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We study the post-Newtonian dynamics of black hole binaries in Einstein-scalar-Gauss-Bonnet
gravity theories. To this aim we build static, spherically symmetric black hole solutions at fourth
order in the Gauss-Bonnet coupling α. We then “skeletonize” these solutions by reducing them to
point particles with scalar field-dependent masses, showing that this procedure amounts to fixing
the Wald entropy of the black holes during their slow inspiral. The cosmological value of the scalar
field plays a crucial role in the dynamics of the binary. We compute the two-body Lagrangian
at first post-Newtonian order and show that no regularization procedure is needed to obtain the
Gauss-Bonnet contributions to the fields, which are finite. We illustrate the power of our approach
by Padé-resumming the so-called “sensitivities,” which measure the coupling of the skeletonized body
to the scalar field, for some specific theories of interest.

I. INTRODUCTION

The quest for a quantum theory of gravity and obser-
vational puzzles in modern cosmology have led to several
proposals for theories of gravity that differ from general
relativity (GR). By Lovelock’s theorem, these modifica-
tions of GR almost inevitably lead to additional degrees
of freedom, and the simplest and best studied extensions
involve scalar fields (see e.g. [1]).
The recent LIGO/Virgo observations of gravitational

waves finally allow us to test the presence of these addi-
tional degrees of freedom and their effect in the strong-field
gravity regime. Binary black holes (BHs) have several
advantages as probes of strong-field gravity. First of all,
observations of binary BH mergers outnumber those of
other compact binaries involving neutron stars, at least
so far. Furthermore, BHs allow us to perform “cleaner”
tests of gravity than systems involving matter, because
we do not need to make assumptions on the poorly known
state of matter at supranuclear densities.
Unfortunately, the simplicity of BHs in GR applies

also to the structure and dynamics of BHs in modified
theories of gravity: stringent no-hair theorems imply that
BH mergers in many of these theories are observationally
indistinguishable from GR (see [2] for a review of no-hair
theorems). For example, one such no-hair theorem implies
that static, asymptotically flat BH solution are the same
as in GR for a vast majority of scalar-tensor theories that
lead to second-order equations of motion [3].
This no-hair theorem is violated in Einstein-scalar-

Gauss-Bonnet (EsGB) gravity, a theory where a scalar
degree of freedom ϕ couples to the Gauss-Bonnet scalar
R2

GB = RµνρσRµνρσ−4RµνRµν+R2. EsGB gravity is ex-
ceptional in many ways: a coupling of the form f(ϕ)R2

GB
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allows for nontrivial effects in the strong-field, large cur-
vature regime, even in four-dimensional spacetimes.

In fact, the existence of hairy BH solutions in such theo-
ries has been known for a long time. Early studies focused
on Einstein-dilaton-Gauss-Bonnet (EdGB) gravity [4, 5],
the low-energy effective action of the bosonic sector of
heterotic string theory [6]. More recently, BH solutions
have been found for more general coupling functions [7].
Even the simplest (shift-symmetric) Gauss-Bonnet the-
ories [8–10], where f(ϕ) ∝ ϕ, were shown to evade the
no-hair theorems of [3].
A no-hair theorem for stationary, asymptotically flat

BHs in scalar-Gauss-Bonnet theories for a massless scalar
with no self-interactions holds under the following con-
ditions: the function f(ϕ) must have an extremum at
some constant ϕ = ϕ̄, i.e. f ′(ϕ̄) = 0, and f ′′(ϕ̄)G < 0.
When only the latter condition is violated – e.g., when
f(ϕ) ∝ ϕ2 [11] – these theories exhibit spontaneous BH
scalarization, i.e. they allow for nontrivial scalar field
configurations that reduce to the BHs of GR in the ap-
propriate limit [11, 12]. The stability of these solutions
was studied in various recent works [13–16].

