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We investigate correlated gravitational wave and neutrino signals from rotating core-collapse
supernovae with simulations. Using an improved mode identification procedure based on mode
function matching, we show that a linear quadrupolar mode of the core produces a dual imprint
on gravitational waves and neutrinos in the early post-bounce phase of the supernova. The angular
harmonics of the neutrino emission are consistent with the mode energy around the neutrinospheres,
which points to a mechanism for the imprint on neutrinos. Thus, neutrinos carry information about
the mode amplitude in the outer region of the core, whereas gravitational waves probe deeper in.
We also find that the best-fit mode function has a frequency bounded above by ∼ 420 Hz, and yet
the mode’s frequency in our simulations is ∼ 15% higher, due to the use of Newtonian hydrodynam-
ics and a widely used pseudo-Newtonian gravity approximation. This overestimation is particularly
important for the analysis of gravitational wave detectability and asteroseismology, pointing to lim-
itations of pseudo-Newtonian approaches for these purposes, possibly even resulting in excitation
of incorrect modes. In addition, mode frequency matching (as opposed to mode function matching)
could be resulting in mode misidentification in recent work. Lastly, we evaluate the prospects of a
multimessenger detection of the mode using current technology. The detection of the imprint on
neutrinos is most challenging, with a maximum detection distance of ∼ 1 kpc using the IceCube
Neutrino Observatory. The maximum distance for detecting the complementary gravitational wave
imprint is ∼5 kpc using Advanced LIGO at design sensitivity.

I. INTRODUCTION

The collapse and bounce of the iron cores of massive
(M & 10M�) stars and the possible ensuing explosion
are expected to produce detectable gravitational waves
(GWs) and neutrinos if they occur within or nearby our
galaxy. Indeed, neutrinos have already been detected
from such an event, namely SN1987A [1, 2]. Core collapse
events with a successful explosion are called core-collapse
supernovae (CCSNe). The electron-degenerate iron core
collapses once it exceeds its effective Chandrasekhar mass
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limit, and is halted once the core reaches nuclear den-
sities ρ ∼ few × 1014 g cm−3 and its equation of state
stiffens. The core overshoots its equilibrium radius, re-
sulting in an overpressure, and bounces outwards again.
This imparts momentum to the supersonically infalling
stellar material, causing a powerful outward shockwave.
Whether and how this shockwave and the subsequent dy-
namics result in a successful explosion is a central theme
of research in this area, see eg. the recent reviews [3, 4]
and references therein.

In the event of a successful explosion, photons will also
be detectable. In contrast with photons, which are heav-
ily reprocessed before freely streaming to an observer,
the intervening stellar material between the core and
an observer are transparent to GWs. The star is also
largely transparent to neutrinos, except the region within
∼ 50 km of the centre of the proto-neutron star (PNS)
where neutrino-matter interactions are still strong. Neu-
trinos and GWs therefore offer direct probes of the central
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engine of a CCSN [5–9].
Gravitational waves in CCSNe arise from coherent

matter accelerations. One of the strongest sources of
GWs in CCSNe is from strongly rotating core collapse.
In this scenario, the collapsing rotating core has an ac-
celerating quadrupole moment, and therefore generates
gravitational waves. At core bounce, the newly formed
rotating PNS emits a distinct GW pattern. Following
core bounce and the stagnation of the CCSN shock, the
growth of turbulence at & 100-150ms after bounce can
also lead to excitations of the PNS and the production of
GWs. These are often emitted by characteristic modes
of the PNS (fGW & 500Hz). GW emission can occur at
lower frequencies as well (fGW ∼ 100 − 200Hz), due to
matter motions further out where the dynamic timescale
is longer. In this work, we focus on the time interval
0 ms . tpb . 150 ms. In addition to low-frequency GWs
from interactions between the prompt convection and the
shock [10], GWs may also be expected from the PNS as it
settles down after the very dynamic bounce phase. Con-
trasting against the late-time signal, the PNS radius is
larger and the mass is lower, so one may expect lower fre-
quency GWs. For a more in-depth review of GWs from
CCSNe and the different emission regimes we refer the
reader to a recent review [11]. Interestingly, correlated
frequencies between GWs and neutrino luminosities have
been observed in simulations within tens of milliseconds
after core bounce in [12]. Similar correlations at later
times have been reported in [13–19], purportedly due
to the growth of the standing accretion-shock instabil-
ity (SASI). These observations point towards a wealth of
opportunity to probe specific aspects of the central dy-
namics occurring at different times, from tens of ms to
several seconds and beyond.

Asteroseismology is the study of the interior structure
of stars inferred from observations of its seismic oscil-
lations. There have been recent theoretical efforts to
use GWs to do the same with CCSNe, so-called gravi-
tational wave asteroseismology [20–24]. These efforts in-
volve identifying the modes responsible for GW emission
in simulations. The main strategy is to use data from
numerical simulations as input for a perturbative mode
calculation, where the simulated data serves as a back-
ground solution. The key point to note is that there is
a separation of scale between the period of the modes of
interest and the time scale over which the post-bounce
CCSN background changes significantly. For example,
towards the pessimistic end, a 200 Hz mode has a period
of 5 ms, whereas the CCSN background changes over a
timescale of several tens of ms. Therefore one expects
to be able to treat the CCSN background as station-
ary for the purposes of a perturbative calculation at any
instant of time. In [21] this was done using a pertur-
bative Newtonian hydrodynamic scheme in an effort to
generate a qualitative understanding of the GW emission
due to the oscillations of a rotating PNS that were ex-
cited at bounce. Subsequently, [22] presented a similar ef-
fort using perturbative hydrodynamic calculations in the

relativistic Cowling approximation. Shortly thereafter,
and during the course of this work, [23] partially relaxed
the Cowling approximation by allowing the lapse to vary,
governed by the Poisson equation. They claimed an im-
proved coincidence between their perturbative mode fre-
quencies and certain emission features in the GW spec-
trograms from simulations. The Cowling approximation
was then relaxed even further in [24], where the confor-
mal factor of the spatial metric was allowed to vary as
well, leaving only the shift vector fixed.

All of these studies, however, attempt to identify spe-
cific modes of oscillation of the system primarily by co-
incidence between perturbative mode frequencies and
peaks in GW spectra, across time. This is potentially
problematic for a number of reasons. Firstly, the approx-
imations used in the perturbative calculations introduce
errors in mode frequencies that can be quite significant,
e.g., tens of percent in the case of lower order modes in
the Cowling approximation. Secondly, any partial relax-
ation of the Cowling approximation presents difficulties
with the interpretation of results, since the resulting per-
turbative scheme neglects some terms at a given order
but not others, and thus is not under control; one can-
not argue a priori that the neglected terms are smaller
than those included, and so the regime of applicability re-
quires independent investigation. Furthermore, the per-
turbative schemes applied in [22–24] are not consistent
linearizations of the equations being solved in the simu-
lations, albeit they are inconsistent in different ways due
to different perturbative schemes and simulation method-
ologies. Thirdly, the approximations used in the simula-
tions themselves introduce their own frequency errors.
For example, often hydrodynamics is treated as Newto-
nian and gravity treated in a pseudo-Newtonian manner
in CCSN simulations by modifying the potential to mimic
relativistic effects, as in [23, 25–27]. Since the mode
population in the vicinity of a given frequency bin in
a GW spectrum can be rather dense (neighboring mode
frequencies differing by ∼ 5− 10%), and often the tem-
poral evolution of neighboring mode frequencies are ap-
proximately related by a scalar multiple (∼ 1.05− 1.10),
all of these above mentioned sources of error serve to
lower the significance of any given observed coincidence
between perturbative and simulated mode frequencies.
Indeed, the purported identification of a g-mode in [27]
required a post hoc modification of its frequency formula
when matching to GW spectrograms from simulations,
which was speculated to be due to the use of Newto-
nian hydrodynamics and pseudo-Newtonian gravity in
the simulations.

We opt to take a different approach. Rather than
looking for coincidence in mode frequencies, we look
for coincidence in mode functions. This means compar-
ing mode functions, obtained from perturbative calcula-
tions, with the velocity data from simulations, which are
post-processed using spectral filters and vector spheri-
cal harmonic decompositions. Mode function matching
and mode frequency matching may not agree unless the
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perturbative scheme applied is a consistent linearization
of the equations being solved in the simulations. The
perturbative schemes in [22–24] are not consistent lin-
earizations of the simulations they are applied to, so one
expects mode function matching can give different re-
sults than mode frequency matching. We find that if a
mode has an adequate excitation, its matching with can-
didate perturbative mode functions produces an unam-
biguous best-fit; see [28] for an exhaustive demonstration.
Since this strategy does not use frequency-matching, we
also discover the frequencies observed in our simulations
are overestimated, with the true values being about 15%
lower. This illustrates the power of matching in mode
functions rather than mode frequencies, and bears out
our concerns with focusing only on mode frequency coin-
cidence as in [22–24]. These results were reported previ-
ously in [28] with an erroneously large frequency discrep-
ancy of ∼ 40%, which we correct in this work to ∼ 15%.

Since the demonstration of mode function match-
ing in [28], the partially-relaxed Cowling approximation
of [23] and mode identification via frequency coincidence
was used again in [29]. In [30], a reclassification of previ-
ously misidentified modes from [24] was proposed, of the
sort one would expect based on our concerns outlined
above (±1 miscounts of radial nodes n). Very recently,
in [31] the frequency spectrum was computed on a fully
general relativistic simulated background CCSN using
the relativistic Cowling approximation. Mode frequency
matching was again used in an attempt to identify the
active modes in the simulation, even though the Cowling
approximation will be systematically overestimating the
frequencies of the modes present in the general relativistic
simulation. Correlations between neutrino and gravita-
tional wave emission and properties of the central CCSN
engine (over longer timescales than we study here) were
then explored in [32], where the mode frequency match-
ing methods of [23] were used again.

