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Gamma-ray Bursts (GRBs) are flashes of γ-rays thought to originate from rare forms of massive
star collapse (long GRBs), or from mergers of compact binaries (short GRBs) containing at least
one neutron star (NS). The nature of the post-explosion / post-merger remnant (NS versus black
hole, BH) remains highly debated. In ∼ 50% of both long and short GRBs, the temporal evolution
of the X-ray afterglow that follows the flash of γ-rays is observed to “plateau” on timescales of
∼ 102 − 104 s since explosion, possibly signaling the presence of energy injection from a long-lived,
highly magnetized NS (magnetar). The Cross-Correlation Algorithm (CoCoA) proposed by [R.
Coyne et. al., Phys Rev D. 93 104059 (2016)] aims to optimize searches for intermediate-duration
(102 − 104 s) gravitational waves (GWs) from GRB remnants. In this work, we test CoCoA on
real data collected with ground-based GW detectors. We further develop the detection statistics
on which CoCoA is based to allow for multi-waveform searches spanning a physically-motivated
parameter space, so as to account for uncertainties in the physical properties of GRB remnants.

I. INTRODUCTION

Gamma-ray Bursts (GRBs) are the most relativistic
explosions we know of in the universe. Observationally,
they are characterized by a burst of γ-rays followed by
a slower-evolving, multi-wavelength emission dubbed “af-
terglow”. They are divided in two major classes based on
the duration of their γ-ray emission [75]. Long-duration
GRBs, whose γ-ray emission lasts for more than 2 s, are
thought to originate from rare forms of massive star col-
lapses. On the other hand, short GRBs with duration less
than 2 s are linked to mergers of compact binaries con-
taining at least one neutron star (NS). The nature of the
GRB central engine, also referred to as GRB remnant, is
still highly debated as its properties cannot be probed di-
rectly using light. While it had been theorized that black
holes (BHs) may act as central engines of both short and
long GRBs [76–80], the identification of “plateaus” in
∼ 50% of both short- and long-duration GRBs observed
by Swift (e.g., [81, 82]) has renewed interest in the role of
long-lived highly-magnetized neutron stars (magnetars)
as GRB central engines [83–92].

The recent detection of gravitational waves (GWs)
from the in-spiral phase of a compact binary merger
(GW170817) associated with the short GRB 170817A
[93] has spurred new investigations into the nature of
GRB remnants [94, 95]. Some models predict that mag-
netars formed in GRB explosions may undergo deforma-
tions, such as magnetic field induced ellipticities [96–98],
unstable bar-modes [99, 100], and unstable r-modes [101–
103], that would make them efficient GW emitters. A de-
tection of GWs in coincidence with a GRB X-ray plateau
would provide clear evidence that a magnetar can act as
a GRB central engine [e.g., 100, 104].
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The Cross-Correlation Algorithm (CoCoA) proposed
by Coyne et al. [105] is a GW data analysis technique
that aims to optimize searches for intermediate-duration
(∼ 103 s) GWs from GRB remnants. While several other
methods have been used for this purpose [e.g., 94, 95,
106–111], CoCoA is among a small number of meth-
ods (such as [110]) that can target both slow- and fast-

evolving signals (O(10) mHz s−1 . ḟmax . O(10) Hz s−1)
while using a technique that bridges stochastic and con-
tinuous wave searches [105]. Indeed, as shown by Coyne
et al. [105], the strength of CoCoA lies in its tuneabil-
ity for sensitivity and robustness. Traditional in-spiral
and continuous wave GW searches make use of matched
filters that maximize sensitivity at the expense of ro-
bustness, thus requiring highly accurate GW waveforms
[112–116]. At the other extreme, stochastic (based on
cross-correlating the data of two different GW detectors)
and burst (based on excess power) searches maximize ro-
bustness at the expense of sensitivity [117–123]. CoCoA
allows one to smoothly tune search robustness and sen-
sitivity in between these two extremes.

Here, we further develop the CoCoA algorithm so as
to make it a practical tool for real GW data analyses.
Specifically, we (i) adapt the pipeline so that it can han-
dle real data from the Laser Interferometer Gravitational
Wave Observatory (LIGO) and Virgo (rather than sim-
ulated Gaussian data only, as in [105]); (ii) we re-work
the cross-correlation detection statistic on which CoCoA
is based so that the algorithm can be employed to carry
out multi-waveform searches spanning a realistic param-
eter space (as opposed to only single-waveform analyses);
(iii) we make more realistic estimates of the detection ef-
ficiency by including uncertainties in the delay between
the GRB trigger time and the start of the GW signal,
and by accounting for non-ideal sky locations.

This paper is organized as follows. In Section II we
briefly review CoCoA as developed by Coyne et al. [105].
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In Section III we describe the waveforms on which the
performance of CoCoA is tested. In Section IV we com-
pare results of searches run over real noise to results when
simulated data are used. In Section V we introduce the
CoCoA multi-trial statistic for spanning a broad param-
eter space. In Section VI we test CoCoA’s multi-trial
statistics and quantify its sensitivity and detection effi-
ciency for searches of secularly-unstable magnetars. Fi-
nally, in Section VII we summarize our results and con-
clude.

II. THE CROSS-CORRELATION ALGORITHM
(CoCoA)

The detection of GWs that last for durations in the
range 102 − 104 s requires different data analysis tech-
niques than those used in traditional inspiral/continuous
wave searches. If the waveform of the GW signal can be
accurately predicted, then matched filtering is the ideal
technique as it maximizes sensitivity [112, 113]. On the
other hand, if the predicted GW signal is affected by
large uncertainties, more robust data analysis techniques
are necessary. One of these is the so-called “stochastic”
method, which requires no prior knowledge of the evolu-
tion of the GW signal and is based on cross-correlating
the output of two different detectors, under the assump-
tion that the noise of the two detectors is uncorrelated.

The cross-correlation method first developed by Dhu-
randar et al. [124] for continuous GW searches, and later
adapted by Coyne et al. [105] to searches of intermediate-
duration signals, targets quasi-monochromatic GWs
whose time-frequency evolution is known to a certain
degree. The resulting (single-trial) semi-coherent statis-
tic bridges the gap between matched-filtering (i.e., fully-
coherent) and stochastic-like methods, allowing one to
tune the search sensitivity and robustness in between the
two extremes of most sensitive but least robust, and least
sensitive but most robust. In this Section, we briefly re-
view the (single-trial) cross-correlation statistic following
closely the notation adopted by [105].

A. The cross-correlation statistic

At any given time t, a GW detector output x(t) can
be represented as the linear combination of a GW signal,
h(t), and noise, n(t):

x(t) = h(t) + n(t). (2.1)

Spectral information about the detector output x(t) can
be obtained by performing a Discrete Fourier Transform
(DFT) on each of NSFT data segments of identical dura-
tion ∆TSFT (Short Fourier Transform; SFT) [124]:

x̃I [fk] =
1

fs

Nbin−1∑
l=0

x[tl]e
−2πifk(tl−Ti+∆TSFT/2). (2.2)

x̃I [fk] =

Nbin−1∑
l=0

w[tl]x[tl]e
−2πifk(tl−Ti+∆TSFT/2). (2.3)

In the above Equation 2.3, w[tl] is a windowing function
applied to reduce spectral leakage1; Nbin refers to the
number of frequency bins within each SFT, defined as
Nbin = ∆TSFT × fs where fs is the sampling frequency;
fk is the frequency corresponding to the k-th frequency
bin:

fk =
k

∆TSFT
for k = 0, ...,Nbin/2− 1 (2.4)

fk =
k −Nbin

∆TSFT
for k = Nbin/2, ...,Nbin − 1 (2.5)

The l-th time sample, tl spans the duration TI −
∆TSFT/2 ≤ tl ≤ TI +∆TSFT/2 where I refers to the SFT
number (I = 0, 1, ...Tobs/∆TSFT), Tobs is the total dura-
tion of the signal, while TI is the central time of the SFT.
While all tests in this paper make use of a Hann-window
in order to reduce spectral leakage, hereafter we simplify
all equations by using Equation (2.2) for the SFT.

We work under the assumption that the signal h(t)
is quasi-monochromatic i.e., during each time interval of
length ∆TSFT the signal power is, to good approximation,
all contained in one single frequency bin so that:

h(t) ≈ h0(TI)A+F+,I cos(Φ(TI) + 2πf(TI)(t− TI)) +

h0(TI)A×F×,I sin(Φ(TI) + 2πf(TI)(t− TI)), (2.6)

where A+, A× are amplitude factors dependent on the
physical system’s inclination angle ι (for on-axis GRBs,
ι is the angle between the jet axis and the line of sight):

A+ =
1 + cos2 ι

2
, (2.7)

A× = cos ι, (2.8)

and F+,I , F×,I are the antenna factors that quantify a
detector’s sensitivity to each polarization state. We note
that Φ(TI) in Eq. (2.6) may contain an unknown initial
phase constant and, generally speaking, is a detector-
dependent term. For simplicity, hereafter we assume that
data streams from different detectors are corrected for the
expected time lag in the GW signal arrival time before
calculating the detection statistic. This is a reasonable
assumption because our analysis focuses on searches for
GWs from sources of known sky location (such as γ-ray
triggered bursts). With this choice, we eliminate the de-
pendence of Φ(TI) on the detector and, in what follows,
we do not need to introduce a detector-dependent index
for the phase difference ∆ΦIJ (see Eq. (2.13)).

