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We reexamine a set of existing procedures aimed at recovering the effective description of the
dynamics of LQG in the context of cosmological solutions. In particular, the studies of those
methods, to which the choice of cuboidal graphs and graph-preserving Hamiltonian is central, result
in the formulation of a set of no-go statements, severely limiting the possibility of recovering a
physically consistent effective dynamics this way.

I. INTRODUCTION

Past work in the area of Loop Quantum Cosmology
(LQC) [1–3] allowed to probe the dynamics of homo-
geneous cosmological systems on the genuine quantum
level. A major result of these studies was the finding
that the the Big Bang singularity is replaced by a bounce
[4]. A further remarkable outcome was that the quantum
trajectories are reproduced by a simple phenomenologi-
cal model constructed by replacing the fundamental LQC
operators with their expectation values (implicitly eval-
uated on certain semiclassical states). This framework is
known in the literature as the effective dynamics [5].

Since LQC is an independent theory never derived
from Loop Quantum Gravity (LQG) [6, 7], the question
whether the full theory would lead to similar dynamical
predictions is highly nontrivial. The direct computation
of the genuine quantum dynamics in LQG is outside of
technical reach (except in some unphysical toy examples
[8, 9]). Observation of the success of effective dynamics
in LQC led to the expectation that a similar property
would hold also in the full theory. Consequently, instead
of the quantum Hamiltonian, a classical one (given by the
expectation value of the quantum Hamiltonian operator
on a family of semiclassical states) was used [10, 11].

Preliminary results in this approach indicated that,
when semiclassical states peaked on cosmological data
are used, LQG reproduces on the qualitative level the ef-
fective dynamics of LQC within the so-called µo-scheme
[12, 13]. Unfortunately, in LQC, this scheme has proved
to be physically inconsistent [14], consequently being re-
placed by the so-called µ̄-scheme [15]. It is an open ques-
tion whether LQG effective dynamics can lead to a phys-
ically consistent effective model (e.g., by qualitatively re-
producing LQC within the µ̄-scheme or one of its possible
extensions [16]).

For technical reasons, the studies in this direction were
so far limited to so-called non-graph-changing1 Hamil-
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tonians. In the current paper, we investigate whether
the commonly known techniques, when applied to these
Hamiltonians, can lead to a physically consistent effective
model.

The structure of the paper is as follows. In section II
we recall the original conjecture of effective dynamics in
the µo scheme and its relation to LQC. In section III we
investigate whether a similar conjecture for the µ̄ scheme
can be formulated in the full theory following a proposal
from [18] and find the answer in the negative. In section
IV we put the problems of finding the µ̄ scheme in the full
theory on a broader ground by presenting explicit no-go
statements. Finally, we conclude with possible alterna-
tives in V.

Throughout the paper, we will work in natural units
(~ = G = 1).

II. EFFECTIVE DYNAMICS

Let us start by briefly reviewing the content of effec-
tive dynamics in LQC. Classically, in isotropic models
the geometry data is contained in a pair of canonical
variables: these can be either the triad and connection
components [13], p and c, or the scaled, oriented volume
v ∝ p3/2 and dimensionless b proportional to the Hubble
rate2. Application of the canonical formalism leads to a
constrained system: in order to introduce a meaningful
notion of dynamics, one couples the geometry to a conve-
nient set of matter fields (so-called “internal clocks”) and
solves the scalar constraint by group-averaging [19]. This
procedure leads to “deparametrization on the quantum
level” where the dynamics of the system is generated by
a true Hamiltonian, with one clock field playing the role
of time. At the deparametrized level, states at a fixed
value of the clock become physical states, and we denote
their space by HLQC. All relevant geometric operators

ported on graphs. A non-graph-changing operator is an operator
which preserves the subspace of cylindrical functions supported
on each given graph [17].

2 The most popular convention is: v = 2πG~γ
√
∆p3/2 and b =

c
√

∆/p, where ∆ is the so-called “area-gap” [15].
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on HLQC can be written in terms of two fundamental op-
erators. The choice of these operators is a consequence of
the particular regularization scheme: in µo-scheme they

are p̂ and N̂1 := êicµo (µo being a positive constant); in

the µ̄-scheme they are v̂ and N̂2 := êib.
A substantial set of cosmological models has been al-

ready analyzed within the LQC framework. This in-
cludes in particular (but is not restricted to) the models
of isotropic universe (the so called Friedman-Lemaitre-
Robertson Walker model, or FLRW) of various topolo-
gies of constant time slices [15, 20–24], with various mat-
ter content [25–27] and possibly admitting non-vanishing
cosmological constant [28, 29], as well as homogeneous
anisotropic models (including the so called Bianchi I, II,
and IX) [30–35]. For the models listed above there ex-
ists a set of states {ψc,p ∈ HLQC}(c,p)∈R2 (e.g. coherent
states peaked about p = p and c = c) such that, for any
observable O polynomial in the fundamental operators,
it is (I ∈ {1, 2})

〈ψc,p, O(N̂I , v̂) ψc,p〉LQC = (1)

O(eiµI (p)c, p3/2)|(c,p)=(c,p) + O(~ǫI)

where µ1(p) = µo constant and µ2(p) =
√

∆/p.
Note that ~ǫI is a vector of the second-order corrections,

i.e., relative dispersions and covariances of fundamental
operators forming the polymer analogue of the Heisen-
berg algebra [36, 37]: p̂ or v̂ (for I = 1 and I = 2 respec-

tively), (N̂I + N̂ †
I )/2 and (N̂I −N̂ †

I )/2i. In the following
we shall consider the states (called “semiclassical”) for
which the remainder O(~ǫI) is small;3 for simplicity, in
the following we drop the symbol O(~ǫI) and use ≈ in-
stead of = when an identity holds to zeroth order in ~ǫI .

