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The way physics of loop quantum gravity is affected by the underlying quantiza-

tion ambiguities is an open question. We address this issue in the context of loop

quantum cosmology using gauge-covariant fluxes. Consequences are explored for two

choices of regularization parameters: µ0 and µ̄ in presence of a positive cosmological

constant, and two choices of regularizations of the Hamiltonian constraint in loop

quantum cosmology: the standard and the Thiemann regularization. We show that

novel features of singularity resolution and bounce, occurring due to gauge-covariant

fluxes, exist also for Thiemann-regularized dynamics. The µ0-scheme is found to

be unviable as in standard loop quantum cosmology when a positive cosmological

constant is included. Our investigation brings out a surprising result that the nature

of emergent matter in the pre-bounce regime is determined by the choice of regula-

tor in the Thiemann regularization of the scalar constraint whether or not one uses

gauge-covaraint fluxes. Unlike µ̄-scheme where the emergent matter is a cosmological

constant, the emergent matter in µ0-scheme behaves as a string gas.

I. INTRODUCTION

A novel approach towards developing a theory of quantum gravity originated in the

late 1980s’ with Ashtekar’s discovery that General Relativity (GR) in its Hamiltonian or

ADM formulation [1] is equivalent to a Yang-Mills type theory with gauge group SU(2)

[2–4]. This kick-started the field of Loop Quantum Gravity (LQG), where Dirac’s canonical

quantisation procedure, which proved valuable for other Yang-Mills theories, was applied to

GR [5–7]. After many initial successes regarding the definition of the kinematical sector of

the theory, developments in LQG went into an hiatus, when it was realized that defining the

dynamics was plagued by many ambiguities. Since dynamical evolution is encoded inside the
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scalar constraint of GR, it was necessary to promote it to an operator. However, arbitrary

regularization choices in construction of this operator could in principle lead to different

dynamical predictions. Although a proposal for such an scalar constraint operator does

exist [8, 9], any uniqueness features are far from established.

A promising way to restrict various regularization ambiguities is via understanding differ-

ences in phenomenological effects. But this is a difficult task in LQG due to the complicated

form of the proposal for the scalar constraint. As a result, its concrete consequences for

quantum dynamics were not studied for a long time. However, recently progress has been

made which might help to understand the predictions of those arbitrary regularizations. The

idea put forward in [10, 11] was to restrict the action of the scalar constraint to a discrete

lattice and semiclassical geometries approximated by said lattice. Using gauge coherent

states from [12–16] for the SU(2)-version of the Ashtekar-Barbero variables, this task has

been explicitly carried out in [17–19]. In particular, the expectation value of the scalar con-

straint proposed in [8] was computed for semiclassical states approximating spatially-flat,

isotropic Friedmann-Lemâıtre-Robertson-Walker (FLRW) cosmology with matter sourced

by a massless scalar field. This in turn allowed immediately to compare some of the re-

sults with Loop Quantum Cosmology (LQC) [20, 21], for inflationary spacetimes [22–25]

and power-spectrum of perturbations [26].1

In LQC one takes a symmetry reduced spacetime, such as a FLRW cosmological space-

time, with the scale factor as only remaining gravitational degree of freedom and quantizes

it, using techniques motivated from full LQG. In particular, the Hamiltonian constraint of

GR is reduced to cosmology in such a way that it knows about a certain finite regularization

parameter ε. Only for a vanishing regularization parameter the classical, continuum scalar

constraint of cosmology is recovered. The finiteness of this parameter leads to a replacement

of the initial singularity in form of a big bounce [29]. Details of the nature of the bounce and

physical implications are known to depend on the choice of the regularization parameter for

the standard quantization of LQC [30–32]. Due to increase in complexity, such ambiguities

inevitably increase for anisotropic [33–36] and black hole spacetimes [37–40]. In addition,

different choices of regularized versions of constraints can result in strikingly different phys-

1 While these results were obtained by using an effective description, the precise way of how quantum gravity

effects affect perturbations in the full theory is not yet clear. See [27, 28] for work in this direction.
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ical evolution even for the same choice of regulator ε. An example is the case of symmetric

versus asymmetric bounce originating in standard [31] versus Thiemann-regularized scalar

constraint in LQC [22, 41–43]. Recall that the standard form of the Hamiltonian constraint

arises using classical symmetries of the FLRW spatially-flat spacetime by combining Eu-

clidean and Lorentzian terms in the constraint, whereas in the Thiemann-regularization

these terms are quantized independently.

Since a clear relation to the full theory remains unknown as of today, many of the tools

developed to deal with the ambiguity problem in LQG can not be employed in LQC, e.g.

various renormalization approaches [44–46]. As mentioned earlier, a promising way to un-

derstand and restrict ambiguities is to understand detailed physical implications, not only

of the bounce regime but also of the late time dynamics. Such an exercise has been carried

out for instance for the standard LQC in [31, 32] for µ0 [30, 47] and µ̄-schemes [31] which

correspond to different ways of assigning minimum area to loops over which holonomies of

the Ashtekar-Barbero connection are considered. Let us recall that the µ0-scheme (or the

old standard LQC) is based on using kinematical areas of the loops, while the µ̄-scheme

(or the improved dynamics) uses physical areas. As a result, in µ0-scheme, the regulator is

a constant, whereas in µ̄ scheme it depends on the inverse of the square root of the triad.

Investigation in [32], performed with effective dynamics for standard quantization of the

scalar constraint in LQC, used qualitative features of the present epoch to show inviability

of µ0-scheme by noting that a recollapse of a universe at large volumes occurs when a posi-

tive cosmological constant is included. Note that there are other problems with µ0-scheme,

including that of dependence of density at the bounce on rescaling of fiducial cell chosen for

defining the symplectic structure in the symmetry reduced phase space. All such problems

were found to be absent in µ̄-scheme [32]. It is interesting to note that the result of recollapse

of the universe at late times is tied to the instability properties of the quantum Hamiltonian

constraint [48] which is found to be true even in Thiemann regularization of LQC [49]. While

these investigations effectively rule out µ0-scheme for standard and Thiemann-regularized

versions of LQC, the situation is unclear if there are additional non-trivial modifications to

gravitational and matter parts of the Hamiltonian constraint which can potentially modify

the cosmological dynamics. Since µ0-scheme, despite its noted problems, is the one which

is closest to construction in the LQG, and since µ̄-scheme has so far no derivation from full

theory, it is pertinent to ask whether there exist some modifications originating from full
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theory which can resurrect µ0-scheme.

In our recent work [50, 51], we have bridged one of the gaps between LQG and LQC

which resulted from a disparity in the latter for the treatment of holonomies and fluxes.

In the conventional quantization in LQC, though one treats holonomies as in LQG, there

is no corresponding quantization of fluxes. Due to gauge-fixing allowed in homogeneous

spacetimes, one instead works with a symmetry reduced triad. As a result, gauge transfor-

mation properties of discrete fluxes is never discussed in LQC, which are not only necessary

if one wishes to employ coherent state methods on a fixed lattice to extract the cosmo-

logical sector of LQG, but also to have a consistent gauge-invariant notion of singularity

resolution. For the latter we note that even simple phase space functions like volume are

not SU(2) gauge-invariant if they are built from discretization of standard fluxes for a finite

regularization parameter ε. The resulting physics of standard and Thiemann-regularized

LQC is hence no longer invariant with respect to local SU(2) transformations. However,

since the Ashtekar-Barbero variables describe gravity as a SU(2) Yang-Mills theory, any

observable must be invariant with respect to the symmetry group. To circumvent this prob-

lem, a way was proposed in [52] where an alternative regularization of the triad fields was

considered, the gauge-covariant fluxes, such that one can again construct gauge-invariant

observables. A quantization of LQC for standard regularization of the scalar constraint using

gauge-covariant fluxes was studied in [50, 51] which resulted in some surprising results. The

foremost of these is that the symmetric bounce which is characteristic of standard LQC dis-

appears and is replaced by a asymmetric bounce with a rescaling of effective constants in the

pre-bounce regime. Further, the matter part of the Hamiltonian constraint gets non-trivially

modified with curvature dependent terms effectively making minimally-coupled matter be-

have as non-minimally coupled. The resulting picture of the bounce in standard LQC with

gauge-covariant fluxes thus turns out to be strikingly different from standard LQC based on

symmetry reduced triads.

To summarize the situation, there are three layers of regularization ambiguities in LQC

we have mentioned above: (i) choice of regularization parameter ε – or whether one should

choose µ0 [30, 47] or µ̄-scheme [31]; (ii) choice of the form of the Hamiltonian constraint –

e.g. standard [30, 31, 47] versus Thiemann regularization [41, 43] and (iii) LQC based on

holonomies and triads [31, 47], or based on holonomies and gauge-covariant fluxes [50, 51].

The first ambiguity has been well explored in standard LQC using conventional quantization
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based on holonomies and triads [32, 53], but no such investigation has been carried out

using gauge-covariant fluxes. Given that gauge-covariant fluxes radically change the nature

of gravitational and matter parts of constraints, it is pertinent to explore the fate of µ0

and µ̄-schemes when modifications due to gauge-covariant fluxes non-trivially affect the

Hamiltonian constraint. Part of this exercise was performed in our companion work [51] with

matter as a massless scalar field, where both regularizations result in a singularity resolution.