We use the perturbative scheme in the relativistic
Cowling approximation from [22], which applies only
to spherical systems. Therefore we only apply it to a
non-rotating model in order to identify modes of os-
cillation that are excited at bounce and ring for ∼
10 − 100ms. This identification serves to label the cor-
responding modes in the rotating models [33] whose
mode functions deform continuously with increasing ro-
tation, picking up a mixed character in angular harmon-
ics. We also simulate a sequence of rotating models
with progressively larger pre-collapse rotations of Ωc =
{0.0, 0.5, 1.0, 1.5, 2.0, 2.5} rad s−1. In order to follow the
modes along this sequence, we take inspiration from the
works of [34–36]. In [34], knowledge of the modes of the
non-rotating star were combined with continuity in fre-
quency to follow modes across such a sequence, whereas
in [35, 36] they used continuity in the deformation of
mode functions with varying rotation.

Continuity in mode function is more powerful than
continuity in frequency, since separate modes can have
very similar frequencies and thus would be degenerate

in a frequency continuity analysis. Thus we chiefly
use mode function continuity to follow modes along our
sequence of rotating models. We follow a particular
quadrupolar mode successfully to the Ωc = 1.0 rad s−1

model that we focus on. When following the mode to
larger rotations we find ambiguities, so we make the more
conservative conclusion than in [28] that we lose track of
the mode beyond the Ωc=1.0 rad s−1 model.
Our chief result is the implication of a linear quadrupo-

lar mode in the Ωc = 1.0 rad s−1 model as imprinting on
the GWs and neutrino emission, and the mechanism of
this dual imprint. We also demonstrate our improved
mode identification via mode function matching, some
variant of which could also be used to study, for example,
pulsations of binary neutron star post-merger remnants
or accretion-induced collapse of white dwarfs.

In contrast with [12] where the neutrino treatment did
not supply information about the emission pattern on
the sky, our treatment does allow this. We relate the
dominant angular harmonics of the (spectrally-filtered)
emission to the dominant energy harmonics in the l = 2
mode function in the vicinity of the neutrinospheres.
The causal explanation for the oscillations in the neu-
trino emission properties is that the l = 2 mode of the
PNS, which in the rotating Ωc = 1.0 rad s−1 model
has a mixed character in l, is producing l = 2 and
l = 0 variations of the neutrinospheres. Since the neutri-
nospheres are roughly the boundary between trapped and
free-streaming neutrinos, this means that the region pro-
ducing free-streaming neutrinos is undergoing variations
with an angular structure in accordance with the activ-
ity of the mode in the vicinity of the neutrinospheres, at
r ∼ 60− 80 km. This causes the oscillations in neutrino
signal registered by an observer far away.

We therefore find that detailed asteroseismology of
CCSN is possible in principle with joint detection of GWs
and neutrinos, where the neutrinos supply information
from the neutrinosphere region r ∼ 60− 80 km, and the
GWs supply information from deeper in. However, the 3
σ discovery potential with present-day neutrino detectors
like the IceCube Neutrino Observatory [37–39] is ∼1 kpc
for the signatures and models investigated in this work.
We expect the complementary GW signal to be observ-
able in Advanced LIGO (assuming design sensitivity) for
supernovae located within ∼5 kpc.

This paper is organized as follows. In § IIA we
introduce our CCSN models and describe our simula-
tions. In § II B we present the multimessenger signals
and predicted IceCube neutrino rates from our simula-
tions. § IIIA gives a brief description of the perturbative
schemes of [22, 23]. § III B describes our mode func-
tion matching procedure first reported in [28]. The mode
analysis and mechanism of dual imprint are presented in
§ IV, and multimessenger detection prospects are pre-
sented in § V. Mode tests of our perturbative schemes
and our simulation code are performed on a stable hydro-
static star (Tolman-Oppenheimer-Volkoff (TOV) star) in
Appendices § A and § A1, respectively. When applied
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to the TOV star (which we note is more compact than
a PNS and thus is a more demanding application), we
find that the scheme of [23], which we dub a partially-
relaxed Cowling approximation or simply a partial Cowl-
ing approximation, is significantly less accurate than the
Cowling approximation itself for fundamental mode fre-
quencies, and even fails to reproduce the correct radial
order of high-order modes. The factors which affect neu-
trino detectability are investigated in Appendix § B using
toy models. In Appendix § C we explore the sensitivity
of the mode identification to different choices of bound-
ary conditions, as well as compare the application of the
Cowling approximation and the partial Cowling approxi-
mation of [23] to the CCSN system. In Appendix § D we
provide a sampling of the spectral filter kernels we use.
We conclude in § VI.

II. MODELS AND METHODOLOGY

In this section, we describe our numerical simulations,
initial conditions, and the resulting neutrino and GW
signals.

A. Numerical Simulations and Progenitor Models

To simulate rotating CCSNe, we use the massively-
parallel FLASH simulation framework [40, 41]. FLASH
offers tools for simulating compressible hydrodynam-
ics. These tools have been extended in order to simu-
late CCSNe, including support for nuclear equations of
state, grid-based energy-dependent neutrino transport,
and an effective general relativistic potential [26, 42].
For the hydrodynamics, we use a fifth order WENO
(weighted essentially non-oscillatory) reconstruction, an
HLLC Reimann solver (but revert to a more diffusive
HLLE solver in the presence of shocks), and a second
order Runge-Kutta time integrator using the method of
lines. Details of this hydrodynamic solver will be pre-
sented in [43]. Our computational grid is cylindrical. The
resolution in the core (and out to ∼ 80 km) is ∼ 195m,
and outside ∼ 80 km we enforce refinement such that
∆x/r < 0◦.33. Of particular interest to this work is the
treatment of gravity and neutrinos, which we describe in
some detail below.

The gravity and hydrodynamic treatments are New-
tonian, however an effective general-relativistic poten-
tial obtained through phenomenological considerations
and tested in CCSN evolutions has been introduced
in [25, 44, 45] and implemented in our FLASH simulations
in [26, 42]. The effective potential we use is a recast-
ing of the monopole term of a multipole decomposition
of the Newtonian gravitational potential. It is designed
to recover the structure of relativistic stars in spherical
symmetry. We retain the additional, non-spherical, New-
tonian multipole moments for 1 ≤ ` ≤ 16 using the mul-
tipole solver of [46]. Since we do not solve for the gravita-

tional metric, GWs are not actually present in the com-
putational domain. We instead extract the GW signal
using the quadrupole formula [47–49]. For axisymmetric
simulations, the only non-zero GW polarization is the h+

polarization. This signal peaks for an observer situated
in the equatorial plane and is vanishing for an observer
along the axis of symmetry. It is worth commenting on
the impact of using the effective general relativistic po-
tential to model the gravitational field and the use of the
quadrupole formula to extract the GW signal. The use
of the quadrupole formula has been validated in the con-
text of rotating stellar core collapse and shown to give
excellent results when compared to far field extraction
techniques [50]. The effective potential, as we shall ex-
plore more in this paper, impacts the frequency spectrum
of the emitted GWs. The dominant cause of this differ-
ence is that the underlying Newtonian hydrodynamics is
not subject to the general relativistic kinematics [10], in
particular the use of pseudo-Newtonian gravity and the
absence of a lapse function in the hydrodynamic fluxes.

In CCSNe, neutrinos are present in both equilibrium
and non-equilibrium states. Simulating neutrinos re-
quires a sophisticated treatment that accurately captures
both of these regimes, and most importantly, the transi-
tion region between them. A full solution, i.e. solving the
energy-, species-, and angle-dependent Boltzmann equa-
tion, is limited by the large dimensionality of phase space
and too computationally expensive to solve without some
approximations in the methods or sacrifices in the reso-
lution (see eg. [51, 52] for the latter). Many different
approximate treatments have been employed in the lit-
erature. We choose to keep the energy dependence (18
energy groups) and approximate the angular dependence
of the neutrino field by evolving only moments (in our
case, the zeroth and first moments) of the Boltzmann
equation [53–55]. This method requires a closure. We
choose the M1 closure where we analytically prescribe
the second moment of the neutrino radiation field, the
Eddington tensor. Unlike other approximations such as
leakage or ray-by-ray, our method locally captures the
neutrino emission (and absorption) and then transports
the neutrinos directly on the multidimensional computa-
tional grid. This provides a great advantage compared
to previous work which studied the correlations between
neutrinos and GWs from rotating core collapse in the
past [12], in particular because it provides directional
emission information. Full details of our implementation
in FLASH can be found in [26].

With this computational setup we evolve a 20M� zero-
age main sequence mass presupernova progenitor model
from the widely used stellar evolution calculations of
Woosley & Heger [56]. We utilize the SFHo equation
of state [57, 58], which is a modern tabulated nuclear
equation of state compatible with the constraints avail-
able from eg. astrophysical observations of neutron stars.
Neutrino microphysics is incorporated via NuLib [55] and
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is chosen to match the setup of [59].1 The 20M� model
was obtained from spherically symmetric stellar evolu-
tion calculations without rotation.

We study a sequence of rotating models, and therefore
we initialize this model with a pre-collapse rotation pro-
file prescribed by hand. The initial rotation law imposed
is taken to be,

Ω(r) =
Ωc

1 +
(
r
A

)2 , (2.1)

where r =
√
%2 + z2 is the radial distance from the cen-

ter, % is the cylindrical radius, and z is the axial position.
For values of r < A, this gives roughly constant angu-
lar velocity of Ωc, i.e. solid body rotation. For r much
greater than A the star is described by constant specific
angular momentum. For all the simulations presented
here we adopt A = 800 km. The angular velocity of the
fluid is taken to be vφ(%, z) = %Ω(r).

B. Signals in Advanced LIGO and IceCube

We perform a total of six simulations of rotat-
ing CCSNe in 2D axisymmetry using FLASH with
a sequence of initial core rotation rates of Ωc =
{0.0, 0.5, 1.0, 1.5, 2.0, 2.5} rad s−1. In this section, we
present a brief overview of the simulations as a whole be-
fore exploring details of modes in particular simulations
in the following section.