1 In Eq. 2.3 the windowing function, w[tl], absorbs the factor 1/fs
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The raw cross-correlation statistic is defined as [124]:

YIJ =
x̃∗I [fk,I ]x̃J [fk′,J ]

∆T 2
SFT

, (2.9)

where I and J refer to SFT times, and fk,I and fk′,J
are the frequencies at which all of the signal power is
concentrated during the I-th and J-th time intervals, re-
spectively. The detection statistic ρ can then be built as
a weighted sum of the raw cross-correlation:

ρ =

Npairs∑
IJ

(uIJYIJ + u∗IJY∗IJ), (2.10)

where [124]:

uIJ =

√
(A2

+F
2
+,I +A2

×F
2
×,I)(A2

+F
2
+,J +A2

×F
2
×,J)

∆T−2
SFTe

−i∆θIJSn[fk,J ]
.

(2.11)
In the above Equation, ∆θIJ is defined as [105]:

∆θIJ = π∆TSFT(fk,I − fk′,J) + ∆ΦIJ , (2.12)

where

∆ΦIJ = Φ(TI)− Φ(TJ) (2.13)

(see Eq. 3.3), and Sn[f ] is the single-sided power spec-
tral density (PSD) of the detector noise which can be
calculated as in Eq. 2.20 of [124]

Sn[fk] ≈ 2

∆TSFT
〈|x̃I [fk]|2〉, (2.14)

where 〈|x̃I [fk]|2〉 is the average value of the square of
the transformed detector data of a given frequency (as
in Eq. 2.2 or 2.3) over a period of time ∆TSFT where
the detector data may be assumed to be stationary and
Gaussian.

Hereafter, we assume that the antenna factors are con-
stant in time throughout the duration of the GW signals

here considered. However, they can vary based on detec-
tor’s location and arms’ orientation. Inserting Equation
(2.9) into (2.10) one gets:

ρ =
1

∆T 2
SFT

Npairs∑
IJ

uIJ x̃
∗
I [fk,I ]x̃J [fk′,J ]+u∗IJ x̃I [fk,I ]x̃

∗
J [fk′,J ],

(2.15)
which shows that the distribution of ρ depends on the
pairs we choose to correlate. As we discuss in what
follows, with the ρ statistic one can encompass var-
ious regimes, from matched-filter (fully coherent) to
stochastic-like searches, with a semi-coherent approach in
between. We stress that the only information needed to
construct the above statistic is the signal time-frequency
evolution. Thus, hereafter we refer to a model time-
frequency track as a template (see Sec. V for more de-
tails). Generally speaking, a given time-frequency track
will map onto specific physical parameters of the emitting
source (see e.g. Eqs. (3.1)-(3.2) and Figure 1 in Section
III for the specific case of a secularly unstable magnetar).

B. Stochastic limit

In the stochastic limit, we only correlate SFTs from dif-
ferent detectors (such as LIGO Hanford, LH; and LIGO
Livingston, LL) at the same time (after correcting for the
GW time-of-flight in case of non co-located detectors).
With this choice, one minimizes computational cost and
maximizes robustness against GW waveform uncertain-
ties, at the expense of sensitivity (when compared to e.g.
the matched-filter or the semi-coherent approaches). The
number of correlated pairs in Eq. (2.15) is Npair = NSFT,
and we can write:

ρ =
2

∆T 2
SFT

NSFT∑
I

<{uII x̃∗
LH

I [fk,I ]x̃
∗LL

I [fk′,I ]}. (2.16)

As evident from the above equation, ρ is a weighted sum
of independent random variables that, under the assump-
tion of stationary Gaussian noise, are each the product of
two Gaussian variables. By the central limit theorem this
sum converges to a Gaussian-distributed random variable
with mean µρ and variance σ2

ρ given by (see also Eqs.
(4.17) and (4.18) in [105]):

µρ = (A2
+F

2
+,H +A2

×F
2
×,H)(A2

+F
2
+,L +A2

×F
2
×,L)

∆T 2
SFT

2

NSFT∑
I

h2
0(TI)

SHn [fk,I ]SLn [fk,I ]
, (2.17)

σ2
ρ = (A2

+F
2
+,H +A2

×F
2
×,H)(A2

+F
2
+,L +A2

×F
2
×,L)

∆T 2
SFT

2

NSFT∑
I

1

SHn [fk,I ]SLn [fk,I ]
. (2.18)

The mean of ρ is zero in the absence of a signal (assuming noise from the two detectors is uncorrelated), and has a
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non-zero positive value when a GW signal is present in
the detectors’ data.

C. Matched-filter limit

In the matched-filter limit, we correlate all possible
SFT pairs (including self-pairs), so we have Npair =
N2

SFT, NSFT = NdetTobs/∆TSFT, where Ndet is the num-
ber of detectors from which data are taken. In this limit
it can be shown that Equation (2.10) becomes (see also
Eq. (4.29) in [105]):

ρ = 2[(

NSFT∑
I

<(x̃′I [fk,I ]))
2 + (

NSFT∑
I

=(x̃′I [fk,I ]))
2], (2.19)

where x̃′I [fk,I ] is defined as:

x̃′i[fk,I ] =

√
A2

+F
2
+,I +A2

×F
2
×,I

Sn[fk,I ]
x̃i[fk,I ]e

−iθi . (2.20)

For stationary Gaussian noise with zero mean, the real
and imaginary parts of x̃′i are still Gaussian distributed,
as is the case for x̃i, and so are their sums. More specifi-
cally, in the absence of a signal, the sums of the real and
imaginary parts of x̃′i have zero mean and variance given
by:

σ2
Σ =

NSFT∑
i

∆TSFT(A2
+F

2
+,I +A2

×F
2
×,I)

4Sn[fk,I ]
=
Cχ
2
. (2.21)

Thus, ρ may be re-written as the sum of the squares of
two normally distributed variables, scaled by a factor Cχ:

ρ = Cχ×



NSFT∑
I

<(x̃′I [fk,I ])

σΣ


2

+


NSFT∑
I

=(x̃′I [fk,I ])

σΣ


2 ,

(2.22)

which follows a χ2 distribution with two degrees of free-
dom, with variance and mean given by (see also Eqs.
(4.36) and (4.34) in [105]):

σ2
ρ = 4Cχ = 2

NSFT∑
I

∆TSFT(A2
+F

2
+,I +A2

×F
2
×,I)

Sn[fk,I ]
, (2.23)

µρ = Cχ(2 + λ), (2.24)

and with non-centrality parameter λ given by (see also
Eq. (4.37) in [105]):

λ =

NSFT∑
I

h2
0(TI)

[
∆TSFT(A2

+F
2
+,I +A2

×F
2
×,I)

4Sn[fk,I ]

]
. (2.25)

D. Semi-coherent approach

In the semi-coherent approach, the total observation
time Tobs

2 is broken up into Ncoh = Tobs/Tcoh coher-
ent segments, each of duration Tcoh. The coherence
time is defined as the length of time wherein the sig-
nal is expected to maintain phase coherence (and there-
fore good agreement) with the model predictions. All
possible SFT-pairs within each coherent time segment
are cross-correlated (thus NSFT < Npair < N2

SFT, with
NSFT = NdetTcoh/∆TSFT), and the results for each co-
herent time segment are then combined incoherently. A
semi-coherent search can thus be regarded as the sum of
Ncoh matched-filter searches carried out over Ncoh time
segments each of duration TcohThus, ρ may be written
as:

ρ =

Ncoh∑
M

CχM ×



NSFT/Ncoh∑

I

<(x̃′I×M [fk,I×M ])

σΣM


2

+


NSFT/Ncoh∑

I

=(x̃′I×M [fk,I×M ])

σΣM


2
 , (2.26)

2 In the case of searches for GWs associated with GRB plateaus,
since we do not know the fate of the secularly unstable magnetar
once it stops pumping energy into the afterglow, Tobs is taken

where CχM
and σΣM

are defined from Eqs. (2.23) and
(2.24) for the duration of the M-th coherent segment only.

to be comparable to the observed duration of the GRB X-ray
plateau.



5

If the PSDs of the detectors are relatively flat over the
range of frequencies of interest for the searched GW sig-
nal, if their antenna factors F+ and F× are compara-
ble (as is the case for co-located detectors with parallel
arms) and slowly varying over Tobs, then CχM

is approx-
imately constant through each coherent segment and the
resulting statistic for the cross-correlation ρ is that of
a χ2-distributed random variable with 2Ncoh degrees of
freedom, whose variance and mean are given by (see Eqs.
(4.41) and (4.42) in [105]):

σ2
ρ = 4Cχ (2.27)

µρ =
Cχ
Ncoh

(2Ncoh + λ), (2.28)

where λ is defined in the same way as for the matched-
filter limit, Eq. (2.25). Note that the above equations
reduce to Eqs. (2.23) and (2.24) for Ncoh = 1, while for
large Ncoh the distribution of ρ approaches a Gaussian.

