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Signal extraction out of background noise is a common challenge in high-precision physics exper-12

iments, where the measurement output is often a continuous data stream. To improve the signal-13

to-noise ratio of the detection, witness sensors are often used to independently measure background14

noises and subtract them from the main signal. If the noise coupling is linear and stationary, opti-15

mal techniques already exist and are routinely implemented in many experiments. However, when16

the noise coupling is non-stationary, linear techniques often fail or are sub-optimal. Inspired by17

the properties of the background noise in gravitational wave detectors, this work develops a novel18

algorithm to efficiently characterize and remove non-stationary noise couplings, provided there exist19

witnesses of the noise source and of the modulation. In this work, the algorithm is described in20

its most general formulation, and its efficiency is demonstrated with examples from the data of21

the Advanced LIGO gravitational-wave observatory, where we could obtain an improvement of the22

detector gravitational-wave reach without introducing any bias on the source parameter estimation.23

I. INTRODUCTION24

High-precision measurements in physics rely on the abil-25

ity to separate interesting signals from background noise.26

In many modern experiments, the instrument output is27

a continuous stream of data, and signal processing tech-28

niques have been developed to characterize and remove29

noise from data streams. In the simplest possible case,30

the disturbance can be modeled as an additive noise hav-31

ing constant statistical properties (for example, power32

spectral density) over time. This is the case of stationary33

noise: most signal detection techniques have been de-34

veloped under this assumption, and are optimal when35

the noise is stationary and gaussian. Additionally, if36

the noise can be probed by additional witness sensors,37

which are known to be insensitive to the targeted signal,38

there exist many techniques to efficiently subtract the39

noise from the main signal, thus improving the detection40

chances. In the linear and stationary noise coupling case,41

the optimal strategy is the Wiener filter [1].42

In real world physical systems however, the noise is rarely43

stationary: the statistical properties can vary over time44

during the measurement. When this is the case, the sig-45

nal detection algorithms that were optimal for station-46

ary noise become sub-optimal, and might even be fooled47

by noise transients. The noise can still be sampled by48

auxiliary witness sensors, but the coupling from those49

witnesses to the main signal might be non-linear or non-50

stationary. In this case, noise cancellation techniques like51

the Wiener filter are not optimal or might fail altogether.52
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The distinction between a non-linear and a non-53

stationary noise coupling is simply a matter of time scales54

or frequencies. Consider, for example, two auxiliary sig-55

nals x(t) and y(t) that couple into the main detector56

output d(t) as the product d(t) = x(t) · y(t). If both sig-57

nals contain significant power in the frequency range of58

interest for the measurement being performed, then the59

noise coupling manifests itself as non-linear, since there60

is never any linear relationship between the individual61

noise witnesses and the detector output. However, if one62

of the two signals x has power only at very low frequen-63

cies, then for periods of time shorter than the typical time64

scales that characterize the variation of x, the coupling65

of y to d is linear and approximately constant. In this66

case, we would consider the noise coupling to be linear,67

but modulated in time. A possible approach to the sub-68

traction of this non-stationary noise coupling is to use69

adaptive filtering techniques [2]. Instead, this work de-70

velops a more efficient solution, which is applicable when71

the noise coupling modulation is sensed by any number of72

witness channels, i.e. when the source of the modulation73

is measurable.74

The work presented here is of general applicability to75

signal processing, although inspired by work on gravi-76

tational wave interferometric detectors [3–6]. The now77

numerous detections of gravitational wave (GW) signals78

from the coalescence of binary systems [7] have opened79

the era of GW astronomy. The detection rate and the80

accuracy of the astrophysical inference about the source81

parameters and populations are strongly dependent on82

the detector sensitivity. Ideally, the sensitivity of a GW83

detector is limited by fundamental noise sources, such84

as quantum noise [8], thermal noise [9] or gravity gradi-85

ent noises [10]. Real world instruments [3–6] are rarely86

limited only by fundamental noises, but rather by other,87
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technical noises [11] that are a consequence, for example,88