Whenever BHs are endowed with scalar “hair”, BH bi-
naries produce dipolar radiation in the early inspiral, and
their merger dynamics is also different from GR [17–25].
These considerations led to analytical and numerical work
on the dynamics of BH binaries in EsGB gravity at lowest
order in the coupling [18, 25]. Ref. [18] computed the
dipolar energy flux treating the conservative dynamics at
leading (Newtonian) order and, therefore, assuming that
the scalar charges of the binary component are constant.
We improve on that treatment in two ways: (1) we

allow for the fact that the BH masses and scalar “charges”
are not constant: instead, we consistently skeletonize
the BHs following a well-established procedure first in-
troduced by Eardley in scalar-tensor gravity [26], and
recently generalized to Einstein-Maxwell-dilaton theory
by one of us [27, 28]; (2) as a consequence of the skele-
tonization, we can self-consistently compute higher-order
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post-Newtonian (PN) terms in the Lagrangian.
The plan of the paper is as follows. In Sec. II we

find analytical solutions for hairy black holes valid up to
fourth order in the GB coupling, and we discuss their
thermodynamical properties. In Sec. III we use Eardley’s
“skeletonization” technique to show that the mass is not
constant, and therefore that it is necessary to go beyond
Newtonian order in the conservative dynamics. We also
find the remarkable result that, in the PN regime, a BH
can be uniquely characterized by its Wald entropy. In
Sec. IV we present the two-body Lagrangian for a generic
EsGB theory of gravity and, as an example, we discuss BH
sensitivities in EdGB. In Sec. V we conclude by pointing
out possible directions for future work.

Some lengthy technical material is relegated to the ap-
pendices. Appendix A presents a simple derivation of
the EsGB field equations in arbitrary dimensions that
(as far as we know) does not appear in the published
literature. Appendix B lists some of the lengthier coeffi-
cients in the analytical expansion of the metric and scalar
field for EsGB BHs at fourth order in the GB coupling.
Appendix C gives analytical expressions for the thermody-
namical variables characterizing these BHs. Appendix D
contains the derivation of one of our most important re-
sults: the two-body Lagrangian at first post-Newtonian
(1PN) order. Along the way, we find another remarkable
result: the Gauss-Bonnet contributions to the fields are
finite, and no regularization procedure is necessary at
1PN order. In Appendix E we study the BH sensitivities
in two special cases of EsGB gravity that were extensively
considered in the literature: theories where the coupling
depends quadratically on the field and shift-symmetric
theories.

II. HAIRY BLACK HOLES AND
THERMODYNAMICS

EsGB theories supplement GR with a massless scalar
field coupled to the Gauss-Bonnet Lagrangian density. In
vacuum and in geometrical units (G ≡ c ≡ 1), they are
described by the action

I =

∫
d4x
√
−g

16π

(
R−2gµν∂µϕ∂νϕ+αf(ϕ)R2

GB

)
, (II.1)

where R is the Ricci scalar, g = det gµν denotes the
metric determinant, and the integral of the Gauss-Bonnet
scalar over spacetime

∫
dDx
√
−gR2

GB is a boundary term
in dimension D 6 4 (see e.g. [29, 30]). The coupling
constant α (which is chosen to be positive without loss of
generality) has dimensions of length squared, and f(ϕ) is
a dimensionless function defining the theory.
The vacuum field equations follow from the variation

of the action (II.1):

Rµν =2∂µϕ∂νϕ− 4α
(
Pµανβ −

gµν
2
Pαβ

)
∇α∇βf, (II.2a)

�ϕ = −1

4
αf ′(ϕ)R2

GB , (II.2b)

where ∇µ denotes the covariant derivative associated
to gµν , and � ≡ ∇µ∇µ. The divergenceless quantity
Pµνρσ = Rµνρσ − 2gµ[ρRσ]ν + 2gν[ρRσ]µ + gµ[ρgσ]νR has
the symmetries of the Riemann tensor (see e.g. [31, 32]),
and Pµν ≡ Pλµλν . Details of the derivation of Eq. (II.2a)
are in Appendix A (see also [4] and [33] for alternative
formulations of the EsGB field equations).

