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Brownian thermal noise is a limiting factor for the sensitivity of many high precision metrology11

applications, among other gravitational-wave detectors. The origin of Brownian noise can be traced12

down to internal friction in the amorphous materials that are used for the high reflection coatings.13

To properly characterize the internal friction in an amorphous material, one needs to consider14

separately the bulk and shear losses. In most of previous works the two loss angles were considered15

equal, although without any first principle motivation. In this work we present a method that can16

be used to extract the material bulk and shear loss angles, based on current state-of-the-art coating17

ring-down measurement systems. We also show that for titania-doped tantala, a material commonly18

used in gravitational-wave detector coatings, the experimental data strongly favor a model with two19

different and distinct loss angles, over the simpler case of one single loss angle.20

I. INTRODUCTION21

High precision optical metrology relies on high finesse and22

low loss optical resonant cavities, built with high reflec-23

tivity dielectric mirrors. The ultimate limit to the length24

stability of such cavities is often determined by thermal25

motion of the cavity components. In many cases, such26

as in interferometric gravitational wave (GW) detectors27

[1–4], the limit thermal noise comes from the Brownian28

motion of the dielectric coatings deposited on the mirrors29

[5], and composed of alternating layers of amorphous ox-30

ides: silica and titania-doped tantala for the Advanced31

GW detectors [6]. The amplitude of Brownian noise can32

be linked to the material internal friction by use of the33

Fluctuation-Dissipation Theorem [7, 8]. In the simplest34

possible approximation the energy lost per cycle due to35

internal friction is modeled as a fraction of the total elas-36

tic energy E stored in one of the resonator eigenmodes,37

using one single number usually called the loss angle φ:38

〈∆E〉cycle = φ 〈E〉 (1)

If the surface of the mirror is probed with a Gaussian39

laser beam with beam radius w, then in the simple ap-40

proximation described above the displacement noise due41

to Brownian motion has a power spectral density [9] given42

by [10]43

S(f) =
4kBT

π2 f

(1 + νS)(1− 2νS)

YS

d

w
φC (2)

where f is the frequency, kB is Boltzmann’s constant, T44

the temperature, YS and νS the Young’s modulus and45

Poisson ratio of the mirror substrate, d is the coating46
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thickness and φC the coating average loss angle. In this47

model the beam is assumed to be much larger than the48

film thickness, and there is no distinction between energy49

lost in the shear and bulk deformations of the mirror.50

However, even for an amorphous material, the bulk and51

shear moduli are not equal, and therefore by extension52

there is no reason to assume that the bulk and shear loss53

angles have the same value. The theory of room tem-54

perature loss in amorphous materials [11, 12] ascribes55

the energy loss mechanism to the presence of two-level56

systems, effectively described as double-well potentials57

with thermally excited tunneling between the two min-58

ima. The material mechanical loss is determined by the59

density of the two-level systems, by the distribution of60

the potential wells and barriers, and by the coupling of61

the two-level systems to the macroscopic elastic strain.62

There is no reason to assume that the two-level systems63

would couple in the same way to bulk and shear strains.64

Lacking a theoretical or phenomenological reason to as-65

sume the contrary, in computing the thermal noise due66

to the elastic energy loss in a multilayer coating, one67

needs to take into account both shear and bulk deforma-68

tions and allow for the loss mechanisms to be different.69

The resulting displacement noise depends on the value70

of both bulk and shear loss angles in a way more com-71

plex than what shown in equation 2 [13]. In particular,72

it is generally believed that the shear loss angle is more73

relevant than the bulk loss angle, when the beam size is74

comparable with the film thickness. Therefore, to have75

an accurate estimate of the Brownian noise in an optical76

system, it is important to have a reliable measurement77

of both loss angles.78

The most common technique to measure the loss an-79

gle(s) of a thin film is to deposit it on a high quality80

resonator, and measure the decay time τ of a subset of81

the eigenmodes. This can be accomplished by exciting82

the resonator and tracking the oscillation amplitude of83
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each mode over time:84