of the feedback control systems needed to maintain the89

correct operating point, or of unmodeled dynamical be-90

havior of the apparatus. While fundamental noises are91

expected to be stationary, i.e. to have constant statisti-92

cal properties over time, there is no reason to assume the93

same to be true for technical noises. Similarly, the cou-94

pling of noise sources from auxiliary degrees of freedom95

can contain non-linear terms beside the usually domi-96

nant linear contributions. In this case, the detector noise97

might look stationary on timescales longer than the non-98

linear dynamics timescale, but its statistics can be highly99

non-Gaussian.100

The presence of non-stationary noise can be problematic101

in different ways. First of all, fluctuations of the detector102

noise over short time scales (of the order of a second) can103

mimic transient GW signals and contaminate the data104

[12]. Furthermore, many detection pipelines [13, 14] use105

matched filtering [15], which is optimal only when the106

background noise is Gaussian and stationary. The esti-107

mation of the significance of GW candidates can therefore108

suffer from the presence of noise that deviates from this109

assumption.110

The main result of this work is an algorithm that can be111

used to characterize non-stationary noise couplings from112

multiple witness signals, and to subtract in the time do-113

main the noise from a target signal, extending well-known114

techniques already used in the linear and stationary case115

[1, 16, 17]. This algorithm is able to model noise coupling116

modulations that are sensed by slowly-varying witness117

sensors, using an efficient parametrization that allows a118

time domain subtraction, free of unstable filters and over-119

fitting problems. This algorithm can also be applied to120

linear and stationary couplings, providing means to im-121

plement parametric and stable noise subtraction: this122

is therefore a viable approach to solve the problem of123

fitting and implementing time-domain Infinite Impulse124

Response (IIR) Wiener filters [18].125

The rest of this article is organized as follows. Section II126

describes non-linear and non-stationary noise couplings,127

and lays the basis for the mathematical description of128

the algorithm, which is then described in section III. In129

section IV, as an example application, the algorithm is130

applied to the Advanced LIGO GW detectors. It is worth131

noting that the non-stationary noise subtraction of the132

60 Hz power line (described in section IV.2) has already133

been implemented successfully in the Advanced LIGO134

detectors during the third observation run O3. Finally,135

section V describes extensions and additional applica-136

tions of this algorithm, and section VI concludes with137

final remarks and discussion.138

II. NON-LINEAR AND NON-STATIONARY139

NOISE COUPLINGS140

From this point on we will discuss non-stationary noise141

couplings by considering the example of a gravitational142

wave detector output h(t), but the discussion presented143

here is valid in general for any physical measurement sys-144

tem that provides a continuous data stream as an out-145

put. The detector output is the sum of real GW signals146

hGW(t) and background noise, the latter can be sub-147

divided into diverse contributions: fundamental noises148

εF(t) that cannot be measured or subtracted (like quan-149

tum noise or thermal noise); noises εL(t) that couple with150

a linear and time-stationary transfer function from aux-151

iliary degrees of freedom and that can therefore be mea-152

sured and subtracted; noises εNL(t) that couple from aux-153

iliary degrees of freedom or channels in a non-linear or154

non-time-stationary way; finally there can be unknown155

noise sources εU(t) whose origin is not yet understood156

and that can not be measured in any other available chan-157

nel.158

In this section we focus on the case of non-linear or non-159

stationary noise couplings. Linear and stationary noise160

couplings will emerge as a special case of this treatment.161

We assume that the noise source can be monitored by a162

set of witness signals wi(t) with i = 1 . . . N . We then163

model the detector output h(t) as the sum of an uncor-164

related and untrackable noise background εB(t) and the165

non-linear contribution related to the witness signals:166

h(t) = εB(t) + F [w1(τ < t), . . . , wN (τ < t)] (1)

In this expression we already included two assumptions:167

causality, meaning that the contribution at the time t168

can depend only on the witness values in the past; time169

invariance, expressed by the requirement that the func-170

tional form F [·] does not contain any explicit dependency171

on t, meaning that all the time variation of the noise is172

encoded in the witness signals (we shall see in section V173

how this requirement can be relaxed). We are given the174

detector output h(t) and the witness sensors wi(t), and175

the task to find a suitable representation of the functional176

F so that we can optimally subtract the excess noise from177

h(t). While in the case of linear coupling there are simple178

and efficient ways to parametrize the functional F , such179

as a frequency- or time-domain Wiener filter [1], such180

general parametrization does not exist in the non-linear181

case.182

One possible solution to the parametrization problem is183

to use deep neural networks (DNN) [19], which have been184

proven to perform as universal function approximators,185

provided they are composed of layers with a large number186

of neurons [20]. This approach was initially applied to the187

Advanced LIGO data, without satisfactory results, and188

is described in section A. The main drawback of using a189

DNN is its high complexity, which in turn causes a long190

training time, sub-optimal performances and difficulty in191

interpreting the results [21].192

The approach used in this work is inspired by common193

Machine Learning algorithms, but one of its key features194

is a large reduction of the model complexity (fewer pa-195

rameters), achieved by adopting a model of the non-linear196

or non-stationary noise coupling. The model is poten-197

tially not as general as a DNN, but in all the cases we198

considered in the context of GW detection, it outper-199

formed the DNN approach, due to the ease of training200
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and interpretability of the results.201

III. NON-STATIONARY PARAMETRIZED202

SUBTRACTION203

The most common form of non-linear coupling found in204

GW detectors consist of one ”fast” noise source n(t) that205

couples to the detector output through a linear transfer206

function, which is however “slowly” changing over time,207

and this change can be tracked by additional “slow” wit-208

ness signals wi(t). The distinction between fast vs. slow209

will be explained below precisely. In brief it refers to the210

frequency content of the signals: the noise is relevant for211

the detector sensitivity at high frequencies (above 10 Hz),212

while the typical coupling modulation happens at lower213

frequencies (below 1 Hz). In this case, it is possible to214

describe the non-linear coupling with a truncated series215

expansion, where the different time scales can be sepa-216

rated. Each term in the series can then be parametrized217

in an efficient way and a numerical optimization algo-218

rithm used to minimize the impact of the noise in the219

target signal. This section explains this algorithm in de-220

tail.221

The most general non-linear coupling, described in equa-222

tion 1, can be expanded in a Volterra series [22], sub-223

dividing the non-linear terms in increasing polynomial224

orders. Restricting to the second order we can write:225

εNL(t) = F [w1(τ < t), . . . , wN (τ < t)]

=

N∑
i,j=1

+∞∫∫
0

αi,j(τ1, τ2)wi(t− τ1)wj(t− τ2) dτ1dτ2

+ . . . (2)
where αi,j are the second order Volterra kernels. It is226

useful to write the frequency domain equivalent of the227

expression above, by defining the Fourier transform of228

the kernels as:229

α̃ij(ω1, ω2) =

+∞∫∫
−∞

αij(τ1, τ2)eiω1τ1eiω2τ2 dτ1dτ2 (3)