A. Black holes in generic
Einstein-scalar-Gauss-Bonnet theories

There is an extensive body of work on BHs in EsGB
gravity. When the coupling α between the scalar field
and the Gauss-Bonnet invariant is small, the vacuum field
equations (II.2) can be solved analytically and perturba-
tively around GR. This program was carried out in the
string-inspired EdGB theory with coupling f(ϕ) = 1

4e
2ϕ

to find static solutions [34–36] and their slowly spinning
counterparts [37–39] up to order O(α7). The same approx-
imation scheme was used in the “shift-symmetric” theory
f(ϕ) = 2ϕ (which is invariant under ϕ → ϕ + constant,
see (II.1) and below), but only for nonspinning BHs and
up to order O(α2) [8, 9].

The field equations (II.2) were solved numerically and
nonperturbatively, also for rapidly spinning BHs (see e.g.
[4, 5, 40]). Theories where f ′(ϕ) = 0 and f ′′(ϕ)R2

GB > 0

for some ϕ = ϕ0 – such as the theories f(ϕ) = ϕ2

2 (1+λϕ2)

and f(ϕ) = − 1
2λe
−λϕ2

, with λ ∈ IR – predict instabilities
of GR BHs in favor of other branches of stable solutions
with nontrivial scalar “hair” [7, 11, 12, 14–16, 41, 42].

Our first goal is to complement and extend these results
by obtaining analytical, asymptotically flat BH solutions
with (secondary) scalar “hair” at high order in the coupling
α and in an arbitrary EsGB theory (see e.g. [2] for a review
of no-hair theorems and the classification of hairy BH
solutions). Let us focus on static, spherically symmetric
solutions in a Just coordinate system:

ds2 = −A(r) dt2+
dr2

A(r)
+B(r) r2(dθ2+sin2θ dφ2), (II.3)

with ϕ = ϕ(r). For a Schwarzschild spacetime with mass
parameter m we have A = 1− 2m/r, B = 1 and ϕ = ϕ∞,
where ϕ∞ is an arbitrary constant.

When the coupling constant α is nonzero, we must solve
Eq. (II.2) as a perturbative expansion in the dimensionless
parameter

ε ≡ αf ′(ϕ∞)

4m2
� 1 , (II.4)

such that ϕ− ϕ∞ = O(ε): cf. Eq. (II.2b). The leading-
order EsGB correction to GR is straightforward. The
right-hand side of the Einstein equations (II.2a) van-
ishes at order O(ε), so the Schwarzschild metric is still
the solution, which sources the scalar field through the
Kretschmann scalar: R2

GB = 48m2/r6 +O(ε2). At higher
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orders the calculation proceeds as follows. Substitute the
ansatz (II.3), with

A = 1− 2m

r
+

4∑
i=1

εiAi(r) +O(ε5), (II.5a)

B = 1 +

4∑
i=1

εiBi(r) +O(ε5), (II.5b)

ϕ = ϕ∞ +

4∑
i=1

εiϕi(r) +O(ε5), (II.5c)

together with the Taylor expansion

f(ϕ) =

4∑
n=0

1

n!
f (n)(ϕ∞)(ϕ− ϕ∞)n +O(ε5), (II.6)

in the field equations (II.2) and solve order-by-order, ig-
noring branches with singular horizons. The result is:

A = 1− u− ε2
(
u3

3
− 11u4

6
+
u5

30
+

17u7

15

)
+ ε3A3 + ε4A4 +O(ε5) , (II.7a)

B = 1− ε2
(
u2 +

2u3

3
+

7u4

6
+

4u5

5
+

3u6

5

)
+ ε3B3 + ε4B4 +O(ε5) , (II.7b)

ϕ = ϕ∞ + ε

(
u+

u2

2
+
u3

3

)
+ ε2ϕ2 + ε3ϕ3 + ε4ϕ4 +O(ε4) , (II.7c)

with u ≡ 2m/r. For convenience, the EsGB corrections
to the coefficients in A which are proportional to 1/r
have been conveniently reabsorbed in the definition of
m. The quantities Ai>3, Bi>3 and ϕi>2 depend on m
and on the function f(ϕ) and its derivatives evaluated
at infinity, i.e. (dnf/dϕn)(ϕ∞) with n ∈ [0, 4]. They are
rather lengthy, and their explicit expressions can be found
in Eqs. (B.1)–(B.3) of Appendix B.
The solution above depends on two integration con-

stants: the Arnowitt-Deser-Misner (ADM) mass m – i.e.,
one-half the O(1/r) coefficient of grr at infinity – and the
asymptotic value ϕ∞ of the scalar field at spatial infinity.
The results above match previous analytical work in

the respective limits, but they also extend it in several
ways:

(i) the solution (II.3) with the expansion coefficients
listed in Eqs. (II.7) is valid for arbitrary EsGB
coupling functions;

(ii) the solution is given explicitly at order O(ε4) in
the Gauss-Bonnet coupling, and in principle it can
be extended to higher orders. As such it contains
detailed information on the BH’s structure, that
will be useful below to characterize the dynamics of
BH binaries (cf. Sec. IVB).