The collapse times (from the start of the simula-
tion to core bounce) range from 300ms for the non-
rotating model to 326ms for the model rotating at Ωc=
2.5 rad s−1. We subtract off this time in all our results
below.

The rotation causes the collapsing core and subsequent
PNS to become oblate and partially centrifugally sup-
ported. For example, at ∼40ms after bounce, the oblate
iso-density contours at a density of 1012 g cm−3 have po-
lar-to-equatorial radii ratios of ∼1, ∼0.98, ∼0.94, ∼0.88,
∼0.82, and ∼0.74 for our six simulations in order of in-
creasing Ωc. The shock radii evolution is fairly similar in
all models up to the end of the simulated time, ∼100ms,
with only a mild rotational dependence. The mean shock
radius at 100ms ranges from 155 km in the non-rotat-
ing case to 165 km in the fastest rotating case. The small
amount of turbulent motion that is present at this early
time shows the expected (at least in 2D) dependence on
rotation, that is an overall supression with higher rota-
tion rates [49]. The rotation itself slows down the ac-
cretion of matter onto the PNS, but this is a small effect

1 The difference between the FLASH simulations here and those
of [59] are (a) our simulations are 2D and include rotation, (b)
we include neutrino-electron inelastic scattering, thereby allow-
ing an accurate evolution in FLASH during the collapse phase, and
(d) we use a new hydrodynamic solver as discussed above and
in [43].
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FIG. 1. Neutrino emission properties for various rotation
rates and observing angles. The top and middle panel shows
the neutrino luminosity and average energy, respectively, for
all rotations and for each neutrino species (νe: blue, ν̄e: orange,
and νx: green). In the bottom panel we show the latitudinal
dependence of the neutrino luminosity for Ωc =2.5 rad s−1 by
showing the luminosity seen by an observer both along the
polar axis and on the equator.
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in these simulations. The Ωc = 2.5 rad s−1 simulation has
a ∼3% (∼5%) lower mass accretion rate, as measured at
500 km, when compared to the non-rotating model at the
time of bounce (at ∼100ms after bounce).

The added centrifugal support also reduces the grav-
itational binding energy released and consequently the
emergent neutrino luminosity and neutrino average en-
ergy. In Fig. 1, we show the sky-averaged neutrino lu-
minosity (top panel) and sky-averaged neutrino average
energy (middle panel) for electron neutrinos (blue), an-
tineutrinos (orange), and a characteristic heavy-lepton
neutrino (green) for each of the rotation rates explored.
The neutrino information was extracted at 500 km. The
electron neutrino neutronization burst is minimally im-
pacted by the rotation. However, the remaining species
have reduced emission for increasing rotation rates, as
well as the electron neutrinos after the neutronization
burst (t & 30ms). The neutrino luminosity is reduced by
at least 35% for Ωc = 2.5 rad s−1 for all neutrino species
at 100ms after bounce, while the corresponding neutrino
average energy is reduced by at least ∼10%. With in-
creasing Ωc, the increase in the bounce time, and reduc-
tions in neutrino luminosity and neutrino average energy
scale as Ω2

c [60, 61].
The luminosities plotted in the top panel of Fig. 1

are sky-averaged; however, there is also a latitudinal de-
pendence of the neutrino luminosity, displayed in the
lower panel of Fig. 1. For illustration we only show the
Ωc=2.5 rad s−1 case, for which the neutrino emission has
the strongest angular dependence. In the analysis that
follows we consider both of these directions, pole and
equator, which are constructed by averaging the emer-
gent neutrino fields (to reduce numerical noise) at a ra-
dius of 500 km from within 30◦ of the pole and ±15◦ of
the equator, respectively.

For the non-zero rotation rates, and especially evident
for Ωc=1.0 rad s−1 around 40ms after bounce and in the
fastest rotating case (Ωc = 2.5 rad s−1) directly following
bounce, we see small amplitude, high frequency oscilla-
tions imprinted on the neutrino luminosities and average
energies. The luminosities and average energies are in
phase, which has implications for the ability to detect
these oscillations. For this work, we focus on the oscil-
lations in the moderately rotating case, Ωc=1.0 rad s−1.
We note that the oscillations seen soon (∼5− 10ms) af-
ter bounce in the fastest rotating case are precisely the
signal seen in [12].

To infer the detectability of the neutrino signal (more
details in § V), we use the SNOwGLoBES package [62].
SNOwGLoBES is a fast calculator for expected detection
rates of CCSN neutrinos. Our reference neutrino detec-
tor is IceCube [37, 38], a cubic-kilometer-scale neutrino
detector located at the geographic South Pole, which has
been recently incorporated into the SNOwGLoBES code
[63]. The detection of CCSN neutrinos in IceCube comes
primarily from the inverse beta decay reactions that arise
from ν̄e interactions with the free protons in the ice.

For a galactic CCSN, IceCube will measure the rate
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NO: normal ordering, IO: inverted ordering) and observer po-
sitions (green: equator, brown: pole) for the Ωc =1.0 rad s−1

simulation located at 1 kpc. In the bottom panel we show
the high frequency content of the neutrino signal by showing
the rates relative to a 5ms running average of the direction
dependent signal (i.e. the top panel). The characteristic fre-
quency matches the expectation from the GWs (see Fig. 7),
and the amplitude is 1-2%.

evolution of the neutrino signal with the best statistical
accuracy [39]. In the top panel of Fig. 2, we show the
SNOwGLoBES predicted rates in the IceCube neutrino
telescope for the Ωc=1.0 rad s−1 model located at a dis-
tance of 1 kpc. In this figure we do not include IceCube
dark rate noise or any statistical error due to counting
statistics (although we do include these noise sources in
the detectability analysis in § V). We show the predicted
rate for purely adiabatic MSW neutrino oscillations (ig-
noring any modification of the neutrino lightcurve due to
neutrino-neutrino interactions) in both orderings [normal
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(NO)) and inverted (IO)] as well as assuming no oscilla-
tion effects (NoOsc). In the normal ordering, the ν̄e sig-
nal at Earth is a mixture of the original ν̄e signal (∼70%)
and the original νx signal (∼30%). For the inverted or-
dering, the ν̄e at Earth is almost completely the original
νx (∼100%). The green line shows the predictions based
on an observer located on the equator while the brown is
for an observer on the pole.

To highlight the imprint of the oscillations, we show
in the bottom panel of Fig. 2 the neutrino rates relative
to a 5ms running average of the corresponding rate from
the top panel. Here we again separate the neutrino or-
derings and the equatorial and polar signals. The typical
high frequency content of the equatorial neutrino rates
is ∼ 550-575Hz (22-23 cycles over 40ms). As we show
below, this is similar to the h+ GW signal. However, the
relative amplitude of the oscillations are only 1-2% of the
background neutrino signal. We will require a close by
CCSN in order to have enough statistics to observe this
feature.

The rapidly contracting, rotating, oblate spheroid also
generates a GW signal. As mentioned above, our sim-
ulations are axisymmetric and therefore the only non-
zero GW signal is the h+ polarization. This peaks
for an observer along the equator and vanishes for an
observer at the pole. Notice that the neutrino lumi-
nosity is instead maximal at the pole and minimal at
the equator, although with a weaker dependence. The
characteristic GW signal of the rotating, collapsing core
peaks at core bounce and subsequently rings down, over
the course of ∼20ms as the core settles into its new
equilibrium. Further on in the evolution the GW sig-
nal will become loud again when convection and turbu-
lence kick in, although in rotating models this is ex-
pected to be muted relative to the non-rotating case
[49]. We show the GW strain as a function of time
for our six models in Fig. 3 for an observer located
on the equatorial plane. With increasing rotation, this
signal becomes more pronounced. Persistent after this
time are characteristic excited modes (which will be dis-
cussed in the following sections) which radiate GWs for
the remainder of our simulations (up to 100ms after
bounce). Additionally, low frequency GWs are present
even in the non-rotating simulations. For reference, the
total energy radiated in gravitational waves ([23]) up to
100ms after bounce is (in units of M�c2) ∼ 8.5× 10−10,
∼ 1.1× 10−9, ∼ 3.5× 10−9, ∼ 1.0× 10−8, ∼ 3.9× 10−8,
and ∼ 3.3× 10−8 for our six simulations in order of in-
creasing Ωc from 0.0 rad s−1 to 2.5 rad s−1.

In the bottom panel of Fig. 3, we show a subset of the
Ωc = 1.0 rad s−1 GW signal between 20 and 60ms after
core bounce for a CCSN located at 1 kpc (orange). Here
we see a dominant and persistent frequency of ∼575Hz
(∼23 cycles over 40ms). This is consistent with the neu-
trino signal discussed above. We also include in this panel
a realization of Advanced LIGO design sensitivity noise
(brown) [64], and the resulting expected signal (grey).

III. MODE IDENTIFICATION

In this section, we describe the procedure for identify-
ing modes of oscillation of the system. The description
we give here is very terse, and so we refer the interested
reader to [28], where our analysis is described in great de-
tail and exhaustively demonstrated. The basic strategy is
to compute the spectrum of linear modes of the system
via perturbation theory, and then perform a matching
between those modes and the full nonlinear simulation.
The matching step is crucial, since the simulation tells
us which modes are actually excited.

A. Perturbative schemes

We use a perturbative scheme in the relativistic Cowl-
ing approximation, as described in [22]. The scheme as-
sumes spherical symmetry and a coordinate system which
accommodates our numerical setup of Euclidean spatial
metric and vanishing shift vector. The lapse function is
obtained from the effective relativistic gravitational po-
tential Φ via α = eΦ.

The relativistic hydrodynamic equations are perturbed
on top of the fixed background spacetime, and the so-
lution ansatz uses spherical harmonics for the angular
dependence, harmonic time dependence, and an unspec-
ified radial profile which is solved for by outward radial
integration of a system of ordinary differential equations
in r. Spherically-averaged snapshots from our full non-
linear simulations are used as background solutions on
which the perturbative calculations are performed.