But the question of viability when cosmological constant is included was not addressed.

Ignoring possible subtleties with implementations of the diffeomorphism constraint, this

will form the first goal of our manuscript where we will explore whether in presence of

gauge-covariant fluxes one of the main problems of µ0-scheme concerning the recollapse

of the universe at late times can be resolved. At the same time, it remains to be verified

whether µ̄ scheme results in a viable late time evolution in presence of a positive cosmological

constant when gauge-covariant flux modifications are included. The second of the above

ambiguities has been studied by fixing the regulator to µ̄-scheme. Not much is known on the

phenomenological differences between the µ0 and µ̄-schemes for the Thiemann regularization

of the Hamiltonian constraint. This will form the second goal of our manuscript. Our aim

will be to understand some qualitative differences in the µ0 and µ̄-schemes for the Thiemann-

regularized dynamics both in presence and absence of gauge-covariant flux modifications.

Results from the first of the above exercises will show that even though gauge-covariant

fluxes modify the Hamiltonian constraint in a non-trivial way, the problem of recollapse for

µ0-scheme is not alleviated. The µ̄-scheme again shows viable evolution even when a positive

cosmological constant is included. In contrast to the case when Λ is absent, there is now

a rescaling of Newton’s constant (as well as of Λ) in the post-bounce branch. Further, the

rescaling of the effective constants is different in post- and pre-bounce branches.

The second exercise first confirms that results of [51] hold true even for Thiemann regu-

larization of the scalar constraint. This exercise then brings out so far unseen novel features

of pre-bounce dynamics for the µ0 and µ̄-schemes. We find that irrespective of using triads

or gauge-covariant fluxes, the nature of emergent matter in the pre-bounce regime is de-

termined by the choice of the regularization parameter. It is known that for µ̄-scheme one

obtains an emergent cosmological constant in the pre-bounce regime, but we find that for
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µ0-scheme the emergent matter mimics evolution of a string gas cosmology2 or a coasting

cosmology3. Both in string gas cosmology and coasting cosmology the equation of state

behaves as −1/3. The above surprising result is unaffected when non-trivial modifications

from gauge-covariant fluxes are included and shows for the first time striking differences in

dynamics for µ0 and µ̄-schemes even for matter such as a massless scalar field. It demon-

strates that for Thiemann regularization different ambiguities result in very different physics

in comparison to standard regularization in LQC.

This manuscript is organized as follows. In Sec. II, we will review the concept of gauge-

covariant fluxes for isotropic, spatially-flat cosmology and present the notation used through-

out the paper. For further details, the reader is referred to our companion paper [51]. In Sec.

III, we turn towards our first exercise on the ambiguity of how to choose the regularization

parameter. While the full theory LQG is intrinsically a field theory over a continuous spatial

manifold, one can study its projection onto observables built from a finite set of discrete

basic variables, i.e. holonomies and fluxes. These are normally constructed as smearing with

respect to an underlying lattice (see [18]) that can be described by some coarseness scale

µ0 ∈ R. When one follows this line of thought in conventional LQC, one arrives at a model,

which produces unphysical predictions, such as a recollapse of the universe when a positive

cosmological constant is present. The well known solution came in form of a new regu-

larization proposal, solely for LQC, the so-called µ̄-scheme, in which the afore-mentioned

problems are absent [31, 32]. We will therefore focus Sec. III on the regularization proposal

for the scalar constraint with gauge-covariant fluxes from [51] and include a non-vanishing,

positive cosmological constant. Comparing herein µ0- and µ̄-schemes will shed light on the

question, which regularization scheme can have the chance to yield physical sensible pre-

dictions for models based on gauge-covariant fluxes. We will study the evolution produced

by the modified constraints and call it “regularized dynamics” (in analogy to assuming the

validity of the effective dynamics of LQC). In order to investigate further the ambiguity

problem regarding the regularization choice of the scalar constraint, one notes that in [51]

2 In string gas cosmology, the universe starts from a phase with a highly excited gas of strings. Such a

phase is claimed to lead to a scale-invariant spectrum of perturbations without requiring an inflaton field.

See Ref. [54] for details.
3 In a coasting cosmology, energy density of matter behaves as inverse square of the scale factor and results

in an expansion of the universe with a constant velocity i.e. a coasting expansion [55].
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only one specific regularization was studied (i.e. of the standard form the Hamiltonian con-

straint). Therefore, in Sec. IV we will extend the analysis of regularized dynamics with

gauge-covariant fluxes for the newly rediscovered Thiemann-regularization. This analysis is

performed for µ0- and µ̄-schemes which we reveal a novel feature: the nature of emergent

matter changes on changing the regulator. Finally, we finish with Sec. V with a discussion

of the results and conclusion.

II. GAUGE-COVARIANT FLUXES IN COSMOLOGY WITH LATTICE

REGULARIZATION

In this section, we review the construction of gauge-covariant fluxes and its application

to isotropic, spatially-flat cosmology. Our notation will follow [51], which the reader can

refer for details.

Consider a spacetime (M, g) on manifold M ∼= R × σT , with compact spatial mani-

fold σT = T3 with a unit fiducial volume. Einsteins equations for g can be recast into a

Hamiltonian formulation of an SU(2) Yang-Mills theory on σT , with the triad Eb
J(y) and

the connection AIa(x), known as Ashtekar-Barbero variables [2–4]. The spatial indices are

a, b, ... = 1, 2, 3 and the internal indices are denoted by upper case letters: I, J, ... = 1, 2, 3.

The Ashtekar-Barbero variables form a canonical pair, i.e.:

{AIa(x), AJb (y)} = {Ea
I (x), Eb

J(y)} = 0, {Ea
J(x), AIb(y)} =

κγ

2
δab δ

I
Jδ

(3)(x, y) (1)

with κ = 16πG the gravitational coupling constant and γ 6= 0 the Barbero-Immirzi param-

eter.

Being a SU(2) gauge theory, in addition to the usual constraints of GR (i.e. scalar- and

diffeomorphism-constraint), one has to impose the vanishing of the Gauss constraint:

GJ(x) = (∂aE
a
J)(x) + εJKLA

K
a (x)Ea

L = 0 . (2)

In other words, physical information is stored only in SU(2)-gauge invariant observables,

that are functions f(E,A) on the phase space which are invariant with respect to any local

gauge-transformations g(x) ∈ SU(2):

Ea
I (x) 7→ −2 tr(τIg(x)τJg(x)−1)Ea

J(x), (3)

AIa(x) 7→ 2 tr(τI(∂ag)(x)g(x)−1)− 2 tr(τIg(x)τJg(x)−1)AJa (x) .
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Here τI = −iσI/2 ∈ su(2) with σI being the Pauli matrices.

A possible route towards a quantization of Yang-Mills theories is by introducing an ultra-

violet cutoff, e.g. in form of a lattice Γε ⊂ σT described by some discretization parameter

ε > 0. In the continuum limit ε→ 0, the lattices Γε will fill out the manifold σT , however for

finite ε, all observables considered will be such that they are constructed from finitely many

basic functions of (Eb
J(y), AIa(x)) smeared along edges on the lattice and its associated dual

cell complex. The challenge lies now in building these functions in such a way that they

remain invariant with respect to (3) and are still sufficient that any function f(E,A) can

be arbitrarily well approximated by them, given Γε is chosen fine enough. The proposal by

Thiemann [52] is to consider holonomies,

h(e) := P exp(

∫ 1

0

dt AJa (e(t))τJ ė
a(t)) (4)

and gauge-covariant fluxes:

P (e) := h(e1/2)

∫
Se

h(ρx) ∗ (EJ(x)τJ)h−1(ρx)h
−1(e1/2) (5)

where e : [0, 1] 7→ σT is a path along edges in Γε. We denote by e(0), e(1) the starting and

ending point of edge e respectively and e1/2 the segment of the path from e(0) to e(1/2). The

integral in gauge-covariant fluxes is over face Se which is dual to edge e. The path ρx ⊂ Se

connects e(1/2) and its labeling point x, i.e. ρx(1) = x. Its choice presents an ambiguity in

the way the fluxes are constructed.

Both of the objects (4) and (5) transform covariantly with respect to (3), e.g. h(e) 7→

g(e(0))h(e)g(e(0))−1, such that holonomies along closed loops (i.e. e(0) = e(1)) are

SU(2) gauge-invariant, as well as contractions of the fluxes such as tr(P (e)P (e′)) whenever

e(0) = e′(0). It is now possible to construct gauge-invariant observables on finite lattices,

implying that even in presence of finite regularization parameters the measurements of these

observables will be physically meaningful [50, 51].