(iii) the solution depends on the asymptotic value ϕ∞
of the scalar field at infinity, unlike most previous
work on isolated BHs, where ϕ∞ was (and could
be) set to zero for simplicity: see e.g. [15, 36]. For
binary BHs, ϕ∞ cannot be fixed to zero anymore.
This is one of the key messages of this paper, for
reasons explained in Sec. III below.

B. Black hole thermodynamics

The solution given in Eqs. (II.3) and (II.7) can be
checked to have the properties expected of a BH space-
time. First of all, in Eq. (B.4) of Appendix B we show
that the Kretschmann curvature invariant is finite every-
where outside the horizon, where the horizon radius rH

is trivially defined as the outermost zero of A(r) in the
Just coordinates of Eq. (II.3).

Perhaps more remarkably, the EsGB BH solution satis-
fies the first law of BH thermodynamics in terms of the
following intensive and extensive parameters.

The BH temperature T is

T ≡ κ

2π
, (II.8)

where the surface gravity κ is defined by κ2 ≡
− 1

2 (∇µξν∇µξν)rH , and ξµ = (1, 0, 0, 0) is the timelike
Killing vector associated to stationarity.
The action (II.1) can be written in terms of a La-

grangian density L as I ≡
∫
d4x
√
−gL. The BH entropy

Sw is then given by Wald’s formula [43]:

Sw ≡ −8π

∫
rH

dθdφ
√
σ

∂L
∂Rµνρσ

εµνερσ . (II.9)

Here σ is the determinant of the induced metric on the
horizon with unit normal vectors nµ = (1/

√
−gtt, 0, 0, 0)

and lµ = (0, 1/
√
grr, 0, 0), and εµν = n[µlν]. Evaluating

the Wald entropy (II.9) for the action (II.1) yields

Sw =
AH

4
+ 4απf(ϕH) , (II.10)

i.e. the total entropy is the sum of the standard Bekenstein
entropy SB = AH/4 and a Gauss-Bonnet contribution [44].
Here ϕH ≡ ϕ(rH) denotes the value of the scalar field on
the horizon.
Finally, it is well-known in scalar-tensor theories that

the scalar field contributes to the global massM as follows:

M = m+

∫
Ddϕ∞ , (II.11)

where m is the ADM mass defined earlier; see e.g. [45–
48] and references therein. The quantity D is defined
from an asymptotic expansion of the scalar field as ϕ =
ϕ∞+D/r+O(1/r2), and it is sometimes called the scalar
“charge” of the BH, although ϕ is not a gauge field in
general.
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We can now evaluate the temperature T , entropy Sw

and “charge” D for our analytical BH solution. Their
expressions in terms of the integration constants m and
ϕ∞ are collected in Appendix C, and they can be used
to check that the variation of Sw and M with respect to
both m and ϕ∞ satisfy the following identity, at least at
order O(ε4):

TδSw = δM . (II.12)

This first law of BH thermodynamics describes how the
equilibrium configuration of the EsGB BH readjusts when
it interacts with its environment. In particular, in Sec. IV
below we will investigate the variations of the scalar field
environment ϕ∞ induced by a far-away binary companion.
To summarize: we have solved the vacuum field equa-

tions (II.2), obtained a BH solution at fourth order in the
coupling α, and verified that this solution satisfies a first
law of BH thermodynamics that accounts for the scalar
field environment ϕ∞ of the BH, when the BH entropy is
defined à la Wald. These results are our starting point for
an analytical investigation of the dynamics of BH binaries
in a generic EsGB theory.

