) x̂−
√

2R1(τ) p̂, (79)

where x̂ and p̂ are time-independent operators acting on the harmonic oscillator vacuum. Since we can always apply
a rotation to the operators x̂ and p̂, we without loss of generality assume that R1(τ) is the dominant mode, which
because of our second assumption above is mainly on the late-Universe growing mode, RRD

grow(τ), and that R2(τ) is

proportional to the late-Universe decaying mode, RRD
dec(τ). Thus, we explicitly write the dimensionless mode functions,√

k3

2π2
R1(τ) = a1RRD

grow(τ) + b1RRD
dec(τ),

√
k3

2π2
R2(τ) = a2RRD

dec(τ), (80)

where a1, a2 and b2 are dimensionless coefficients, and,

a2
1 ≈ As ≈ 2.1 · 10−9. (81)

The mode R1(τ) describes the “classical”, commuting component of the perturbations R̂ and Π̂, and R2(τ) the
“quantum”, non-commuting contribution. While observations thus already tell us the quantum contribution is sub-
dominant, the question of interest in this paper has been and is whether it might be large enough in certain scenarios
to be in principle detectable. We will in this Section keep explicit factors of ~ (while still working in units with c = 1).

One way of proving that the decaying mode will in general be extremely suppressed is to use the Wronskian of the
equations of motion. For the action (1), the conserved Wronskian is,

W ≡ z2(τ) (R1(τ)R′2(τ)−R′1(τ)R2(τ)) =
~
2
, (82)

where during RD,

z(τ) =

√
2εRD

c2s,RD

~−1/2mpl a(τ) = 2
√

3 ~−1/2mpl a(τ). (83)
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Substituting Eq. (80) into the Wronskian and using τ = 1/(aH(a)) gives,

a1 a2 =
1

48
√

3π2

(k/a)
4

(mpl/~)
2
H2(a)

. (84)

Thus, the decaying mode is suppressed by,

a2

a1
=

1

48
√

3π2

(
k/a

H(a)

)4 (
H(a)

mpl/~

)2

A−1
s . (85)

Considering modes with physical wave number k/a of order (or within a few orders of magnitude of) the Hubble scale,
we see that the origin of the large suppression of the decaying mode is the hierarchy between the present Hubble scale
and the Planck scale. While the dimensionless growing mode amplitude is small, As ≈ 2.1 · 10−9, this does not come
close to compensating for the factor, (

H(a)

mpl/~

)2

∼
(

H0

mpl/~

)2

≈ 4 · 10−121. (86)

Indeed, inserting k/a = H(a) and H(a) = H0 into Eq. (85) reproduces the suppression factor,

a2

a1
≈ 2 · 10−115, (87)

found in the explicit calculations of the SR and USR scenarios.

B. Derivation in terms of Wigner function

The late-time classicality of the perturbations can be understood in an alternative way that allows an analogy to
the existence of very classical, coherent states for a particle with macroscopic mass M . Consider a particle of which
the action has the kinetic term,

SK =
1

2

∫
dtM ẋ2(t), (88)

where x(t) is its position as a function of time and the dot denotes a time derivative. Its conjugate momentum is
then,

p = M ẋ. (89)

Heisenberg’s uncertainty principle states that,

σ(x)σ(p) ≥ ~
2
, (90)

which is minimally satisfied for a coherent state. Translating this into the uncertainties in x and ẋ for such a state,
gives,

σ(x)σ(ẋ) =
~

2M
. (91)

Since ~ ≈ 10−34kgm2/s, if the mass M is macroscopic, say of order kilograms, then the right-hand side of the above
equation is tiny in macroscopic units of seconds and meters. This means that coherent states exist for the particle such
that the uncertainty in both the position and the velocity are extremely small compared to any macroscopic scale. In
a sense, this is just a convoluted way of stating that ~ is a very small number in macroscopic units19. The reason it
was useful to spell this out, however, is that we can now make the analogy with the primordial cosmic perturbations.