The radial displacement is prescribed to be a small
number at the first off-origin grid point, and the trans-
verse displacement is determined by a regularity con-
dition in a neighborhood of the origin. This regularity
condition was misreported in [22, 23] and subsequently
corrected in [24]. The error was pointed out in [28] and
found not to produce significant errors in computed mode
frequencies. In [28], for simplicity of analysis the outer
boundary condition was taken to be the vanishing of the
radial displacement at r=100 km.

In this work, we checked how the mode identification
of [28] changes when we instead use the outer bound-
ary condition of [22], in which the radial displacement is
taken to vanish at the position of the shockwave. The
main difference is that the number of radial nodes in-
creases, as anticipated in [28]; the l = 2, m = 0, n & 2
mode reported in [28] reveals two additional nodes in the
outer low-density region r & 90 km. We explore various
choices of boundary conditions in Appendix § C, and find
broad robustness of our results.

B. Mode function matching

Using the procedure described in § IIIA, we obtain
the linear spectrum of the CCSN system at a given time.
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FIG. 3. Gravitational wave strains over the simulated time for the six progenitors explored, 0.0 and 0.5 rad s−1 (top panel,
blue lines), 1.0 and 1.5 rad s−1 (middle panel, orange lines), and 2.0 and 2.5 rad s−1 (bottom panel, green lines). On the left,
we show the first 40ms of GW data, while on the right we show an enlarged view for the remain 60ms. In the lower plot,
we show a subset of the Ωc =1.0 rad s−1 data from 20ms to 60ms (orange), a realization of Advanced LIGO design sensitivity
noise (brown), and the sum (grey). All signals are scaled to 1 kpc and are viewed on the equatorial plane. Small glitches in the
GW data near 50-70ms are due to the shock crossing mesh refinement boundaries.

All of the information about the mode excitations is in
the full nonlinear simulation itself. The determination
of which modes are excited involves a best-fit match-
ing procedure between the perturbative mode functions
and the velocity data from the simulations. Perturba-
tively we solve for the displacement field, whereas we are
comparing to velocity fields in the simulations; harmonic
time dependence ensures that the two fields are propor-
tional. In particular, the displacement field ξi is re-
lated to the advective velocity perturbation δv∗i and Eu-
lerian velocity perturbation δvi via ∂tξ

i = δv∗i = αδvi,
and harmonic time dependence means ∂tξi ∝ ξi. Thus
we compare ξi/α with the Eulerian velocity data in our
simulations.

Prior to searching for the best-fit mode function, the
velocity field of the star is processed through a time-
varying spectral filter. This is more appropriate than a
band-pass filter, since mode frequencies can change in
time. The spectral filters are chosen to extract motions
identifiable in the velocity field itself, rather than the
GW signal, since not all modes will generate significant
GWs (but may do so in rotating stars, where the modes
acquire quadrupolar deformations). The spectral filter
mask is a time-varying top-hat window, drawn manu-

ally on the spectrograms of the velocity field based on
visual identification of excited features. In the future it
would be desirable to automate this process, to increase
reproducibility. But such automation may require some-
thing akin to machine learning, which is well beyond our
scope. Our filter kernel masks are displayed on a sam-
pling of velocity spectrograms in Appendix § D. In [28]
the analysis was found not to be sensitive to shrinking
the kernel masks in their frequency extent by a factor of
2.

The spectrally-filtered velocity field is then decom-
posed in a vector spherical harmonic basis. In this way,
we obtain a set of simulation velocity fields we denote
schematically as l~vσ,sim, where l is the spherical harmonic
number and σ is the (average) frequency of the spectral
filter used.

To compare with perturbative mode functions, which
we denote as l~vσ′,pert (where σ′ is its frequency), we use
a measure of difference defined as

∆ ≡
√∑

(l~vσ′,pert − l~vσ,sim)
2
, (3.1)

where the sum is over radial points on the numerical grid.
Mathematically this is a Frobenius norm. The best-fit
mode function for l~vσ,sim is found by minimizing ∆ over
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the perturbative mode spectrum, which is parameterized
by a discrete set of frequencies σ whose mode functions
satisfy the outer boundary condition. Prior to matching,
both velocity fields are normalized by their L2-norms,
since we only wish to compare their shapes.

After identifying the active modes in the non-rotating
case, we can repeat the extraction of l~vσ,sim in the ro-
tating cases. We do not compare with perturbative
mode functions in rotating models, since our perturba-
tive scheme is not valid there. We instead observe the
progressive change in the mode eigenfunctions across the
different rotation cases [33, 35]. We use a similar measure
of difference as ∆, except between the simulated veloc-
ity fields between two adjacent models in the rotating
sequence, i.e. between l~vσ′,sim1 and l~vσ,sim2 where sim-
ulations 1 and 2 are adjacent in the rotating sequence.
This amounts to following the continuity of mode func-
tions along the sequence of rotating models.

In practice, we apply a mass density weighting √ρ to
the velocity fields and mode functions prior to match-
ing. This acts to discount fluctuations in the simulated
data occurring further from the core which are not rep-
resentative of a linear mode of the system. In this work
we display mode functions with a weaker ρ1/4 weighting,
which is less forgiving but allows for a visual inspection
of the mode functions at larger radii, so long as we also
smooth the simulated data.

In rotating models, mode functions are no longer pure
spherical harmonics. In [28], we identified deformations
of modes via consistency with parity selection rules, uni-
fied exponential decay rates and oscillation frequencies,
and expectations from first and second order perturba-
tion theory in rotation [33]. The identification of mode
deformations is not a crucial part of this work, so we leave
the details of the procedure to [28]. A powerful method
in [35] called mode recycling was used to converge toward
the mode function of rotating stars, but is not available
in our context. One simulates the star with an initial
perturbation corresponding to an educated guess for the
mode function of interest, which due to its inaccuracy
will excite several unwanted modes. By applying spec-
tral filters to the velocity field in the star, a more ac-
curate trial mode function for the target mode can be
extracted and used as an initial perturbation in a second
simulation. This process is repeated until the initial per-
turbation results in a clean excitation of the target mode,
with unwanted modes highly suppressed. We cannot use
mode recycling since our target modes are excited by core
bounce, which we do not attempt to manipulate.

IV. THE MULTIMESSENGER IMPRINT OF A
PROTO-NEUTRON STAR MODE

In this section we implicate an l = 2, m = 0, n & 2
mode in producing prominent frequency peaks in both
GWs and neutrinos for the Ωc = 1.0 rad s−1 model. We
write n & 2 despite the fact that n= 3-4 if the nodes are

counted all the way out to the shock wave (depending on
the exact time), because the innermost 2 nodes exist more
clearly within the PNS proper, whereas the outermost 1-
2 nodes are in a low-density region. It is important to be
explicit about this, since [23, 65] placed the outer bound-
ary condition at the PNS surface, whereas [22] placed it
at the shock wave. We find robustness of our mode identi-
fication on various boundary conditions in § C. In [31], re-
sults assuming both boundary conditions were compared.
Thus, comparing the node counts with those works re-
quires distinguishing between the nodes interior and ex-
terior to the PNS.

In Fig. 4 we display the mode function matching. The
shaded regions indicate the total mode energy exterior
to r, and is intended to convey that the mode function
matching is most significant in the inner ∼ 30 km. This
energy is obtained by integrating ρ[η2

r + l(l + 1)η2
θ/r

2]
(see [22]) from r to the outer boundary, and then nor-
malizing to 1. The top row of Fig. 4 compares the simu-
lation data with the best-fit perturbative modes for the
Ωc=0.0 rad s−1 model. Two best-fit modes are displayed,
one fit according to mode function (dashed lines, fre-
quency 423 Hz), and the other fit according to mode
frequency (dotted lines, frequency 515 Hz). The mode
rings at ∼ 490 Hz in the simulation. All plots are nor-
malized by their L2-norms. Matching according to mode
frequency yields a mode function which poorly repre-
sents the excitation observed in the simulation. Instead,
matching via mode function yields a much better rep-
resentation of the simulation, and allows for a convinc-
ing identification of radial nodes n, which would be very
challenging with the simulation data alone. Nodes of the
perturbative mode functions are indicated with crosses.

The middle row of Fig. 4 compares best-fit perturba-
tive mode functions at different times, which vary largely
due to the movement of the location of the outer bound-
ary condition (shockwave) during that time. The total
number of radial nodes is seen to increase as the shock-
wave moves outward.

The bottom row of Fig. 4 compares simulation data
across the Ωc={0.0, 0.5, 1.0} rad s−1 models for the best-
fit band masks. This illustrates our following of the mode
via continuity of its mode function. Strikingly, the radial
component in the Ωc = 1.0 rad s−1 model has clear zero-
crossing behavior that is well-captured by the pertur-
bative mode function of the non-rotating model, which
suggests that the radial nodes have not shifted signifi-
cantly. The clearer zero-crossing behavior we attribute
to the larger excitation of the mode.

One usually regards as p-modes those modes which oc-
cur to the right of the minimum of the n(f) curve (i.e.,
the radial node count as a function of mode frequency).
That branch of modes has increasing frequency with in-
creasing n. To the left of the minimum of n(f) are g-
modes, which have decreasing frequency with increasing
n (see eg. [22, 24]). We are unable to determine whether
the best-fit perturbative mode function in Fig. 4 in the
non-rotating model is a p-mode or g-mode, since the best-
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FIG. 4. Simulation data and best-fit l=2 modes in the Cowling approximation. Radial and angular components are displayed
in the left and right columns, respectively. The radial simulation data has been smoothed with a Gaussian of width 1.5 km, in
order to allow a visual inspection of the peaks and troughs across ∼ 50 -110 km. The angular component has not been smoothed.
The shaded region displays the fraction of energy external to radius r, which was computed using the Cowling perturbative
mode function at 40 ms and the simulated, spherically-averaged density ρ. The shaded region is intended to indicate where the
quality of mode match is most important. Both the simulation data and the perturbative modes have been normalized by their
L2-norms, just as they are during the mode function matching procedure. Top Row: Snapshots of the ρ1/4-weighted velocity
field from the simulation in the neighborhood of 40 ms, as well as the perturbative mode functions in the Cowling approximation
which are matched via best-fit mode function (dashed lines) and via best-fit mode frequency (dotted lines). Radial nodes of
the perturbative mode functions are indicated with crosses. The additional zero-crossings in the simulated data we interpret
as noise. Middle Row: Perturbative mode functions only, at varying times. Shockwave locations are indicated with vertical
dotted lines. The number of nodes n over the whole domain increases from 3 to 4 as the outer shockwave expands. Bottom
Row: Simulation snapshots in the neighborhood of 40 ms taken from the Ωc ={0.0, 0.5, 1.0} rad s−1 models. The band masks
from which these snapshots are taken are those which yield maximal mode function continuity across the model sequence.

fit mode occurs too close to the minimum of the n(f)
curve (see eg. Fig. 17.2 in [28]). However, modes with
smaller n do not appear to exist at the times analyzed.