For certain models admitting massless scalar field (in-
cluding the flat FLRW universe with non-negative cos-
mological constant or negative curvature), the semiclas-
sicality property defined above may not be preserved by
the dynamics (see for example [38, 39], also the discus-
sion in [29, 40]). In these cases the Dirac observables
corresponding to p(t) may be ill defined on the physical
Hilbert space, thus alternative observables encoding the
same information need to be used [29, 40]. Other choices
of matter fields for an internal clock (like dust [26] or
radiation [27]) are free from this deficiency.

Despite the above problem, probing the quantum dy-
namics in LQC shows that for many of the models listed
above

〈ψc,p, e
itH(N̂I ,v̂)O(N̂I , v̂)e−itH(N̂I ,v̂)ψc,p〉LQC

≈ O(αt
h[eiµI (p)c], αt

h[p3/2])|(c,p)=(c,p) (2)

where αt
h[f ] := exp(t{h, .})(f) is the Hamilto-

nian flow generated by the effective Hamiltonian

3 By the remainder O(~ǫI) we mean any functions depending on
the generalized Hamburger moments, such that it vanishes if the
moments are put to zero. See Appendix A for details.

h(c, p, µI) := 〈ψc,p, H(N̂I , v̂)ψc,p〉LQC on the phase
space coordinatized by (c, p) [41]. Correctness of (2)
was tested in several models, including the models of
isotropic universe of various topologies (K = 0,±1)
[15, 21, 42, 43], various values of cosmological constant
[28, 29] and several forms of matter content: dust [26],
radiation [27] and massless scalar field, see e.g. [44].
It was also tested in some homogeneous nonisotropic
models – Bianchi I Universe [45–48]. For other models,
like the one describing flat Bianchi I universe with
massless scalar field (including the isotropic sector) the
result (2) can be obtained with a minor modification
to the present mathematical procedure of building a
physical Hilbert space. For other cases (universe of
negative curvature or positive cosmological constant)
an analogous result holds once the observable v̂ is
replaced with its ’compactified’ analog (see [29, 40]).
These results have given rise to the effective dynamics
conjecture, namely, that an analogous property also
holds for other reduced models (of which dynamics was
not tested on the genuine quantum level).

Let us now turn towards the full theory. In LQG, given
a fixed graph, the fundamental operators are holonomies

ĥ(e) of Ashtekar connection along edges e of the graph

and fluxes Ê(e) of the densitized triads across surfaces
dual to each link [6, 7]. Given that LQC inherits its
structures from LQG, the existing attempts of realizing
effective dynamics in LQG rely on a similar framework
as the one presented above. So far, all approaches in
the literature select for that purpose compact (implicitly
embedded in a 3-torus) cuboidal lattices with N vertices.
On the Hilbert space HN of one such graph, one considers
a family {ΨN

ξ,η ∈ HN}(ξ,η)∈su
3N
2 ×su

3N
2

of states, that sat-

isfy a semiclassicality property analogous to (1), namely

〈ΨN
ξ,η, O(ĥ, Ê)ΨN

ξ,η〉 ≈ O(eξ,η) (3)

for any polynomial O in holonomies ĥ and fluxes Ê. Note
that in this equation (and in all that follow) the symbol
≈ means that the relation holds up to a remainder
depending on relative dispersions and covariances of the
fundamental operators. Also, abusing the notation, we
will use h ≡ {h(e)}e, ξ ≡ {ξ(e)}e and similar for E, η
instead of explicitly referring to each edge e.

Since we are focusing on the isotropic cosmology sec-
tor of LQG effective dynamics, we now restrict our at-
tention to subfamilies of such states which are peaked
about isotropic cosmological geometries. This means
that the peak holonomy and flux labels (ξ,η) can be
expressed in terms of the coordinates on the phase space
of isotropic cosmology: ξ(e) = µocτ and η(e) = µ2

opτ ,
where τ(e = ek) = −iσk/2 is a generator of su2 (which in
general depends on the direction k of ek) and µo = N−1/3

is the coordinate length of edge e with respect to a certain
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fiducial metric.4

Upon these choices, preliminary studies performed for
example on the states in [49] indicate that

(i) for two polynomials O1 and O2 in the fundamental
variables

〈ΨN
ξ,η, i[O1(ĥ, Ê), O2(ĥ, Ê)] ΨN

ξ,η〉 ≈ (4)

{O1(eµocτ , µ2
opτ), O2(eµocτ , µ2

opτ)}|(c,p)=(c,p),

(ii) a certain form of effective dynamics (i.e., analogue
to (2)) might hold. (see e.g. [50, 51]).