If we now substitute the inverse of this expression into230

the Volterra series, we find:231

ε̃NL(ω3) =

N∑
i,j=1

+∞∫∫
0

δ(ω3 − ω1 − ω2) ·

α̃i,j(ω1, ω2)w̃i(ω1)w̃j(ω2)dω1dω2 (4)
where the tilde denotes the Fourier transform of a signal.232

This frequency-domain expression makes it clear that the233

quadratic term mixes the two input signal frequencies234

into the sum frequency in the target signal ω3 = ω1 +235

ω2. To simplify this expression we make a few important236

assumptions, splitting the set of all noise witnesses {wi}237

into two classes: one fast noise witness n(t) and a set238

of slow modulation witnesses xi. The first assumption is239

that the frequencies at which the noise source ñ(ω1) is240

relevant for the detector output is much higher than the241

typical frequencies where the modulation witness signals242

x̃i(ω2) are concentrated. Typically, for a GW detector,243

the noise frequency of interest ω1 is in the 10 to 1000 Hz244

range, while the modulation signals are concentrated at245

frequencies ω2 below 1 Hz, so the assumption ω1 � ω2 is246

reasonable in the cases under consideration. This allows247

us to ignore the dependency of the Volterra kernels on248

the lower frequency ω2 and write α̃ij(ω1, ω2) ' α̃ij(ω1).249

By transforming back to the time domain we find the250

expression below for the non-stationary noise coupling251

εNL(t) =

N∑
i=1

+∞∫
0

αi(τ)ni(t− τ) dτ (5)

where each ni(t) is the time-domain product of the252

noise source with one of the modulation witness signals253

ni(t) = n(t)xi(t). At this point we can include in the sum254

above the stationary and linear term, by simply defining255

n0(t) = n(t) and extending the sum to i = 0. The sep-256

aration of frequencies allow equation 5 to describe the257

non-stationarity as a linear combination of several con-258

tribution, each one the time domain product of the noise259

source with one of the modulation, and each one allowed260

to couple to the detector output with a different linear261

and stationary transfer function αi(τ).262

In this framework, the non-stationary noise coupling has263

been reduced to a linear coupling problem. We can solve264

it directly in the frequency domain with an approach265

that follows closely the optimal a-causal Wiener filter266

[1]. The residual after noise subtraction is defined as267

r(t) = h(t) − εL(t) − εNL(t). For each frequency ω the268

optimal value of the coupling coefficients α̃i(ω) can be269

obtained by equating to zero the gradient of the Power270

Spectral Density (PSD) of the residual S[r, r](ω) with271

respect to each αi(ω)272

0 =
∂S[r, r](ω)

∂αk(ω)
= H∗k −

N∑
i=0

α∗iPik (6)

where the star denotes complex conjugation and we de-273

fine the vector and matrices of cross spectral densities as274

follows:275

Hi(ω) = S[ni, h](ω) (7)

Pij(ω) = S[ni, nj ](ω) (8)
Equation 6 can be solved directly for each frequency to276

obtain, in matrix notation:277

ααα(ω) = PPP−1(ω)HHH(ω) (9)

Equation 9 provides a direct solution to the problem of278

finding the optimal αi, in the sense of making the power279

spectral density of the residual as small as possible, inde-280

pendently for each frequency. It can be implemented in281

efficient ways using linear algebra numerical packages and282

Fast Fourier Transforms. However, this direct frequency-283

domain approach has several drawbacks: it is not possi-284

ble to force the coupling coefficients αi to be causal or285

stable in the Laplace sense [23] (all poles on the left half286

s-plane). Although it is still possible to perform the noise287

subtraction in the frequency domain, having non-physical288
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coefficients (i.e. non-causal) can be troublesome, since289

past and future are mixed in the result. Moreover, each290

frequency is treated separately, meaning that the number291

of free parameters in the solution can be very large, often292

resulting in overfitting and oversubtraction.293

To overcome the problems stated above, we can express294

each αi(ω) in a suitable form that uses a reduced number295

of parameters. A first choice could be to write each αi296

as a rational function of order M in the Laplace variable297

s. This would largely reduce the number of parameters298

and smooth the solutions. Overfitting would be largely299

reduced, but there would be no guarantee that the solu-300

tions were physically realizable in time domain, i.e. sta-301

ble. To work around this problem, we use the partial302

fraction expansion [24]:303

αk(s) =

∑M
i=0 bis

i∑M
i=0 ais

i
= c+

2M∑
i=1

ρi
s− si

(10)