In the Ωc = 1.0 rad s−1 model, the l = 2, n & 2 mode
picks up l = 1,3 deformations with consistent parity, as
well as with amplitudes consistent with expected leading
order effects in rotation. The mode’s frequency in the
simulation, measured as an average over the mode’s band
mask, rises modestly from ∼ 490 Hz to ∼ 570 Hz in the
Ωc = 1.0 rad s−1 case. We display the change in mode
frequency in Fig. 5, together with a downward correction
to the Cowling value in the non-rotating model2. Since
the central density of the system is decreasing as rotation

2 Note we use the correction factor coming from the mismatch in
frequency between the non-rotating simulation and its best-fit
mode function. The correction factor may vary as a function of
rotation. However, since the mode ringing in the Ωc =1.0 rad s−1

increases, one would instead expect the frequency of this
mode to decrease if the frequency scaled as

√
Gρ. It

is unclear whether the increase in frequency is a result
of the approximations being employed in the simulation,
as explored in Appendix § A 1, or whether the expected
scaling ∼

√
Gρ does not apply.

The best-fit mode function in Fig. 4 has a frequency of
∼420Hz, roughly 15% lower than the frequency observed
in the simulation itself. The lower frequency comes from
a calculation in the Cowling approximation, which has
been observed almost always to overestimate the true
frequency of modes (i.e. the frequency when using full
general relativity), see eg. [66–70].3 One expects this

case is at a modestly different frequency than in the non-rotating
case, we expect the correction factor is similar there.

3 However, see the fundamental radial mode appearing in Fig. 11
of [24] for an apparently glaring exception.
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kind of systematic bias whenever a mode results in den-
sity fluctuations, since overdensities would backreact on
the spacetime to produce an attractive influence in full
general relativity (GR), thereby slowing the return to
equilibrium. In the Cowling approximation, this backre-
action is neglected. Thus, we expect that 420Hz is as an
upper bound on the true frequency of the mode on the
CCSN background produced in our FLASH simulations.
Based on the tests in Appendix § A 1, one may expect
the true frequency to be of order several % lower than
this upper bound.

In order to narrow down the cause of the overestimated
mode frequency in the simulations, we also perform a
TOV oscillation test in the FLASH implementation in Ap-
pendix § A 1. In this test, all of the physics has been
eliminated except hydrodynamics and gravity. The TOV
star is more compact than the PNS, and thus is a more
demanding system. We find directionally consistent re-
sults, namely that the TOV mode frequencies are over-
estimated with respect to the Cowling values (except for
the fundamental radial mode, which we have not focused
on). This test implicates the lack of a GR metric in
the hydrodynamics as a cause of the frequency overesti-
mation. In particular, the solver lacks a lapse function in
the hydrodynamic fluxes, and uses the pseudo-Newtonian
gravitational potential [25, 26, 42, 44, 45]. The absence
of densitization of the fluid variables by the metric de-
terminant may also play a role.

0.00 0.05 0.10 0.15 0.20
/ K

450
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550

f [
H

z]

l = 2, n 2 mode
Corrected (Cowling)

FIG. 5. The frequency of the l = 2, n & 2 mode across the
entire sequence of rotating models. Ω/ΩK is computed at
40ms and averaged over the innermost 30 km, where ΩK is
the Keplerian frequency at 30 km. The frequencies (blue)
are extracted from the (l = 2: r̂) component in each model.
Corrected frequencies (black) are also shown, where we have
scaled them down by ∼ 15% of in order to match the fre-
quency of the best-fit mode function obtained in the Cowling
approximation for the non-rotating model.

Writing α = eΦ, we can estimate the lapse at the center
of the star during the ringdown as ∼ 0.8. Since this is the
smallest value of the lapse in the system, this value pro-
vides an estimate of the maximum effect of the absence
of the lapse on the mode frequency. This maximum ef-

fect of 20% is consistent with the observed mismatch of
∼ 15%. However, the variability in the degree of overes-
timation in Appendix § A 1 suggests that the lapse is not
the sole cause. Indeed, the fact that the only mode whose
frequency improves with respect to the Cowling value is
the fundamental radial mode implicates the effective GR
potential as well, since it was designed in spherical sym-
metry and so one would expect an improvement of the
most dominant radial dynamics. The comparison in [71]
between full GR and the effective GR potential focused
on longer time scales of ∼ seconds, and they also observe
overestimated frequencies4. The TOV migration test has
also been observed to produce stellar oscillations at about
double the frequency as that observed in full GR [25, 26].

One interesting possibility is that the mode excitation
is moreso dependent on frequency rather than mode func-
tion. For example, if the mode excitation mechanism has
a characteristic driving frequency, then it will tend to ex-
cite modes with resonant frequencies. In this case, in a
full GR simulation one would still observe excitation of
modes at similar frequencies as in a pseudo-Newtonian
simulation, but the actual modes that are excited would
be different. All of these observations emphasize the im-
portance of using a mode function matching procedure
rather than mode frequency matching, and doing so in a
comparison between full GR and pseudo-Newtonian ap-
proaches.

The mode was followed to the Ωc = 2.5 rad s−1 model
in [28]. Upon reanalysis, and via the inclusion of an
Ωc = 1.5 rad s−1 case, we make a more conservative con-
clusion in this work. Namely, we find the best-fit fre-
quency bands going from Ωc=1.0→1.5→2.0 rad s−1 im-
ply a rapid non-monotonic change in frequency, which is
not expected on the basis of first or second order rota-
tional effects, and therefore indicates that we are losing
track of the mode. This may be partly due to the fact
that the velocity field in the mode’s expected band mask
for Ωc > 1.0 rad s−1 exhibits significant deviations from
harmonic time dependence. The velocity field instead
acquires a mixed character of harmonic and traveling-
wave time dependence, and therefore becomes difficult
to follow to higher rotation without a more sophisticated
analysis strategy. This is one of the difficulties of not
having fine control over the perturbations applied to the
star, as one has for example when using full nonlinear
simulations to study linear modes of rotating stars by
carefully designing the applied perturbations [33].

Our focus here is instead on the Ωc=1.0 rad s−1 model,
where the mode has been followed well and the neutrino
emission properties show a clear imprint from the mode.
We emphasize that the analysis involved in following the
mode across models is a separate methodology from the

4 However, the comparisons in [71] do not involve comparisons of
the mode functions, and therefore one does not actually know
whether the same mode is being compared between the simula-
tions using full GR and the effective potential.
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FIG. 6. Angular decompositions of the energy of the ∼ 500 Hz band mask of the velocity field in the star (solid lines), for
the Ωc = {0.0, 0.5, 1.0} rad s−1 models (left to right). The l= 2 component of the kinetic energy in the mask is plotted with a
bold line. The contour plots display the GW spectrograms (with power spectrum scaling) on a normalized logarithmic scale,
plotted against the simulation frequency axis; the true frequency of the mode contained in the mask is closer to ∼ 420 Hz.
The band masks are displayed as well (dashed lines). The energies have been smoothed with a Gaussian of width 3 ms. The
node counts of the best-fit mode function are displayed at their respective times for the Ωc = 0.0 rad s−1 case (left panel). In
the Ωc =1.0 rad s−1 case, the l= 1 and l= 3 components of the energy have distinguished themselves, and it was argued in [28]
that they are deformations of the l= 2 mode occurring at first order in rotation.

mode identification via mode function matching in the
non-rotating model.

In Fig. 6, overlaid on the GW strain spectrograms, we
display an angular decomposition of the time-varying en-
ergy of the simulated velocity fields in the band masks
of interest. The node counts of the best-fit perturba-
tive mode function at 40 ms are indicated for the non-
rotating model. The l= 2 component becomes highly
distinguished in the Ωc = 1.0 rad s−1 model, as well as
the l = 1,3 deformations of the mode occurring at first
order in rotation.

In Fig. 7 we demonstrate for the Ωc=1.0 rad s−1 model
that the emission pattern of neutrinos on the sky at the
frequencies inside the band mask is coincident with the
angular distribution of radial kinetic energy in the star
within a 5 km width shell around the neutrinospheres.
The top row contour maps show the neutrino luminos-
ity spectrograms, where a moving average has been sub-
tracted first in order to accentuate the oscillations. Over-
laid on the contour maps are the coefficients |fl| of the
angular decomposition of the spectrally-filtered neutrino
emission on the sky, as a function of time. The bot-
tom row plots the radial kinetic energy of the star near
the neutrinospheres, also angularly decomposed. We ob-
serve that the l= 0,2 components of the emission pattern
on the sky are dominant, and those two components are
also distinguished in the kinetic energy around the neu-
trinospheres. This is evidence that the mechanism of im-
print of the mode onto the neutrino luminosity is via peri-
odic variations of the neutrinospheres by the mode. The
modulations in the neutrino luminosity therefore carry
asteroseismological information regarding the mode am-
plitude in the vicinity of the neutrinospheres, which is
complimentary to the deeper information carried out by

GWs.