19 We stress that the discussion of the masssive particle does not show that states with macroscopically large quantum uncertainty do
not exist at all for macroscopic objects. We are simply discussing the position and momentum uncertainties in coherent states. An
explanation of why general macroscopic quantum superpositions (e.g. superpositions of two coherent states with macroscopically different
mean positions) are very difficult to obtain, necessarily involves decoherence.
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The generalization to general Gaussian states (and in particular to squeezed states of primordial perturbations) is
that the area inside the Wigner ellipse is set by ~/2. In the phase space given by a variable, e.g. R, and its conjugate
momentum, the area enclosed (in a χ2 = 1 contour) is20,

Area(R,Π) = π
~
2
. (92)

As illustrated in Figure 2 and discussed in Sections II G and II H, this area can be seen as the product of the extent
of the stretched “classical” (growing mode) direction in phase space and the squeezed “quantum” (decaying mode)
direction. To determine this area directly in units relevant for cosmological observations, consider the phase space
defined by the dimensionless curvature perturbation

√
k3/2π2R (with variance equal to the dimensionless power

spectrum ∆2
R(k)) and its rate of change per Hubble time, i.e. we use N = ln a as the time coordinate. Then, following

the example of the massive particle, we write the kinetic part of the action Eq. (1) as,

SK =
1

2

∫
d ln aMR(τ)

∣∣∣∣∣
√

k3

2π2

dR
d ln a

∣∣∣∣∣
2

, (93)

with an “effective mass” (note, however, that MR does not have units of mass),

MR(τ) ≡ 2π2 z2(τ)

k3 τ
=

24π2

~

(
mpl/~
H(a)

)2 (
H(a)

k/a

)3

, (94)

where the second equality holds during radiation domination. A key realization is that this effective mass is extremely
large (in units ~) in the late Universe due to the factor (mpl/H(a))2 ∼ 10121. Analogously to Eq. (91), we now obtain
the generalized uncertainty relation for a squeezed, Gaussian state,

[
∆2
R(k)

]1/2 [
∆2
δ(dR/d ln a)qu

(k)
]1/2

≈ π−1 Area

(√
k3

2π2
R,
√

k3

2π2

dR
d ln a

)
=

~
2MR

. (95)

where the quantum component δ(dR/d ln a)qu quantifies the deviation of dR/d ln a from the “classical” growing mode
solution and scales as δ(dR/d ln a)qu ∝ R′2(τ).

Since ~/MR(τ) is extremely small, it follows from Eq. (95) that the product of the extents of the classical and
quantum directions in phase space is infinitesimal. Since the classical direction is measured, ∆2

R(k) ≈ As, it again
follows that the quantum direction (above quantified by ∆2

δ(dR/d ln a)qu
(k)) is unmeasurably small. This is exactly the

same suppression of the decaying mode that was found using conservation of the Wronskian in Eq. (85), as can be
explicitly checked by expressing the area in the Wigner ellipse in terms of the mode functions R1, R2.

C. Discussion

The suppression of the “quantum” decaying mode found above, Eqs (85) or (95), exactly reproduces the suppression
found for the specific slow-roll and ultra slow-roll toy models in Sections IV and III. We have shown that this is a quite
general result that follows directly from the (kinetic part of the) action for the cosmic curvature perturbations in the
late Universe. The characteristic energy scale appearing in this action is the Planck scale, mpl, while the length and
time scales relevant for cosmic perturbations in the present Universe are of order the Hubble scale21, H0. This means
that if the perturbations and time coordinate are expressed in the units natural to cosmological observations, the
action is analogous to that of a macroscopic particle with large mass, MR ∼ (mpl/H0)2. By a version of Heisenberg’s
uncertainty principle applied to general Gaussian states, this large mass implies an extremely small product of the
stretched “classical” and squeezed “quantum” directions in phase space.