The latter can be captured in the following:

Conjecture 1 Consider a semiclassical state ΨN
ξ,η

peaked about isotropic geometry data (c,p) and Hamil-

tonian operator Ĥ = H(ĥ, Ê). For any polynomial O in
the fundamental variables, the following holds:

〈ΨN
ξ,η, e

itĤO(ĥ, Ê)e−itĤ ΨN
ξ,η〉 ≈ (5)

O(αt
Hµo

[eµocτ ], αt
Hµo

[µ2
opτ ])|(c,p)=(c,p)

where αt
Hµo

[f ] := exp(t{Hµo , .})(f) is the Hamiltonian

flow generated by the effective Hamiltonian Hµo :=
H(eµocτ , µ2

opτ) on the phase space coordinatized by (c, p).

Several studies appeared in LQG which make (sometimes
implicit) use of this conjecture [10, 11], concluding that
the LQG quantum dynamics of semiclassical states (sup-
ported on a single lattice) resembles the µo-scheme of
LQC. This scheme, however, was shown to lead to phys-
ically inconsistent results within LQC (for example, it
does not admit a proper infrared regulator removal limit
[14]). It would therefore be desirable to reproduce in
LQG the µ̄-scheme. In other words, we would like to
find a set of semiclassical states in the full theory such
that (we omit the explicit symbol for such state)

〈eitĤO(ĥ, Ê)e−itĤ〉 ≈ (6)

O(αt
Hµ̄

[eµ̄cτ ], αt
Hµ̄

[µ̄2p]τ)|(c,p)=(c,p)

where Hµ̄ := H(eµ̄cτ , µ̄2pτ) and µ̄ := µ̄(p) =
√

∆/p. In
other words, the quantum dynamics of this semiclassi-
cal state would be described by the µ̄-scheme effective
Hamiltonian Hµ̄. Such a feature, however, has an un-
fortunate consequence: from (6), by setting t = 0 and

O(ĥ, Ê) = ĥ(e), it follows

〈ĥ(e)〉 ≈ eµ̄(p)cτ(e) (7)

which means that labels c and p do not have the meaning
of connection and triad coefficients as provided in [13].

4 In the treatment presented in the literature, a specific embedding
is chosen, such that the lattice is regular.

Alternatively, if we want to retain the meaning of c and
p, equation (7) suggests to re-interpret the multiplication

operator ĥ in terms of a new classical object, which we
might call a “weighted holonomy”.5 This is an important
departure from standard LQG, that cannot be dismissed
easily. For example, one must make sure that H(h,E)
remains a regularization of GR Hamiltonian if h(e) is the
weighted holonomy (especially considering the fact that
Thiemann identities only work with regular holonomies
[52]). Nevertheless, let’s assume that this issue can be
overcome: the system will still be quantized in the usual
way, i.e., in terms of SU(2) multiplication operators and
right-invariant vector fields. Hence, on the quantum level
the commutator structure will have no knowledge of its
former classical origin. This approach will be further
discussed in the conclusion.

At the moment we will focus on recovering property
(6) itself. Thus, we now look for possible techniques con-
sidered viable to achieve this goal.

III. A MULTI-SECTOR STRATEGY

One of the most promising procedures is to consider
states with support on a collection of graphs instead of
a single one [18]. Since the non-graph-changing Hamil-
tonians (and the standard set of observables) by defi-
nition leave the subspaces of states supported on each
graph invariant under their action (making each subspace
a superselection sector), we can for simplicity call such
approach a “multi-sector strategy”, in opposition to a
single-sector one, where just one superselection sector is
considered.

For the class of graph topologies considered in this pa-
per (compact cuboid lattices enumerated by a number of
vertices N), such states are of the form

ρ̂ =

∞∑

N=1

cN(w)|ΨN
ξ,η〉〈ΨN

ξ,η | (8)

where we adopted a density matrix notation. Here, w
denotes an abstract label which may in principle be a
function of the phase variables c, p and of the coherent
state labels c,p. The hope behind this generalization was
based upon the expectation that, given a well-behaved
function F (c, p, µo(N)) with µo(N) = N−1/3, it would
be possible to find a family cN (w) such that

∞∑

N=1

cN (w)F (c,p, µo(N)) ≈ F (c,p, µ(w)) (9)

where µ(w) (being determined by the choice of cN (w))
would take a desired form consistent with µ̄ scheme of

5 In the context of the full theory, the expression of this weighted
holonomy is not specified: we only know that it should reduce
to eµ̄(p)cτ(e) in the cosmological sector.
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LQC. Indeed, for an observable Ô being an operator poly-

nomial in ĥ, Ê one has

〈O(ĥ, Ê)〉 := Tr[ρ̂ O(ĥ, Ê)] =
∞∑

N=1

cN (w)〈ΨN
ξ,η, O(ĥ, Ê)ΨN

ξ,η〉 ≈

∞∑

N=1

cN (w)O(eµo(N)cτ , µ2
o(N)pτ) ≈

O(eµ(w)cτ , µ2(w)pτ)

(10)

where in the third line we used (3) and in the fourth we
used (9). This shows that one has a significant freedom

of affecting the expectation value of Ô by selecting the
distribution cN (w) (e.g., requiring it to be peaked about
an appropriate function of p).