In this paper we will skip the quantization part and conjecture that the main effect of

any quantization that introduces a finite regularization ε of the manifold can be studied by

a regularized dynamics on the lattice. We will apply this to spatially-flat, isotropic FLRW

spacetimes. For this spacetime there exists a gauge-fixing such that connection and triad
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take the form:4

Ea
I (x) = p δaI , AIa(x) = c δIa , (6)

where we will adapt a positive orientation of the triad throughout the paper. Indeed, in

the continuum one can perform a symplectic reduction to the phase space of (c, p) with a

non-vanishing Poisson-bracket,

{p, c} =
κγ

6
. (7)

Computing the holonomies and gauge-covariant fluxes for a lattice Γε with lattice spacing ε

in coordinate distance, we find for a suitable choice of paths ρx (see [51] for further details):

h(ek) = exp(cετk), P (ek) = ε2pτk sinc(cε/2)2 (8)

where ek is any edge oriented in direction k.

With this construction available, we will assume that every observable, we can measure,

has to be expressed in terms of holonomies and gauge-covariant fluxes on some lattice. As

an example, a family of SU(2)-gauge invariant functions that approximate the volume V [σT ]

of the spatial manifold could be (see [17] for further details):

V ε :=
∑
v∈Γε

( 1

3!

∑
ea∩e2∩e3=v

ε(e1, e2, e3)εIJKP
I(e1)P J(e2)PK(e3)

)1/2

−→
ε→0

∫
σT

d3x
√

det(q) = V [σT ] ,

(9)

with ε(e1, e2, e3) = sgn(det(ė1, ė2, ė3)). Upon evaluating both sides of the above equation for

an isotropic, spatially-flat cosmology we get,

V ε = p3/2sinc3(cε/2), V [σT ] = p3/2 . (10)

In other words, a model which is based on gauge-covariant fluxes, will have as observable for

the volume a function, which includes information about the connection c. Only, in the limit

of vanishing regulators ε→ 0 this information is lost. Moreover, this effect translates to all

4 We want to stress that the latter gauge fixing is a coordinate choice, therefore not only fixing the SU(2)

gauge, but moreover the diffeomorphism constraint. However, a treatment of diffeomorphism-invariant

observables extends the scope of this paper and we refer to the literature for promising approaches, e.g.

[56–58].
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observables, which are built from the volume, such as the energy density ρ := HM/V [σT ],

where HM denotes the matter Hamiltonian. In this manuscript, the matter Hamiltonian

will consist of a massless scalar field as well as a positive cosmological constant. Therefore,

in this paper, whenever we discuss about the model of gauge-covariant fluxes, we will use

the following functions for gauge-covariant volume and energy density respectively,

vg.c. = p3/2 sinc3(cε/2), ρ =
HM

p3/2
sinc−3(cε/2) . (11)

The difference from standard LQC is important to note, where the sinc-terms are absent

and the corresponding observables are v = p3/2, ρ = HM/p
3/2. The departure from standard

LQC observables becomes necessary if one wishes to work with an SU(2)−gauge invariant

discretization of the connection formulation which features the latter functions as observ-

ables for cosmology. Thus, establishing contact with the full theory at the current state of

knowledge forces us therefore to work with (11).

III. CHOICE OF ε WITH GAUGE-COVARIANT FLUXES AND Λ > 0

In this section we consider physical implications of the choice of discreteness parameter ε

for gauge-invariant LQC in the presence of a positive cosmological constant Λ. We consider

the form of Hamiltonian constraint as in [51], where the Euclidean and Lorentzian terms

are combined before quantization. For this Hamiltonian constraint, we will be interested in

two choices: µ0-scheme [30, 47], and the µ̄-scheme [31]. While in the former case µ0 is a

constant, µ̄ depends inversely on square root of the symmetry reduced triad. This difference

arises during quantization from whether one considers coordinate areas of the loop on which

holonomies are constructed (µ0-scheme) or physical areas (µ̄-scheme).

The inclusion of a positive cosmological constant to study regularization ambiguities is

important for several reasons. Since it corresponds to an equation of state w = −1, it

captures not only the dark energy phase of the present epoch of our universe but also

approximates slow-roll inflation which has w ≈ −1. A viable regularization of a quantum

cosmological model should be able to include both of these phases. That this is a non-trivial

requirement becomes clear once we notice that µ0-scheme in standard LQC results in a

sharp disagreement with GR when cosmological constant is included. It is possible to show

that given any value of a positive Λ, there always exist a volume such that the universe
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undergoes a recollapse at large volumes where spacetime curvature is negligible! [32]. On

the other hand, the µ̄-scheme in standard LQC is completely consistent with cosmological

dynamics in presence of a cosmological constant. The recollapse of a universe in µ0-scheme

occurs because of the form of the gravitational part of the Hamiltonian constraint which

results in “Planck scale effects” in the classical regime. This effect is reflected independently

via the properties of the quantum difference equation which becomes unstable for some

volume for any given choice of positive Λ [48] (see also [49, 59]). Thus, in standard LQC

positive Λ plays an important role in restricting regularization ambiguities and ruling out

µ0-scheme. Note that similar arguments can be made for other possible choices of ε which

depend on phase space functions. It turns out that it is only the µ̄-scheme which yields a

viable evolution for all matter satisfying weak energy condition [32].

While the above results clearly select the µ̄-scheme as a viable regularization in standard

LQC based on holonomies and triads, the situation is unclear for gauge-invariant LQC where

gauge-covariant fluxes are included. The reason is tied to the fact that gauge-covariant

fluxes bring non-trivial modifications via sinc(cε/2) not only to the gravitational part of

the Hamiltonian constraint but also modify the matter part. As we will see, when gauge-

covariant fluxes are included the cosmological constant term gets multiplied with sinc3(cε/2)

term. In a cosmological constant dominated phase, since c increases classically, the sinc term

departs from unity and therefore one expects departures from the case of standard LQC.

Given the non-trivial root structure of sinc function, it is not obvious whether or not a

µ0-scheme universe faces a recollapse at large volumes. In the following subsection, we

first obtain numerical solutions for the µ0-scheme and find that even in presence of gauge-

covariant fluxes there is a recollapse at late times in presence of a positive cosmological

constant. This is followed by analysis of µ̄-scheme where we will analytically show that

such a recollapse is absent. For this purpose, we will derive the asymptotic Friedmann

equations in the far past and in the far future where in both regions a rescaling of the

effective cosmological constant as well as of the effective gravitational coupling happens due

to gauge-covariant fluxes.

In the following, we will work in natural units `Pl = ~ = c = 1.
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A. The µ0-scheme

We now investigate the dynamics of a FLRW universe with positive cosmological constant

Λ > 0 regularized by the methods of LQC using gauge-covariant fluxes. The µ0-scheme refers

to working with observables defined on a lattice Γµ0 with µ0 > 0. The scalar constraint of

GR can be regularized in a suitable way [8, 9] with holonomies and gauge-covariant fluxes

from the previous section, such that said regularization is again gauge-invariant (for more

details, see [51]). After discretization, one can restrict the scalar constraint to cosmological

model to obtain an Hamiltonian constraint driving the regularized dynamics. Alternatively,

it is also common to integrate symmetries of cosmology prior to the discretization process.

In the standard regularization of LQC, this procedure leads to replacing the classical

scalar constraint (with lapse function N)

CΛ[N ] = − 6N

κγ2

√
pc2 +

Nπ2
φ

2
√
p3 +

2

κ
NΛ
√
p3 (12)

by the following constraint [30]:

Cµ0
LQC,Λ[N ] = − 6N

κγ2µ2
0

√
p sin2(cµ0) +

Nπ2
φ

2
√
p3 +

2

κ
NΛ
√
p3. (13)

The sin(cµ0) term arises by approximating the curvature of the connection using a small

holonomy loop of area µ2
0. In the presence of gauge-covariant fluxes, the same exercise yields

[51]:

Cµ0
gc,Λ[N ] = − 6N

κγ2µ2
0

√
p sin2(cµ0)sinc(cµ0/2) +

Nπ2
φ

2
√
p3 sinc−3(cµ0/2) +

2

κ
NΛ
√
p3sinc3(cµ0/2) .

(14)

The above expression can be seen to be obtained from (13) via using gauge-covariant

triads p 7→ pg.c. := p sinc2(cµ0/2). We note that this expression is different from the

one in standard LQC because of the presence of sinc terms affecting gravitational as well

as matter parts of the Hamiltonian constraint. This is in contrast to sine term which

multiplies only the gravitational part. Let us now investigate whether there are any quali-

tative differences in the corresponding evolution generated by both constraints (13) and (14).
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FIG. 1: Behavior of logarithm of gauge-covariant volume and energy density are shown in φ for the

µ0-scheme with a Λ > 0 when gauge-covariant fluxes are included (red-solid curves). Comparisons

are made with the evolution in standard LQC (blue-dashed curves). The initial conditions are

given at φ = 13.5. As in standard LQC, the universe recollapses even when gauge-covariant fluxes

are included. Due to asymmetric turn-arounds in presence of gauge-covariant fluxes, departures

from standard LQC become pronounced before the bounce at φ ≈ 12.5 and after the recollapse at

φ ≈ 14.5.