20 This area is given by Area(R,Π) = π
√

DetC, where C is the covariance matrix describing the Wigner funcion, Eq. (28). The quantity√
DetC is exactly equal to the Wronskian, Eq. (82), and conservation of the Wronskian is thus equivalent to conservation of the area of

the Wigner ellipse.
21 This is in practice true up to a few orders of magnitude. We could of course consider observations at the time of recombination, where

the Hubble scale is larger than today, and in general we also observe modes smaller than the Hubble scale. However, such refinements
cause only a small modification to the number of orders magnitude by which the scales of observational relevance are different from the
Planck scale.
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Interestingly, the ratio (H0/mpl)
2 that suppresses the decaying mode is the same ratio appearing in the cosmological

constant problem, ρΛ/m
4
pl ∼ ρc/m

4
pl ∼ (H0/mpl)

2. Its smallness reflects the large hierarchy between the present day
Hubble scale and the fundamental energy scale governing gravity. The above result is mostly independent of the
details of the inflationary model and the exact time evolution of the solutions to the equations of motion between the
time of inflation and now, as in Section V B it was derived directly from the form of the action today. As long as
one operates within the assumptions stated in the beginning of this Section, there is therefore no point in exploring
variations on the ultra slow-roll scenario in search of cases where the “quantum” decaying mode of the primordial
perturbations is not hopelessly suppressed.

While the argument presented in this Section strongly constrains the possibility of having a non-negligible decaying
mode signal, it is also a useful starting point for any further search of (more complex) scenarios that do predict an
observable quantum remnant. In particular, to break the assumptions that went into the above argument for the ∼ 110
orders of magnitude suppression, one would need to include the effects of self-interactions, mixing with additional
degrees of freedom (such as additional fields during inflation or, in general, isocurvature perturbations), interactions
with other environments (e.g. the microphysical degrees of freedom describing the radiation fluid after reheating), or
non-Gaussian initial states. These are all interesting directions for further study (see also existing works, e.g. [9, 60]),
although it is not at all unlikely that the end result will still be that the decaying mode is extremely suppressed.

D. Decoherence and analogy with classicality of the macroscopic world

We have shown in Section V B that the classicality of the primordial perturbations (in the sense of being described
by a very squeezed state) is related to the existence of very classical states for macroscopic objects, e.g. for the position
of an object with macroscopic mass. For any Gaussian state (i.e. including coherent and squeezed states), the area
defined by the quantum spread in phase space is determined by an effective mass parameter (by minimally realizing
Heisenberg’s uncertainty principle in some basis). For a macroscopic object with mass M , the very large value of
M/~ in the relevant units for observations thus makes it possible to have coherent states that have unobservably small
quantum spread in both directions in phase space, thus making them effectively classical. The primordial perturbations
also have an extremely large effective mass, MR/~, in the relevant units. In this case, one direction in phase space
is observably large due to squeezing. This then means that the other direction, corresponding to the “quantum”
decaying mode, is extremely suppressed. Here the result is thus also a classical state, but in the specific sense of being
extremely squeezed, which is different than the more truly classical coherent state discussed for the position of the
macroscopic object.

While such a squeezed state is classical in the sense of expectation values of n−point functions of R and Π, it is
very “quantum” in the sense that it describes a coherent quantum superposition of a macroscopically large range
of values of R. Decoherence, due to entanglement with the environment (e.g. curvature perturbations at shorter
wavelengths [45]), destroys the quantum coherence of this superposition and converts the pure state into a mixed
state. Qualitatively, one expects decoherence of the primordial squeezed state to produce a classical (i.e. incoherent)
mixture of more or less coherent states22. The phase-space area of these individual coherent states is again given by
~/MR and thus extremely small in the relevant units for observation. Thus, after decoherence, the analogy with the
classical nature of macroscopic objects is complete.

A macroscopic mass could theoretically be prepared in a Schrödinger’s cat-like, coherent superposition of, say, two
coherent states at macroscopically different positions, where each coherent state has negligible quantum spread in both
directions in phase space, but it would then immediately decohere into a classical mixture of those two coherent states,
destroying any possibility of seeing quantum interference between the two branches of the wave function. Similarly,
the primordial curvature perturbations are originally produced in a coherent superposition of a macroscopically large
range of mode amplitudes, which due to decoherence is turned into a classical mixture of coherent states. Due to the
tiny value of ~/MR, these individual coherent states are extremely likely to have negligible quantum uncertainty in
both directions in phase space, so that the resulting state would be truly indistinguishable from a classical distribution.
When decoherence is included in the picture, the late-Universe cosmic perturbations are thus classical, macroscopic
objects. It remains to be seen if “exotic” scenarios exist where the above narrative breaks down and a non-negligible
quantum signature remains.