The requirement that the time-domain version of each304

transfer function must be real implies that the poles si305

and their residuals must either be real, or come in com-306

plex conjugate pairs. If we collect each complex conju-307

gate pole pair in a second order stage (si being the i-th308

complex pole and ρi the corresponding complex resid-309

ual), and do the same with pairs of real poles (assuming310

without loss of generality that there are an even number311

of them, where si,1, si,2 are a pair of poles with corre-312

sponding residuals ρi,1 and ρi,2), we obtain:313

αk(s) = c+
∑
i

2R[ρi] s− 2R[ρ∗i si]

s2 − 2R[si] s+ |si|2

+
∑
i

(ρi,1 + ρi,2)s− (ρi,1si,2 + ρi,2si,1)

s2 − (si,1 + si,2) s+ si,1si,2
(11)

where R[x] denotes the real part of x. The first sum314

runs over all complex pole pairs, and the second sum315

runs over all real pole pairs. The stability requirement316

can be expressed in terms of the pole position in the317

Laplace plane as R[si] < 0 for all complex and real poles.318

By inspecting the form of the coefficients of the second319

order stages in equation 11, we can show that the stability320

requirements corresponds to forcing the denominator to321

have strictly positive zeroth and first order coefficients.322

Therefore, each coupling coefficient is parametrized as323

αk(s) = ck +

M/2∑
i=1

b
(i)
k,1s+ b

(i)
k,0

s2 + a
(i)
k,1s+ a

(i)
k,0

(12)

subject to the requirements that a
(i)
k,j > 0 for all i, j and324

k.325

This parametrization solves all the problems previously326

mentioned concerning the frequency-domain direct solu-327

tion: it drastically reduces the number of parameters,328

avoiding overfitting, and it ensures that the coupling coef-329

ficients αi are realizable in the time domain, being causal330

and stable. The parametrization now mixes all frequen-331

cies, and therefore it is not possible to solve the optimiza-332

tion problem for each frequency independently. Instead,333

we need to define a scalar cost function. Considering the334

frequency band ωL < ω < ωH of interest for the noise335

subtraction, one option would be to define a cost func-336

tion based on the integral of the residual PSD over that337

range. However, power spectral densities often have val-338

ues ranging over many order of magnitudes, so this cost339

function could be heavily skewed toward the frequencies340

at which there is more signal or noise. We therefore add341

a frequency dependent weight function W (ω) in the PSD342

integral. One choice that proved to be very effective in343

all practical application, is to set this weight function to344

the inverse of the power spectral density of the detec-345

tor output W (ω) = S[h, h]−1(ω). In this way the cost346

function takes equally into account any relative improve-347

ment on the noise, with respect to the original values. In348

summary, we define the cost function as349

C(θθθ) =

ωH∫
ωL

S[r, r](ω)

S[h, h](ω)
dω (13)

where θθθ = {θm} is a shorthand for the set of all the350

coupling coefficient parameters, i.e. a, b and c in equation351

12. Borrowing a technique commonly used in the training352

of deep neural networks, we can search for the minimum353

of the cost function by gradient descent. The gradient354

can be computed in closed form using the chain rule:355

∂C

∂θm
=

ωH∫
ωL

1

S[h, h](ω)

∂S[r, r](ω)

∂αk(ω)

∂αk(ω)

∂θm
dω (14)

The first partial derivative inside the integral is given by356

equation 6, while the second derivative is not zero only357

when the index k corresponds to the only αk that con-358

tains the parameter θm, and can be computed in closed359

form with simple algebra from the parametrization of360

each αk given in equation 12.361

To enforce the stability requirements, instead of carrying362

out a constrained optimization, we perform the follow-363

ing reparametrization a
(i)
k,j → exp a

(i)
k,j so that positivity364

is ensured without the need of hard constraints. This365

reparametrization also helps compressing the coefficient366

dynamic range. With an efficient way to compute the367

cost function and the gradient, we can apply a gradient368

descent algorithm or any modification of it. By experi-369

mentation we found that the ADAM algorithm [25], very370

popular for DNN training, performs very well with our371

optimization problem. Once the optimizer has converged372

to a good solution, the parameters can be easily con-373

verted back to the coefficients of Laplace domain trans-374

fer functions, or to the filter taps needed to implement a375

time domain IIR filter [26, 27].376

Different parameterizations of the coupling coefficients377

αk(s) are possible. For example, by using a scaled sig-378

moid, it is possible to bound the maximum and minimum379

frequencies allowed for the poles. The gradient with re-380

spect to the new parameters can still be computed in a381

closed form. Otherwise, we could arrange the coefficients382

in the denominator so that not only stability is enforced,383

but also both the frequency and the damping factor of384

all the poles are bounded, so to avoid introducing nar-385

row resonances. Finally, we note that the αk coefficients386
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could be parametrized directly in the z-domain [27] used387