III. TEST WAVEFORMS

Throughout this paper we test CoCoA on waveforms
representing GW signals that may be expected from secu-
larly unstable, long-lived magnetars formed in GRBs (ei-
ther long or short), as proposed by [100]. As discussed in
Section I, highly-magnetized NSs may be the long-lived
remnants powering (via magnetic dipole losses) the X-
ray plateaus observed in GRB afterglows. Rotating NSs
can also be efficient emitters of GWs if the ratio of their
rotational kinetic energy to their gravitational binding
energy, β = T/|W |, is in the range 0.14 < β < 0.27 [99].
Values of β in this interval make NSs unstable for secular
bar-mode deformations whose characteristic timescales
are compatible with the observed durations of GRB X-
ray plateaus (102−104 s). Under the effect of GW losses,
a secularly unstable NS will follow a quasi-static evolu-
tion along an equilibrium sequence of tri-axial ellipsoidal
figures. Adding the effect of magnetic field losses, the NS
spin-down law can be written as (see Eq. 11 in [100]):

dE

dt
=
dEGW
dt

+
dEEM
dt

= −B
2R6Ω4

eff

6c3
− 32GI2ε2Ω6

5c5
,

(3.1)
where E is the total energy; dEGW /dt accounts for GW
energy losses; dEEM/dt is the energy loss due to mag-
netic dipole radiation, calculated by conserving the mag-
netic field flux over a sphere of radius equal to the mean
stellar radius [see 125, for more details]; B is the mag-
netic dipole field strength at the poles; R is the geometric
mean of the principal axes of the star; Ω is the pattern an-
gular frequency of the ellipsoidal surface of the star; Ωeff

is an effective angular frequency which includes both the
ellipsoidal pattern speed and the effects of the internal
fluid motions; ε = (a2

1 − a2
2)/(a2

1 + a2
2) is the ellipticity

(with a1 and a2 as the principal axes of the ellipsoidal

figure in the equatorial plane); and I is the moment of
inertia with respect to the star’s rotation axis. The GW
losses result in a quasi-periodic GW signal of frequency

f(t) = Ω(t)/π, (3.2)

and amplitude given by (see Eq. (14) in [100]):

h0(t) =
4GΩ(t)2

c4d
I(t)ε(t), (3.3)

where d is the distance to the source.
In Fig. 1 we show the time evolution of the GW fre-

quency f(t) and strain amplitude h0(t) for signals as-
sociated with secularly unstable magnetars located at
d = 100 Mpc, with physical parameters listed in Table
I. In this Table we also list the approximate frequency
range and duration of the waveforms. Note that since in
general we do not know how long a magnetar will survive
before potentially collapsing to a BH, the time duration
in Table I is the time it takes for the GW luminosity to
drop below 1% of its peak value (so as to enclose the
bulk of the emitted GW energy, which is reported in the
second to last column of this Table).

The waveform dubbed CM09long was first presented
in [100], and further used in [105] to test the perfor-
mance of CoCoA on detecting such a signal when em-
bedded in simulated white Gaussian noise. CM09short
was introduced and used for similar purposes in [105].
These CM09 waveforms represent what could be a typ-
ical newly-born, rapidly-rotating NS. The initial β for
CM09long lies in the middle of the range expected for
secularly unstable NSs, while the initial β for CM09short
approaches the upper bound of this range. Moreover,
these waveforms span a frequency range well matched to
the most sensitive portion of the LIGO PSD. In order
to allow for direct comparison with the results presented
in [105], hereafter the CM09long (CM09short) waveform
is further cut to consider only the 1024 s (256 s) where a
sliding average on the signal amplitude returns the high-
est average strain. We use CM09long in Section IV to
compare CoCoA performance on real LIGO data with
that on simulated noise. We use both CM09 waveforms
in Section VI to test the multi-trial approach of CoCoA
introduced in Section V C.

Finally, in Appendix B we use six waveforms first pre-
sented in the post-merger analysis of GW170817 [94],
so as to allow for a more direct comparison of the
CoCoA algorithm with other GW data analysis tech-
niques described in [94]. All of these waveforms as-
sume the same NS mass of 2.6M� (see Table I), close
to the lower bound of the estimated total mass range
for GW170817 (2.73M�), and to the lower bound for
the total mass range of other known binary systems
(2.57M�; [126]). Magnetic field values range from 1013 to
5× 1014 Gauss (Table I). Magnetic field strengths below
1013 Gauss are unrealistic given the post-merger remnant
dynamics which produce strong fields, while fields above
5× 1014 Gauss dominate the NS total energy loss, break-
ing down model assumptions (see [100] for more details)
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TABLE I. Physical parameters, time duration, frequency range, average and maximum ḟ through the duration of the signal,
and total energy radiated in GWs and through EM dipole radiation from secularly unstable magnetars used in this study. See
Section III for more details. We use CM09long for the tests described in Section IV. Both CM09long and CM09short are used
for the tests described in Sections VI. Bar1-6 are used for deriving the results presented in Appendix B (see also [94]).

Waveform β M R B T f0 ff
〈
ḟ
〉

ḟmax EGW EEM

(M�) (km) (Gauss) (s) (Hz) (Hz) (Hz/s) (Hz/s) (erg) (erg)

CM09long 0.2 1.4 20 1014 2917 153 48 0.05 0.06 7.6 × 1050 6.0 × 1050

CM09short 0.26 1.4 20 1014 470 251 79 0.60 3.07 4.1 × 1051 4.6 × 1049

Bar1 0.2 2.6 12 1013 277 449 139 1.21 7.15 7.9 × 1051 1.7 × 1048

Bar2 0.2 2.6 14 1013 509 356 111 0.51 3.06 6.7 × 1051 3.1 × 1048

Bar3 0.2 2.6 12 1014 237 449 139 1.37 7.19 7.7 × 1051 1.8 × 1050

Bar4 0.2 2.6 14 1014 396 356 111 0.64 3.09 6.4 × 1051 3.1 × 1050

Bar5 0.2 2.6 12 5 × 1014 107 449 139 3.09 7.84 6.0 × 1051 1.9 × 1051

Bar6 0.2 2.6 14 5 × 1014 136 356 111 1.89 3.70 4.3 × 1051 2.5 × 1051

FIG. 1. GW signal frequency (left) and amplitude (right) as a function of time for the waveforms used in this study (see Corsi
and Mészáros [100], and also Section III and Table I). The thick black portions of the CM09short/long waveforms represent the
256/1024 s-long segments where the sliding average of the signal strain is maximized. These portions of the CM09long/short
signals are used in this study to allow for direct comparison with the results presented in [105] (see text for further discussion).

and making the GW contribution irrelevant. NS radii of
12-14 km are assumed to account for the fact that realis-
tic equations of state would require quite large radii for
a NS as heavy as 2.6M� [94].

IV. SIMULATED GAUSSIAN NOISE vs. REAL
NOISE PERFORMANCE OF CoCoA

In this section we test the performance of CoCoA on
both real detector data (from LIGO sixth Science run,
S6, and advanced LIGO first and second observing runs,
O1 and O2) and simulated Gaussian noise with sensitiv-
ity matched to the nominal LIGO sensitivity (during S6,
O1, or O2, see [127]). We compare and contrast these re-
sults with the analytical estimates discussed in Section II.
To allow also for a direct comparison with [105], all the
tests described in this section use 1024 s of the waveform

CM09long (see Section III), an SFT baseline of ∆TSFT =
2 s, and for the semi-coherent approach, Ncoh = 4. With
these choices and for Ndet = 2, we have NSFT = 512
and thus Npair = Ndet ×NSFT = 2× 512 in the stochas-
tic limit, Npair = (Ndet × NSFT)2 = (2 × 512)2 in the
matched-filter limit, and Npair = (Ndet×NSFT/Ncoh)2 =
[(2× 512)2/4] in the semi-coherent approach.

The real noise tests are performed by running CoCoA
on data available for public download at the LIGO Open
Science Center (LOSC). Specifically, we select 6000 s of
S6 data following the GPS time 946030004, 15000 s of
O1 data following the GPS time 1132937620, and 15000 s
of O2 data following the GPS time 1186923047. These
represent long segments of detector data that passed all
of the basic data quality checks (cat1-3 vetoes as defined
in the LOSC). We use these stretches of data to calculate
the statistical distribution of ρ along the 1024s-long time-
frequency track of CM09long. The maximum number of
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independent realizations of ρ obtainable from each of the
S6/O1/O2 data segments is determined by the number
of non-overlapping CM09long time-frequency tracks that
can be fitted in such segments. This is demonstrated in
Figure 3, where we show how CM09long time-frequency
tracks with start times 14 s (or 7 ×∆TSFT) apart never
overlap. Thus, by calculating ρ along each of these tracks
we populate the statistical distributions shown in Fig. 4
with more than 300 independent realizations of ρ from
S6 data, and almost 1000 realizations from O1/O2 data.

Colored Gaussian noise is generated by first simulating
white Gaussian noise in the time-domain, transforming
it into the frequency domain (via an SFT), scaling it by
the desired PSD, and then transforming it back to the
time-domain. Both real and simulated data are sampled
at fs = 4.096 kHz.

We also test the performance of CoCoA when a
CM09long signal is added to the data (real and simu-
lated). To this end, for each search limit (matched-filter,
stochastic, and semi-coherent) we inject CM09long at the
distance where the signal at the detector has amplitude
(Eq. (3.3)) such that, with a false alarm probability
(FAP ) of 0.1%, the false dismissal probability (FDP )
is 50% (as in [105]).

FIG. 2. PSDs of the LIGO O2 data used in this analysis
(orange and green for LH and LL, respectively). We also plot
the PSDs of the simulated colored Gaussian noise (blue) and
of the simulated white Gaussian noise (black) that we use for
comparison. The vertical dashed and dotted lines mark the
frequency range spanned by the CM09long GW signal used
in these tests (see Section III for discussion).

As evident from Table II and Figure 4, we find rela-
tively good agreement (within ≈ 10%) of the recovered
parameters of the CoCoA detection statistic on real data,
simulated colored noise, and simulated white Gaussian
noise (in both the absence and presence of a signal), with
the analytical predictions described in Section II.

FIG. 3. We show how CM09long time-frequency tracks with
start times 14 s (or 7 × ∆TSFT) apart never overlap. Each
∆TSFT is represented with a black rectangle, and each of
three non-overlapping CM09long tracks are plotted with a
different color as an example. By calculating ρ along each
of the non-overlapping CM09long tracks that can be fitted in
a given stretch of real detector data, we maximize the num-
ber of independent realizations of ρ populating the statistical
distributions shown in Fig. 4.