The first example of applying this strategy discussed
in the literature was presented in [18] and relied on a
specific postulated choice of cN (w):

cN (w) =
1

2(αw)2/3

(
(αw)3/2

N

)
(11)

(with α > 0). This choice led to the desired result µ(w) =√
∆/w =: µ̄(w) for time-zero expectation values, since

then

〈O(ĥ, Ê)〉 ≈ O(eµ̄(w)cτ , µ̄2(w)pτ) (12)

Upon identifying w = p and applying this equation to
the Hamiltonian operator Ô = Ĥ , this expectation value
is found to coincide (up to subleading corrections) with
the LQC effective Hamiltonian in µ̄-scheme.

This is an encouraging result, however what we re-
ally need to show is (6) whose right hand side, in par-
ticular, will imply a non-trivial dependence p(t) :=
αt
Hµ̄

[p]|(c,p)=(c,p).
6 Therefore, in order for proposals such

as (11) to yield the µ̄-scheme at arbitrary times, one
needs to identify w = p(t). This in turn implies that the
coefficients cN (w) must have non-trivial time dependence
when the evolution is considered. We are now going to
show that the quantum evolution described by the left
hand side of (6) cannot allow for such time-dependence.

Recall that ρ̂t := e−itĤρeitĤ and introduce projectors
P̂N =

∑
i |eN,i〉〈eN,i| onto each graph, so that

I =
∑

N

P̂N (13)

6 In order to be able to provide a viable description of the observed
reality, the model needs to give dynamical predictions which in
the low energy limit are converging to those of (the cosmological
sector of) classical general relativity. The latter in turn predicts
a highly nontrivial time dependence of the values of c and p.

The unitarity of quantum time evolution requires that,
for the coefficients cN (t) := cN (w(t)), it holds

cN (t) = Tr[ρ̂tP̂N ]

=
∑

M,i

cM (0)〈ΨM
ξ,η|eitĤ |eN,i〉〈eN,i|e−itĤ |ΨM

ξ,η〉

= cN (0)‖e−itĤΨN
ξ,η‖2 = cN (0)‖ΨN

ξ,η‖2

= cN (0)

(14)

This shows that cN cannot depend on time and hence (6)
cannot be satisfied by such states ρ̂.

The explicit computation of the expectation value of
Ô on ρ̂t gives

O(t) := Tr[ρ̂t O(ĥ, Ê)] = Tr[ρ̂ eitĤO(ĥ, Ê)e−itĤ ]

=

∞∑

N=1

cN (w)〈ΨN
ξ,η, e

itĤO(ĥ, Ê)e−itĤΨN
ξ,η〉

≈
∞∑

N=1

cN (w)O
(
αt
Hµo(N)

[eµo(N)cτ ],

αt
Hµo(N)

[µ2
o(N)pτ ]

)
|(c,p)=(c,p)

= O
(
αt
Hµ(w)

[eµ(w)cτ ], αt
Hµ(w)

[µ(w)2(N)pτ ]
)
|(c,p)=(c,p)

(15)

where in the third line we used (5) and in the last line we
used equation (9). It could be argued that the choice w =
p would lead to the correct result. However, the state ρ̂t
(and therefore cN as well) depends only on p, c and t.
The phase space functions c, p are merely intermediate,
auxiliary objects (meaningful only inside each term of
the sum in the third line), consequently w cannot be a
function on the phase space coordinatized by (c, p): the
only option is therefore µ(p), for which (15) gives

〈eitĤO(ĥ, Ê)e−itĤ〉 = Tr[ρ̂t O(ĥ, Ê)] ≈ (16)

O(αt
Hµ(p)

[eµ(p)cτ ], αt
Hµ(p)

[µ(p)2pτ ])|(c,p)=(c,p)

It is now clear that µ(p) Poisson-commutes with the func-
tions on which αt acts, and hence does not contribute to
the effective dynamics:

Observation 1 If the quantum dynamics on a single
sector (graph) reproduces the µo-scheme (Conjecture 1),
then the quantum dynamics on the multi-sector also re-
produces the µo-scheme (with a different constant µ′

o :=
µ(p)).

IV. NO-GO STATEMENTS

The approach discussed so far does not reproduce the
µ̄-scheme, that is, the expectation values of observables
Ô on quantum-evolved states are not consistent with (6),
but rather reproduces the effective dynamics of the µo-
scheme. However, to arrive to this conclusions, the use of
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Conjecture 1 was central. While this conjecture is sup-
ported by numerical evidence in the context of symmetry-
reduced models, and promising work on providing a proof
to it is ongoing [50, 51], one still cannot exclude the pos-
sibility that for certain classes of (sharply peaked) states
the dynamics may follow different trajectories. However,
we will show that, under some weaker assumptions, cer-
tain no-go statements concerning the recovery of the µ̄-
scheme from the full theory can be made.