Ai(t) = A0e
−t/τi (3)

Some excess energy loss is always present for all modes,85

due for example to contact at the suspension point or86

substrate clamp. It is generally possible to find a suitable87

set of eigenmodes for which recoil losses are negligible,88

and are well decoupled from the environment. Typically89

those modes allow probing the material loss angle over90

a sufficiently large range of frequencies. Measuring the91

decay time of this set of eigenmodes allows probing the92

value and frequency dependency of the loss angles. For93

each eigenmode at a frequency fi, the decay time τi is94

linked to the coated resonator quality factor Qi and loss95

angle φi by the following relations96

φi =
1

Qi
=

1

πfiτi
(4)

The loss angle φi of the coated resonator should not be97

confused with the loss angle of the materials. It is related98

to the total elastic energy loss per cycle, and we can99

therefore divide it in two terms: a contribution coming100

from the substrate φ
(sub)
i and a contribution coming from101

the thin film φ
(film)
i . The contribution of each term to102

the total loss angle is weighted by the amount of elastic103

energy which is stored in the substrate and in the film,104

on average:105

φ
(coated)
i =

E
(sub)
i φ

(sub)
i + E

(film)
i φ

(film)
i

E
(sub)
i + E

(film)
i

= (1−Di)φ
(sub)
i +Diφ

(film)
i (5)

where we have introduced the mode dependent dilution106

factor Di = E
(film)
i /E

(tot)
i . The substrate loss angle can107

be measured before any film is deposited, and it is usually108

assumed to remain unchanged by the deposition process.109

Therefore the difference of loss angles as measured before110

and after the film is deposited can be used to extract the111

loss angle of the material composing the film. We define112

the excess loss of the coated sample as113

δφi = φ
(coated)
i − (1−Di)φ

(sub)
i = Diφ

(film)
i (6)

The dilution factors Di can be computed using finite el-114

ement simulations of the resonators, knowing the elastic115

properties of the material, or extracted directly from the116

change in the eigenmode resonant frequencies [14]. Since117

we are interested in measuring the bulk and shear loss118

angles φB,i and φS,i, we need to modify the model in119

equation 6 above as follows120

δφi = DB,iφB,i +DS,iφS,i (7)