to describe discrete-time signals, so that we do not need388

to convert the Laplace-domain transfer function coeffi-389

cients to time-domain, since the result of the algorithm390

will directly be the IIR filter taps.391

One drawback of our approach is that the optimization392

problem is no longer linear in the parameters, and there-393

fore there is no direct, closed-form solution. This, and the394

use of a gradient-based optimization algorithm, means395

that there is no guarantee of converging to the global396

optimal solution. In practice, the parametrization de-397

scribed above in equation 12 ensured a fast convergence398

in all cases studied, with performance in line with the399

optimal frequency-domain solution (provided there was400

no overfitting in the latter).401

IV. APPLICATIONS TO GW DETECTOR402

NOISE403

In this section, we shall consider two examples of ap-404

plications of the algorithm, inspired by non-stationary405

noise couplings found in gravitational-wave detectors,406

with particular emphasis on the Advanced LIGO detec-407

tors [3, 11]. In both cases described here, the noise wit-408

nessed by an auxiliary sensor or control loop was mod-409

ulated by residual angular motions of the interferometer410

mirrors and laser beam.411

IV.1. Signal Recycling Cavity Length noise.412

In the first example the noise source is linked to the longi-413

tudinal control system needed to keep the interferometer414

at its most sensitive working condition, using feedback415

controls that maintain all resonant cavities at the oper-416

ating point [28]. Those feedback control loops can intro-417

duce noise in the interferometer auxiliary degrees of free-418

dom, due to their sensing or actuation limitations [11].419

This excess displacement noise can couple to the GW420

strain signal. One important example, shown in the left421

panel of figure 1, is related to the signal recycling cav-422

ity length (SRCL) control [29]. Experimental evidence423

shows that displacement noise in this degree of freedom424

couples to the GW strain signal in a non-stationary way.425

The spectrogram in figure 1 shows the detector strain426

while the SRCL noise was deliberately increased to en-427

hance the effect. The noise amplitude modulation is due428

to residual angular motion of the interferometer mirrors429

around their nominal positions. There is also a linear and430

constant coupling coefficient, but this is partially com-431

pensated online by using a feedforward technique [30].432

In this case, the noise source witness sensor n(t) is the433

digital output of the feedback loop, sampled at a fre-434

quency of 16384 Hz. The target signal h is the main435

detector output, which is in units of calibrated strain436

and sampled at 16384 Hz. Random noise was added437

to the SRCL control loop, to make sure that the effect438

dominated over the background detector output by one439

to two orders of magnitude. As shown in figure 1, the440

resulting detector output shows modulated noise. The441

coupling modulations xi are witnessed by the residual442

motion of the interferometer angular degrees of freedom,443

measured by the input signals to the angular feed back444

control systems [31], sampled at 16 Hz. Each mirror is445

controlled in orientation both around the vertical axis446

(yaw) and around the horizontal axis perpendicular to447

the laser beam (pitch). Instead of controlling each mir-448

ror separately, their motions are combined in physical449

degrees of freedom [31, 33] that are closely related to the450

laser resonance conditions in the interferometer.451

The modulated signals were constructed as explained in452

the previous section, and each of the coupling coeffi-453

cients αk was parametrized as the sum of 30 second-order454

stages, as in equation 12. The optimization problem con-455

sisted in the minimization of the residual signal power456

between 10 and 400 Hz, weighted by the inverse of the457

initial power spectral density, as in equation 13. The458

optimization was carried out using analytical forms for459

the gradient, implemented in python and accelerated us-460

ing code deployed to GPU with TensorFlow [34]. The461

optimization process took an approximate time of ten462

minutes on a Nvidia Titan GPU [35], using 600 seconds463

of training data. A similar amount of data has been set464

aside to test the subtraction performance, and not used465

for parameter training.466

Figure 2 shows the results. The algorithm output, ob-467

tained in terms of second-order stages, was converted to468

IIR filters subsequently implemented in the time domain.469

The result was then used to compute the power spectral470

densities shown in the figure. In the top panel, the de-471

tector sensitivity during the noise injection is compared472

with a reference quiet time. If only the residual linear sta-473

tionary term is subtracted, for example using a Wiener474

filter, the noise level is reduced by less than a factor of475

10 at all frequencies. The subtraction can be improved476

significantly at all frequencies by using the output of the477

non-stationary algorithm described here. The residual is478

not at the level of the quiet reference, meaning that the479

set of witness signals is not enough to capture the en-480

tirety of the modulation. The bottom panel of figure 2481

shows the magnitude and phase of the first few coupling482

coefficients αk, ranked by the amount of subtraction they483

provide. The largest contribution is the stationary term,484

but the first non-stationary contributions are following485

less than one order of magnitude below. The results show486

also that each modulation channel can couple to the de-487

tector output with a different transfer function, meaning488

that the physical coupling path is likely different. The489

results also show that this algorithm is capable of cap-490

turing complex and diverse frequency dependencies for491

each coupling path.492

The algorithm described provided a clear indication of493

the sources of the non-stationarity, and this information494

could be used to improve the detector angular stability495

and thus reduce the problem at the root. As a result, dur-496

ing normal operations of the LIGO detectors, the SRCL497

control is not a source of noise that limits the sensitiv-498
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FIG. 1. Two examples of non-stationary noise couplings. The left panel shows a time-frequency spectrogram of the Hanford
LIGO detector main output: in (a) during a quiet time of detector operation, in (b) during a period of time when random
noise was purposely added to the signal recycling cavity length control. Despite the added noise being stationary over time,
the effect on the detector output, between 20 and 300 Hz, changes on a time scale of the order of seconds, meaning that the
noise couplings are non stationary. The right panel shows an amplitude spectral density of the LIGO Hanford detector output
around the 60 Hz power line. There are symmetrical sidebands around the main frequency, evidence that the coupling of the
electromagnetic noise at 60 Hz is modulated over time.