V. MULTIMESSENGER DETECTABILITY

In this section, we determine the distances at which the
correlations we have found between the GW and neu-
trino signals are detectable with current detector tech-
nology. For Advanced LIGO design sensitivity noise lev-
els, we find the signal near 40ms after bounce in the
Ωc = 1.0 rad s−1 simulation under optimal orientations
should be observable out to a distance of ∼5 kpc, while
the imprint in the neutrino signal is observable in Ice-
Cube within a distance of ∼1 kpc assuming the frequency
is known from the gravitational wave signal.

A. Gravitational Waves

In Fig. 3, we showed a realization of the GW signal
that would be seen by an equatorial observer detecting
GWs from our Ωc = 1.0 rad s−1 simulation at a distance
of 1 kpc including a realization of Advanced LIGO design
sensitivity noise. At 1 kpc and comparable distances, the
detection of the GW signal at the dominant frequencies
we observe in our simulations should be possible. We now
quantify this assertion, following [72]. We use their Eq. 1
to estimate the distance at which a portion of our signal
is observable (for an optimal orientation) at a signal-to-
noise ratio of 8,

dopt =
σ

ρ∗
=

1

ρ∗

[
2

∫ fhigh

flow

df
h̃(f)h̃∗(f)

Sh(f)

]1/2

, (5.1)
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FIG. 7. Top Row: Spherical harmonic decompositions of the neutrino luminosities on a sphere at 500 km for species νe (left),
ν̄e (centre), νx (right) plotted on top of spectrograms of the oscillating part of the sky-averaged neutrino light curves. The
band mask is displayed, and is coincident with a prominent emission feature in the spectrograms. The vertical frequency axis
is according to the simulation, which we argue overestimates the true frequency of the mode in the band mask by a factor
∼ 0.87−1. The neutrino light curves along each direction on the sky have had a Gaussian smoothing subtracted, and underwent
the same spectrogram filtering as we applied to the velocity field using the band mask shown. The resulting time series were
then decomposed angularly to obtain spherical harmonic coefficients fl at each time. The absolute value |fl| is then smoothed
with a Gaussian of width 10 ms before plotting. Bottom Row: The corresponding radial energy of the PNS in the band mask,
integrated over a 5 km width radial shell centered on the respective neutrinospheres. The harmonics l= 0,2 stand out in all
cases.
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FIG. 8. Power spectral density maps of the expected IceCube signal for the Ωc = 1.0 rad s−1 model located at a distance of
0.5 kpc (left), 1 kpc (middle), and 2 kpc (right). The data shown here correspond to the no oscillation scenario. The colors
denote standard deviations of pure Gaussian noise. See Supplemental Material at [URL will be inserted by publisher] for
animations of 128 realizations of the expected signal at each distance.

where h̃(f) is the Fourier transform of the h+(t) strain,
h̃∗(f) is the complex conjugate of this, and Sh(f) is the
design power spectral noise of Advanced LIGO. We take
flow = 10Hz and fhigh = 2048Hz. As in [72], we take
ρ∗ = 8, which is often taken to be the minimal signal-
to-noise ratio for GW detections. Defining h+(t) at a
distance of 1 kpc gives dopt in units of kpc. We window
our GW strain from this simulation using a Nuttall win-
dow function with a width of 40ms centered on 40ms
after bounce. With this narrowly defined time range, we
find a value for dopt of ∼5.5 kpc, suggesting this signal
is easily detectable at distances closer than this. As we
shall see, this is much more promising than the neutrino

prospects, and therefore we neglect a more detailed anal-
ysis and instead assume that we can obtain a clear in-
dication of excited PNS mode frequencies with GWs (at
distances closer than 5 kpc) to aid our neutrino analysis.

B. Neutrinos

In § II B we also presented estimated IceCube rates for
the Ωc = 1.0 rad s−1 simulation at 1 kpc. In this section,
we generate realizations of IceCube event rates by adding
detector noise (via the dark rate of the photomultiplier
tubes (PMT), taken to be 550Hz per PMT [73]) and sta-
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tistical noise from the finite neutrino arrival times (taken
to be

√
N , where N is the number of neutrinos expected

within each 0.1ms time bin). From these realizations
we bin the mock data, window it using a Nuttall window
with a 40ms width (although in practice the type of win-
dow does not impact the results), and Fourier transform
the results to search for excess (and significant) power
in time-frequency regions suggested by the GW signal as
being potentially interesting.

In Fig. 8, we show power spectral densities of the
estimated IceCube neutrino rate as a function of time
and frequency for several observer distances. These are
similar to Fig. 7, but now for the expected detection
rate rather than the luminosity of a specific neutrino
species. We generate essentially random detector data
by placing the source at a large distance. Fourier trans-
forming ∼ 4 × 107 realizations of this data gives a flat
(but noisy for any given realization) power spectrum for
all frequencies greater than 100Hz with a characteristic
median value set by the total number of events enter-
ing the windowed region and the number of bins, i.e.
Pk ∼ Nevents/N

2
bins [74]. We generate cumulative distri-

butions of this noise power at 575Hz and at ∼ 40ms after
bounce (although this is arbitrary since the transform is
dominated by noise) and determine the standard devia-
tion levels which we use to normalize the data displayed
in Fig. 8. If the power is significantly above the median
(defined as the σ = 0 level), this is evidence for structure
in the signal at that frequency and time. The broadband
power at early times corresponds to the rapidly rising
neutrino signal (see Fig. 2) at bounce. For close dis-
tances, ∼0.5 kpc, the clear presence of the oscillations in
the neutrino signal near ∼20-40ms between 500Hz and
600Hz is apparent in the Fourier transform. At ∼1 kpc,
the power spectral density still shows excess power at
these times and frequencies, but its significance becomes
weaker. It is not visible at 2 kpc in this realization.

To quantify the detectability, we determine the per-
centage chance of making at least a 1σ, 2σ, and 3σ de-
tection of excess power at t= 37ms and f = 575Hz for
the Ωc=1.0 rad s−1 simulation at varying distances. We
choose the specific point t = 37ms and f = 575Hz based
on the expected GW detection at this time and frequency.
We construct these percentages by making 50000 realiza-
tions of the detected IceCube signal at each distance and
determining the ratio of the realizations with a power
of at least the 1σ, 2σ, and 3σ level to the total num-
ber of realizations. We show these percentages in Fig. 9.
In the left panel we show the 1σ, 2σ, and 3σ detection
percentage for the no oscillation scenario (and an equa-
torial observer). We note the chance of making at least a
1σ (2σ, 3σ) detection of excess power from a pure noise
signal is 15.87% (2.28%, 0.135%), hence the asymptotic
values at large distances. For this panel, the distances
the discovery potential for 1σ, 2σ, and 3σ (defined as
the probability of seeing a signal of this significance 50%
of the time) are ∼2.15 kpc ∼1.47 kpc, and ∼1.12 kpc, re-
spectively. In the right panel, we show the 3σ detec-

tion percentage (also for an equatorial observer) for the
three oscillation scenarios: no oscillations, normal order-
ing, and inverted ordering. For these scenarios, we pre-
dict the distances for a 3σ discovery potential for the
no oscillation, normal ordering, inverted ordering oscilla-
tion scenarios are ∼1.12 kpc, ∼0.90 kpc, and ∼0.46 kpc,
respectively. The varying distances for the different os-
cillation scenarios reflect the different amplitudes of the
oscillation signal in the ν̄e and νx signals. As discussed
for Fig. 2, the no oscillation signal is dominated by ν̄e
while in the inverted ordering the signal is dominated by
the νx signal. The normal ordering is a mixture between
ν̄e and νx, but dominated by ν̄e.

In Appendix B, we generalize the detectability of a
small-amplitude, periodic signal on top of a constant
background in the IceCube detector. Based on this toy
model we derive a theoretical maximum distance for a
detection (i.e. a 3σ detection 50% of the time) of,

d3σ
th = 1.57 kpc

[ ε
1

] [ a

0.01

] [ A1 kpc

30000 ms−1

]1/2 [
∆τ

40 ms

]1/2

,

(5.2)
where ε is the purity of the signal (1 in the case of

our toy model; 0.6-0.7 for our simulated signals; see Ap-
pendix B), a is the fractional amplitude of the periodic
signal, ∆τ is the time frame over which the signal is
present, and A1 kpc is the 1 kpc-equivalent mean steady-
state neutrino rate. For the latter, to be clear, A1 kpc is
intrinsic to the source and not dependent on distance. It
is a function of the neutrino spectral properties through
SNOwGLoBES. This formula, and the detectability it-
self, is not a function of the frequency of the variation,
as long as several cycles fall within the observing win-
dow ∆τ . This formula is valid for regimes where the
signal is not overwhelmed by the detector background
noise, for the conditions seen here, a few kpc (see Fig. 10
and the discussion in Appendix B). This also means that
even next-generation neutrino detectors, such as Hyper-
Kamiokande [75] and DUNE [76], will not be able to bet-
ter measure this effect even though they are essentially
background free.

As an application of this formula, we return to the os-
cillations observed in the neutrino signal for the Ωc =
2.5 rad s−1 simulation within 10ms after bounce. There,
A1 kpc ∼ 10000 ms−1, a ∼ 0.04, and ∆τ ∼ 5ms. This
gives maximum detectable distances of ∼1 kpc as well.
In practice, the shorter window for which the oscil-
lations are present as well as lower overall rate (and
therefore stronger impact of the detector noise) may re-
duce this distance. We also note that this formula is
not in disagreement with the estimate in [74], where it
is stated that a 1% amplitude variation should be de-
tectable at 10 kpc. This is because for that estimate
A1 kpc ∼ 135000 ms−1 and ∆τ ∼ 400ms, giving a maxi-
mum detectable distance based on Eq. 5.2 of ∼10.5 kpc,
as suggested in [74].
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VI. OUTLOOK AND CONCLUSIONS

In this work, we simulated the core collapse and early
post-bounce evolution of a 20M� progenitor star with
pre-collapse core rotations ranging from 0.0-2.5 rad s−1.
We use axisymmetry for these simulations, which is a
simplifying assumption, but justified for the collapse and
early post-bounce phase for rotating stars given axisym-
metric initial conditions, before turbulence in the gain
region starts gaining dominance. For each simulation we
extracted the GW and neutrino signals and showed these
messengers can offer detailed asteroseismological infor-
mation on the newly born PNS. These two messengers
are complementary in that they carry information about
certain linear modes of the core from different radii, with
neutrinos probing the outer 60−80 km and GWs probing
deeper in.