For simplicity, in the following we will focus on the
single-sector pure states. The extension to mixed states
can be performed by a procedure similar to that pre-
sented in the previous section and, as it was shown there,
would not lead to a qualitative change of predictions.

The first no-go statement considers an alternative to
the original Conjecture 1, in which the semiclassical
states peakedness is defined with respect to different
phase space coordinates.

Observation 2 Let ΨN
ξ,η be a semiclassical state with

ξ = µ̄(p)cτ =: b(c,p) and η = µ̄(p)2pτ =: η̃(p)τ , satis-
fying property (3). Then, equation

〈ΨN
ξ,η, i[O1(ĥ, Ê), O2(ĥ, Ê)]ΨN

ξ,η〉 ≈ (17)

{O1(eb(c,p), η̃(p)τ), O2(eb(c,p), η̃(p)τ)}|(c,p)=(c,p)

cannot be satisfied, which means that the space of la-
bels (b, η̃) cannot serve as the coordinates of the effective
phase space of cosmology.

The reason why this statement holds is relatively
straightforward: recalling that µ̄(p) =

√
∆/p, we have

η̃(p) = µ̄(p)2p = ∆; this, however, means that η̃(p) =
η̃(0) is independent of p, which makes η̃ unsuitable as
a coordinate on the phase space (thus making the coor-
dinate system degenerate). In particular, any Poisson-
bracket in (17) is necessarily zero (and similarly the
Hamiltonian flow would preserve η̃: αt

Hµ̄
(η̃) = η̃).

Noting that on a single sector the expectation value
of the volume of the spatial manifold is 〈V̂ [σ]〉 ∝∼ N ,
one may try to implement a multi-sector strategy (such
as the one discussed before), constructing a family of
states peaked about coordinates (b,No). Conceivably, a
canonical Poisson structure can be defined on this space,
therefore avoiding the problems of Observation 2. How-
ever, due to the non graph-changing nature of the Hamil-
tonian, the expectation value of the number operator∑

N NP̂N is a constant of motion, and hence p = N
2/3
o

would have trivial dynamics, in contradiction with the
low energy GR limit.

To summarize: considering states semiclassical in vari-
ables b(c, p) and η(p) more suitable from the physical
point of view, will not lead to any replacement of Con-
jecture 1 (equation (5)) consistent with the µ̄-scheme.

At first glance it appears to be possible nonetheless to
achieve the µ̄ scheme by dropping (17), i.e., by no longer
relating η̃(p) on the right hand side with the η on which
Ψ is peaked. However, we will demonstrate that this

cannot be correct in general, using as example a certain
regularisation of the Hamiltonian in LQG and the volume
operator:7

Observation 3 Consider a state obeying (3) with ξ =
µ̄(p)cτ and η = µ̄2(p)pτ = η̃(p)τ and N = µ̄(p)−3/2,
such that:

〈V̂ [σ]〉 ≈ Nη̃
3
2 = p

3
2 (18)

Then, for a Hamiltonian Ĥ = H(ĥ, Ê) it is

〈eitĤ V̂ [σ]e−itĤ〉 6≈ αt
Hµ̄

(p
3
2 )
∣∣
(c,p)=(c,p)

(19)

where Hµ̄ = H(e
√

∆/p c τ ,∆ τ).8

In other words, given an isotropic state initially peaked
in volume at p3/2 and assuming its peak follows some
effective trajectory under quantum dynamics for some
Hamiltonian (which is a function of SU(2) multiplication
operators and right-invariant vector fields), such trajec-
tory will not be the one which is generated by replacing
the operators with the respective classical expressions of
isotropic holonomies and fluxes in the µ̄-scheme.

If both sides of (19) were equal for all t, then the ex-
pansion in t of (19) must coincide order by order:

〈[Ĥ, V̂ [σ]](n)〉 ≈ {Hµ̄, p
3
2 }(n)|(c,p)=(c,p) (20)

where {A,B}(n) is defined inductively by {A,B}(n+1) =

{A, {A,B}(n)} and {A,B}(1) = {A,B}, and [Â, B̂](n) is
defined analogusly. In particular, we must have

〈[Ĥ, [Ĥ, V̂ [σ]]]〉 ≈ {Hµ̄{Hµ̄, p
3
2 }}|(c,p)=(c,p) (21)

To understand better the consequences of this equation,
we consider a particular (non-physical) example: the Eu-

clidean Hamiltonian operator Ĥ acting on a cubic lattice
as proposed by Giesel and Thiemann [17]. This operator
has the property that

H(e
√

∆/p c τ ,∆ τ) = sin2(
√

∆/p c)p3/2/∆ (22)

so that Hµ̄ is indeed the µ̄-scheme effective Hamiltonian
of LQC. It is then easy to check that the right hand side
of (21) is

{sin2
(
√

∆

p
c
)p 3

2

∆
, {sin2

(
√

∆

p
c
)p 3

2

∆
, p

3
2 }}|(c,p)=(c,p)

=
κ2β2

8

p
3
2

∆
sin2

(
√

∆

p
c
)

(23)

7 Work in cosmology is mostly concerned with the volume, how-
ever for physical predictions any working conjecture should in
principle be extended to Ricci scalar and energy density.