ity, and therefore there was no need to implement the499

non-stationary subtraction online.500

IV.2. Power line501

In the second example the noise source is electromagnetic502

in nature, and due to the 60 Hz line generated by the503

main power supplies. Despite many mitigation efforts,504

electromagnetic fields at 60 Hz couple to the detector505

output through many paths [36]. The linear and station-506

ary coupling is dominant, as can be seen in the right panel507

of figure 1. However, the line is surrounded by symmetric508

sidebands that arise because the coupling is modulated509

by slow (. 2 Hz) angular motions of the interferometer510

beam and mirrors, similarly to the SRCL noise case. This511

is another example of non-linear or non-stationary cou-512

plings. As shown in figure 3, a simple linear subtraction513

is effective at reducing the main line by orders of magni-514

tude (using a sensor that witnesses the power line), but515

leaves the sidebands untouched. This limits the detector516

sensitivity on a wider frequency band. This effect is sig-517

nificant in the Advanced LIGO Hanford detector, used in518

the example discussed here, and present to a lower extent519

in the Advanced LIGO Livingston detector.520

The algorithm described in section III has been applied521

to this problem, restricting the computation of the cost522

function to a narrow frequency band that includes the523

main line and sidebands (50 Hz < f < 70 Hz). The524

noise witness sensor is a direct monitor of the power sup-525

ply (largely dominated by the single-frequency 60 Hz line526

and its harmonics). The modulation witness sensors are527

the same angular motion signals used in the SRCL case.528

Since we are subtracting noise in a narrow band around529

60 Hz, we did not expect to need complicated transfer530

functions, so we restricted the coupling coefficients αk531

to be modeled by only a constant plus one second-order532

stage:533

αk(s) = ck +
bk,1s+ bk,0

s2 + ak,1s+ ak,0
(15)

allowing us enough freedom to adjust the coupling phase534

and gain near 60 Hz. The result is shown in figure 3: the535

modulated noise subtraction removes the main 60 Hz to536

the same level as the linear subtraction, and also reduces537

all the sidebands by a factor of at least 2, down to a level538

compatible with the surrounding background noise.539

IV.3. Effect on astrophysical range and source540

parameter estimation541

As discussed above, the signal recycling cavity noise did542

not limit the detector sensitivity during the last period543

of operation. On the other hand, the non-stationary sub-544

traction of the 60 Hz line and sidebands was effective at545

improving the astrophysical sensitivity of the Advanced546

LIGO detectors during the first six months of the O3 ob-547

servation run. One way to quantify the improvement is548

to compute the range of the detector: the sky-averaged549

distance at which a compact binary coalescence can be550

detected with a signal-to-noise ratio of 8 [37]. Figure 4551

shows that the 60 Hz subtraction has a significant im-552

pact on the detector range for high mass binary black553

hole systems, increasing the detector range for systems554

with a total mass of 70 M� by 25 Mpc and the observable555

volume by 11%.556

It is important to check that the non-stationary subtrac-557

tion does not affect the interferometer response to GW558

signals and calibration. For this purpose, we applied si-559

nusoidal forces to the interferometer test masses (focus-560

ing on a frequency range around 60 Hz), using the pho-561

ton calibrator [38, 39], and thus generating a differential562

length change in the two interferometer arms that mimics563
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FIG. 2. Performance of the non-stationary noise algorithm
applied to the coupling of signal recycling cavity length noise.
The top panel shows the amplitude spectral density of the de-
tector main output: the orange curve is a reference sensitivity
when there was no noise injection, while the blue curve is the
detector sensitivity during the noise injection and without any
subtraction applied. If only the linear and stationary coupling
is estimated and subtracted, the result is the green curve. By
using the algorithm described here, a non-stationary subtrac-
tion gives the red curve, which largely improve upon the linear
subtraction. The best non-stationary subtraction cannot re-
move all of the noise couplings: the reason being that the
residual coupling modulation is not witnessed by the set of
signals used in this work. The bottom panel shows the first
few most important contributions to the modulated transfer
functions αk as produced by the algorithm. The largest term
is the stationary transfer function, while the others are la-
belled with reference to the angular motion of the modulation
source. For reference, DHARD is a combination of the arm
cavity mirrors, moving in a differential way in the two inter-
ferometer arms [32]; SRC1 and PRC1 denotes respectively the
signal and power recycling cavity angular degrees of freedom
[33]; MICH denotes the motion of the beam splitter mirror
[33].

the effect of a GW. We then checked that the amplitude564

and phase of the calibrated detector output matched the565

expectation, and that the non-stationary subtraction did566

not affect the results, within the measurement uncertain-567

ties.568

Another important check is that the non-stationary569

cleaning does not corrupt astrophysical signals in the570

57 58 59 60 61 62 63
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10 21

St
ra

in
 [H
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2 ]

Original
Stationary
Non-stationary

FIG. 3. Application of the non-stationary noise subtraction
to the 60 Hz main power line at the Advanced LIGO Hanford
detector. This figure compares the original detector output
(blue) to what can be obtained by simply performing a linear
and stationary subtraction of a witness channel (orange), and
to the improved subtraction obtained when allowing for cou-
pling modulation (red). The stationary subtraction matches
the non-stationary one only at the 60 Hz line frequency, and
has no effect at all other frequencies.