To characterize the modes, we followed a strategy of
mode function matching, rather than mode frequency
matching as in [22–24]. We believe this is a more ro-
bust approach that is less susceptible to mode misiden-
tification, especially given the approximations employed
in both simulations and perturbative schemes. By mode
function matching we discovered that mode frequencies
are overestimated by ∼ 15% in our simulations. Our find-
ings motivate further investigation to fully understand
this mismatch in mode frequencies.

Many other spectral peaks exist in both GW and
neutrino luminosity spectrograms along our entire se-
quence of rotating models, and we focused on a dominant
peak. In [28], numerous additional modes were identified
via mode function matching between perturbation the-
ory and our non-rotating model, many of which are not
quadrupolar. The many modes that are active offer to
explain the additional spectral peaks in the multimessen-
ger signals we observe along our rotating sequence.

The mechanism by which the linear modes of the core
imprint themselves on the neutrino light curves appears
to be that the neutrino-emitting volume (and possibly
the local neutrino production rate) undergoes coherent
deformations in time according to the frequency and an-
gular harmonics of the active PNS modes in the vicinity
of the neutrinospheres. The dominant angular harmon-
ics are then reflected in the emission pattern of neutrinos
on the sky at those frequencies. The comparison of the
angular structure was made possible through the use of
a grid-based two-moment transport scheme for the neu-
trinos because it retains and transports the directional
emission information from the neutrinosphere region.

For the detection prospects, we focused on the Ωc =
1.0 rad s−1 simulation. Using approximate assessment
techniques, we determined that the imprint of the dom-
inant mode of the GW signal is detectable within a dis-
tance of ∼ 5 kpc assuming the design sensitivity of Ad-
vanced LIGO. Since the mode has a dual imprint, we
have used the GW signal to inform a search for the same
frequency in the neutrino signal, which we expect to be
much more difficult to detect. This constitutes a bonafide

multimessenger detection strategy, and allows us to as-
sign a much higher significance than if no GW informa-
tion was available, i.e. if we needed to search over many
frequencies.

We then performed a detailed assessment of the detec-
tion prospects for the mode’s neutrino imprint by looking
at the expected signal in the IceCube Neutrino Observa-
tory. Given the amplitude of the mode’s imprint is ∼1%
of the main neutrino signal, a detection requires very
large events rates, and therefore a very close supernova,
∼ 1 kpc. In the future, the proposed IceCube-Gen2 will
include twice the number of strings compared to the cur-
rent IceCube detector, which would increase the number
of detected neutrino events by a factor of 2 and increase
the range to detect this signal by a factor of

√
2. Fur-

ther planned improvements in the photosensors, which
should allow for further discrimination from the inherent
background rate, is actively being studied by the IceCube
collaboration and could give rise to further improvements
in the detection distances mentioned here.

Lastly, the mechanism of the multimessenger imprint
should generalize to other systems, eg. accretion-induced
collapse of white dwarfs or binary neutron star post-
merger remnants, although their distance makes detec-
tion in neutrinos unlikely. In these systems, the mode
function matching procedure should also be useful for
identifying the active modes in simulations, although
with rapid rotation the perturbative schemes would have
to be generalized beyond spherical symmetry.
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FIG. 9. Detection probability, defined as the fraction of realizations where the power spectral density at t=37ms and f=575Hz
exceeds the 1σ, 2σ, and/or 3σ levels defined by pure noise, vs distance for the Ωc =1.0 rad s−1 simulation. At close distances the
oscillatory part is easily found, but quickly gets buried in the noise as the distance is increased. In the left panel we show the 1σ
(blue dotted), 2σ (orange dashed), and/or 3σ (solid black) detection probabilities for an observer located on the equator and
where the neutrinos underwent no oscillations after being emitted. In the right panel we show the 3σ detection probabilities
for an observer located on the equator, but for three oscillation scenarios: no oscillations (solid black), normal ordering (dashed
red), and inverted ordering (dotted purple).
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Appendix A: Tests of Perturbative Schemes

In [28] the perturbative schemes of [22] and [23] were
tested on a stable TOV star with polytropic equation
of state P = KρΓ with Γ = 2, K = 100, and central
density ρc = 1.28× 10−3 in geometrized units. The pur-
pose of testing on this compact star is to show that the
regime of validity of partially-relaxed Cowling approxi-
mations deserves independent investigation, and that the
FLASH implementation tends to overestimate mode fre-
quencies with respect to the full Cowling approximation.
The scheme of [23] is to allow the lapse function to vary,
but all other metric functions are fixed. This scheme is
not a priori under control, since not all terms are ac-
counted for at a given order. Indeed, a further relaxation
of the Cowling approximation in [24] resulted in correc-
tions of a similar size as those obtained when going from
a fixed spacetime to a varying lapse function. It was
shown in [28] for a TOV star that the partially-relaxed
Cowling approximation results in worse determinations
of fundamental mode frequencies than in the full Cowl-
ing approximation, and the radial order n of mode func-
tions is captured increasingly inaccurately for increasing
n. The partially-relaxed Cowling approximation was not
tested in [23], nor in a subsequent study [29].

We reproduce the main results of these tests in Ta-
bles (I) and (II). More details are provided in [28].
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1. TOV Mode Test in the FLASH Implementation

In this study we use the FLASH [40, 41] implementa-
tion of [26], which uses Newtonian hydrodynamics and a
phenomenological effective gravitational potential devel-
oped in [25, 44, 45], designed to mimic general relativity
in spherical symmetry. The Newtonian hydrodynamics
and effective gravitational treatment affect the mode fre-
quencies obtained in simulations. In [28] the modes of
a stable TOV star were extracted in our FLASH imple-
mentation. This test is relevant to our study since the
dominant modes of oscillation are extracted from CCSN
simulations within the FLASH implementation.

TOV migration tests was carried out in [25, 26], where
a TOV star on the unstable branch is observed to mi-
grate to the stable branch. Note these TOV solutions
are computed using the equations that correspond to the
pseudo-Newtonian system (i.e. case A of [25]), and there-
fore are equilibrium configurations in FLASH. The ensu-
ing oscillations were observed to have a frequency ∼ 2x
higher than in the general relativistic case. In [28] the
fundamental radial (l= 0) and axisymmetric quadrupo-
lar (l = 2, m = 0) modes {F , 2f} and their overtones
{H1, H2, 2p1, 2p2, 2p3} were extracted from the same
stable TOV star studied in § A. The main results are
reproduced from [28] in Table (III).

The main conclusion of this test is that, except for
the fundamental radial mode, our FLASH implementation
is overestimating mode frequencies even with respect to
the Cowling approximation. Since the Cowling approxi-
mation itself overestimates frequencies, we can conclude
that the true frequencies of modes we identify in our
CCSN simulations are bounded above by the frequency
corresponding to the best-fit mode functions. From the
perspective of the Nyquist frequency, this is a favorable
conclusion for detection prospects, since lower frequen-
cies can be resolved with a lower event rate. However, in
practice the detection threshold is far from the Nyquist
limit, becoming independent of frequency for fixed signal
duration (changes in frequency result in compensating
changes in the total number of periods present over the
signal duration), see § V. Thus the dominant variables
for detection prospects are instead the signal amplitude
and duration.

Appendix B: Model Neutrino Detection Distances

The varying detectability distances in the different or-
dering scenerios seen in Fig. 9 stem from the different
amplitudes of the oscillations in the ν̄e (∼ ±1%) and νx
(∼ ±0.5%). In order to generalize the determination of
the detectability of arbitrary amplitude signals embed-
ded in IceCube CCSN data we adopt a simple model.
The model is a flat and steady-state detection rate with
a magnitude of A1 kpc at 1 kpc, an oscillatory compo-
nent with relative amplitude a, and frequency f . For the
fiducial distance of 1 kpc, we take both A= 30000ms−1
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FIG. 10. Theoretical distances where a 3σ detection of ex-
cess power at a particular frequency, f , would happen 50% of
the time. The underlying signals that we analysed are from
sample realizations of a flat background (with an amplitude
of A1 kpc at 10 kpc and scaled using the inverse square law for
other distances) plus an oscillatory signal at frequency f with
a fractional amplitude of a. Detector noise from the PMTs
and statistical counting noise is included in the realization as
well.

and A= 60000ms−1, these are similar to the rates seen
in Fig. 2. We take f = 300Hz and 600Hz and vary a
from 10−3 to 10−0.5. We also explore varying the Fourier
transform window function width, ∆τ .

Using the same technique as above, for each A, a, f ,
and ∆τ , we determine the maximum distance at which
we would recover a 2σ or 3σ discovery potential. Note,
we keep the intrinsic CCSN luminosity fixed, therefore
we adjust A with distance following the inverse square
law, i.e. A = 30000/ms(1 kpc/r)2. We show the re-
sults in Fig. 10, where we plot the distances at which
we achieve a 3σ discovery potential for a given fractional
signal amplitude a. At closer distances the fraction of 3σ
detections quickly increases, as seen in Fig. 9. Generally,
we need close by sources (where the detector signal is
high) in order to identify small amplitude signals, while
large fractional amplitudes can be detected out to much
larger distances. At nearby distances (d < 2 - 3 kpc) the
dark noise rate in the detector does not impact the maxi-
mum detectable distance. For larger distances, where the
rate in the detector is small, the detector photomultiplier
noise inhibits this detection.