8 We refer to the same function H on the classical phase space,
which was used to define the quantum dynamics. Of course, this
does not exclude the possibility that (19) with an ”≈” is satisfied

for some different effective Hamiltonian Hµ̄ := H′(e
√

∆/pcτ ,∆τ)
on the right hand side.
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On the other hand, the left hand side – that is, the double
commutator between operators in the full theory – can be
computed explicitly (see [53] for details). The evaluation
gives

〈[Ĥ, [Ĥ, V̂ [σ]]]〉 (24)

≈ κ2β2

8

p
1
2

µ2
sin2(µc)

2 + cos(2µc)

3

∣∣∣∣
(c,p,µ)=(c,p,

√

∆
p
)

The mismatch between the two sides of the equation
shows that (21) cannot hold.

To analyze the problem in full generality, it is con-
venient to introduce two maps from operators to phase
space functions:

ω : O(ĥ, Ê) 7→ O(eµcτ , µ2pτ) (25)

where µ is considered as a parameter unrelated to phase
space coordinates, and

ω̃ : O(ĥ, Ê) 7→ ω(O(ĥ, Ê))
∣∣
µ=

√
∆/p

(26)

Up to second-order corrections, these maps associate to
a given operator Ô the expectation value of Ô on semi-
classical states defined in Conjecture 1 and Observation
3 respectively. Notice that the only difference between
the two maps is the identification of µ with the phase
space function

√
∆/p in ω̃ (after evaluating ω).

In terms of these maps, equation (20) takes the follow-
ing form:

ω̃([Ĥ, V̂ ](n)) ≈ {ω̃(Ĥ), ω̃(V̂ )}(n) (27)

To verify whether this can be satisfied, we first observe
that, due to equation (4), the following equality holds:

ω([Ĥ, V̂ ](n)) ≈ {ω(Ĥ), ω(V̂ )}(n) (28)

Writing ω̃ in terms of ω and making use of (28), the
left hand side and right hand side of equation (27) read
respectively

ω̃([Ĥ, V̂ ](n)) = ω([Ĥ, V̂ ](n))|µ=√∆/p
≈

≈ {ω(Ĥ), ω(V̂ )}(n)|µ=√∆/p
(29)

and

{ω̃(Ĥ), ω̃(V̂ )}(n) = {ω(Ĥ)|
µ=

√
∆/p

, ω(V̂ )|
µ=

√
∆/p

}(n)
(30)

These two quantities cannot be equal for all n as long as
ω̃(Ĥ) is a non-trivial anaytical function of c due to the

fact that, with µ =
√

∆/p being a nontrivial phase space
function, for generic A and B we have

∃n ∈ N : {A,B}(n)|µ=√

∆
p

6= {A|
µ=

√

∆
p

, B|
µ=

√

∆
p

}(n)
(31)

We therefore conclude that (27) does not hold, which
explains the disagreement between (23) and (24) in the
example, and proves Observation 3.

V. CONCLUSION

In this paper, we investigated whether a physically con-
sistent effective dynamics of cosmological semiclassical
states (such has the µ̄-effective dynamics in LQC) can be
obtained from quantum dynamics in full LQG using cur-
rently available tools. In particular, we focused on non-
graph-changing Hamiltonians. Independent studies [51]
indicate that, for such Hamiltonians, the dynamics on a
single superselection sector (i.e., for states supported on a
single graph) reproduces the µo-effective dynamics up to
second-order corrections. This observation was captured
in Conjecture 1.

Since this outcome is not physically favored, a proposal
has appeared [18] to circumvent this problem by consid-
ering mixed states defined on ensambles of superselection
sectors (i.e., graphs). For such method, we have shown
that the requirement of unitarity of quantum evolution
forces the dynamics of the mixed state to have the same
qualitative features of the single-sector one. In other
words, starting from single-sector components obeying
Conjecture 1, one finds that the mixed state also follows
µo-effective dynamics (possibly with a different constant
µ′
o). This result is summarized in Observation 1.

Following the no-go result of Observation 1, a different
route was considered. We studied a different family of
semiclassical states, whose peakedness is defined with re-
spect to a different set of phase space coordinates, resem-
bling those of improved dynamics in LQC [4, 15] (while
keeping the Poisson algebra and the regularization of the
Hamiltonian unchanged). We were able to show that the
attempt, to identify expectation values of commutators
of quantum observables with Poisson brackets of the clas-
sical counterparts of these observables expressed as func-
tions of the new coordinates, led to trivial evolution of
flux-dependent observables (such as the volume), which
is also physically inconsistent. This fact is expressed in
Observation 2. In Observation 3, it is moreover found
that the commutator algebra of the fundamental opera-
tors is not consistent with the reduced Poisson structure
stemming from the weighted holonomies of the µ̄ scheme.
Thus, in general the evolution for the volume differs in
both descriptions. However, we want emphasize that al-
though the procedure from Observation 3 does not repro-
duce the µ̄ scheme, this does not invalidate the possibility
that the full theory produces some other effective model
which is physically consistent and reproduces GR at low
energies.