V. MULTI-TRIAL SEARCH FOR GRB
REMNANTS

In a realistic search for GWs from GRB remnants, the
large uncertainties that affect the post-merger / post-
explosion physics need to be taken into account. Even
though CoCoA allows tuning of sensitivity/robustness so
that some degree of uncertainty can be tolerated on the
expected time-frequency track of the GW signal (see Sec-
tion II), larger departures from such a track would cause
the search to fail. In this Section we address the need
for a large parameter space exploration, give an order-of-
magnitude estimate for the implied computational cost
of a search spanning such space, and describe the practi-
cal implementation of a multi-trial detection statistic for
CoCoA.

A. Remnant properties and timing uncertainties

For the specific case of GWs from bar-mode instabili-
ties of rotating magnetars discussed in Section III, a real-
istic search with CoCoA should be performed over a tem-
plate bank spanning the possible range of parameters (β,
M , R, B, ton), where ton accounts for the uncertainty on
the onset time of the secular bar-mode instability, some-
thing not considered in [105].

In Coyne et al. [105] we have shown that, for searches
based on CM09long, the maximum errors one could tol-
erate on the assumed magnetar properties are of the or-
der of ∆M ≈ 5 × 10−3 M�, ∆B ≈ 1012 Gauss, ∆R ≈
2 × 10−2 km. With these errors, the sensitivity of a
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FIG. 4. CoCoA tests on real O2 data from two detectors
(LL and LH) in the stochastic (top), matched-filter (center),
and semi-coherent (with 4 coherent segments; bottom) limits.
Grey histograms are background distributions normalized by
the variance in Eq. (2.18) in the stochastic limit, and by Cχ
in Eq. (2.24) for non-stochastic searches. Black-dashed lines
are: a normalized Gaussian with zero mean (top); a central
χ2 with 2 d.o.f. (center); a central χ2 with 2Ncoh = 8 d.o.f.
(bottom). Red histograms are normalized (by Cχ, Cχ/Ncoh

and the variance for the matched-filter, semi-coherent and
stochastic limits, respectively) distributions of real data when
CM09long is injected at a distance such that FAP=0.1% and
a FDP=50%, assuming optimal source orientation. Red lines
are: a normalized Gaussian with mean as in Eq. (2.17) (top);
a non-central χ2 with 2 d.o.f. (center) and non-centrality
parameter λ as in Eq. (2.25); a non-central χ2 with 2Ncoh = 8
d.o.f. (bottom) and non-centrality parameter λ.

TABLE II.

Ratio between analytical (Section II) and recovered values of
the ρ statistic for: simulated white Gaussian noise matched
to LIGO S6, O1, and O2 sensitivities in the frequency range

spanned by CM09long (Fig. 2, black); simulated colored
Gaussian noise matched to S6, O1, and O2 sensitivities (Fig.
2, blue); real LIGO S6, O1, and O2 data (Fig. 2, orange and

green). We note that in the matched-filter and
semi-coherent limits the recovered number of d.o.f. is also

consistent with the expectations of 2 and 2Ncoh = 8,
respectively, within 15%.

Stochastic limit

PSD σρ/σrho,rec σρ/σrho,rec µρ/µrho,rec

(noise only) (noise+signal) (noise+signal)

White S6 1.00 0.93 1.04

Colored S6 0.98 0.92 0.98

Real S6 0.90 0.96 0.98

White O1 0.99 1.09 0.99

Colored O1 1.03 1.13 0.99

Real O1 1.08 1.09 0.99

White O2 0.98 1.07 0.99

Colored O2 1.01 1.11 1.02

Real O2 1.05 1.09 1.02

Matched-filter limit

PSD Cχ/Cchi,rec Cχ/Cchi,rec λ/λrec

(noise only) (noise+signal) (noise+signal)

White S6 0.99 1.13 0.97

Colored S6 0.98 1.00 1.06

Real S6 0.97 0.95 1.02

White O1 1.04 1.01 1.02

Colored O1 0.95 1.06 0.98

Real O1 1.11 0.96 0.94

White O2 0.91 0.93 0.99

Colored O2 1.00 1.00 1.02

Real O2 1.04 0.96 1.02

Semi-coherent approach (Ncoh = 4)

PSD Cχ/Cchi,rec Cχ/Cchi,rec λ/λrec

(noise only) (noise+signal) (noise+signal)

White S6 1.00 1.12 0.91

Colored S6 1.12 0.97 1.09

Real S6 1.02 0.84 1.10

White O1 1.05 1.02 1.03

Colored O1 1.09 1.02 1.03

Real O1 1.04 1.09 0.97

White O2 0.99 0.99 0.94

Colored O2 1.00 1.06 1.01

Real O2 1.02 0.90 1.03

CoCoA semi-coherent search with optimized Tcoh ap-
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proaches that of a stochastic search on a perfectly match-

ing template3.
For GRBs observed on-axis and forming a long-lived,

secularly unstable magnetar, the expected X-ray plateau
duration and luminosity depend on the initial values of
β, B, and R, which can thus be constrained to some
specific ranges by comparison with the observations [128].
Moreover, as demonstrated in the case of GW170817 [94],
for short GRBs some constraints on the remnant mass M
can be derived from the analysis of the pre-merger signal
itself. The optimal case, of course, would be that of a
short GRB with an observed X-ray plateau for which
an in-spiral signal is also detected. In this case, joint
electromagnetic and GW observations would enable us
to set some constraints on all relevant parameters.

Regarding the uncertainty on ton, for long GRBs
formed from collapsing massive stars we can reasonably
assume that the delay between the collapse (and forma-
tion of the remnant) and that of the GRB trigger itself is
of order 120 s [129, 130]. Thus, tGRB − 120 s. tcollapse .
ton . tGRB (where tGRB is the GRB trigger time in γ-
rays). In the case of short GRBs from merger of com-
pact objects, the delay between the merger and the GRB
trigger time is expected to be of the order of a few sec-
onds, thus we assume tGRB − 6 s. tmerger . ton . tGRB

[129, 130]. The timing uncertainty on ton may be fur-
ther reduced when tcollapse or tmerger are more distinctly
known through the detection of GWs produced by the
merger/collapse. This was the case for GW170817, in
which tGRB − tmerger = 1.74± 0.05 s [131].

Motivated by the above considerations, in this analysis
we vary ton between tGRB − tunc (where tunc is 120 s for
long GRBs and 2−6 s for short GRBs) and tGRB, in steps
of ∆ton = Non∆Ton.

B. Computational cost: Order-of-magnitude
estimate

As an order of magnitude estimate of the computa-
tional cost for a multi-trial CoCoA search that accounts
for the uncertainties described in the previous Section,
let us consider a post-merger search similar to that per-
formed by [94] for GW170817. The last assumed fixed
values of β and M , and large uncertainties in B and R
(see also Bar1-Bar6 in Table I). With a parameter space
resolution of ∆B ≈ 1012 G and ∆R ≈ 2 × 10−2 km for
the magnetic field and NS radius, respectively, ranges of
B = 1013 − 5× 1014 G and R = 12− 14 km, (see Section
III for discussion of this range) could be spanned with a

3 The last is also comparable to the maximum sensitivity of more
robust and less computationally expensive algorithms that don’t
rely on any prior knowledge of the signal time-frequency evolu-
tion (e.g. STAMP; see [94]).

total of ∼ 5×104 templates. If we also account for uncer-
tainties on ton by sliding it for order 10 times (see Section
VI A), then the number of templates becomes ∼ 5× 105.

A search with FAP of 1% requires running on order
2500 background realizations per template. This number
of realizations ensures that the ρ probability distribution
above the FAP threshold is populated with 25 events,
thus resulting in an error of ≈ 20% for the corresponding
detection efficiency.

A CoCoA search on a single time-frequency track (as
described in Section II) with FAP of 1% and 2500 back-
ground realizations is estimated to require ∼ 1.5 core-
hours or “Standard Units” (SUs4). So a GRB search
at 1% FAP on a template bank with ∼ 5 × 105 time-
frequency tracks would require ∼ 0.75 MSUs. Assuming
. 2 − 3 potentially nearby GRBs with X-ray plateaus
and good LIGO Hanford/Livingston data in a 1 yr run,
we estimate a full-run multi-trial GRB search to require
(1.5− 2.25) MSUs, which is similar to the computational
cost of other LIGO searches (e.g., [132]).

For a two-detector CoCoA search with a template bank
similar to the GW170817 post-merger analysis described
here, constructing 2500 independent background realiza-
tions per template requires & 10.5 d of coincident back-
ground data. This is comparable to e.g. what was used
in [94], where 5.6 d of background data were derived from
non-continuous stretches of LL and LH coincident data
from 2017 August 13-21 UT. We estimate that the SFTs
of a ≈ 10.5 d-long stretch of data will consume ∼ 80 GB
of disk space per detector.

C. Multi-trial detection statistic

When uncertainties on the signal properties are large
and searching over multiple time-frequency tracks (tem-
plate bank) becomes necessary, the detection statistic of
CoCoA needs to be modified to account for the larger
number of trials. Hereafter, a CoCoA search on a single
template in a bank (see Section II) will be referred to as
a single trial.