We make the following observations. Doubling the win-
dow over which we search for a given frequency (or taken
another way, the length over which an oscillatory signal is
present in the data) increases the maximum distance by
a factor

√
2 (solid black → dashed orange) as does dou-

bling in the intrinsic rate (solid black → dashed green).
Of these two, doubling the rate gives larger maximum
distances for the largest amplitudes because the smaller
window size limits the impact of the detector photomul-
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1f 1p1
1p2

1p3
2f 2p1

2p2
2p3

3f 3p1
3p2

3p3

From [34] (kHz) 1.335 3.473 5.335 7.136 1.846 4.100 6.019 7.867 2.228 4.622 6.635 8.600
From [36] (kHz) - - - - 1.890 4.130 - - - - - -
Current work (kHz) 1.376 3.469 5.336 7.141 1.881 4.104 6.028 7.866 2.255 4.640 6.647 8.535

% diff. with [34] 3.7 0.12 0.019 0.070 2.4 0.096 0.15 0.013 1.2 0.39 0.18 0.76
% diff. with [36] - - - - 0.48 0.63 - - - - - -

TABLE I. A comparison between the mode frequencies we obtain in the Cowling approximation with a boundary condition
of vanishing radial displacement at the stellar surface, and those obtained in [34, 36] using different methods, for a Γ = 2,
K = 100, ρ0,c = 1.28 × 10−3 TOV star (in geometrized units). The dominant error in the frequency is in the specification
of location of the stellar surface, at which the boundary condition is imposed; changing it by one grid point yields a possible
modification of the frequencies by ∼ 1 Hz.

2f 2p1
4f 4p1

From [35], GR CFC (kHz) 1.586 3.726 2.440 4.896
Current work, partial Cowling (kHz) 2.496 3.777 3.047 4.999
Current work, Cowling (kHz) 1.881 4.104 2.565 5.112

% diff. [35] vs partial Cowling 57 1.4 25 2.1
% diff. [35] vs Cowling 19 10 5.1 4.4

TABLE II. A comparison between the mode frequencies we obtain perturbatively using the partially-relaxed Cowling approxi-
mation of [23] and those obtained in [35] using full numerical simulations in the conformal flatness approximation, for the same
Γ = 2, K = 100, ρ0,c = 1.28 ×10−3 TOV star. The conformal flatness approximation is regarded as quite accurate for these
modes [33]. The agreement with [35] is worsened considerably for the fundamental modes, but improved for the overtones
shown, in comparison to the frequencies obtained in the full Cowling approximation. It has been observed almost always that
the Cowling approximation tends to overestimate the true frequencies, see eg. [66–70]. However, see the fundamental radial
mode appearing in Fig. 11 of [24] for an apparently glaring exception.

F H1 H2
2f 2p1

2p2
2p3

From [35] & [66], GR CFC (kHz) 1.442 3.955 5.916 1.586 3.726 - -
Current work, Cowling (kHz) 2.696 4.534 6.346 1.881 4.104 6.028 7.866
Current work, FLASH (kHz) 2.174 5.522 8.295 2.024 5.122 7.920 10.593

% diff. FLASH vs GR CFC +51 +40 +40 +28 +37 - -
% diff. FLASH vs Cowling -19 +22 +31 +8 +25 +31 +35

TABLE III. A comparison between the mode frequencies we obtain from FLASH simulations and those obtained in the Cowling
approximation and in full GR in the conformal flatness approximation (GR CFC), for the same Γ = 2, K = 100, ρ0,c =
1.28× 10−3 TOV star. The FLASH simulations yield frequencies overestimated with respect to full GR in all cases. We observe
an improvement in the fundamental radial mode frequency with respect to the Cowling approximation (i.e. a downward
correction), whereas all other mode frequencies obtain an erroneous upward correction.

tiplier noise. Doubling both the intrinsic rate and the
window leads to a factor of 2 increase in the maximum
distance (solid black→ red dashed). Lastly, doubling the
frequency of the oscillatory mode, while keeping the frac-
tional amplitude and time range over which it is present
fixed, has no impact on the maximum distance (solid
black → dashed purple). These curves are consistent
with our results in § VB and motivate Eq. 5.2, repeated
here for completeness,

d3σ
th = 1.57 kpc

[ ε
1

] [ a

0.01

] [ A1 kpc

30000 ms−1

]1/2 [
∆τ

40 ms

]1/2

.

(B1)
We note that for the Ωc = 1.0 rad s−1 case explored

above, with an observer positioned on the equatorial
plane, A1 kpc = 30000ms−1, ∆τ ∼ 40ms, and a frac-

tional amplitude of a = 1% (for no oscillations) and
a = 0.5% (for inverted ordering), these results suggest
a maximum distance to which these oscillation are de-
tectable of 1.57 kpc and 0.79 kpc, respectively. These
compare to our actual distances determined above of
1.12 kpc and 0.46 kpc for the no oscillation scenario and
the inverted ordering, respectively. The discrepancy that
is present sets the purity (with values around 0.6-0.7)
since the simulated signals are not pure oscillatory sta-
tionary signals on a flat background.

Appendix C: Dependence of mode identification on
boundary conditions

In this section, we show that the mode identified via
mode function matching in § III B does not depend sen-
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sitively on different choices of boundary conditions, aside
from the existence of an additional node at large radius
(r ∼ 120 km) when placing the outer boundary condition
at the shockwave location. The number of nodes more
clearly within the PNS is 2 in all cases. The main reason
for this independence is that our mode function match-
ing is performed on a density-weighted basis. The differ-
ent boundary conditions produce variations in the mode
function morphology primarily at larger radii, which is
suppressed by the √ρ-weighting we use for the matching
procedure. Despite this suppression, the mode functions
in each spectrum are distinct enough at smaller radii to
allow for a convincing match with the simulation data.

We consider 4 boundary conditions, all using the full
Cowling approximation. Firstly, the outer boundary con-
dition can be imposed at different radii. In this work we
imposed it at the shockwave location, which we take to be
where the radial derivative of the spherically-averaged ra-
dial velocity is maximally negative, whereas in [23] it was
imposed at the approximate location of the PNS surface
(where ρ = 1010 g cm−3). In our case, the PNS surface
is not well-defined because we focus on a much earlier
post-bounce phase than [23]. Another choice to make is
whether to impose the vanishing of the radial displace-
ment, ηr|boundary= 0, as done in [22] and in this work, or
to impose the vanishing of the Lagrangian pressure per-
turbation, ∆P |boundary= 0, as done in [23]. The latter
corresponds to a free surface.

In Fig. 11 we plot the mismatch ∆ (see Eq. 3.1) be-
tween the perturbative mode spectrum and simulation
data for the 4 boundary conditions just mentioned. The
simulation data being matched is a snapshot from the
non-rotating model around 40 ms. Mode frequencies are
indicated with crosses, and the best-fit mode frequency
is indicated with a circle. The frequency of the best-fit
mode functions all cluster around 420 Hz. When impos-
ing the boundary condition at ρ = 1010 g cm−3, there are
no mode functions that compete with the quality of fit
of the best-fitting one. When the boundary condition is
at the shockwave, there appears to be one mode function
around 405 Hz with a similar quality fit. This compet-
ing mode function has an additional node at r ∼ 24 km
(see Fig. 12), whereas the simulation data does not in-
dicate zero-crossing behavior there. We therefore reject
that mode by inspection.

We also compare the best-fit mode functions for all 4
boundary conditions in Fig. 13. The density weighting
used for these plots is ρ1/4, which is weaker than the√
ρ-weighting used for the modefunction matching and

allows for easier visual inspection of the zero-crossing be-
havior at large radius. Compared to imposing the outer
boundary condition at ρ = 1010 g cm−3, when imposing
the outer boundary condition at the shockwave there is
an additional node at large radius (r ∼ 120 km). Other-
wise, the mode function morphologies are similar.

Notice that the boundary condition yielding the best fit
seems to be ηr|boundary at ρ = 1010 g cm−3. However, one
should not read too much into this, since the perturbative

scheme being applied is not the consistent linearization of
the simulated equations. The main observation we make
here is the degree of independence of choice of bound-
ary condition. We refrain from inferring which boundary
condition is more correct from these comparisons. By
contrast, in [31] boundary conditions were assessed in this
manner, even though the perturbative scheme is not con-
sistent with their full-GR simulations (and one actually
expects systematic over-estimation of mode frequencies
by their Cowling perturbative spectra).

1. Cowling versus partial Cowling approximations

In Fig. 14 we plot the mismatch ∆ for the mode-
functions obtained using the partial Cowling approxi-
mation of [23]. When the outer boundary is placed at
ρ = 1010 g cm−3, the best-fit modefunction has a fre-
quency closer to the simulation than when using the full
Cowling approximation, although the quality of the mod-
efunction fit is significantly worse. One can therefore
be mislead by mode frequency matching to believe that
the fit has improved when partially relaxing the Cowling
approximation, when in fact it has become worse. The
corresponding mode functions for the different boundary
conditions are plotted in Fig. 15.
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FIG. 11. Modefunction mismatch ∆ (see Eq. 3.1) between the perturbative mode spectrum and the simulation data using
different boundary conditions. The simulation data being matched corresponds to the non-rotating model around 40 ms after
bounce. Mode frequencies are indicated with crosses, and the best-fit mode frequency is indicated with a circle.
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FIG. 13. Best-fit modefunctions from Fig. 11. Radial nodes are indicated with crosses. Compared with imposing the outer
boundary condition at ρ = 1010 g cm−3, imposing it at the shockwave results in one additional node near r = 120 km. Otherwise,
the modefunction morphologies are similar.
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FIG. 14. Same as Fig. 11 except using the partial Cowling approximation of [23]. For the boundary condition used in [23]
(∆P = 0 where ρ = 1010 g cm−3), the best-fit mode function has a frequency of 465 Hz, quite close to our simulation value of
490 Hz. However, the best-fit mode function in that case is a poor fit compared to the Cowling mode functions, and exhibits
one additional node.
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FIG. 15. Best-fit modefunctions from Fig. 14. Radial nodes are indicated with crosses.
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Appendix D: Spectral filter kernels

For the interested reader, we plot the spectral filter
kernel masks used in our modefunction matching analysis
in Fig. 16, on top of a sampling of velocity spectograms.
In [28], shrinking these kernels in their frequency extent
by a factor of 2 was found not to affect the mode function
matching.
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