The methods discussed above cover all the approaches
in the literature to non-graph-changing Hamiltonians.
Since we have shown that none of them leads to con-
sistent physical dynamics, a qualitatively new approach
is required. The possibilities include:

(i) Defining a meaningful “continuum limit” µ → 0.
Such an approach is expected to lead to classical
dynamics in the leading order, while quantum ef-
fects would sit in the higher-order corrections.



7

(ii) Considering a graph-changing Hamiltonian. There
are several such proposals in the literature, but
they all rely on the existence of some “non-changing
core” to which certain degenerate [52] or ultra-
local [54] structures are added. Therefore, these
graph-changing Hamiltonians have a problem com-
mon with the non-graph-changing approach9: it is
not clear whether these solutions are viable from
the point of view of describing an expanding uni-
verse, since the structure associated with a single
node generating non-trivial volume would have to
describe a large region of the universe. Therefore,
if this route is to be followed, one might need a new
proposal for a graph-changing Hamiltonian.

(iii) Starting with a new symplectic structure at the clas-
sical level, thus applying the quantization procedure
to a new algebra of variables. For example, one
could replace the holonomy-flux algebra with the al-
gebra of “weighted holonomies” and their canonical
conjugated momenta, generalizing to the full theory
what was done in LQC improved dynamics (see e.g.
[57, 58] for first steps in this direction for reduced
models). This in particular requires a new regu-
larization of the classical Hamiltonian, in a context
where Thiemann identities might not be valid.

(iv) Using renormalisation techniques to find a cylindri-
cal consistent choice of non-graph-changing Hamil-
tonians. Those could be used to construct a contin-
uum quantum field theory via inductive limit meth-
ods (see e.g. [59], or in the context of spinfoam for-
mulation to LQG [60, 61]). In this sense, the fixed
graphs correspond only to observing the full theory
with some coarseness scale µ, while its dynamics is
to be computed in the continuum.

These approaches are currently being investigated by sev-
eral groups. Furthermore, the list above is not exhaustive
and there may well exist other approaches circumventing
the no-go statements (observations) made in this article.
Thus, although we have shown a certain popular set of
approaches to not have a chance to work, there are still
other prospects of constructing a framework which will
recover a physically consistent scheme for LQG effective
dynamics.
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9 This problem has been already noticed in the literature and in
particular has been motivation for “lattice refinement” [55, 56].

Appendix A: Effective description of semiclassical

states

Consider a simple quantum mechanical system for
which a pair of observables x̂, p̂ forms a Heisenberg al-
gebra

[x̂, p̂] = i~I. (A1)

For a sufficiently rich class of states (which we will de-
fine more precisely later) their physical properties can be
encoded in the set of classical quantities known as gen-
eralized Hamburger moments

Gmn := “〈: (x̂− 〈x̂〉I)m(p̂− 〈p̂〉I)n :〉” (A2)

=

m,n∑

k,l=0

(−1)(m+n)−(k+l)

(
m

k

)(
n

l

)
〈: x̂k p̂l :〉〈x̂〉m−k〈p̂〉n−l,

where : · : is a symmetric (usually Weyl) ordering. This
decomposition has been known in quantum optics for
more than half a century and was reintroduced in context
of quantum cosmology in [62]. Remarkably, the count-
able set of Gmn forms a Poisson algebra of complicated
but known structure. All the observables, which can be
written as functions of fundamental operators x̂, p̂ can be
expressed by Gmn via an analog of Taylor expansion

〈O(x̂, p̂)〉 = “〈O(〈x̂〉I + (x̂− 〈x̂〉I), 〈p̂〉I + (p̂− 〈p̂〉I))〉”

=

∞∑

k,l=0

1

k!l!

∂k+lO

∂kx∂lp

∣∣∣∣
x=〈x̂〉,p=〈p̂〉

Gkl. (A3)

Applying this decomposition to the Hamiltonian allows
to write it as a series in (x = 〈x̂〉, p = 〈p̂〉, Gmn). Known
Poisson structure of the central moments algebra per-
mits then to find the full (countable) set of equations of
motion for (x, p,Gmn), effectively determining the quan-
tum evolution. In particular, the equations of motion for
(x, p) will get contributions in the form of functions of
(Gmn). These terms are the quantum corrections (of the
order m+ n) to the classical trajectories.

This (countable) set can now be truncated at a finite
order m + n. Provided that the higher order terms in
the Hamiltonian as well as the set of moments Gmn

representing the state decay sufficiently fast with the
order m + n the resulting truncated system will pro-
vide a good approximation of the actual quantum evo-
lution, of which accuracy can be controlled by a trun-
cation order. For that purpose, one usually restricts
the studies to the set of states satisfying the inequali-
ties ∀j, k ∈ Z+ |Gm+j,n+k| ≪ ~j+k|Gm,n| providing a
stronger notion of semiclassicality. For many systems
the set of such states is sufficiently large to allow for ex-
tracting meaningful physical information.