where we defined the new bulk and shear dilution factors121

as DB,i = E
(film)
B,i /E

(tot)
i and DS,i = E

(film)
S,i /E

(tot)
i , so122

that Di = DB,i + DS,i. Below we will describe how the123

elastic properties can be extracted from the modal fre-124

quencies and then used to calculate the dilution factors125

using a finite element model.126

In this paper we describe how it is possible to analyze127

the resonant mode decay times of a thin film deposited128

on a silica disk-shaped substrate measured in a Gentle129

Nodal Suspension [15, 16], and express the film proper-130

ties in terms of bulk and shear loss angle. In summary131

the analysis proceed in several steps. First of all, the132

elastic properties of the film are extracted from the shift133

in the resonator eigenmodes due to the addition of the134

film. This estimate is carried out with a Bayesian infer-135

ence analysis and includes uncertainties that model the136

limited knowledge and possible evolution with heat treat-137

ment of the film density and thickness. More details on138

this first step in section II. The posterior probability dis-139

tribution of the elastic properties are then used as priors140

for another Bayesian inference analysis, where the mea-141

sured excess losses introduced in equation 6 or equation142

7 are estimated based on a model of the material loss143

angle(s). This procedure factor into the posterior distri-144

bution of the loss angle the uncertainties in the material145

properties and possible correlation between the model146

parameters. More details in section III.147

Analysis of measurements in terms of bulk and shear loss148

angles were done in the past for films on a cantilever com-149

posed of alternating layers of silicon nitride and silica [17],150

and for a titania-doped tantala film on a disk suspended151

with a fiber [18].152

We show the result of our analysis for a titania-doped153

tantala film as an example, and discuss how the experi-154

mental data favor a model with different bulk and shear155

loss angle over a simpler model with equal loss angles.156

The material studied here is comparable to what was con-157

sidered in [18], and we note that the results we obtain are158

different from those obtained in the previous work. More159

on this topic in section III. Finally, in section IV we dis-160

cuss how the measured loss angles impact the estimate of161

thermal noise for the Advanced LIGO gravitational wave162

detector.163

II. MEASUREMENTS164

The substrates used in this work consist of fused silica165

disks, 75 mm in diameter and 1 mm thick, supported at166

the center by a gentle nodal suspension [15, 16]. All the167

disk eigenmodes that have null deformation at the disk168

center are accessible in this system, and have very low169

recoil losses (Q(sub) & 108). The largest fraction of elas-170

tic energy is stored in shear deformation, but depending171

on the mode shape, in particular on the number of ra-172

dial nodes, there are non negligible amounts of energy in173

the bulk deformation, allowing us to disentangle the two174

contributions.175

The gentle nodal suspension allows simultaneous track-176

ing of all modes, providing a measurement of both the177

frequency and the decay time of each mode. All sub-178

strates are characterized prior to coating, to measure the179

substrate loss angles φ
(sub)
i and the frequency of each180

mode. A 270-nm-thick film of titania-doped tantala (27%181

cation concentration of titania) was then deposited with182
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As deposited Annealed 500◦C Annealed 600◦C
Young’s modulus Y [GPa] 118±3 120±3 128±4
Poisson ratio ν 0.396±0.016 0.407±0.013 0.346±0.019
Cation concentration 73% Ta, 27% Ti
Thickness t [nm] 268 ± 13
Density ρ [kg/m3] 6640 ± 300

TABLE I. Measured and estimated parameters of the titania-doped tantala thin film studied in this work. The thickness was
measured on the as deposited samples, and the density estimated from the composition. The film elastic properties come
from fits to the resonant mode data, as explained in the text. The uncertainties in thickness and density account for possible
variations upon annealing, as explained in the main text.