To cover a given template bank, one performs a total
of Ntrial searches, each returning a certain value of the
single-trial ρ statistic defined as in Section II. In general,
the probability distribution of ρ changes across the tem-
plate bank because it depends on the properties of the
time-frequency tracks that constitute the bank itself. It
is thus convenient to introduce a normalized ρ statistic,
which in the stochastic limit we define as

ρ̃m =
ρm
σρ,m

, (5.1)

4 An “SU” is an XSEDE Service Unit on Stampede, equal to 1
CPU core-hour on a 2.7 GHz E5-2680 Intel Xeon (Sandy Bridge)
processor. E.g., a 1 hour allocation on a 8-core Stampede CPU
would consume 8 SUs.
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where ρm is a Gaussian random variable calculated along
the m-th template as in Eq. (2.16), with mean and stan-
dard deviation µρ,m and σρ,m given by Eqs. (2.17) and
(2.18), respectively. In the matched filter limit, we define
the normalized statistic as:

ρ̃m =
ρm
Cχ,m

, (5.2)

where Cχ,m and ρm are calculated along the m-th tem-
plate as in Eqs. (2.21) and (2.22), respectively, with ρm
a random variable distributed as a χ2 with two degrees
of freedom and with non-centrality parameter λm given
by Eq. (2.25). Finally, in the semi-coherent approach we
set:

ρ̃m =
Ncohρm
Cχ,m

, (5.3)

where Cχ,m and ρm are calculated along the m-th tem-
plate as in Eqs. (2.21) and Eq. (2.26), respectively, with
ρm a random variable distributed as a χ2 with 2Ncoh de-
grees of freedom, and non-centrality parameter λm given
by Eq. (2.25). In the above definition, we also assume
that the same Ncoh is adopted (and optimized) across
trials (see Section VI).

With the above normalization, we define the maximum
ρ statistic as ρ̃max=max(ρ̃m) for m = 0, ..., Ntrial − 1,
which we use to identify the most statistically promising
detection candidates. Generally speaking, in the presence
of a signal, we expect the template that is most similar
to the signal to return the maximum value of the ρ̃m
statistic. For a given choice of FAP , we thus set the
corresponding detection threshold as:∫

ρ̃max≥ρ̃th
P (ρ̃max)dρ̃max = FAP (ρ̃th), (5.4)

where P (ρ̃max) is the probability that any of the tem-
plates in the bank (trial) returns the largest value ρ̃max.
For completely independent trials, this probability reads:

P (ρ̃max) =

Ntrial∑
n=1

pn(ρ̃max)

Ntrial−1∏
m 6=n

∫
ρ̃m≤ρ̃max

pm(ρ̃ m)dρ̃m

 ,
(5.5)

where pm is the probability distribution of ρ̃m.

In the absence of a signal, the probability distribution
of the normalized ρ statistic is the same for all trials, thus
pm(ρ̃m) = p(ρ̃m) for all m and above Equation simplifies
to [133]:

P (ρ̃max) = Ntrial×p(ρ̃max)

 ∫
ρ̃m≤ρ̃max

p(ρ̃m)dρ̃m

Ntrial−1

(5.6)
Integrating both sides of the above Equation, and con-

sidering Eq. (5.4), we get:

FAP (ρ̃th)

Ntrial
=

∫
ρ̃max≥ρ̃th

p(ρ̃max)

1−
∫

ρ̃m≥ρ̃max

p(ρ̃m)dρ̃m

Ntrial−1

dρ̃max.

(5.7)

If the FAP is small, then
∫

ρ̃m≥ρ̃max

p(ρ̃m)dρ̃m � 1 for

ρ̃max ≥ ρ̃th and we can approximate Eq. (5.7) as:

FAP (ρ̃th)

Ntrial
≈

∫
ρ̃max≥ρ̃th

p(ρ̃max)dρ̃max = FAPsingle trial(ρ̃th).

(5.8)
The above approximation is useful as it shows that

the FAP threshold of a multi-trial search can be esti-
mated analytically from the FAP threshold of a single
trial search. We finally note that for searches where the
individual trials are not fully independent, the probabil-
ity of a given ρ̃max is generally lower than what is pre-
dicted in Equation (5.5), so one can define an effective
number of trials Neff,trials . Ntrial. In the case of GRB
magnetars, templates are fully independent only when
their time-frequency tracks as determined by (β, M , R,
B, ton) do not intersect.

VI. CoCoA MULTI-TRIAL SEARCH TESTS

As discussed in Section V, in a post-GRB search for
GWs from secularly unstable magnetars, it is necessary
to build a multi-trial search that accounts not only for
the uncertainties on the magnetar properties (β, M , R,
B), but also for the uncertainty that affects the timing
between the GRB trigger time as established by γ-ray
observations, and the onset of the bar-mode instability.
Hereafter, we present the results of tests aimed at veri-
fying the agreement between the analytical expectations
for the CoCoA multi-trial statistic described in Section
V and the actual code performance on simulated data, as
well as demonstrating the sensitivity of a CoCoA search.
Our tests proceed as follows:

1. We simulate colored Gaussian noise with PSD
matching that of LIGO O2, sampled at fs =
4.096 kHz. We assume two detectors with identi-
cal PSDs, use ∆TSFT = 0.25 s, and set FAP=1%
for determining our detection threshold (see Eq.
(5.4)).

2. We simulate a region of data extending between
tGRB − tunc and tGRB + twaveform, where tGRB is
an arbitrary GRB trigger time, tunc is the timing
uncertainty between the collapse/merger and the
GRB trigger time and twaveform is the duration of
the waveform being searched for. We take two val-
ues for tunc, 120 s to simulate a standard long GRB
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and 2 s to simulate an event similar to GW170817
(see Section V B).

3. We assume a known GRB sky location and set
F+ = −0.092 and F× = −0.91 for LIGO Hanford,
and F+ = 0.26 and F× = 0.79 for LIGO Livingston
(comparable to those of GW170817 [94, 126]).

4. When constructing a template bank for the search
we vary ton in the range [(tGRB − tunc), tGRB] (see
Section V A) for each choice of (β,M,R,B). We
sample this range in steps ∆ton that are multiples
of ∆TSFT i.e., ∆ton = Non × ∆TSFT. The choice
of ∆ton is made with computational cost in mind
given that the smaller ∆ton, the larger the number
tunc/∆ton + 1 of templates required to account for
the timing uncertainty.

5. To estimate our detection efficiency, we inject sig-
nals in the simulated O2 data assuming we are
aligned with the GRB jet axis (i.e., ι = 0 in
Eqs. (2.7)-(2.8)), as expected for GRBs with X-ray
plateaus. The injection time tinj is set to always
fall exactly in between the onset times of two ran-
domly chosen, temporally adjacent templates in the
bank, i.e. tinj − ton,n = ton,n+1 − tinj = ∆ton/2 =
Non × ∆TSFT/2. With this choice, we maximize
the temporal mismatch between the injected signal
and the closest template in the bank, thus obtain-
ing a conservative estimate of CoCoA’s detection
efficiency.

6. Similarly to what is done in [105], for each wave-
form we calculate the detection efficiency as a func-
tion of luminosity distance, and derive a distance
horizon by requiring a false dismissal probability
FDP = 50% (see Figure 10).

A. Timing uncertainties

In order to first isolate the effects of timing uncertain-
ties only, here we carry out a multi-trial CoCoA search
where the signal we search for is assumed to be produced
by a magnetar with exactly known parameters (β, M , R,
B), but with unknown onset time ton. We thus define a
template bank composed of CM09long-like/CM09short-
like waveforms (see Section III) whose onset time is varied
as described in the previous Section.

1. Background statistic

As shown in Figure 5, in the absence of a signal, the re-
covered multi-trial background statistic (grey histogram)
for various choices of Tcoh and Non can show deviations
from the analytical expectations described in Section V C
(black dashed line; see also Eq. (5.7)). Those expecta-
tions assumed that trials are completely independent (see

Eq. (5.7)), which is not always the case. Indeed, vary-
ing the onset times of otherwise identical time-frequency
tracks can introduce dependencies between trials, which
in turn imply that the recovered background distribu-
tion is equivalent to a predicted background distribution
with an effective number of trials that is lower than the
one obtained assuming that all templates in the bank are
independent.

Dependencies among templates become more impor-
tant for smaller values of Non, as evident by comparing
the top-left and top-right panels of Figure 5. The re-
covered probability distribution (grey histogram) agrees
well with the predictions discussed in Section V C (black-
dashed line) for large Non (top-left panel). However, for
smaller Non in an otherwise identical search (top-right),
the recovered results deviate from the expected ones.

To describe the actual recovered background statistic
for a non-fully independent template bank, we thus in-
troduce an effective number of trials determined as de-
scribed in Appendix A. The red-dashed lines in Fig-
ure 5 show that this effective background distribution
agrees well with the recovered one (histogram; note that
in the top-left panel the black- and red-dashed lines over-
lap completely).

Other factors affecting the effective number of trials in-
clude the rate at which the considered waveform evolves.
For example, in a search for the faster evolving wave-
form CM09short, the time-frequency tracks of different
trials in the bank are less likely to have significant over-
laps (and thus related trial dependencies) even for small
values of Non (bottom-right panel in Figure 5). Finally,
smaller values of Tcoh result in a larger degree of statisti-
cal dependence between templates (compare the top-left
and bottom-left panels in Figure 5). Indeed, for a given
number of overlapping time-frequency bins between two
templates in a bank, the smaller the coherence time, the
larger the fraction of dependent pairs (i.e. pairs gen-
erated from cross-correlation products containing time-
frequency bins in the overlapping portion of the tem-
plates time-frequency track) to the total number of pairs
entering in the computation of ρ along each template. In-
cidentally we note that, conceptually, this effect is similar
to what is behind the larger robustness of semi-coherent
searches with smaller coherence timescales: if only a few
time-frequency bins overlap between the injected signal
and the closest template in a bank, smaller coherence
times imply that cross-correlation products from these
few overlapping bins have a larger relative weight in the
computation of ρ along the template.