As for the concrete numerical evaluation, we will choose for µ0 according to [20, 29, 30]

a value based on the minimal non-zero eigenvalue ∆ = 4
√

3πγ of the area operator of LQG

[60], namely:

µ0 := 3
√

3. (15)

Here the Barbero-Immirzi parameter is set to γ = 0.2375 as is customary in the LQC

literature. For these numerical solutions we assume Λ = 10−10 in Planck units.We choose as

initial state at late times φ(t0) = 13.5 a universe with p(t0) = 6×104 and πφ(t0) = 300. The

latter value turns out to be a constant of motion, as the scalar constraint does not depend

on the clock field φ itself. Lapse is chosen as N = 1. The corresponding initial value of c(t0)

can be determined by the vanishing of the Hamiltonian constraint (14) (and respectively

(13) for standard LQC). As observables, we are primarily interested in v, the volume of the
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whole spatial manifold, the associated Hubble rate, and the energy density ρ. Analogous

to [51] (and as discussed in Sec. II) for any model including gauge-covariant fluxes, the

observable associated to the volume is given by (11), i.e., it is different from the definition of

the volume in models with conventional fluxes. A similar effect happens for energy density

ρ and the Hubble rate which is now defined using gauge-covariant volume.

The flow of constraint (14) for the volume, Hubble rate, energy density and connection

for each of the models are visualized in Figs. 1 and 2. These figures show that resolution of

big bang singularity occurs in µ0-scheme in absence as well as presence of gauge-covariant

fluxes when a positive cosmological constant is included. But both the models suffer from

the problem of recollapse of volume at late times resulting in a cyclic evolution. And

thus, gauge-covariant flux modifications to the Hamiltonian constraint of the µ0-scheme

in standard regularization of LQC are unable to cure the problem of physical viability of

the µ0 scheme. Even though the form of Hamiltonian constraint with gauge-covariant flux

modifications is non-trivially different from the one in standard LQC, including the changes

in the cosmological constant term, the behavior of connection is such that it allows the

standard LQC-type recollapse. In contrast to standard LQC, the evolution with gauge-

covariant fluxes leads to an asymmetric bounce/recollapse. This asymmetry in evolution

continues through various cycles and is the cause of disagreement in bounces and recollapses.

Since such an evolution does not describe the asymptotic behavior of a classical FLRW

universe with a positive cosmological constant, one can argue that the µ0-scheme fails for

this particular system.

B. The µ̄-scheme

The analysis in the last subsection showed that even in presence of modifications arising

from gauge-covariant fluxes, the µ0-scheme fails in the presence of a positive cosmological

constant since it results in an unphysical recollapse of the universe at late times. We now

study the fate of the µ̄-scheme. Without gauge-covariant flux modifications, it is well known

that this regularization results in a physically viable cosmological evolution. Let us see

whether these features are affected on inclusion of gauge-covariant flux modifications. In

particular, we will be interested in understanding whether at large volumes the dynamical

evolution is approximated well by the classical solution in presence of a positive cosmological
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FIG. 2: Evolution of Hubble rate and connection are shown for the µ0-scheme in presence of

Λ > 0. Standard LQC is shown with blue-dashed curve, and red-solid curve denotes LQC with

gauge-covariant flux modifications. Initial conditions are provided at φ = 13.5. The Hubble rate

vanishes at bounce and recollapse causing a cyclic evolution for both the models. Despite non-

trivial differences from standard LQC, evolution of µ0c exhibits similar root structure in dynamical

evolution albeit at very different values of φ.

constant. In this regime, the dynamical evolution is dictated by a cosmological constant since

the energy density of the massless scalar field decays rapidly.

The Hamiltonian constraint for the µ̄-scheme in presence of cosmological constant and a

massless scalar field matter is given by,

C µ̄
gc,Λ[N ] = − 6N

κγ2∆

√
p3 sin2(cµ̄)sinc(cµ̄/2) +

Nπ2
φ

2
√
p3 sinc−3(cµ̄/2) +

2

κ
NΛ
√
p3sinc3(cµ̄/2)

(16)

with µ̄ =
√

∆/p as introduced in [31]. Note that we implement the µ̄-scheme after the

modifications of the gauge-covariant fluxes have been incorporated [51]. As emphasized in

Sec. I there is no derivation of the µ̄ scheme from the full theory, yet.

In the following we understand as the classical or asymptotic region, the part of the

phase space trajectory of vanishing scalar field energy density ρφ = π2
φ/(2
√
p3)sinc−6(cµ̄/2).

In other words, we are interested in the behavior ρφ → 0 or, equivalently, p → ∞. Imple-
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mentation of the constraint C µ̄
gc,Λ[N ] = 0 in this limit reads explicitly:

3 sin(cµ̄)2 = γ2∆Λsinc2(cµ̄/2) +O(ρφ) (17)

which implies

cos(x)2x2 =
γ2∆

12
Λ , (18)

with x := cµ̄/2|ρφ=0, i.e. the phase space function evaluated for the limit-point where

ρφ = 0. Eq. (18) is key for the remaining computation of this section, as it determines

the unknown value x in the asymptotic regime. Note that p → ∞ and c → 0 in such a

way that cµ̄→ x is nonetheless finite. However, (18) is a transcendental equation, of which

an analytic solution is quite difficult to obtain. Nonetheless, we can study relation (18) to

extract all the required information. Using analysis of [51] we will restrict our attention to the

interval x ∈ I := [0, π/2]. This range serves as the boundaries of cµ̄ in the case of vanishing

cosmological constant. Studying the extremal points of (18) one finds x = 0, x = π/2

describing global minima of I and x = cot(x) to be the unique maximum. Hence, for

any Λ < 12 cos(x?)2(x?)2/(γ2∆) where 0 < x? = cotx? < π/2 (which has numerical value

x? ≈ 0.86), the transcendental equation (18) will have two distinguishable solutions for x,

which we will denote as x−, x+ such that x− < x+. As we will see, these solutions will

correspond to the two different asymptotic regions: the far future at x− and the far past at

x+. For both of the asymptotes there is rescaling of fundamental constants, i.e. of κ and

Λ. We note that a rescaling of Newton’s constant occurs for the pre-bounce regime when

gauge-covariant flux modifications are present even in absence of Λ [51]. In the presence

of cosmological constant, a rescaling occurs for the pre-bounce as well as the post-bounce

regime. For the cosmological constant case, a rescaling of Λ occurs also for standard LQC

at large volumes [61]. Further, rescaling of Λ and Newton’s constant have been discussed in

Thiemann regularizations of LQC [22, 41].

These rescalings occur if one tries to match the leading orders in the Friedmann equa-

tion, which can be derived from the canonical formalism of the regularized model, with the

corresponding terms in the Friedmann equations of classical GR.

To be precise, we recall that the Friedmann equation for classical FLRW sourced with

a massless scalar field φ in presence of a cosmological constant Λ̄ and with gravitational
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coupling constant Ḡ reads,

ȧ2

a2
= N̄2 Λ̄

3
+ N̄2 κ̄ρ̄φ

6
. (19)

Note that the expansion rate on the left hand side is explicitly computed with a choice of

coordinate system with lapse function N̄ to compute the time derivative. Via Hamilton’s

equations we can evaluate the Hubble rate explicitly for the LQC with cosmological constant

Λ and gauge-covariant-flux corrections. First, let us note that

φ̇ = {C µ̄
gc,Λ[N ], φ} =

Nπφ√
p3 sinc−3(cµ̄/2) (20)

which immediately leads us to conclude that in the asymptotic region cµ̄/2→ x± there is a

rescaling of the scalar field momentum and lapse function

πφ → π̄φ,± := πφsinc−3(x±)α, N → N̄± := Nα−1 (21)

with any α 6= 0, if we want to match it with a classical FLRW solution at ρφ → 05.

Next, from ṗ = {C µ̄
gc,Λ[N ], p} we can find ṗ = ṗ(ρ,Λ) and from there we can determine

the Hubble rate for the considered model. Equating H2(ρφ = 0,Λ) with the right hand side

of (19) leads to

Λ̄± := Λ α−2sinc4(x±)

[
1 + cos2(x±)

(
sinc2(x±) + cos2(x±)− 2sinc(2x±)− 2

)
+ 2 cos(x±)sinc(x±) cos(2x±)

]
(22)

which presents a non-trivial rescaling for the cosmological constant.6

In the same manner one can extract the linear contribution of ρφ and via (21) we get

ρφ = sinc6(x±)ρ̄φ± using which we can recast it into an expression involving only ρ̄φ±.