data. To corroborate this, we inject simulated bi-571

nary black hole signals into linearly-cleaned strain data572

and then apply the additional non-stationary subtrac-573

tion. For data with and without the non-stationary574

subtraction, we recover the signal properties using575

lalinference, LIGO and Virgo’s standard Bayesian pa-576

rameter estimation infrastructure [40]. We carry out in-577

jections at two times during which contamination from578

the 60 Hz line was noticeable in the linearly-cleaned579

data from LIGO Hanford (GPS times 1244006580 and580

1243309096), similar to figure 3. For each of those times,581

we inject signals with all combinations of three total mass582

values (M = m1 + m2 = 200, 275, 350 M�) and two583

mass ratios (q = m2/m1 = 0.5, 1), and always without584

spin in either component (a1 = a2 = 0). The masses585

are chosen so that the final cycles of the GW signal586

have significant frequency content in the vicinity of 60587

Hz. We additionally study a signal with M = 70M�588

and q = 1 at GPS time 1244006580, meant to roughly589

correspond to the peak of the sensitive-volume improve-590

ment in Fig. 4. Each injection is carried out with op-591

timal network signal-to-noise ratios (SNR) of 15 and592

301, and into a three-detector network of two Advanced593

LIGO detectors and the Advanced Virgo detector. For594

this analysis we applied the non-stationary noise sub-595

traction only to the Advanced LIGO Hanford detector596

data, since the effect on the Livingston detector was neg-597

ligible. In all cases, the injections are produced using598

the numerical-relativity surrogate waveforms NRSur7dq2599

[41], and recovered with the spin-precessing waveform600

1 Computed using the data where the 60 Hz line was subtracted
linearly.
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binary system coalescence, as a function of the total mass
of the two objects. The non-stationary subtraction of the
60 Hz line and sidebands results in an improvement in the
range. The range increase is small for binary neutron stars,
from 104.6 to 105.5 Mpc, since the signal for those systems
sweep through the 60 Hz region quickly. The improvement is
more significant for large mass binary black holes, where more
signal is accumulated around 60 Hz. For a total mass of 70
M� the range increases from 729.3 to 754.6 Mpc. The bottom
plot shows the increase in observable volume as a function of
the total system mass.

approximants IMRPhenomPv2 [42], which is standard in601

LIGO-Virgo analyses. For control purposes, PSDs are602

estimated both through a simple Welch average [43] and603

a Bayesian model using BayesLine [44].604

Our results indicate that the non-stationary subtraction605

does not adversely impact parameter estimation and,606

therefore, does not corrupt astrophysical signals in the607

data. The lack of discernible improvement after the non-608

stationary cleaning is expected given that, in this case,609

only the Hanford detector data was affected, and the Liv-610

ingston detector was the most sensitive in the network at611

that time. As an example of this, Figure 5 shows the re-612

covered posterior distributions of the system’s total mass613

M (x-axis) and chirp mass M = (m1m2)3/5M−1/5 (y-614

axis), for the M = 70M� and q = 1 injection at GPS615

time 1244006580. The result for the two cleaning tech-616

niques (linear and non-stationary) are not significantly617

different. However, the non-stationary step improves the618

recovered matched-filter SNR by a factor consistent with619

the range improvement displayed in Fig. 4. This seems620

to be the case for all recovered parameters and for all of621

the injections in our set.622

65.0 67.5 70.0 72.5 75.0
M [M ]

28

29

30

31

32

[M
]

Stationary
Non-stationary
Stationary
Non-stationary

FIG. 5. Joint posterior probability density on the total mass
M = m1+m2 (x-axis) and chirp mass M = (m1m2)3/5M−1/5

(y-axis), for the M = 70M� and q = 1 injection with SNR
30, at GPS time 1244006580, recovered using a Welch-average
estimate of the noise PSD. Colors correspond to the non-
stationary cleaning of the data (blue) and to the linear clean-
ing of the data (orange). The main panel shows the 2D proba-
bility density, with solid contours containing 90% of the prob-
ability mass. The secondary panels above and to the right
show the corresponding 1D marginalized distributions for M
and M respectively, with colored dashed lines representing
symmetric 90%-credible intervals. The true values are marked
by a crosshair and gray dotted lines.

V. EXTENSIONS AND OTHER APPLICATIONS623

The algorithm presented here was inspired by the non-624

stationary noise couplings found in gravitational wave625

detectors, where a noise source with power in the tens626

to hundreds Hz region can limit the detector sensitiv-627

ity, and be modulated by slower (below a few Hz) resid-628

ual motions. However, the parametrized approach to the629

noise subtraction can be extended to any other applica-630

tion when there is a noise coupling which is modulated.631

It can also be extended to the case of quadratic or higher632

order couplings, even when there is no clear separation of633

the signal frequency support. This is possible by choosing634

a set of noise witness sensors wi, constructing the set of635

all quadratic (or higher order) combinations nij = wiwj636

and using them in equation 5.637

The parametrization described above for the coupling638

coefficients turns out to be quite versatile and robust.639

Even when considering only linear and stationary noise640

couplings, the algorithm described here is able to match641

the performance of the frequency-domain Wiener filter.642

It is therefore a viable approach to a stable and causal643

Wiener filter that can be implemented in time domain644

using IIR filters. The advantage over the classical finite645

impulse response (FIR) Wiener filter [1] is the significant646

reduction in the number of parameters, the lower com-647
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putational cost of the time domain implementation, and648

the absence of overfitting problems. The main drawback649

is again that there is no closed form solution, and the650

parameters must be found by a gradient-descent-based651

optimization, with no guarantee of optimality.652

In the treatment of non-stationary noise described above,653

we assumed that the change in the couplings could be654

completely captured by a set of modulation witness sig-655

nals. This might not always be the case. The set of656

witness signals might be incomplete, resulting in some657

residual modulation at the same time scale as those that658

are modeled and removed. This was the case in the resid-659

ual noise coupling for the SRCL noise, as shown in figure660

2. Another possibility is that the set of modulation sig-661

nals is sufficient to describe the non-stationarity for a662

short period of time, still longer than the modulations663

witnessed by the signals, but the coupling coefficients αk664

vary on a time scale which is slower than the typical con-665

tent of the witness channels. In this case we would need666

to slowly adjust the parameters of the noise subtraction.667

In equation 6 we expressed the gradient of the cost func-668

tion with respect to the parameters in a form that is nu-669

merically efficient to find the optimal parameters, since670

the cross spectral densities need to be computed only671

once at the beginning of the training. However, if the672

noise couplings change over time, it is more convenient673

to rewrite the gradient in the following form:674

∂Sr,r(ω)