2. Detection efficiency and search sensitivity

Our goal with CoCoA is to use its tunability so that
we can maximize detection efficiency and ensure that
the achieved distance horizon for a semi-coherent multi-
trial search is always larger than even the most sensi-
tive stochastic (and thus less computationally expensive)
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FIG. 5. Effect of timing uncertainties on a multi-trial CoCoA search: results for the background statistic. We use simulated
LIGO data with (colored) O2 PSD and set ∆TSFT = 0.25 s. In order to keep the number of trials fixed, for searches with
tunc = 120 s we take Non = 60, and for searches with tunc = 2 s we take Non = 1. We compare recovered results in the absence
of a signal (grey histograms) to the analytical expectations derived in Section V C (black lines). To match the recovered results,
we define an effective number of trials for Eq. 5.7 that accounts for dependencies between trials (red lines). In the first row we
search for CM09long, only varying the start time of the waveform for each trial, taking identical values of Tcoh = 4 s, but using
different values of Non. In the first column we search for the same waveform and use identical values of Non = 60, but show
different values of Tcoh. Lastly in the second column we search with identical values of Non = 1 and Tcoh = 4 s, but search for
different waveforms (CM09long/CM09short).

search, i.e. a single-trial stochastic search with a tem-
plate perfectly matching the injected waveform. This
justifies the use of CoCoA over less computationally de-
manding stochastic algorithms [94, 106, 122, 134–136].
In what follows, we demonstrate that we can reach this
goal in a multi-trial CoCoA search accounting for timing
uncertainties.

In Figures 6-8 we quantify the sensitivity of a CoCoA
search incorporating timing uncertainties in the presence
of CM09long/CM09short signals for a source located at
the GW170817 position (see Section VI). Specifically,
in the various panels of Figures 6-8 we show the dis-

tance horizon corresponding to a FDP of 50% as a func-
tion of the coherence time Tcoh of the search, for the
CM09long/CM09short waveforms with different values of
timing uncertainties, tunc = 2− 120 s.

Unsurprisingly, the best sensitivities (largest distance
horizons) are achieved when Non is equal to a single SFT
baseline (as this implies minimizing the difference be-
tween the injected waveform and the closest template in
the bank). Note also that the smaller the Non, the larger
the optimal coherence time of the search. This is to be ex-
pected as larger coherent times improve sensitivity at the
expense of robustness against signal uncertainties. Thus,
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tunc = 120 s

FIG. 6. Horizon distances at 50% FDP and FAP of 1% for a source located at the sky position of GW 170817, and for a search
of CM09long with tunc = 120 s and different values of Non. The computational time of a search scales with Ntrials. CoCoA
distance horizons are compared with those of a single-trial stochastic search on an perfectly matching waveform (no temporal
or physical uncertainties; blue-dashed lines).
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tunc = 120 s

FIG. 7. Horizon distances at 50% FDP and FAP of 1% for a source located at the sky position of GW 170817, and for a
search of CM09short with tunc = 120 s and different values of Non. The computational time of a search scales with Ntrials.
CoCoA distance horizons are compared with those of a single-trial stochastic search on an perfectly matching waveform (no
temporal or physical uncertainties; blue-dashed lines).

tunc = 2 s

FIG. 8. Horizon distances at 50% FDP and FAP of 1% for a source located at the sky position of GW 170817, and for searches
of CM09long (left) and CM09short (right) with tunc = 2 s and Non = 1. CoCoA distance horizons are compared with those of
a single-trial stochastic search on an perfectly matching waveform (no temporal or physical uncertainties; blue-dashed lines).
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we can afford larger coherence times for smaller differ-
ences between the closest template in our bank and the
injected waveform, i.e. for smaller Non. These Figures
also show that a coarser choice of Non reduces the com-
putational cost of the search, as larger Non correspond to
smaller Ntrials. This occurs at the expense of sensitivity:
indeed, for Non ≈ 160, the CoCoA distance horizon with
optimized coherence time approaches the stochastic-like
horizon (blue-dashed line). On the other hand, smaller
Non greatly improve sensitivity but imply larger number
of trials and increased computational cost. To make a
concrete example, the distance horizon we achieve for a
search on CM09long with 120 s of timing uncertainty and
Non = 1 in O2-like data is 20.6± 0.5 Mpc (top-left panel
in Figure 6). However, such a search would require nearly
500 individual trials just to account for the timing uncer-
tainty, and it would quickly become prohibitively costly
computationally if one were to also account for uncer-
tainties in the magnetar physical parameters (see Sec-
tion V B). Thus, a more realistic search for CM09long
and tunc = 120 s would be one with Non = 60, as this
produces 9 trials, which can be handled computationally
even when uncertainties on the magnetar physical pa-
rameters are considered (see Section V B). We note that
an Non = 60 CoCoA search with timing uncertainties
produces a distance horizon of 12.8± 0.5 Mpc. The last,
rescaled for an optimally located source and for advanced
LIGO nominal sensitivity (as in [127]), corresponds to
≈ 29 Mpc (only slightly less than the actual distance of
GW170817).

If the timing uncertainty can be reduced to tunc = 2 s
(see Section V A), as was the case for GW170817, then a
search with Non = 1 produces only 9 trials, and would be
computationally accessible even considering uncertainties
on the post-GRB magnetar properties (see discussion in
Section V B). We stress that the horizon distance of a
search with tunc = 2 s and Non = 1 is 25.3 ± 0.5 Mpc
(see Figure 8), or ≈ 57 Mpc for an optimally oriented
source and for advanced LIGO nominal sensitivity. We
note that this is comparable to the sensitivity of a single-
trial search of CM09long with advanced LIGO nominal
sensitivity and the same choices of Tcoh and TSFT, which
produces a distance horizon of ≈ 63 Mpc with a FAP of
1%.

Finally, as shown in Figure 7, faster evolving wave-
forms (such as CM09short) with large timing uncer-
tainties (tunc = 120 s) are more effectively searched for
with a stochastic-like algorithm rather than with a semi-
coherent CoCoA approach as the last produces horizon
distances smaller than the stochastic-like horizon (blue-
dashed lines) for Non & 1. However, as evident from
Figure 8, when the timing uncertainty can be reduced
tunc = 2 s (as for GW170817), CoCoA can achieve large
distance horizons (≈ 45 Mpc) for a very reasonable num-
ber of trials. This implies that a search for a CM09short
waveform for an optimally oriented source with advanced
LIGO at nominal sensitivity could reach distances of or-
der 100 Mpc. We note that this is comparable to the

sensitivity of a single-trial search of CM09short with ad-
vanced LIGO nominal sensitivity and the same choices
of Tcoh and TSFT, which produces a distance horizon of
≈ 140 Mpc with a FAP of 1%.

B. Uncertainties in both timing and magnetar
properties

In this Section we follow an approach similar to what is
described in the previous one to quantify the CoCoA sen-
sitivity and detection efficiency in the presence of both
timing uncertainties and uncertainties in the physical pa-
rameters of the GRB remnant (see Section V A). Namely,
we inject CM09long/CM09short in simulated data with
sensitivity matched to LIGO O2, and run a search us-
ing a template bank that accounts for both tunc and un-
certainties on (β, M , R, B). The last are taken into
account by constructing a template bank where wave-
forms corresponding to steps of sizes ∆B = 1012 G,
∆R = 0.02 km, ∆M = 5×10−2M� around the values of
CM09long/CM09short are used (see also [105]). All com-
binations of shifts to M , R, and B are included in our
template bank, giving a total of 26 unique time-frequency
tracks per each of the CM09long and CM09short wave-
forms. We note that we do not include the exact injected
waveform in our template bank so as to derive a conser-
vative estimate of the detection efficiency.

In Figure 9 (left) we show the results of a search for
CM09long with Non = 60 and tunc = 120 s, which pro-
duces 9 trials accounting for timing uncertainties per
each of the 26 possible choices of steps in M , R, and
B accounting for uncertainties in these parameters. This
yields a total of 234 trials. As evident by comparing the
results in Figure 9 (left panel) with those shown in the
center-right panel of Figure 6, in spite of the increased
number of trials, when all possible uncertainties are con-
sidered overall the template in the bank closest to the
injected waveform has a smaller mismatch than it would
have by only considering timing uncertainties. In other
words, small shifts in magnetar parameter values can
compensate the mismatch introduced by timing uncer-
tainties.

Similar results are found for a search of the CM09short
waveform, with tunc = 2 s, Non = 1 (compare the right
panel in Figure 9 to the right panel in Figure 8). In
this case we find that for a fast-evolving waveform such
as CM09short, small shifts in magnetar parameters com-
bined with small shifts in the start time of GW emission
may still compensate eachother, potential error of the
onset time of GW emission is smaller than a single SFT.
This is a surprising, yet welcome result as this compensa-
tion provides an even higher degree of sensitivity to our
search. Indeed, this result provides a distance horizon
of 51.3 ± 0.7 Mpc, which scales above 110 Mpc for an
optimally oriented source with advanced LIGO nominal
sensitivity.
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FIG. 9. Horizon distances at 50% FDP and 1% FAP , and sky position of GW 170817 for a search of 26 sets of magnetar
physical parameters obtained by shifting of ∆B = 1012 G , ∆M = 5 × 10−2 M� , and ∆R = 0.2 km, the values of (B, M ,
R) for CM09long/CM09short. The searches assumes tunce = 120 s and Non = 60 for CM09long (left), and tunc = 2 s and
Non = 1 for CM09short (right), giving 9 trials for each choice of physical parameters and 234 total trials. CoCoA distance
horizons are compared with those of a single-trial stochastic search on an perfectly matching waveform (no temporal or physical
uncertainties; blue-dashed lines).

VII. SUMMARY AND CONCLUSION

In this work we have demonstrated the potential that
CoCoA has for realistic targeted searches of GW signals
of durations ranging from a few hundred to a few thou-
sand seconds. Results have been shown specifically for
the case of bar-mode instabilities of millisecond magne-
tars formed in GRBs [100], but can be easily generalized
to other time-frequency tracks of similar durations asso-
ciated with quasi-monochromatic GW signals.