Finally, we can once again equate it with the first order in ρ̄φ± of (19) to find,

κ̄± :=κ sinc(x±)4

[
18 sinc(x±) cos3(x±)− 21

2
sinc2(x±) cos2(x±)− 4 sinc(2x±) cos2(x±)+

+
5

2
sinc2(2x±)− 5 sinc(4x±)− cos2(x±) +

11

8
cos(4x±)− 3

8

]
. (23)

5 πφ is a constant of motion, therefore the limit ρφ → 0 is driven by p→∞.
6 Since (18) is quadratic in x but linear in Λ it appears that for Λ = O(10−n) with n ∈ R we find

x−, (π/2−x+) ≈ O(10−n/2), in other words: for all physically relevant values of the cosmological constant,

i.e. Λ � 1 , we will find Λ � x−, (π/2 − x+) � 1. E.g. for α = 1, when expanding (22) around these

points, we see that such a rescaling is of order unity in the pre-bounce branch, i.e. Λ̄− ≈ Λ.
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Hence, we find that the asymptotic behavior around x− matches with the Friedmann equa-

tion of a classical FLRW universe with effective constants π̄φ,±, Λ̄± and κ̄±.7 Note that if

this model corresponds to a physically viable universe, then the values of κ̄− and Λ̄− would

correspond to the values we observe in the present epoch. The pre-bounce branch will have

rescaled effective constants. Thus, the asymmetric bounce found in our analysis picks up a

preferred branch of universe with effective constants which agree with observations. In this

particular sense, the asymmetric bounce selects a preferred direction of cosmic evolution or

time consistent with observations.

Our analysis so far establishes that the asymptotic regime of µ̄-scheme in presence of a

positive cosmological constant and with gauge-covariant flux modifications results in agree-

ment with classical FLRW solution with a positive Λ albeit with rescaled physical constants.

This rules out the classical recollapse in presence of Λ > 0 which caused inviability of µ0-

scheme. Let us now discuss another important feature of µ̄-scheme which has to do with

bounce at a universal value of energy density. In standard LQC, this value was ρb ≈ 0.41ρPl.

In terms of ρφ, the bounce occurred at ρφb ≈ 0.41− 2Λ/κ. For the present model, this value

can be computed by solving the Hamiltonian constraint,

ρφ :=
6

κγ2∆
sin2(cµ̄)sinc−2(cµ̄/2)− 2

κ
Λ . (24)

Hence, the maximum of the right hand side is uniquely determined by cµ̄ which will run

between 0 < 2x− < cµ̄ < 2x+ < π, given that the initial parameters are in this region. In

case of vanishing cosmological constant the energy density reaches its maximum around

cµ̄ ≈ 1.7207 with ρmax = 7.5559/(κγ2∆), which is a bigger value compared to mainstream

LQC.

We will now verify numerically that both asymptotic points as discussed above are

indeed reached by a trajectory in the phase space. To clearly show the effect of Λ, for

numerical simulations we choose Λ = 1 in Planck units. Apart from this change, rest of

the initial values will be chosen as in subsection III A, i.e. φ(t0) = 13.5, p(t0) = 6 × 104,

πφ(t0) = 300. Further, we choose ∆ = 4
√

3πγ, γ = 0.2375. The results are visualized in

7 Note that there also exist higher order corrections in ρφ, which have been neglected in the limit ρ→ 0 at

x±. They will become important once one studies the behavior close to the bounce.
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Figs. 3 and 4. One can see that the effective dynamics including the gauge-covariant-flux

corrections deviates strongly from standard LQC in the sense that it features an asymmetric

bounce. Also in the far future, the non-trivial rescaling of cosmological constant Λ̄− and

of Newton constant κ̄− is different than the rescaling of Λ in standard LQC which can be

seen in the detailed plots of the Hubble rate in Fig. 4. These plots show that unlike the

µ0-scheme there is no recollapse of the universe at late times.
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FIG. 3: Evolution of gauge-covariant volume and energy density is shown for the µ̄-scheme

with a positive cosmological constant in presence of gauge-covariant flux modifications (solid-red

curve) and for standard LQC (dashed-blue curve). Trajectories for (rescaled) classical expand-

ing/contracting FLRW spacetime with positive Λ are shown in dotted-black/dashed-green curves.

In presence of gauge-covariant fluxes the bounce is asymmetric. The energy density in the right

plot tends in the far past towards the value of the cosmological constant of the model, ignoring con-

tributions from the geometry part of the constraint. This illustrates that the rescaled cosmological

constant in the green curves differs drastically from the original one, i.e. Λ = 1.

Results discussed above were found to to be valid for a wide range of initial conditions. We

performed more than 500 numerical simulations with πφ ∈ [10, 10000] to test the robustness

of the singularity resolution for µ0 as well as µ̄-scheme. In all the cases, an asymmetric

bounce with a rescaling of effective constants across the bounce was obtained. In Fig. 5, we
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FIG. 4: Behavior of Hubble rate is shown for µ̄-scheme in presence of Λ > 0 with gauge-covariant

flux modifications, and is compared with the one in standard LQC. The plot uses coordinate time,

i.e. N = 1. Conventions of the curves are same as in Fig. 3. The solid-light horizontal lines

correspond to
√

Λ̄−/3 and −
√

Λ̄+/3. The zoom at late times highlights the fact that the rescaling

of the constant Λ̄−, κ̄− and π̄φ,− is different than in standard LQC.

show the robustness of asymmetric bounce with different choices of πφ for µ0 and µ̄-schemes.

We can see that the effect of choosing different values of πφ is to change the volume at the

bounce which directly follows from the behavior of energy density at the bounce. The

qualitative results are found to be insensitive to the choice of initial conditions.

Let us briefly summarize the results of this section. We investigated how the inclusion

of gauge-covariant fluxes affects the common LQC-regularization prescription for FLRW in

presence of a positive cosmological constant. It transpired that the µ0 scheme fails in the

sense that although it resolves the initial singularity via a quantum bounce, it also causes

an unphysical recollapse at late times leading to a cyclic evolution. This problem is in

addition to the rescaling of physical observables under the rescaling of the fiducial cell, in

the symmetry reduced setting, if one would consider a non-compact spatial manifold, e.g. R3.

The situation with gauge-covariant flux modifications turns out to be same as in standard

LQC. On the other hand, the µ̄ scheme presents a viable model, in which not only a bounce

occurs but GR is obtained in the infra-red limit. Due to presence of gauge-covariant fluxes
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FIG. 5: The numerical robustness of results is tested with different initial values: πφ = 10 in

dashed green; πφ = 100 in dot-dashed blue; πφ = 1000 in dotted orange and πφ = 10000 in solid

purple. On the left evolution of Λ > 0 with gauge-covariant flux modifications in the µ0 scheme is

shown, and on the right plots corresponds to µ̄ scheme.

and Λ 6= 0, the value of constants in the far future will be rescaled. The explicit values of the

rescaling for Newton’s constant and cosmological constant depends on free parameters of the

model and can therefore be matched with the observational data. Note that in absence of

gauge-covariant fluxes, only Λ got rescaled in standard LQC for post- as well as pre-bounce

branch. While in presence of gauge-covariant fluxes there is a rescaling of Λ as well as κ.

Also, the rescalings are different in pre- and post-bounce branches.

IV. CHOICE OF DISCRETENESS PARAMETER FOR

THIEMANN-REGULARIZED HAMILTONIAN CONSTRAINT

We will now turn towards the Thiemann regularization of the scalar constraint which

in contrast to standard LQC treats the Lorentzian part manifestly differently than the

Euclidean part. In the absence of spatial curvature, it was common in the early works on

LQC to use cosmological symmetries in order to combine the Euclidean and Lorentzian
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terms at the classical level resulting in standard LQC8 [47]. However, the spatial curvature

term is in general non zero, so it is not possible to use these symmetries on a general

footing. Alternatively, one can regularize Euclidean and Lorentzian terms of the Hamiltonian

constraint independently and promote each to its corresponding quantum operators. The

first such regularization in the literature was proposed by Thiemann in [8, 9].

So far Thiemann regularization has been only studied using triads as in LQC. It was first

implemented in LQC setting in [43] and has been recently rediscovered using coherent state

techniques to understand cosmological sector of the full theory [17, 18]. Phenomenological

implications of this regularization have mainly been studied for the µ̄-scheme [22–24, 41,

42, 62], with the main result being an asymmetric bounce with an emergent cosmological

constant [41] and a rescaled Newton’s constant [22] in the pre-bounce branch. In contrast,

the µ0-scheme has been investigated only to understand the properties of the quantum

difference equation [49, 63]. When the matter is a massless scalar field, µ̄ as well as µ0

regularizations result in von-Neumann stable difference equations, in presence of positive

Λ one finds instability for µ0-scheme and stability of quantization for the µ̄-scheme for

standard as well as Thiemann regularization based on triads [49]. It is interesting to note

that the von-Neumann stability properties of the quantum difference equation are good

indicators of phenomenological viability of the quantum Hamiltonian constraint at large

volumes. In particular, the volume beyond which instability occurs turns out to be the

same as the one at which recollapse occurs in µ0-scheme for standard LQC [48]. The same

result is expected to hold in Thiemann-regularized dynamics. Further, results of previous

section show that gauge-covariant fluxes do not alter the physical inviability of the µ0-scheme

for standard LQC. When combined, these results suggest that gauge-covariant fluxes with

Thiemann-regularized dynamics would not yield a viable µ0-scheme in presence of a positive

cosmological constant. For this reason, analysis in this section will be performed without

inclusion of a cosmological constant in the Hamiltonian constraint. A reader may wonder the

necessity of studying µ0-scheme in such a case. There are multiple reasons for this. First, so

far it is the µ0 type scheme which has a more direct link with full LQG than the µ̄-scheme.