ion beam sputtering on one face of the substrates. The183

coated samples were then measured again, to obtain a184

new set of mode frequencies and decay times. The sam-185

ples were then subjected to a heat treatment (annealing),186

consisting of a slow ramp up to a target temperature,187

hold for ten hours, and then a slow ramp down to room188

temperature. The samples measured for this work have189

been annealed at 500, 600 and 700◦C. The film annealed190

at 700◦C showed signs of micro-crystallization, and there-191

fore the corresponding results are not considered in this192

work. Ring downs were measured after each heat treat-193

ment step, resulting in a set of excess loss angles {δφi}194

for the as-deposited samples and the annealed samples.195

The film thickness t was measured with ellipsometry, and196

the relative concentration of titania and tantala was es-197

timated from the measured refractive index and X-ray198

photoelectron spectroscopy. The material density ρ was199

estimated with a linear interpolation between the two200

oxide component densities, weighted with the measured201

oxide concentration.202

The thin film changes the flexural rigidity of the disk,203

resulting in a shift of all resonant mode frequencies. The204

relative difference between the coated and uncoated disk205

frequencies is roughly constant between 1 and 30 KHz,206

and equal to about 300 ppm, with variation between207

modes of the order of 10-30 ppm, related to the film208

Poisson ratio. We used a finite element analysis (FEA)209

carried out in COMSOL to find the values of the film210

material Young’s modulus Y and Poisson ratio ν that211

best reproduce the measured changes in resonant fre-212

quencies [6]. Instead of using directly COMSOL in the fit213

procedure, we first produced a random sampling of the214

film properties space [Y, ν, t, ρ] and run a FEA for each215

point. We then fit a third order polynomial function of216

Y, ν, t and ρ to the simulated frequency shifts, obtaining217

a fast semi-analytical model that is accurate within tens218

of mHz. Using this fast model, we carried out a Bayesian219

inference analysis [22] to estimate the probability distri-220

bution and the confidence intervals for Y and ν. Table221

I summarizes all the measured parameters of the thin222

films. The results are dependent on the thickness and223

density of the film. The reader unfamiliar with Bayesian224

inference analysis can refer for example to [22–24] for an225

introduction. In section III we also describe the basics226

of Bayesian inference, focusing on the application to the227

extraction of bulk and shear loss angles from the mea-228

surements.229

In this analysis we assumed that thickness and density230

are constant, since we do not have yet a measurement of231

how those film properties change with annealing. This as-232

sumption is likely wrong, since changes of density, thick-233

ness and refractive index have been observed for other234

amorphous materials [6, 25, 26]. However, we note that235

the estimate of Y and ν depends mostly on the product236

of thickness and density, that is, the surface density of237

the material. Therefore, even though density and thick-238

ness could each vary, if the annealing does not cause any239

loss of material from the film, we expect that the prod-240

uct of density and thickness will remain constant and241

the estimate of the Young’s modulus and Poisson ratio242

to be correct. Nevertheless, in the analysis we accounted243

for possible untracked changes by allowing a ±5% un-244

certainty in the measured values for both thickness and245

density.246

Two samples were coated with nominally equal materials247

and deposition procedure. The two samples have been248

measured separately, and the results collated together in249

all computations.250

III. LOSS ANGLE ANALYSIS251

The main goal of this work is to determine which mate-252

rial loss angle(s) model describes better the experimental253

data points. For each set of measurements (as deposited254

samples or annealed samples), we model the excess loss255

angle assuming either equal or different bulk and shear256

loss angles for the film material. For both model choices,257

we allow for a frequency dependency of the loss angles,258

in the form of a power law or a linear relationship:259

φpowerlaw(f ;φ1, α) = φ1

(
f

1 kHz

)α
(8)

φlinear(f ;φ1,m) = φ1

(
1 +m

f − 1 kHz

1 kHz

)
(9)

where φ1 is the loss angle at 1 kHz, α is the exponent of260

the power law, and m the slope of the linear relationship.261

The excess loss angles measured experimentally are then262

modeled either with one loss angle, or with different bulk263

and shear loss angles:264

δφi = Diφx(fi;φ1,m) (10)

δφi = DB,iφx(fi;φ1,B ,mB)

+DS,iφx(fi;φ1,S ,mS) (11)
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FIG. 1. Posterior probability distributions of the parameters of two loss models (left, one loss angle with linear frequency
dependency; right, bulk and shear different loss angles with linear frequency dependency. The results shown here as an
example, correspond to the measurements of titania-doped tantala films after annealing at 500◦C. The posterior probability
distributions have been marginalized over the Young’s modulus, the Poisson ratio, the film thickness and density.

Model 1 Model 2 As deposited Annealed 500◦C Annealed 600◦C
Model 1 Model 2 As deposited Annealed 500◦C Annealed 600◦C

Single angle, power law Bulk/Shear linear -15.5 -6.2 -18.1
Single angle, linear Bulk/Shear linear -7.4 -1.6 -10.1

Bulk/Shear power law Bulk/Shear linear -0.6 -0.2 -1.8
Single angle, power law Bulk/Shear power law -14.9 -6.1 -16.3

Single angle, linear Bulk/Shear power law -6.8 -1.4 -8.3

TABLE II. Bayesian odd ratios of the models considered in this analysis. Every table entry shows the logarithm of the bayesian
ratio of Model 2 over Model 1. Negative values means that the data favors Model 2. The bulk-shear angle, linear-frequency
dependency is favored for all annealing temperatures.