Compared to the results originally presented in [105],
we have further developed CoCoA to ensure it can run
on real GW detectors data, and that it can incorporate a
multi-trial statistic allowing for searches spanning a bank
of templates accounting for signal uncertainties. We have
also provided order-of-magnitude estimates for the com-
putational cost associated with various types of CoCoA
searches.

Overall our results are encouraging, as the expected
distance horizons for CoCoA searches on an optimally
oriented source are comparable to, or exceed, the dis-
tance of GW170817 when assuming advanced LIGO nom-
inal sensitivity. For a binary NS merger rate in the
range (0.32 - 4.760)×10−6 Mpc−3 yr−1 [126, 137], we
expect 0.1 - 1 events yr−1 within 40 Mpc, and 1 - 20
events yr−1 within 100 Mpc (which should be within Co-
CoA reach once advanced LIGO reaches nominal sen-
sitivity, as demonstrated here). Of these, based on cur-
rent limited estimates of short GRBs opening angles (e.g.,
[138]), . 10% would launch jets aligned with our line of
sight and could thus show X-ray plateaus which would en-
able us to set even more stringent constraints on a poten-

tial magnetar remnant. Thus, a targeted CoCoA search
for short GRB remnants that employs a full parameter
space at full advanced detectors’ sensitivity may be ca-
pable of either making detections, or else significantly
constraining the most optimistic theoretical models.

In terms of sensitivity, our results improve substan-
tially on the ones previously presented e.g. in [94], but re-
quire stricter conditions on the timing uncertainties tunc

so as to ensure that a template-based CoCoA search is
computationally feasible. In Appendix B we discuss in
more details how the CoCoA results presented here com-
plement past searches such as the ones in [94].

We finally note that magnetars may also be formed in
long-duration GRBs. Thus, long GRBs (and specifically
those with the characteristic X-ray plateau), will also
provide interesting targets for CoCoA. Long-duration
GRBs are estimated to have observed rates in the range
0.7-103 Gpc−3 yr−1 (depending on luminosity; see e.g.
[85, 139, 140]). Using the nominal advanced LIGO hori-
zon distance for a CoCoA search of CM09long of (30 Mpc;
see Section VI A), we can expect . 0.1 events yr−1. Thus,
targeted searches for magnetars formed in long GRBs
will likely need to wait for second or third generation
ground-based detectors [141–143]. For example, the re-
cently funded upgrade for advanced LIGO envisions an
increase in the volume of space the observatory can sur-
vey by as much as seven times [141], which would make
long GRB searches with CoCoA come into reach on more
reasonable timescales.
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FIG. 10. Example of detection efficiency (1 − FDP ) vs dis-
tance d for a semi-coherent search of waveforms with small
changes in physical parameters to CM09long when CM09long
is injected as in Section VI B. In this example, (Non = 60,
and Tcoh = 4 s which is the coherence time that produces the
largest distance found from a search of CM09long as in figure
9. The distance corresponding to a 50% FDP is marked in
green. Error in distance is taken by first finding the error in
efficiency through the DKW inequality. Efficiency errors are
then connected through the sygmoid function to find errors
in distance at the chosen FDP (50% in this example). See
VI A or [105] for more discussion.

Appendix A: Effective number of trials and
detection efficiency error estimation

In Section VI A and Figure 5 we discuss results of the
CoCoA background distribution from multi-trial tests.
These results show a difference in the expected proba-
bility distribution (as in Eq. (5.7)) and the recovered
distribution. This difference is caused by overlapping
time-frequency tracks of different templates in the tem-
plate bank, and is quantified in Figure 5 via the definition
of an effective number of trials. The method we use to
calculate the effective number of trials is defined below.

We start by solving Equation (5.7) for many different
probability distribution functions (P(ρ̃max)) using values
of effective trials (Neff,trials) ranging from 0.1 to the true
Ntrials + 1 with steps of 0.1 trials. After generating the
probability function in Equation (5.7) for each sampled
value of Neff,trials we take the integral of the probability
function to generate the cumulative distribution function
(CDF5). The CDF for each value of Neff,trials is then com-
pared to the empirical cumulative distribution function

5 Integration performed using the python scipy integra-
tion tool cumtrapz, which uses cumulative trapezoidal
integration technique. For more information see https:
//docs.scipy.org/doc/scipy/reference/tutorial/integrate.html
[144]

(ECDF6) from the recovered results. The comparison is
done by using the coefficient of determination (R2) which
is defined by:

R2 = 1−

∑
i

(yi − fi)2∑
i

(yi − y)2
, (A1)

where y refers to observed data, y refers to the mean of
observed data and f refers to expected data [146]. In our
case y refers to the ECDF from recovered results and f
refers to the analytic CDF generated from a given value
of Neff,trials. The Neff,trials that produces an R2 value
closest to 1 is taken as the chosen value of Neff,trials.

The error on the effective number of trials is calculated
considering that an ECDF has an error bound by the
Dvoretzky-Kiefer-Wolowitz (DKW) inequality [147, 148].
The DKW inequality is a concentration inequality which
provides bounds on how a variable deviates from its ex-
pected value. Specifically, the error ε on the ECDF (such
that the true ECDF lies between the recovered ECDF +
ε and the recovered ECDF - ε), is defined as:

ε =

√
ln( 2

α )

2n
, (A2)

where 1 − α is the associated probability, n is the num-
ber of samples (in our case the number of background
realizations as in Section V B). To estimate the error on
Neff,trials we thus perform R2 tests similarly to what de-
scribed above, but using the ECDF ±ε. The difference
between the Neff,trials found when performing the R2 test
on the ECDF and those found when performing the same
test on the ECDF ±ε is taken as the error in Neff,trials.
As the R2 test only considers discretely sampled values of
Neff,trials, 0.1 effective trials apart, we also add an addi-
tional systematic error of 0.05 on the estimated Neff,trials.

The DKW inequality is also used in the calculation of
errors on the detection efficiency and distance horizons.
Because the FAP threshold for a given search makes use
of the ECDF, the ε in Equation (A2) also puts bounds on
our error on the detection efficiency for a chosen FAP
(red errors bars in Figure 10). The recovered efficien-
cies at each injected distance, as well as their upper- and
lower-error ranges are then fit to sygmoid curves (see the
dashed lines in Figure 10). The distance that corresponds
to the point where the chosen FDP level (black-dotted
line in Figure 10) crosses the sigmoid fit to the detection
efficiency (black-dashed line in Figure 10), is then taken
as the distance horizon for that given FDP (marked in
green in Figure 10). The error on such distance is es-
timated by using the points where the sygmoids fits to

6 ECDFs are calculated using the python library
statsmodels’ ECDF function in the distributions
sub-library. For more information see https:
//docs.scipy.org/doc/scipy/reference/tutorial/integrate.html
[145].
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the upper and lower bounds of the efficiency curve (red-
dashed lines in Figure 10) cross the chosen FDP (black-
dotted line in Figure 10).

Appendix B: Order-of-magnitude comparison with
previous GW170817 post-merger results

Searches for post-merger GWs from secularly unsta-
ble magnetars with parameters matched to those of
Bar1-Bar6 (see Section III) have been performed for
GW170817 using the Stochastic Analysis Multi-detector
Pipeline (STAMP) [94, 122, 134]. STAMP searches for
excess power in time-frequency maps by cross-correlating
data streams of different detectors and using pattern
recognition algorithms rather than a template bank of
time-frequency tracks. For the pattern recognition,
STAMP uses both seed-based (Zebraguard) and seedless
(Lonetrack) algorithms. Because STAMP searches are
most similar to the CoCoA stochastic limit, here we com-
pare expectations for a stochastic-limit CoCoA search on
Bar1-Bar6 with STAMP results on these same waveforms
reported in [94].

We consider a CoCoA search similar to that described
in Section VI, with TSFT = 0.25 s, and FAP and FDP
matching those used for the STAMP search in [94]. An
appropriate template bank for such as CoCoA search
would include waveforms Bar1-6, as well as a range
of other waveforms with same M and β but spanning
ranges of R = 12 − 14 km for the NS radius, and
B = 1013 − 5 × 1014 G for the magnetic field, in steps
of ∆B = 1012 G and ∆R = 0.02 km (see Section VI B).
For this choice in step size the CoCoA template bank
would contain 100 templates to span the possible val-
ues of R, and 490 templates to span the possible val-
ues of B. Temporal uncertainty can be accounted for
by choosing tunc = 2 s, which is comparable to the de-
lay between the merger time of GW170817 and its as-
sociated GRB 170817A (see Sections V B and VI A for
more discussion). With ∆ton = 0.25 s (as in Section
VI), this would result in 9 choices of ton for each (β,
M , R, B). Thus, we expect a CoCoA search to include
Ntrials = 100× 490× 9 = 441× 103 trials.