22 We note that decoherence widens the Wigner function and increases its enclosed area. Classicalization by decoherence in that sense
thus has the opposite effect of the classicalization by squeezing on which we have focused in this work.
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VI. SUMMARY

In this paper, we have revisited the quantum-to-classical transition of the primordial curvature perturbations
generated by inflation. We have focused on the squeezing of the quantum state of these perturbations, a phenomenon
that plays a key role in the generation of observably large curvature fluctuations and in their transition to classical
behavior. We have presented a mostly self-contained review of squeezing of the primordial perturbations, phrased
explicitly in terms of the evolution of the two independent solutions to the equations of motion and the manifestation
of this evolution in the Wigner function. In this language, strong squeezing, and therefore the realization of classical
behavior of expectation values, is a consequence of the decaying mode solution becoming negligible compared to the
growing mode solution. The decaying mode describes the minimal non-commuting component of the perturbations
so that, in the limit where it becomes negligible, the quantum nature of the perturbations becomes hidden.

The motivating question for this work was whether there are scenarios where a remaining, explicit quantum signature
survives into the late Universe where observations take place. More concretely, we asked whether the “quantum”
decaying mode can be observable in certain cases. We addressed this question by explicitly evolving the mode
functions through the inflationary stage, the transition from inflation to the post-inflationary Universe, and finally
through the post-inflationary stage until the time the perturbations have entered the horizon again in the late Universe.

We first reviewed the standard scenario of single-field, slow-roll inflation followed by a phase of radiation domination
and we recovered the well known result that the decaying mode is hopelessly suppressed around the time a mode
re-enters the horizon in the late Universe and is observed. In our simple model, the numerical suppression is about 115
orders of magnitude, leaving no hope whatsoever for observing the decaying mode in this scenario. We then for the first
time considered in detail the quantum-to-classical transition of the primordial perturbations in ultra-slow-roll inflation
(again including the evolution of the state of the perturbations into the post-inflationary Universe). The motivation
for studying the ultra-slow-roll scenario is that during USR inflation, the super-horizon behavior of the growing and
decaying mode solutions is radically different than in the standard slow-roll case. After explicit calculation, we found
that, while the mode evolution is indeed very different than in the SR scenario, when the perturbations are observed
in the post-inflationary Universe, the suppression of the decaying mode is again given by the same ∼ 115 orders of
magnitude as in the standard slow-roll scenario.

We have finally shown that obtaining the exact same suppression factor in both scenarios is no coincidence, but is a
general result related to a version of Heisenberg’s uncertainty principle and the conservation of the Wronskian of the
mode functions. Assuming a Gaussian initial state, and linear evolution of the perturbations in a single component,
we have shown that a decaying mode suppression of ∼ 115 orders of magnitude is a simple consequence of the observed
amplitude of the primordial power spectrum and the large hierarchy between the scale of the Universe today (∼ H0)
and the Planck scale. Our results thus confirm the standard wisdom that the quantum-to-classical transition is
extremely thorough and that it will be hard if not impossible to detect any remaining, explicit quantum signatures.
On the other hand, our general argument for the strong suppression of the decaying mode provides useful guidance
for any further search for a primordial quantum signal. If we want to have any chance of finding a scenario where the
decaying mode is not negligible, we need to break the assumptions going into the above argument. This motivates
further study of non-Gaussian intitial states, non-linear evolution of the perturbation, and the inclusion of additional
fields/fluids in the evolution.

Finally, we have briefly discussed the importance of decoherence for the quantum-to-classical transition in Section
V D. However, the actual calculations in this paper ignore decoherence and apply to the idealized scenario where the
individual modes Rk of the primordial curvature perturbations are in a pure quantum state even in the late Universe
The philosophy has been to first look for interesting scenarios in this simple, more easily computable setting. If
a model with large quantum signature had been found, it would have then made sense to make the analysis more
realistic by including decoherence.
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