where x can refer either to the linear or the power law265

relation, for a total of four different models that could266

describe the data: single loss angle with linear frequency267

dependency, single loss angle with power law frequency268

dependency, bulk and shear loss angles with linear fre-269

quency dependency, and bulk and shear loss angles with270

power law frequency dependency. To quantitatively de-271

termine which one of those four models better fits the272

measured data, we follow a Bayesian approach, which273

provides us with the probability distribution of the pa-274

rameters for each model, and also the relative probabil-275

ity of the models, given the measured data set. In this276

section we briefly outline the basics of the Bayesian ap-277

proach, with particular emphasis to its application to the278

problem at hand. The reader unfamiliar with Bayesian279

inference analysis should refer, for example, to [22–24]280

for a more detailed description.281

For each model, we want to compute the probability dis-282

tribution P(θ|Mj , δφi) of the parameters θ (for example283

{φ1, α} in the case of the single loss angle, power law284

model) given the measured data {δφi} and assuming one285

of the models, Mj , to be valid. This probability distri-286

bution is usually called the posterior distribution of the287

model parameters. To compute it, we use Bayes’ theorem288

[22]:289

P(θ|Mj , δφi) =
P(δφi|Mj , θ) · P(θ|Mj)

P(δφi|Mj)
(12)

where the term P(δφi|Mj , θ) describes the probability290

(likelihood) of obtaining the measured data given the291

model and a specific value of the parameters, and the292
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FIG. 2. Comparison of the measured and predicted excess loss angle (not the material loss angle) for the two samples, named
S1600603 and S1600604, and shown respectively in the top and bottom rows. The results shown here correspond to the samples
measured after annealing at 500◦C. The left column shows in grey the distribution of the excess loss angle for the single loss
angle model. The right column instead shows the distributions for the bulk and shear loss angle model: in green the bulk
contribution, in orange the shear contribution in grey the sum of the two. In both columns, the error bars data points represent
the measured values. The violin plots instead represent the distribution of the predicted values, given the result of the Bayesian
analysis.

Heat treatment Bulk loss at 1 kHz Bulk loss slope Shear loss at 1 kHz Shear loss slope
φ1,B [10−3] mB φ1,S [10−3] mS

30◦C 0.19 ± 0.15 0.24 ± 0.19 0.72 ± 0.07 −0.005 ± 0.004
500◦C 0.20 ± 0.14 0.14 ± 0.20 0.37 ± 0.04 −0.003 ± 0.007
600◦C 0.31 ± 0.11 0.09 ± 0.07 0.26 ± 0.03 −0.012 ± 0.007

TABLE III. Parameters for the best fit to the data in terms of bulk and shear loss angles, with a linear dependency on frequency.
The values quoted are the median of the probability distribution of each parameter given the data, and the 90% confidence
intervals.