Such description can be generalized in two ways. First,
for the systems featuring classical phase space of higher
dimension it generalizes in a straightforward way: the
moments G simply become multi-index objects Gk1,...,kN ,
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where N is the classical phase space dimension. Second,
the formalism can be generalized to quantum represen-
tations in which the algebra of fundamental operators
has different structure than Heisenberg one. In partic-
ular in case of the polymer quantization (see for exam-
ple [63, 64]) of the system we have a pair of operators:

momentum p̂ and a boost Ûλ := ̂exp(iλx) with com-

mutator [p̂, Ûλ] = −λ~Ûλ. One can then introduce a
triple of (classical effective) variables as expectation val-

ues p := 〈p̂〉, c := 〈(Ûλ + Û−1
λ )/2〉, s := 〈(Ûλ − Û−1

λ )/(2i)

and subsequently define the central moments Gijk anal-
ogously to (A2). Subsequently, the observables and the
Hamiltonian can be expressed as series in the variables
(p, c, s,Gijk) via expansions analogous to (A3) and the
resulting system of equations of motion can again be
truncated. The Poisson algebra structure of Gijk is more
complicated, but can be algorithmized and the set of
equations of motion truncated at the arbitrary order can
be found [65].
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I. Mäkinen, Phys. Rev. D92, 044042 (2015),
arXiv:1506.00299 [gr-qc].

[55] M. Bojowald, D. Cartin, and
G. Khanna, Phys. Rev. D76, 064018 (2007),
arXiv:0704.1137 [gr-qc].

[56] W. Nelson and M. Sakellari-
adou, Phys. Rev. D76, 044015 (2007),
arXiv:0706.0179 [gr-qc].

[57] N. Bodendorfer, Phys. Rev. D91, 081502 (2015),
arXiv:1410.5608 [gr-qc].

[58] N. Bodendorfer, Class. Quant. Grav. 33, 125014 (2016),
arXiv:1512.00713 [gr-qc].

[59] T. Lang, K. Liegener, and T. Thie-
mann, Class. Quant. Grav. 35, 245011 (2018),
arXiv:1711.05685 [gr-qc].

[60] B. Bahr and B. Dittrich,
Phys. Rev. D80, 124030 (2009),
arXiv:0907.4323 [gr-qc].

[61] B. Bahr and S. Steinhaus,
Phys. Rev. D95, 126006 (2017),
arXiv:1701.02311 [gr-qc].

[62] M. Bojowald and A. Skirzewski,
Rev. Math. Phys. 18, 713 (2006),
arXiv:math-ph/0511043 [math-ph].

[63] J. F. Barbero G., J. Prieto, and E. J. S. Vil-
laseñor, Class. Quant. Grav. 30, 165011 (2013),
arXiv:1305.5406 [gr-qc].

[64] A. Corichi, T. Vukasinac, and J. A.
Zapata, Phys. Rev. D76, 044016 (2007),
arXiv:0704.0007 [gr-qc].

[65] D. Brizuela and T. Paw lowski, (2019), to appear.

http://dx.doi.org/10.1103/PhysRevD.84.043514
http://arxiv.org/abs/1011.3022
http://arxiv.org/abs/1906.07554
http://dx.doi.org/10.1103/PhysRevD.100.084003
http://arxiv.org/abs/1906.05315
http://dx.doi.org/10.1103/PhysRevD.78.064072
http://arxiv.org/abs/0807.3325
http://dx.doi.org/10.1088/0264-9381/31/10/105015
http://arxiv.org/abs/1402.6613
http://dx.doi.org/10.1088/0264-9381/31/16/165006
http://arxiv.org/abs/1406.1486
http://dx.doi.org/10.1103/PhysRevD.80.104015
http://arxiv.org/abs/0909.2829
http://dx.doi.org/ 10.1103/PhysRevD.80.084038
http://arxiv.org/abs/0906.3751
http://dx.doi.org/10.1088/1361-6382/aa68b5
http://arxiv.org/abs/1701.05824
http://dx.doi.org/10.1088/1361-6382/aac4ba
http://arxiv.org/abs/1710.04015
http://arxiv.org/abs/1910.03763
http://dx.doi.org/10.1088/0264-9381/15/4/011
http://arxiv.org/abs/gr-qc/9606089
http://dx.doi.org/10.1103/PhysRevD.92.044042
http://arxiv.org/abs/1506.00299
http://dx.doi.org/10.1103/PhysRevD.76.064018
http://arxiv.org/abs/0704.1137
http://dx.doi.org/10.1103/PhysRevD.76.044015
http://arxiv.org/abs/0706.0179
http://dx.doi.org/10.1103/PhysRevD.91.081502
http://arxiv.org/abs/1410.5608
http://dx.doi.org/10.1088/0264-9381/33/12/125014
http://arxiv.org/abs/1512.00713
http://dx.doi.org/10.1088/1361-6382/aaec56
http://arxiv.org/abs/1711.05685
http://dx.doi.org/10.1103/PhysRevD.80.124030
http://arxiv.org/abs/0907.4323
http://dx.doi.org/10.1103/PhysRevD.95.126006
http://arxiv.org/abs/1701.02311
http://dx.doi.org/10.1142/S0129055X06002772
http://arxiv.org/abs/math-ph/0511043
http://dx.doi.org/10.1088/0264-9381/30/16/165011
http://arxiv.org/abs/1305.5406
http://dx.doi.org/10.1103/PhysRevD.76.044016
http://arxiv.org/abs/0704.0007