∂αk(ω)
= −S[r, nk] (16)

that can be obtained with straightforward manipulations675

of equation 6. The gradient can be computed by accu-676

mulating the (varying) cross spectral densities of the cur-677

rent subtraction residual with all the modulation signals.678

This gradient can then be applied to the minimization of679

a running cost function as in equation 14, with an ap-680

proach similar, for example, to the least mean squared681

(LMS) algorithm [45].682

VI. CONCLUSIONS683

We presented a novel algorithm to characterize and sub-684

tract non-stationary noises from the output signals of685

physical detectors, which can be applied to all cases686

when one or more fast noise sources are coupling to the687

main detector output via modulated transfer functions.688

Provided there is access to suitable witness sensors that689

track both the noise and the modulations, we show how690

a parametrized, stable and time-domain noise cancela-691

tion can be implemented. This extends the well-known692

noise cancellation techniques based on feedforward and693

Wiener filters, and allow for a real-time implementation694

of non-stationary noise subtraction.695

We show how this technique can be applied successfully696

to the output of GW detectors, with examples from the697

Advanced LIGO observatory. The implementation of698

non-stationary noise subtraction allows us to improve the699

detector sensitivity, because the average power spectral700

FIG. 6. Noise subtraction obtained with a Deep Neural
Network, to be compared with the non-stationary noise sub-
traction obtained with the algorithm described in section III
and shown also in figure 2.

density of the noise is reduced below what is attainable701

with simple linear noise cancellations, and also because702

the residual is more stationary and therefore better suited703

to searches for GW triggers. We also show that the704

non-stationary noise subtraction can improve the sky-705

averaged detectable range, and does not introduce any706

bias in the astrophysical parameters estimated for sim-707

ulated GW events that contain a significant amount of708

signal power around 60 Hz.709

Finally, we note that the technique described here is of710

general interest, and can be applied in all cases where711

non-stationary noise couplings are present in any de-712

tector. It is also possible to limit the scope of the al-713

gorithm to the linear and stationary case, providing a714

new approach to the optimization and implementation715

of efficient Wiener filters. In both the stationary or non-716

stationary cases, it is also possible to convert this algo-717

rithm into an adaptive system, where the noise cancella-718

tion parameters vary slowly to cope with changes in the719

noise couplings.720

Appendix A: Deep learning-based subtraction721

Neural networks are not a new idea [46], but have gained722

momentum in the recent years with the application of723

Deep Neural Networks (DNN) [19] to many Machine724

Learning problems. Ideally, a neural network is capa-725

ble of approximating any non-linear function of its in-726

puts, provided it includes a large enough number of ba-727

sic units or neurons [20]. Therefore a DNN seems to728

be a suitable starting point for a parametrization of the729

non-linear coupling function introduced in equation 1.730

Since the noise subtraction problem deals with process-731

ing and reconstructing time series, it is important that732

the DNN includes some memory of the past inputs. For733

this reason our attention focused on recurrent neural net-734

works (RNN) [47]. Despite the intrinsic non-linearity of735

each layer, a DNN is not particularly suitable to learn736

efficiently multiplications of its inputs. Since this is737
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an important operation for most of the noise subtrac-738

tion schemes we are considering, we added an ad-hoc739

quadratic layer: the n inputs to the layer are multi-740

plied pair-wise to obtain n2 new signals; together with741

the input, those n2 + n signals are then passed through742

a fully connected layer to reduce the dimensionality to743

m < n2 + n. This additional layer, preceded or followed744

by additional recurrent layers, largely improve the learn-745

ing speed of a DNN.746

We applied a DNN to the problem of subtracting the747

signal recycling noise described in section IV. The archi-748

tecture consists of three layers of Gated Recurrent Units749

(GRU) [48] with 64, 32 and 16 neurons each. The in-750

put to the recurrent layers consists of both the fast noise751

witness (signal recycling longitudinal servo output) and752

the up-sampled modulation witnesses (angular signals).753

The output of the three recurrent layers is then fed to754

the quadratic layer described above, and then to three755

fully-connected layers with 16, 16 and 8 units with ReLU756

activation [49]. The final signal is obtained by linearly757

combining the outputs of the last layer. The network758

has about 9000 parameters that are trained using a stan-759

dard ADAM algorithm on the mean square error of the760

output with respect to the desired signal (the detector761

strain). The cost function was actually computed in the762

frequency domain, by integrating the residual between763

10 and 400 Hz (similar to what explained in section III764

and equation 13). The network was implemented in Py-765

Torch and trained using 600 seconds of data on the same766

Nvidia GPU used for the main results described in this767

paper. The training required about 10 hours. The best768

subtraction obtained with this network is shown in fig-769

ure 6, compared with the output from the non-stationary770

noise subtraction algorithm described in this paper. The771

performance of the network is clearly better than a sim-772

ple linear and stationary subtraction, but falls short of773

what is achievable with the non-stationary subtraction774

algorithm described in this work. Additionally, it is ex-775

tremely difficult, if not impossible, to extract useful in-776

formation from the trained network, such as what signals777

are the worst offenders for the non-stationarity of the778

couplings. It is in other words not possible to produce779

the equivalent of the bottom panel of figure 2, therefore780

missing crucial information that could be used to solve781

the modulation problem at the root.782
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