term P(θ|Mj), usually called the prior probability dis-293

tribution of the parameters, encodes our knowledge of the294

possible values of the parameters, given a specific model,295

before any measurement is taken. Finally, the term at the296

denominator P(δφi|Mj) is the probability of obtaining297

the measured data if the model is assumed, and allowing298

any value for the parameter. This last term can be com-299

puted as a normalization, by integrating the left hand300

side of equation 12 over all values of θ and requiring the301

result to be equal to one, since it is a probability distri-302

bution. This term will play a role in the later selection303

of the most likely model.304

In our case, the data consist of the measured excess loss305

angle δφi for both the samples measured, for each of the306

accessible resonant mode frequencies, with the measure-307

ment uncertainties. For any of the models, the data like-308

lihood P(δφi|Mj , θ) is modeled as a normal distribution,309

where each data point is an independent random variable310

with variance given by the experimental uncertainties in311

the measured quality factors. For each model, the pa-312

rameter set θ is composed of two parts. First, we al-313

low the film properties to vary within the uncertainties314

described in section II: the Young’s modulus and Pois-315

son ratio have normal probability distributions centered316

on the best fit of the resonant mode frequency shifts,317

with variance given also by the fit, as reported in table318

I; the coating density and thickness are also allowed to319

vary with a normal probability distribution centered on320

the nominal value and with a variance corresponding to321

a 5% uncertainty as explained in section II. Secondly,322

the prior distributions of the other model parameters are323

assumed to be flat: the loss angle at 1 kHz can vary324

in the range φ1 ∈ [0, 3 × 10−3] for all models; for the325

power law loss angle models the exponent can vary in326

the range m ∈ [−2, 2], while for the linear models the327

slope is restricted to values that exclude negative loss328

angles m ∈ [−0.033, 0.5]. As we shall see, the results329

are not very sensitive to the choice for the allowed range330
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FIG. 3. Estimated loss angles as a function of frequency for the measured titania-doped tantala film, after each heat treatment
step. In each panel, blue and orange shows the best fit to bulk and shear loss angles respectively, while the green dashed line
correspond to the best fit to a single loss angle model.

of the parameters, meaning that the measured data is331

increasing our knowledge of the models, as expected.332

There are many ways to use equation 12 to compute333

the posterior distribution of the model parameters. The334

method most commonly used, and also adopted for this335

work, is to numerically sample the posterior distribution,336

or in other words to compute a large set of points in337

the parameter space, distributed in a way that follows338

the posterior distribution. We carried out this sampling339

using a Markov Chain Montecarlo (MCMC) algorithm340

implemented with the Python package emcee [27]. The341

results can then be used to numerically evaluate the dis-342

tribution of each parameter. Since the model parameter343

space is high dimensional, it is impossible to represent344

graphically the full distribution. We therefore plot the345

sets of all joint distributions of pairs of parameters. The346

results are shown in figure 1 for the two samples annealed347

at 500◦C, and considering the following two models: one348

single loss angle with linear frequency dependency, or349

bulk and shear different loss angles with linear frequency350

dependencies (similar results are available for all anneal-351

ing temperatures and the power law models, but they352

are not shown here for brevity). Each panel in the two353

corner plots show the joint probability distribution for354

pairs of parameters, as well as the probability distribu-355

tion of each parameter, at the top of each column. Each356

of the contour plots in figure 1 represents the probability357

distribution of the two parameters, given the data and as-358

suming one of the models. All the other parameters are359

allowed to take any value, a procedure often referred as360

marginalization. The one-dimensional histograms show361

the probability distribution of each parameter, marginal-362

ized over all the others. The dashed lines represent the363

90% confidence intervals and the median of the poste-364

rior distributions. Those values can be taken as the best365

estimates and uncertainties of the parameters, given the366

data and assuming one specific model.367

Once the posterior distribution of all model parameters368

is so obtained, we can compute the distribution of the369

excess loss angle for each resonant mode and compare370

the results with the experimental measurements. This is371

done by using each point in the parameter space obtained372

from the MCMC sampler in the corresponding model to373

compute the excess loss, and then producing a histogram374

of all values. Figure 2 shows the results for both model375

considered here as an example: single loss angle with lin-376

ear frequency dependency and different bulk shear loss377

angles, again with linear frequency dependency (similar378

results for all annealing temperatures and power law fre-379

quency dependency are also available, but not shown here380

for brevity). In those plots the distribution of the excess381

loss angles are shown and compared with the experimen-382

tal results. In the case of the bulk and shear loss angle383

model, both contributions are shown separately, together384

with the sum. One can notice that most of the excess loss385

angle is due to the shear contribution, but there is nev-386

ertheless a not negligible contribution coming from the387

bulk losses.388

The Bayesian approach we used to fit the model parame-389

ters allows us to compute the probability of the different390

models P(Mj |δφi), given the measured data points. Us-391

ing Bayes’ theorem again, this can be written as392

P(Mj |δφi) =
P(δφi|Mj)P(Mj)