In order to estimate the sensitivity of a CoCoA search
without spending a large amount of computational time,
we compute our background statistic using a reduced
template bank that only considers Bar1-6 and all com-
binations of physical parameters that are one step away
from Bar1-6. The background is built using 9.1 days
of coincident detector data during the O2 LIGO run,
starting 20 days before the GW170817 merger and end-
ing 1 hour before. The results are displayed in Figure
11. From the grey histogram in this Figure we calcu-
late the ρ̃th corresponding to a FAP = 1% and find this
to be in excellent agreement with what expected from
simulated Gaussian noise with O2-like sensitivity (pink
histogram in Fig. 11). Next, we use Eq. (5.8) to esti-
mate the ρ̃th of a search with Ntrials = 441 × 103 (see

FIG. 11. The combined background distribution of the ρ̃max

statistic for a search on O2 data that considers Bar1-6, the
waveforms with all combinations of (β,M,R,B) one step
away from those of Bar1-6, and 9 choices of ton, for a total
number of trials of Ntrial = 481. The grey histogram shows
the results of the search over 9.1 days of real O2 data before
the time of the merger of GW170817. This background is
used to set the FAP threshold for the comparison to STAMP
test. The pink histogram shows the background when us-
ing simulated O2-like Gaussian noise similar to what is used
in Section V. The thresholds for a FAP of 1% for both the
real and simulated data are show using black- and red-dashed
lines, respectively.

above) and FAP = 1%. We then estimate the CoCoA
distance horizon for Bar1-Bar6 by injecting those signals
in the longest O2 stretch of data closest to the trigger
time of GW170817 (starting at GPS time 1186898000),
and searching with a template bank that considers all
combinations of physical parameters one step away from
the injected waveform (this is similar to what is done in
Section VI B). The results of this test are compared to
STAMP’s results for GW170817 in Figure 12.

From Figure 12 we see that CoCoA (blue bars), even
in its least sensitive stochastic limit, is more sensitive
than STAMP. But, the gained sensitivity comes at the ex-
penses of computational cost. This is ultimately related
to the fact that while CoCoA is a template-based search
that considers the expected physics behind the time-
frequency tracks it searches for, STAMP time-frequency
maps are build using analytic methods that do not con-
sider specific models. While this reduces the STAMP
search sensitivity, it makes it computationally more fea-
sible in the presence of large signal uncertainties. In-
deed, the red and green bars in Figure 12 show the re-
sults of the STAMP search reported in Abbott et al. [94].
The last targeted bar-like GWs starting at the time of
the GW170817 merger and ending ∼ 8.5 days after the
merger, thus allowing for a tunc much greater than the
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FIG. 12. Horizon distances for STAMP as in [94] compared
to the ones of a CoCoA stochastic search. CoCoA (dark and
light blue), even with the less sensitive stochastic limit, is
more sensitive than STAMP (red and green). But, the gained
sensitivity comes at the expenses of computational cost. A
CoCoA search with tunc = 8.5 d (light blue), like that used by
the STAMP search presented in [94], produces a number of
trials 6 orders of magnitude larger. Similarly, a CoCoA search
with tunc = 2 s (dark blue) produces a number of trials only
about a factor of two smaller than a STAMP search with
a much longer timing uncertainty of tunc = 8.5 d. We note
that the Coherent Wave Burst (cWB) pipeline [110] has also
produced upper-limits for the GW170817 post-merger search
that are comparable to the STAMP ones shown here (see [94]).

2 s considered for a CoCoA search (light and dark blue
bars). The STAMP search was carried out using time-
frequency maps of duration 500 s, ton times with 50%
overlap from the previous time-frequency map, and an
SFT duration of 1 s, for a total of 1250 × 103 trials. If
we were to build a CoCoA search with the same choice
of tunc ∼ 8.5 days and keeping ∆ton = 0.25 s, we would
need ∼ 3× 106 choices of ton for each (β, M , R, B) and
144×109 trials for the full search (Fig. 12, light blue). A
search of this magnitude would cost 250 GSUs, which is
5 orders of magnitude larger than other LIGO searches,
(e.g., [132]) and is therefore computationally unfeasible.

In conclusion, we can say that the STAMP and Co-
CoA approaches are complementary, and we advocate
for running searches with both as the most likely way for
maximizing chances of detecting intermediate-duration
post-merger signals.

Appendix C: Additional Tests

In this Section we show how the performance of CoCoA
changes by changing some of the assumptions we made
in Section VI A. Specifically, we consider (i) changing
the FDP from 50% to 10%; and (ii) randomizing the in-
jection time tinj rather than having it always fall exactly
in between two adjacent SFT bins (a choice that maxi-

mizes the mismatch between injections and templates).
We test these changes on two representative searches. A
first search of CM09long with tunc = 120 s, Non = 60,
and Tcoh = 1 s; and a second search of CM09short with
tunc = 2 s, Non = 1, and and Tcoh = 4 s. These coher-
ence time values are chosen based on the optimization
procedure shown in Figures 6 and 8.

Our results are reported in Table III, where for ref-
erence we also show the distance horizons obtained for
FDP = 50%, for injections times matching exactly the
start times of the template waveforms (which eliminates

the mismatch between the two; see d90%
nomis and d90%

nomis
in Table III), and for injection times always in between
adjacent SFT bins (which maximizes the mismatch be-

tween injected and template waveforms; see d90%
maxmis and

d90%
maxmis in Table III).
Unsurprisingly, when the onset time is randomized, the

sensitivity of the search (see d50%
randinj and d90%

randinj in Table

III) falls in between the two extremes of no mismatch
and maximized mismatch. Also unsurprisingly, we find
that decreasing the allowed FDP reduces the sensitivity
of the search, so the distance horizons for FDP = 10%
are ∼ 15%− 30% smaller than for FDP = 50%.
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TABLE III. CoCoA performance with varying FDP and injection times. See Appendix C for discussion.

Waveform tcoh tunc Non d50%nomis d90%nomis d50%maxmis d90%maxmis d50%randinj d90%randinj

(s) (s) (Mpc) (Mpc) (Mpc) (Mpc) (Mpc) (Mpc)

CM09long 1 120 60 15.0 ± 0.5 12.3 ± 0.4 12.8 ± 0.5 10.4 ± 0.4 13.6 ± 0.5 11.5 ± 0.4

CM09short 4 2 1 60.0 ± 0.7 46.0 ± 0.7 45.5 ± 0.7 37.9 ± 0.6 52.8 ± 0.7 42.6 ± 0.6
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P. Mészáros, D. N. Burrows, J. A. Nousek, and
N. Gehrels, Physical Processes Shaping Gamma-Ray
Burst X-Ray Afterglow Light Curves: Theoretical Im-
plications from the Swift X-Ray Telescope Observations,
Astrophys. J. 642, 354 (2006), arXiv:astro-ph/0508321.

[85] E. Liang and B. Zhang, Calibration of gamma-ray burst
luminosity indicators, Mon. Not. R. Astron. Soc. 369,
L37 (2006), astro-ph/0512177.

[86] R. L. C. Starling, P. T. O’Brien, R. Willingale, K. L.
Page, J. P. Osborne, M. de Pasquale, Y. E. Naka-
gawa, N. P. M. Kuin, K. Onda, J. P. Norris, et al.,
Swift captures the spectrally evolving prompt emission
of GRB070616, Mon. Not. R. Astron. Soc. 384, 504
(2008), 0711.3753.

[87] M. G. Bernardini, R. Margutti, J. Mao, E. Zaninoni,
and G. Chincarini, The X-ray light curve of gamma-ray



24

bursts: clues to the central engine, Astron. Astrophys.
539, A3 (2012), 1112.1058.

[88] B. P. Gompertz, P. T. O’Brien, G. A. Wynn, and
A. Rowlinson, Can magnetar spin-down power extended
emission in some short GRBs?, Mon. Not. R. Astron.
Soc. 431, 1745 (2013), 1302.3643.

[89] A. Rowlinson, P. T. O’Brien, B. D. Metzger, N. R. Tan-
vir, and A. J. Levan, Signatures of magnetar central en-
gines in short GRB light curves, Mon. Not. R. Astron.
Soc. 430, 1061 (2013), 1301.0629.

[90] S. X. Yi, Z. G. Dai, X. F. Wu, and F. Y. Wang, X-Ray
Afterglow Plateaus of Long Gamma-Ray Bursts: Fur-
ther Evidence for Millisecond Magnetars, ArXiv e-prints
(2014), 1401.1601.

[91] V. Ravi and P. D. Lasky, The birth of black holes: neu-
tron star collapse times, gamma-ray bursts and fast ra-
dio bursts, Mon. Not. R. Astron. Soc. 441, 2433 (2014),
1403.6327.

[92] Y.-W. Yu, L.-D. Liu, and Z.-G. Dai, A long-lived rem-
nant neutron star after GW170817 inferred from its as-
sociated kilonova, ArXiv e-prints (2017), 1711.01898.

[93] B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese,
K. Ackley, C. Adams, T. Adams, P. Addesso, R. X.
Adhikari, V. B. Adya, et al., GW170817: Observation
of Gravitational Waves from a Binary Neutron Star
Inspiral, Physical Review Letters 119, 161101 (2017),
1710.05832.

[94] B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese,
K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Ad-
hikari, V. B. Adya, et al., Search for Post-merger Gravi-
tational Waves from the Remnant of the Binary Neutron
Star Merger GW170817, Astrophys. J. Lett. 851, L16
(2017), 1710.09320.

[95] B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese,
K. Ackley, C. Adams, T. Adams, P. Addesso, R. X.
Adhikari, V. B. Adya, et al., Search for Gravitational
Waves from a Long-lived Remnant of the Binary Neu-
tron Star Merger GW170817, Astrophys. J. 875, 160
(2019), 1810.02581.

[96] S. Bonazzola and E. Gourgoulhon, Gravitational waves
from pulsars: emission by the magnetic-field-induced
distortion., Astronomy and Astrophysics 312, 675
(1996), astro-ph/9602107.

[97] C. Palomba, Gravitational radiation from young magne-
tars: Preliminary results, Astronomy and Astrophysics
367, 525 (2001).

[98] C. Cutler, Gravitational waves from neutron stars with
large toroidal B fields, Phys. Rev. D 66, 084025 (2002),
gr-qc/0206051.

[99] D. Lai and S. L. Shapiro, Gravitational radiation from
rapidly rotating nascent neutron stars, Astrophys. J.
442, 259 (1995), arXiv:astro-ph/9408053.
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