III. SKELETONIZATION: REDUCING AN
EINSTEIN-SCALAR-GAUSS-BONNET BLACK

HOLE TO A POINT PARTICLE

We now want to describe the motion of EsGB BHs in
binary systems. To this aim, it is convenient to “skele-
tonize” the BH by adding it as a point source A to the
vacuum action (II.1):

Ipp[gµν , ϕ, x
µ
A] = I −

∫
mA(ϕ) dsA . (III.1)

Here dsA =
√
−gµνdxµAdxνA, and x

µ
A[sA] is the worldline

of particle A. The mass function mA(ϕ), which replaces
the constant GR “mass” mA, is a scalar function that
depends on the value of the scalar field at its location
xµA(sA), and it was first introduced by Eardley to account
for the coupling of a star A to its scalar field environment
in scalar-tensor theories [26]. This approach was general-
ized to “hairy” BHs in Einstein-Maxwell-dilaton (EMD)
theories in [27, 28] (see also [49]).
The ansatz (III.1) does not depend on any field gra-

dients, e.g. ∂µϕ. Neglecting such terms corresponds to
neglecting finite-size effects (e.g., tidal forces) [50]: cf. [51]
for recent work on this topic in scalar-tensor theories.
The question we address here is the calculation of the

function mA(ϕ) for EsGB BHs. Following the techniques
developed in [27], we impose that the fields generated by
extremizing the action (III.1) match those of the BH built
in the previous section.

A. The matching conditions

The field equations following from the variation of (III.1)
are:

Rµν = 2∂µϕ∂νϕ− 4α

(
Pµανβ −

1

2
gµνPαβ

)
∇α∇βf(ϕ)

+ 8π

(
TAµν −

1

2
gµνT

A

)
, (III.2a)

�ϕ = −1

4
αf ′(ϕ)R2

GB

+ 4π

∫
dsA

dmA

dϕ

δ(4)(x− xA(sA))√
−g

, (III.2b)

where δ(4)(x−y) is the four-dimensional Dirac distribution
and TAµν is the distributional stress-energy tensor

TµνA =

∫
dsAmA(ϕ)

δ(4)(x− xA(sA))√
−g

dxµA
dsA

dxνA
dsA

. (III.3)

Let us solve the filed equations perturbatively around a
Minkowski metric ηµν and a constant scalar background
ϕ∞. At infinity and at leading order, the Gauss-Bonnet
contributions to the right-hand side of Eq. (III.2) van-
ish. In the rest frame of the point-source A (i.e. set-
ting xA = 0) and using harmonic coordinates such that
∂µ(
√
−g̃g̃µν) = 0 we find:

g̃µν = ηµν + δµν

(
2mA(ϕ∞)

r̃

)
+O

(
1

r̃2

)
, (III.4a)

ϕ = ϕ∞ −
1

r̃

dmA

dϕ
(ϕ∞) +O

(
1

r̃2

)
. (III.4b)

At leading order, the large-r̃ expansion of the metric
and of the scalar field depends on the function mA(ϕ∞),
its derivative m′A(ϕ∞), and the asymptotic scalar field
value ϕ∞. This should be compared with the asymptotic
behavior of the BH spacetime we derived in Sec. IIA
written in terms of the same harmonic radial coordinate
r̃ through the relation r = r̃ +m+O(1/r̃):

g̃µν = ηµν + δµν

(
2m

r̃

)
+O

(
1

r̃2

)
, (III.5a)

ϕ = ϕ∞ +
D

r̃
+O

(
1

r̃2

)
. (III.5b)

Therefore the skeletonized point particle A will match
the fields of an EsGB BH if and only if

mA(ϕ∞) = m , (III.6a)
m′A(ϕ∞) = −D . (III.6b)

Indeed, when seen as a boundary condition at infinity,
Eqs. (III.5) identify a unique solution to the vacuum field
equations (II.2). Therefore, a point particle with a scalar
field-dependent mass mA(ϕ) satisfying the matching
conditions (III.6) generates fields which reproduce
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(outside of the distribution) those of the BH at all
orders in a 1/r expansion. The covariance of Eq. (III.1)
ensures that this is true in any reference frame, that is,
independently of the motion of the BH.