P(δφi)
(13)

where P(Mj) is the prior probability of the models, and393

P(δφi|Mj) is the likelihood of obtaining the measured394

data points given the model. The latter can be computed395

from the results of the MCMC sampler as explained396

above. The term in the denominator acts as a normal-397

ization constant, independent of the model. Therefore,398

assuming all models are equally likely a priori, we can399

compute the logarithm of the Bayesian odd ratio of any400

pair of models, given the data:401

logO(M1,M2) = log

[
P (M1|δφi)
P (M2|δφi)

]
(14)

A logarithm odd ratio greater than zero means that the402

measured data favors the model at the numerator M1,403
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FIG. 4. Comparison of bulk and shear loss angles for the as
deposited titania-doped tantala, as obtained in this work and
as reported in Abernathy et al. [18].

while a value lower than zero means that the model at404

the denominator M2 is favored. We use the Bayesian405

odd ratios to determine which model is favored by the406

data, since this approach takes naturally into account407

the uncertainty in the data points and in the estimated408

film mechanical properties, as well as the different dimen-409

sionality of the parameter space for each model. It also410

provides a quantitative measurement of the ”goodness of411

the fit” based on the model complexity and measurement412

uncertainties.413

Table II lists the logarithm of the odd ratio for pairs414

of models. For all the annealing temperature, as well415

as for the as deposited film, the measured data strongly416

favor the models with different bulk and shear loss angles.417

Among those models, the linear frequency dependency418

is slightly favored. Table III summarizes the estimated419

parameters for this model. Figure 3 shows the results in420

graphical form. In the same plot we compare the bulk421

and shear loss angles with the estimate obtained using a422

single loss angle model, as done in most of previous work.423

Figure 4 compares our results for the as-deposited film424

with those reported in Abernathy et al. [18], where a425

similar analysis was performed. Our results are not con-426

sistent with those reported in that work, showing oppo-427

site frequency dependencies and different relative ampli-428

tude of the two loss angles. We should note that the429

two films, although both being made of about 20% ti-430

tania doped tantala, were produced by different groups431

employing different coating deposition chambers (in our432

case, films were grown by reactive ion beam sputtering433

using the Laboratory Alloy and Nanolayer System man-434

ufactured by 4Wave, Inc [19] at Colorado State Univer-435

sity; in Abernathy’s case, an ion beam sputtering sys-436

tem was used by the Commonwealth Scientific and In-437

dustrial Research Organization [20]) and therefore might438

have different properties. If we assume that the two films439

have similar properties, the reason for the discrepancy440

is not understood at the moment of writing. However,441

we would like to point out some key differences between442

the measurement reported in Abernathy et al. [18] and443

our results: the samples were suspended with different444

techniques, which might induce systematic differences;445

we measured and subtracted the contribution to the loss446

angle of the uncoated substrate, while it is not clear how447

that was treated in Abernathy’s work; in our work a448

larger number of resonant mode was probed; in Aber-449

nathy’s work bulk and shear loss angles are extracted450

from pairs of Q measurement, assuming no frequency de-451

pendency between the two modes in each pair but allow-452

ing for a frequency dependency between pairs, while in453

our work we directly fit a frequency dependent model to454

the experimental data; finally, in our work we restricted455

the fit parameters to physically realizable values, while456

in Abernathy’s the bulk loss angle is predicted to have457

negative values for high frequencies.458

In this analysis the film is assumed to have uniform459

thickness and mechanical properties, and to cover the460

entire substrate surface. The expected variation of the461

film thickness over the surface is expected to be small.462

However, variations of the film properties with position463

might introduce mode-dependent systematic errors that464

have not been considered in this study. Further work is465

needed to quantify their effect on the bulk and shear loss466

angle results.467

In previous works [21], the mechanical quality factors of468

uncoated silica disks were found to be dependent and469

limited by loss mechanisms at the unpolished edge, and470

were also found to degrade over time. The silica disks471