Second, as we will show there is an interesting property of µ0-scheme which we uncover

8 Namely, that the connection is equal to the extrinsic curvature AIa = γKI
a . Imposing this symmetry before

regularization, allows to avoid any regularization strategy for the Lorentzian part of the constraint, which

involved KI
a .
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in our analysis which have so far remained undiscovered. This property is the presence of

emergent matter which has a different equation of state than the emergent cosmological

constant in µ̄-scheme. Finally, as we will discuss lessons gained from the analysis of this

section will be useful for insights on the nature of emergent matter for various other choices

of discreteness parameters.

Incorporation of gauge-covariant fluxes allows to deal with all possible SU(2)-gauge

transformation of the Ashtekar-Barbero variables. The classical regularized functions

hab(e), P
I(e) allow a manifestly gauge-invariant discretization of the full scalar constraint

in LQG as introduced by Thiemann. (This discretization is in detail explained in [19]). Of

course, this function can then promoted to an operator in a non graph-changing regular-

ization, whose action is on a fixed cubic graph (cf. [10, 17]). It is possible to compute the

expectation value of this scalar-constraint operator on a complexifier coherent state peaked

on the discrete geometry, which describes gauge-invariant GR. The result is found in [19]

and reads (to the leading order in the spread of the coherent states):

Cε[N ]|cos =
6N
√
p

κε2
sinc(cε/2)

(
sin2(cε)− 1 + γ2

4γ2
sin2(2cε)

)
+
Nπ2

φ

2
√
p3 sinc−3(cε/2) . (25)

If, instead of gauge-covariant fluxes, one uses triads one obtains the expression of the Hamil-

tonian constraint for the Thiemann regularization studied earlier [41–43]:

Cε[N ]|cos,TR =
6N
√
p

κε2

(
sin2(cε)− 1 + γ2

4γ2
sin2(2cε)

)
+
Nπ2

φ

2
√
p3 . (26)

After investigating some features of the µ0-scheme for Thiemann regularized dynamics,

we will study changes of the dynamics induced due to the gauge-covariant fluxes. This will

be then repeated for the µ̄-scheme. We will show that the asymptotic regime of the gauge-

covariant-flux corrections in the µ̄-scheme and in the far past features again an emergent

cosmological constant, however its value is rescaled compared to the one from (26) for ε→ µ̄.

In the case of µ0-scheme we find that instead of emergent cosmological constant, one obtains

an emergent matter with an effective energy density falling as 1/a2 (where a = p1/2 is the

scale factor). In GR, such a term9 arises from a string gas, or in a coasting cosmology.

With gauge-covariant fluxes, we find rescaling of coefficients of this emergent matter in the

Friedmann dynamics.

9 One may even view this term as an effective negative spatial curvature term.
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A. The µ0-scheme

In this subsection, we investigate some properties of the Hamiltonian constraint (26)

under the replacement ε → µ0 with µ0 given in (15), for the case of matter as a massless

scalar field. As a first step we will repeat an asymptotic analysis for the effective scalar

constraint without gauge-covariant flux-corrections, which will be included afterwards in

(26). First, we will determine the points in the phase-space, where the scalar field energy

density ρφ is much smaller than the Planckian value and hence indicates a classical regime.

Explicitly, ρφ � 1, corresponds to p� 1 and by imposing the constraint we find

cµ0 = 0, cµ0 = β+ := arcsin

(
1√

1 + γ2

)
, or cµ0 = π − β+, cµ0 = π (27)

for cµ0 ∈ (−π, π]. Obviously the conditions (27) for c are necessary, irrespective of whether

one uses the former constraint (26) or the one using gauge-covariant fluxes, i.e. (25). We

point out, that the presence of four asymptotic points correspond to the fact that there are

two branches for the Hamiltonian constraint, which are classically fundamentally different.10

As we will see in the following, the points c = 0 and c = π/µ0 correspond to classical

solutions. In this case, the effective Friedmann equation will only feature a rescaling of

the Newton’s constant in case of (25) and is approximated by the one for classical FLRW

spacetimes at large volumes for (26) up to higher quantum corrections. The precise rescaling

(33) will be derived below. In contrast to this, the remaining solutions for c in (27) can

be matched to classical solutions in which a new form of matter appears in the effective

Friedmann equations. It is hence necessary to view these points as corresponding to the

asymptotic regime of the pre-bounce universe. These considerations imply that the branch

from cµ0 = π − β+ to cµ0 = π is unphysical, because of the rescaling in the post-bounce

branch, and can be neglected in the following analysis. We also mention that upon solving

the constraint for the energy density, we obtain an expression that is not invariant under

residual diffeomorphisms. This effect is analogous to the one discussed in [51].

To start with the asymptotic analysis, we try to find an expansion of c = c(ρφ) around

the asymptotic point c ≈ 0. Solving the constraint (26) for c one sees that it is not possible

10 In presence of the µ̄-regularization, the consequence of this phenomenon has been carefully explained in

[22].
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to express it as a power series over ρφ with positive integers as exponents. Instead, c/
√
ρφ

admits such an expansion, and we obtain that

c = ±
√
p κγ
√

6

√
ρφ +O(ρ

3/2
φ ) . (28)

It follows that the Friedmann equation in the far future is given by

H2|TR,future =

(
ṗ

2p

)2

= N2κ

6
ρφ +O(ρ2

φ) . (29)

On the other hand, the asymptotic point cµ0 ≈ β+ allows a straightforward power series

expansion and leads to the modified Friedmann equation:

H2|TR,past =
N2

p(1 + γ2)2µ2
0

+N2κ

6
ρφ

1− 5γ2

1 + γ2
+O(ρ2

φ) . (30)

Together, the equations (29) and (30) tell us that the bounce of a universe driven by the

Thiemann regularization of LQC happens in an asymmetrical fashion, where a classical

FLRW universe in the far future gets connected to a past universe with a rescaled Newton’s

coupling constant Ḡ := G(1 − 5γ2)/(1 + γ2) and a new effective form of matter. This

emergent matter is fundamentally different from the one found in the µ̄-scheme [41] because

of its dependence on the triad which goes as 1/p. In GR, such a dependence is for matter

with equation of state −1/3 corresponding to a string gas or a coasting cosmology. The

novel result of this investigation is that the µ0-scheme results in a completely different form

of emergent matter than the µ̄-scheme in the pre-bounce regime. Here it is to be noted that

if in above equation one substitutes functional dependence of µ̄ then the triad dependence

of the first term disappears and one obtains an emergent matter which will behave as a

cosmological constant. This is exactly what happens in the µ̄-scheme as will be discussed

in the next section (see eq. 39).

Remark: Above analysis also shows that other choices of regulators would result in

different form of emergent matter in Thiemann-regularized LQC. An example is the case

when one performs loop quantization using Wheeler-DeWitt type or metric variables [64].

In this case the quantum Hamiltonian constraint yields a quantum difference equation which

is uniformly discrete in scale factor. This corresponds to the choice of ε where ε ∝ p1/2 [32].

It is straightforward to check that this choice of regulator using above argument results in

an emergent matter behaving as with classical equation of state of 1/3 which corresponds
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to radiation. Similarly, if one considers so called lattice refined models [65] then the triad

dependence of ε can be changed to different powers. As a result, emergent matter with

different equation of state will arise.
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FIG. 6: The Thiemann-regularized effective dynamics of LQC is investigated for the µ0-scheme.

The flow induced by the standard constraint Cµ0TR is presented in dashed blue color, while the

inclusion of gauge-covariant fluxes is shown in solid red. The quantities are plotted in physical

(i.e. scalar field) time φ, where the initial values have been chosen at φ(t0) = 13.5. While in the

far future both systems approach classical FLRW (dot-dashed black line), in the past a universe

(wide-dashed green) with rescaled Newton’s coupling constant κ̄ and with emergent form of matter

(string gas type) is approached (see (33)).

The pertinent question now is in what sense the nature of the bounce and the emer-

gent string gas in the pre-bounce regime changes on inclusion of modifications arising from

gauge-covariant fluxes. To answer this question, the first observation is again analogous

to the previous section, where (20), the Hamilton’s equation for φ, implied a rescaling of

the constant of motion πφ. Literally the same happens again, but since around the point

c ≈ 0 one has sinc(0) = 1, no rescaling of the momentum to the field occurs. As a result,

the effective Friedmann equation in the far future remains unchanged in the leading order
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contribution in ρφ:

H2|future = N2κ

6
ρφsinc−2(0) +O(ρ2

φ) = N2κ

6
ρφ +O(ρ2

φ) . (31)

However, for the asymptotic point corresponding to c ≈ β+/µ0, the above mentioned rescal-

ing becomes non trivial. First, we find from the Hamilton’s equation of φ that for any

α 6= 0:

πφ → π̄φ := πφ sinc−3(β+/2)α, N → N̄ = Nα−1 (32)

leading to ρφ → ρ̄φ = π̄2
φ/(2p

3). The corresponding Friedmann equation can now be deter-

mined when neglecting higher orders than linear in ρφ by expanding c = c0 + c1ρφ +O(ρ2
φ)

and then solving (25), the constraint involving gauge-covariant fluxes, for the zeroth and

first order in ρφ respectively to determine c0 and c1. This is then inserted into the Hubble

rate H2, which can be found by using Hamilton’s equation for ṗ. After several calculations

one arrives at,

H2|past =

(
ṗ

2p

)2

= N̄2 sinc2(β+/2)

p(1 + γ2)2µ2
0

+ N̄2 κ̄

6
ρ̄φ +O(ρ2

φ), (33)

κ̄ :=κ sinc10(β+)
β(β+ cot(β+)− 1)− 2 (5β2 − 1) β+

2 (β2 + 1) β2
+

. (34)

Thus, the bounce is again asymmetric resulting in an emergent matter in the pre-bounce

regime which behaves as a string gas. In contrast to the dynamics with standard fluxes, the

rescaling of Newton’s constant is different. Further, the coefficient of the emergent matter

changes.