Now, since the scalar hair of EsGB BHs is secondary
(see e.g. [2]) D is not an independent integration con-

stant, and it can be written as a function D(m,ϕ∞): cf.
Eq. (C.4). We can replace m by mA(ϕ∞) in D(m,ϕ∞)
because of the matching condition (III.6a), and replace
the resulting expression on the right-hand side of the
matching condition (III.6b). This procedure yields the
following differential equation for the function mA(ϕ):

m′A(ϕ)

mA(ϕ)
+ 2εA(ϕ) + εA(ϕ)2 73f ′′(ϕ)

30f ′(ϕ)
+ εA(ϕ)3

(
73

15
+

12511f ′′(ϕ)2

3780f ′(ϕ)2
+

12511f ′′′(ϕ)

7560f ′(ϕ)

)
(III.7)

+ εA(ϕ)4

(
227192473f ′′(ϕ)3

49896000f ′(ϕ)3
+

31557593f ′′(ϕ)f ′′′(ϕ)

4536000f ′(ϕ)2
+

143467f ′′(ϕ)

4158f ′(ϕ)
+

799607f ′′′′(ϕ)

997920f ′(ϕ)

)
+ · · · = 0 ,

where εA(ϕ) ≡ αf ′(ϕ)/(4mA(ϕ)2), and where we dropped
the ∞ subscript for simplicity. We now turn to the so-
lution of this first-order differential equation, which will
involve a single integration constant µA. As we show
below, this constant is related to the Wald entropy of the
BH.

B. A constant-entropy skeletonization

The solution to (III.7) can be built iteratively and reads

mA(ϕ) = µA

(
1− αf(ϕ)

2µ2
A

− α2F2(ϕ)

µ4
A

− α3F3(ϕ)

µ6
A

− α4F4(ϕ)

µ8
A

+ · · ·
)
, (III.8)

where µA is a positive integration constant with dimen-
sions of mass. The theory-dependent functions Fi(ϕ)
depend on f(ϕ) and its derivatives:

F2(ϕ) =
f(ϕ)2

8
+

73f ′(ϕ)2

960
, (III.9a)

F3(ϕ) =
f(ϕ)3

16
+

73f(ϕ)f ′(ϕ)2

640
+

12511f ′(ϕ)2f ′′(ϕ)

483840
,

(III.9b)

F4(ϕ) =
5f(ϕ)4

128
+

73f(ϕ)2f ′(ϕ)2

512
+

12534857f ′(ϕ)4

425779200

+
12511f(ϕ)f ′(ϕ)2f ′′(ϕ)

193536
+

227192473f ′(ϕ)2f ′′(ϕ)2

25546752000

+
799607f ′(ϕ)3f ′′′(ϕ)

255467520
. (III.9c)

The mass function mA(ϕ) of an EsGB BH, Eq. (III.8),
is the main result of this section. The information en-
coded in the complicated form of the spacetime metric –
cf. Eqs. (II.7), (B.1) and (II.7c) – is now summarized in
a set of four compact body-independent functions Fi(ϕ),
which will turn out to play an important role in describing

the interaction of the BH with a companion. More impor-
tantly, the expression of mA(ϕ) shows that a skeletonized
BH is characterized by a single parameter µA.
The physical interpretation of this parameter can be

found thus: invert Eq. (III.8) order-by-order in α, and use
the matching condition (III.6a) to write µA as a function
of m and ϕ∞. The result shows that µA is nothing but
the BH’s irreducible mass [52]:

µA = Mirr =

√
Sw

4π
, (III.10)

where Sw is the BH’s Wald entropy defined earlier, and
computed explicitly in Appendix C [cf. Eq. (C.3)].
The reason why the BH’s (Wald) entropy plays such

a central role in the skeletonization is best revealed by
thermodynamics. The variation of the global mass M
defined in (II.11),