used in this work have an optical quality polished edge,472

and the mechanical quality factors have been measured473

before the film deposition, to ensure a correct subtraction474

of the background due to the substrate. We also verified475

that the polished edge ensures that there is no signifi-476

cant evolution of the substrate quality factor over time.477

Therefore we are confident that the effect described in478

[21] is not an issue in our work.479

IV. EFFECT ON THERMAL NOISE ESTIMATE480

The standard computations used to estimate the contri-481

bution of coating thermal noise in the advanced gravita-482

tional wave detectors [5] assume that both the low and483

high index materials can be described with one single loss484

angle. Direct thermal noise measurements have also been485

performed [28] and the results expressed again in terms of486

equal bulk and shear loss angles. Here we use the result of487

our analysis, and compute the expected thermal noise for488

a high reflectivity mirror similar to the design employed489

in the Advanced LIGO detectors, using the inferred bulk490

and shear loss angles. We use the model described in491

Hong et al. [13] (in particular starting from equation 94492

therein), where the properties of the component materi-493

als and the geometry of the layers are used to predict the494

total thermal noise. Possible effects due to the transition495

between layers are not considered [6, 29].496

We consider a high reflection coating composed of 38 al-497

ternating layers of silica (low index material) and titania-498
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doped tantala (high index material), each with an optical499

thickness of λ/4 where the laser wave-length λ in vacuum500

is 1064 nm, to obtain a nominal transmission of about 5501

ppm [30]. For the titania-doped tantala loss angle we502

use the results reported in this work, for the film mea-503

sured after annealing at 500◦C. We compare two differ-504

ent cases: the best fit to a single loss angle and the best505

fit with different bulk and shear loss angles, as shown506

in figure 3. The contribution of silica to thermal noise507

is small, but nevertheless we included a frequency de-508

pendent model obtained from another measurement we509

performed on silica thin films annealed at 500◦C. In this510

case the sensitivity of our ring-down measurement was511

not enough to disentangle bulk and shear loss angles:512

the experimental data is best described by a single loss513

angle, linearly dependent on the frequency, given by514

φSiO2(f) = (0.035± 0.004)× 10−3 ·[
1 + (−0.006± 0.007)× 10−3 f − 1 kHz

1 kHz

]
Figure 5 shows the displacement noise due to the Brown-515

ian noise of a single high reflectivity mirror. As a ref-516

erence, assuming the best fit to the data with a sin-517

gle loss angle, we obtain a coating Brownian noise of518

(7.0 ± 0.3) × 10−21 m/
√

Hz at 100 Hz. Using instead519

the best fit to the data with different bulk and shear520

loss angles, we obtain (6.0± 1.1)× 10−21 m/
√

Hz at 100521

Hz. For comparison, the direct thermal noise measure-522

ment reported in [28] can be extrapolated to a level of523

(7.5± 0.1)× 10−21 m/
√

Hz at 100 Hz. Within the preci-524

sion of our measurement, there is no significant impact on525

the estimate of thermal noise for and Advanced-LIGO-526

like high reflectivity coating.527

It is worth noting that the knowledge of the separate bulk528

and shear loss angles could allow an additional degree of529

freedom to optimize the thermal noise of the coating, by530

changing the thickness of the layers [13].531

V. CONCLUSIONS532

We showed that it is possible to estimate the bulk and533

shear contribution to the loss angle of a thin film, using534

measurements of the decay time of the resonant modes535

of a coated silica disk, carried out in a Gentle Nodal536

Suspension system. As an example we analyzed a thin537

film of titania-doped tantala, one of the materials used538

in the advanced gravitational wave interferometric detec-539

tor mirrors. A Bayesian analysis of the experimental data540

shows that a model featuring different bulk and shear loss541

angle is favored with respect to a simpler model with one542

single loss angle (i.e. same loss angle for bulk and shear543

energies). The change in loss angles with annealing is544

more evident in the shear than in the bulk contribution.545

When the two models are used to compute the expected546

thermal noise for a high reflection mirror similar to those547

used in Advanced LIGO, the difference is marginal and548

within error bars when the measurements are extrapo-549

lated in the frequency region between 10 and 1000 Hz.550
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