We will now numerically demonstrate the way µ0-scheme with gauge-covariant flux modi-

fications compares with the holonomy-triad based Thiemann-regularized LQC dynamics. For

this, we adopt the usual choices γ = 0.2375, p(t0) = 6× 104, φ(t0) = 13.5 and πφ(t0) = 300

and lapse N = 1. The flow of both of the Hamiltonian constraints is presented in Figs.

6 and 7. From Fig. 6 we see that the asymmetric bounce remains a characteristic fea-

ture of this model, however the maximum of the energy density is lower in presence of the

gauge-covariant flux corrections. Note that the asymptotic point of divergent volume will

be reached in finite physical time φ. Fig. 7 shows the behavior of Hubble rate and the Ricci

scalar. In both the cases, the Hubble rate and Ricci scalar are bounded, but the differences

exist especially in the pre-bounce regime. The rescaling due to gauge-covariant modifica-

tions affects the agreement between various curves in the pre-bounce regime, which we plot
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FIG. 7: The behavior Hubble rate and Ricci scalar is plotted in coordinate time t for the Thiemann-

regularized effective dynamics of µ0-scheme. Conventions and initial conditions remain the same

as Fig. 6.

for the choice α = 1. It is also instructive to see Fig. 8, where behavior of volume is plotted

versus proper time t. This behavior captures the effective equation of state, and hence yields

insights on the nature of emergent matter in the pre-bounce regime. A comparison with

µ̄-scheme in that figure reflects the fundamentally different nature of emergent matter in

both of the regularizations.

B. The µ̄-scheme

In case of the µ̄-scheme, the regularized (effective) dynamics resulting from Thiemann-

regularized Hamiltonian constraint with standard fluxes has been studied earlier in [22, 41]

for the case of the massless scalar field. We now study the case when gauge-covariant flux

modifications are included in the scalar constraint. In this case one gets,

C µ̄
TR[N ] =

6
√
p3

κ∆
sinc(cµ̄/2)

(
sin2(cµ̄) +

1 + γ2

4γ2
sin2(2cµ̄)

)
+

π2
φ

2
√
p3 sinc−3(cµ̄/2) . (35)

From the vanishing of the above constraint we can obtain an expression for the energy

density. Since it involves only trigonometric functions of c it is clear that the maximum value

which the matter energy density can take is bounded, which indicates the resolution of the
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FIG. 8: Evolution of volume with respect to proper time is shown for µ0 (left) and µ̄ (right) schemes

with gauge-covariant flux modifications (solid-red curve) compared with Thiemann-regularized

LQC without gauge-covariant fluxes. While they have essentially same behavior in the post-bounce

regime, dynamical evolution is very different in pre-bounce regime due to differences in the nature

of emergent matter. In the µo-scheme, pre-bounce evolution corresponds to equation of state −1/3

(string gas), while in µ̄-scheme it is −1 (cosmological constant).

initial singularity through a bounce. Unlike the µ0-scheme, here the maximal energy density

is uniquely determined when solving the constraint for ρ = π2
φ/(2p

3sinc6(µ̄c/2)). In contrast

to the Thiemann regularization without gauge-covariant flux corrections, where the energy

density at the bounce could be determined analytically to be 6/(κ∆)γ−4/(4(1+γ2)) ≈ 0.097

[41], for (35) it is only possible to approximate it numerically, namely

ρbounce =
6

κ∆
Max|bo|<π(sinc−2(bo/2) sin(bo)

2[1− (1 + γ−2) sin(bo)
2]) ≈ 0.101 (36)

in Planck units, if one chooses γ = 0.2375.

We now study the asymptotic behavior of this scalar constraint. First, we determine the

phase space points of vanishing scalar field energy density, which for the physical branch

are,

cµ̄ = 0 and cµ̄ := β+ = arcsin

(
1√

1 + γ2

)
. (37)



30

These points correspond to the far future and far past respectively. An expansion of c ≈ 0

in terms of powers of ρφ yields the effective Friedmann equation for the far future,

cµ̄ = ±
√

∆κγ√
6

√
ρφ +O(ρ3/2) ⇒ H2|future =

(
ṗ

2p

)2

=
κ

6
ρφ +O(ρ2

φ) (38)

which agrees with classical Friedmann equation up to higher order corrections. The same

result is also found for the bare Thiemann regularization without gauge-covariant flux cor-

rections, e.g. in [22, 42].
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FIG. 9: Evolution of volume and energy density is shown in time φ for µ̄ scheme for the Thiemann-

regularized dynamics. The solid-red curve depicts modifications due to gauge-covariant fluxes and

blue-dashed curve shows the standard fluxes. The initial conditions were given at φ = 13.5.

An analysis similar to the µ0-scheme for the other asymptotic point yields

H2|past =N2 Λ̄

3
+N2 κ̄ρφ

6
+O(ρ2

φ), (39)

Λ̄ :=
3

(1 + γ2)2∆
, κ̄ := κ

1− 5γ2

1 + γ2
. (40)

The conventional Thiemann regularization leads to an emergent cosmological constant Λ̄,

which is of Planckian order in magnitude, making it necessary to consider this branch as

the pre-bounce universe. Further, the rescaling of Newton’s constant is such that a viable

post-bounce branch with κ̄ is ruled out [22].
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When considering gauge-covariant flux modifications (35) the situation is similar, but

with another rescaling. As usual the expansion of c ≈ β+/µ̄ results in leading order in ρφ

to a rescaling of the scalar field momentum πφ when we consider Hamilton’s equation for

φ̇. From πφ → π̄φ := πφsinc(β+/2)−3α and N → N̄ := Nα−1 for α 6= 0 we introduce the

quantity ρ̄φ := π̄2
φ/(2p

3), which is of the same order of magnitude as ρφ. We can hence

expand c ≈ β+ + c1ρ̄φ + O(ρ̄2
φ) and determine c1 from the constraint (35) neglecting all

contributions of order ρ̄2
φ. Expressing ṗ = ṗ(p, c, πφ) in the Friedmann equation leads after

several calculations to,

H2|past =N̄2 Λ̄′

3
+ N̄2 κ̄ρ̄φ

6
+O(ρ2

φ), Λ̄′ :=
3sinc2(β+/2)

(1 + γ2)2∆
, (41)

κ̄ :=κ
sinc4(β+/2)

γ2 + 1

(
1− 5γ2 + 5γ

(
1

β+

− 1

2
cot(β+/2)

))
. (42)

Hence, the already existing emergent cosmological constant and rescaled Newton’s coupling

constant in the Thiemann regularization with standard fluxes is replaced by different values,

which are uniquely fixed once the Barbero-Immirzi parameter and parameter α are chosen.

We now demonstrate numerically dynamical features of the µ̄ scheme in Figs. 9 and 10.

As before, for these simulations, we took ∆ = 4
√

3πγ, γ = 0.2375 and started with initial

conditions in the far future.As always, any observable is defined for the corresponding model

separately following the discussion in Sec. II, i.e. volume and energy density in presence

of gauge/covariant fluxes are given by (11). The gauge-covariant flux corrections cause a

lower energy density at the bounce compared to earlier and (in backward-time evolution)

drive the universe to a super-fast expanding stage with an emergent cosmological constant

albeit with a rescaling from the value obtained using standard fluxes. This is confirmed by

the behavior of the Hubble rate and Ricci scalar in the pre-bounce epoch. Hence, one can

conclude that although there are quantitative changes from standard fluxes, the qualitative

effects by which the Thiemann regularization differed from mainstream LQC are robust.

Finally, Fig. 8 shows the comparison of evolution of volume in time ‘t’ with the µ0-scheme.

We can see that for the µ̄-scheme there is an almost linear growth of logarithm of volume

in the pre-bounce regime which is a characteristic of a deSitter phase. This is in striking

contrast to the pre-bounce behavior in the µo-scheme.
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FIG. 10: Behavior of Hubble rate and Ricci scalar are shown for µ̄ scheme for the Thiemann-

regularized dynamics. Conventions and initial conditions are the same as Fig. 9.