δM = δm+D δϕ∞ , (III.11)

vanishes identically because of the matching conditions
(III.6): δM = 0. In other words, when we skeletonize a
BH representing it by a point particle A, we implicitly
assume that it is isolated, i.e., that it exchanges no mass
M with its environment. By the first law (II.12), the BH
entropy must then remain constant: δSw = 0. Therefore
it is a suitable parameter to characterize the BH.
The physical meaning of the “skeletonization” process

can be interpreted as follows. When replaced by a point
particle, a BH is described by a constant (Wald) entropy
Sw together with a scalar environment ϕ∞ which cannot
be set to zero: for example, in Sec. IV the value of ϕ∞
will be determined by a (far-away) companion B. During
the bodies’ slow inspiral, the variation of ϕ∞ forces BH
A to readjust its equilibrium configuration adiabatically,
i.e. at constant values of its Wald entropy Sw. On the
contrary, the BH’s ADM mass m and scalar “charge” D
are from now on functions of ϕ∞: cf. Eq. (III.6).
Previous work [27, 48] applied a similar skeletoniza-

tion procedure to Einstein-Maxwell-dilaton (EMD) BHs,
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characterized by a scalar “hair” along with a U(1) charge.
The EMD mass function mA(ϕ) was also found to depend
on a single integration constant (the irreducible mass
µEMD
A =

√
SB/4π); however in the EMD case, SB = 1

4AH

is the Bekenstein entropy. This paper hints at a possi-
ble universality of this result, since its holds for theories
whose metric sector differs from the Einstein-Hilbert ac-
tion, as long as the Bekenstein entropy is replaced by
Wald’s. We conjecture that this conclusion might apply
to any scalar-tensor theory of gravity.

IV. BLACK HOLE BINARIES

So far we found analytic solutions for isolated EsGB
BHs, and skeletonized the BHs by describing them as
point particles endowed with a scalar field-dependent
massmA(ϕ) which encodes information on their structure.
We can now describe a binary BH system by an action
depending on two such mass functions mA(ϕ) (A = 1, 2):

Ipp[gµν , ϕ, {xµA}] = I −
∑
A

∫
mA(ϕ) dsA , (IV.1)

where we recall that dsA =
√
−gµνdxµAdxνA.

Starting from the skeleton action above, in Sec. IVA
we present the PN two-body Lagrangian for arbitrary
compact binaries in EsGB theories (relegating the details
of the calculation to Appendix D). In Sec. IVB we use the
mass function mA(ϕ) of Eq. (III.8) to better understand
the dynamics of binaries composed of two “hairy” BHs in
a specific class of EsGB theories: EdGB gravity.

A. The post-Newtonian Lagrangian

The variation of (IV.1) yields the field equations

Rµν = 2∂µϕ∂νϕ− 4α

(
Pµανβ −

1

2
gµνPαβ

)
∇α∇βf(ϕ)

+ 8π
∑
A

(
TAµν −

1

2
gµνT

A

)
, (IV.2a)

�ϕ = −1

4
αf ′(ϕ)R2

GB

+ 4π
∑
A

∫
dsA

dmA

dϕ

δ(4)(x− xA(sA))√
−g

, (IV.2b)

where TAµν denotes the distributional stress-energy tensor
of particle A: cf. Eq. (III.3).

In this paper we focus on the conservative dynamics
of compact binaries on bound orbits. When the bodies’
relative orbital velocity v is small and in the weak-field
limit m/r � 1 (where r is the orbital separation radius
and m their mass), the motion can be described in the PN
framework. In Appendix D we derive the first PN two-
body Lagrangian up to order O(v2) ∼ O(m/r) beyond
Newton. We solve the field equations (IV.2) perturba-
tively around a flat Minkowski metric ηµν with a constant
background scalar field value ϕ0. As we shall illustrate
below, ϕ0 cannot be set to zero: its value is imposed by
the binary’s cosmological environment.

Adopting the conventions of Damour and Esposito-
Farèse [53, 54], the mass functions mA(ϕ) and mB(ϕ) can
be expanded by defining

αA(ϕ) ≡ d lnmA(ϕ)

dϕ
, (IV.3)

βA(ϕ) ≡ dαA(ϕ)

dϕ
, (IV.4)

so that

mA(ϕ) = m0
A

[
1 + α0

A(ϕ− ϕ0) (IV.5)

+
1

2
(α0
A

2
+ β0

A)(ϕ− ϕ0)2 +O(ϕ− ϕ0)3

]
,

where from now on a “0” superscript means that the
corresponding quantity is evaluated at ϕ = ϕ0. The
“sensitivity” α0

A = (m′A/mA)(ϕ0) measures the (relative)
coupling of the skeletonized body A to the scalar field –
see e.g. Eq. (III.6) – and it will play a key role below.