V. DISCUSSION AND CONCLUSIONS

The goal of our analysis was to understand implications of different regularization choices

in LQC when gauge-invariant flux modifications are included. The main motivation for these

fluxes comes from the following argumentation. Assume a family of discretized spatial ge-

ometries, i.e. projections from a continuous metric to certain subsets of functions thereof for

each discretization. In case of this manuscript, we mean explicitly the map from connection

and triad to holonomies and gauge-covariant fluxes constructed with respect to each element

of a family of lattices approximating the spatial manifold. Only when using gauge-covariant

fluxes, these subsets allow the construction of SU(2) gauge-invariant observables.

To extract dynamics in such a discretized setting, we have to make choices on how to ap-

proximate the scalar constraint as a discrete function of the aforementioned basic variables.

Indeed, using any such discretized constraint as generator of the dynamics on the reduced

phase space could in principle produce qualitatively different results. Note, the time evolu-

tion is classically not given by any of these discretizations, but by the continuous constraint

in which the regularization parameter ε vanishes. And it is not known which (if any) reg-

ularization results in a physically viable dynamics. Here the ambiguity arises between the

choice of finite ε and different forms of the Hamiltonian constraint. To distinguish between
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various possibilities and pinpoint useful candidates is therefore a serious question for LQG

and its sub-fields such as LQC.

The present paper undertakes first steps towards this endeavor. Working with the as-

sumption that an underlying, fundamental lattice exists (instead of a continuous manifold)

allows at least in principle the study of various discretizations. Especially for isotropic,

spatially-flat cosmology, it is now possible to translate the effect of a constraint expressed

solely in terms of holonomies and gauge-covariant fluxes to the phase space of cosmological

variables via the so-called effective dynamics conjecture. Following this prescription, we have

studied in this paper the regularized dynamics for certain choices of regularizations on the

reduced phase-space. Prior investigations in LQC have addressed some of these ambiguities

for isotropic [31, 32] as well as anisotropic models [34, 35, 40], but only using standard quan-

tization based on using holonomies and triads. Given that gauge-covariant fluxes modify

the gravitational as well as matter part of Hamiltonian constraints in a non-trivial way,

it is pertinent to ask in what way regularization ambiguities affect physical implications,

and whether effects of gauge-covariant fluxes can resurrect some of the choices ruled out in

standard LQC.

The first major difference in regularization prescriptions common in the literature, is the

discrepancy between µ0 [30, 47] and µ̄-scheme [31]. The first one is motivated from an actual

regularization in the full field-theory: approximating the scalar constraint via holonomies

and gauge-covariant fluxes based on a lattice of spacing µ0 yields a certain function when

restricting to cosmology, which is then used as a new evolution generator. However, when

the scalar constraint includes a positive cosmological constant, the regularized dynamics

produced by the µ0-regularized constraint results in an unphysical recollapse of the universe

at large volumes. This is a known problem in LQC based on holonomies and triads [32]

which manifests itself also via instability of the quantum difference equation [48], even for

Thiemann regularization of the Hamiltonian constraint [49]. Presence of gauge-covariant

fluxes modify the structure of both the gravitational and matter parts of the Hamiltonian

constraint in such a way that it is not obvious whether µ0-scheme has a recollapse prob-

lem. Despite these modifications, we find that the problem of recollapse of the universe is

not alleviated. Note that µ0-scheme has additional problems such as physical predictions

affected by the rescaling of the fiducial cell in the symmetry reduced setting. The present

manuscript did not address this particular problem which is a byproduct of symmetry re-
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duced homogeneous setting. Our study shows that even if one somehow hopes that this

problem can be alleviated when inhomogeneities are taken into account, µ0-scheme is unvi-

able even on inclusion of gauge-covariant fluxes. On the other hand, viability of µ̄-scheme

is found to be unaffected. But, the µ̄-scheme lacks any of above derivations from an under-

lying field-theory and works merely in the cosmological sector, by taking the µ0-constraint

and replacing µ0 → µ̄. However, in µ̄-regularization the unphysical predictions are removed

and conventional LQC as well as gauge-covariant flux modifications lead to reliable results.

In both cases a rescaling of the cosmological constant occurs, which is different for both

models. Unlike standard LQC, wherein the asymptotic limit there is only rescaling of Λ and

that, too, same for both pre- and post-bounce branches, a rescaling also occurs for κ. The

rescaling is different in pre- and post-bounce branches for gauge-covariant flux modifications.

The second major difference comes in form of the functional form of the regularization of

the scalar constraint. From classical points of view this functional form is arbitrary as long as

it guarantees to reduce to the continuous expression for vanishing regularization parameters.

However, at the moment there exist two main regularizations in the cosmological setting.

The first is the standard LQC [30, 47], which is based on the regularization of the full theory

advocated in [8, 9] modulo imposing a symmetry which only holds in spatially-flat cosmology.

On the other hand there is Thiemann regularization, which is based on the same expression

of the full theory but without imposing the symmetry of cosmology in advance [41, 43]. The

characteristic feature of Thiemann regularization is the existence of an asymmetric bounce

even for simplest models such as matter with a massless scalar field which yields a perfectly

symmetric bounce in standard LQC. Earlier studies using µ̄-scheme found that the pre-

bounce phase has an emergent cosmological constant [41], and a rescaled Newton’s constant

[22] in the asymptotic regime. The key question was whether gauge-covariant fluxes modify

these conclusions. Qualitatively the answer turns out to be in the negative. The gauge-

covariant flux modifications do modify the rescalings of emergent cosmological constant and

Newton’s coupling, and the bounce turns out to be generically asymmetric. The asymmetry

of bounce was found to be robust for a large range of initial conditions using more than 500

numerical simulations. Physical implications found in this analysis were insensitive to the

choices of initial conditions.

A part of the above exercise involved examining the ambiguity of µ0 versus µ̄ and the

choice of the functional form of the constraint. Note that in standard LQC, the pre-bounce
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and post-bounce evolution of µ0 and µ̄-schemes is symmetric and indistinguishable if one in-

cludes matter as a massless scalar field unless one examines the details of the energy density

at the bounce. At very early and late times, both the regularizations result in qualitatively

similar dynamics. This situation changes dramatically in Thiemann regularization of LQC.

We find a novel result that unlike µ̄-scheme, the µ0-scheme results in a completely different

form of emergent matter in the pre-bounce regime. Instead of an emergent cosmological

constant, the emergent matter has a behavior of a perfect fluid resembling a string gas in

the classical theory. Thus, for the first time a qualitative change in dynamical evolution

distinguishes µ0 and µ̄-schemes even for the choice of simple matter as a massless scalar

field. This change is qualitatively unaffected by inclusion of gauge-covariant flux modifi-

cations. We discussed that the nature of emergent matter would change if one considers

other regularizations corresponding for example where scale factor is taken as one of the

basic variables [64] and lattice refined models [65]. In the first case the emergent matter in

the pre-bounce regime would behave as radiation, while for the second case different types

of emergent matter can result depending on the specific choice of lattice refinement. It is

rather interesting to note that the equation of state of emergent matter for a given choice of

ε turns out to be the same equation of state below which regularized or effective dynamics

shows late time departure from GR. For example, in the µ̄ case departure from GR arise

at late times if one considers equation of state less than negative unity11 (phantom matter)

[66] and for µo case the departures arise for equation of state less than −1/3 [32]. Similar

conclusions apply for other choices of ε [32]. Since our results show that despite non-trivial

changes in the structure of Hamiltonian constraint due to gauge-covariant fluxes, the µ0-

scheme results in an unphysical recollapse at large volumes as in standard LQC, we expect

the problem of recollapse to remain unaffected for other choices of regulators as well, such as

the one corresponding to scale factor based quantization [64] and lattice refined models [65].

This indicates that the uniqueness result in standard LQC [32], that it is only the µ̄-scheme

which is physically viable, remains true even in presence of gauge-covariant fluxes.

Our results show that the dynamical evolution changes qualitatively even for innocuous

matter such as a massless scalar field, if we change the regulator in the Thiemann regular-

11 Interestingly, in this case a departure from GR at late times is favorable as it resolves the classical big rip

singularity (see [61, 66] for details).
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ization of LQC. We conjecture that qualitative similarity for µ0 and µ̄-schemes for massless

scalar field in standard LQC is an artifact of the simple form the Hamiltonian constraint,

and once this form becomes more complex the dynamics distinguishes between different

choices of regulators in a more distinct way. Our conjecture gets support from loop quanti-

zation of black hole spacetimes, where the Hamiltonian constraint has richer structure than

standard LQC, a change in the choice of regulator results in strikingly different pre-bounce

spacetimes which are sometimes white holes with different properties [38–40, 67] or even a

charged Nariai spacetime [68, 69].

In closing, if one wants to follow the program of “effective dynamics” from coherent states

in LQG on a fixed lattice, it is necessary to include gauge-covariant flux modifications, in

order to deal with physical observables. In a certain sense, this extends the scope of choice

for the theory from “operator ambiguities” for the scalar constraint, to ambiguities in the

choice of the state, as many versions of gauge-covariant fluxes exists. This highlights the

importance to find a way to deal with the various choice before any reliable predictions for

LQC can be made. The present manuscript is one attempt in this direction where different

layers of regularization ambiguities were examined.
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