With these definitions, and working in a harmonic
coordinate system such that ∂µ(

√
−ggµν) = 0, the PN

Lagrangian reads (reinstating Newton’s constant G for
clarity):

LAB = −m0
A −m0

B +
1

2
m0
Av

2
A +

1

2
m0
Bv

2
B +

GABm
0
Am

0
B

r
+

1

8
m0
Av

4
A +

1

8
m0
Bv

4
B (IV.6)

+
GABm

0
Am

0
B

r

[
3

2
(v2
A + v2

B)− 7

2
(vA · vB)− 1

2
(n · vA)(n · vB) + γ̄AB(vA − vB)2

]
− G2

ABm
0
Am

0
B

2r2

[
m0
A(1 + 2β̄B) +m0

B(1 + 2β̄A)
]

+ ∆LGB
AB +O(v6) ,
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where the Gauss-Bonnet contribution reads

∆LGB
AB =

αf ′(ϕ0)

r2

G2m0
Am

0
B

r2

×
[
m0
A(α0

B + 2α0
A) +m0

B(α0
A + 2α0

B)
]
. (IV.7)

Here xA denotes the position of body A, r ≡ |xA − xB |,
n ≡ (xA − xB)/r, and vA ≡ dxA/dt. We also introduced
the combinations

GAB ≡ G(1 + α0
Aα

0
B) , (IV.8a)

γ̄AB ≡ −2
α0
Aα

0
B

1 + α0
Aα

0
B

, (IV.8b)

β̄A ≡
1

2

β0
Aα

0
B

2

(1 + α0
Aα

0
B)2

, (IV.8c)

together with their counterparts that can be obtained by
swapping indices (A↔ B).

The two-body Lagrangian (IV.6), including the Gauss-
Bonnet contribution (IV.7), is one of the main results of
this paper. It describes the first relativistic corrections
to the dynamics of an arbitrary binary system in EsGB
theories. The simplicity of the result is quite striking:
LAB is the sum of the ordinary scalar-tensor two-body
Lagrangian (see e.g. [53]) plus a term resulting from the
complex coupling to the Gauss-Bonnet scalar, which (as
shown in detail in Appendix D) boils down to adding the
simple correction of Eq. (IV.7).

Since ∆LGB
AB depends on an extra dimensionful coupling

α, it should a priori be considered as a 1PN contribution
to the two-body Lagrangian. However, by rewriting (IV.7)
as

∆LGB
AB =

αf ′(ϕ0)

(GM0)2

(
GM0

r

)2
G2m0

Am
0
B

r2

×
[
m0
A(α0

B + 2α0
A) +m0

B(α0
A + 2α0

B)
]
, (IV.9)

withM0 = m0
A+m0

B , we can regard it as a 3PN correction
whenever the “small-α” approximation αf ′(ϕ0) . (GM0)2

holds. This perturbative approximation is commonly used
in the literature, and it was used in the derivation of our
BH solutions (Sec. IIA).
The two-body Lagrangian was recently calculated at

3PN order for pure scalar-tensor theories in [55, 56]. Our
results extend this Lagrangian to EsGB theories: we just
need to add the contribution coming from Eq. (IV.9).
At least in the small-α regime, the results of Ref. [56],
supplemented by the Gauss-Bonnet contribution (IV.9),
yield the full EsGB Lagrangian at 3PN order.

In previous analytical calculations of the dynamics of
binary systems in EsGB gravity [18] the field equations
were sourced by particles with constant masses and con-
stant scalar “charges”, denoted by mA and qA: see e.g.

Eqs. (63)-(64) or Eq. (71) of [18]. This is equivalent to
truncating the expansion (IV.5) at linear order. The work
of [18] describes the conservative dynamics at leading
(Newtonian) order. By endowing the particles with scalar-
field dependent masses mA(ϕ), our treatment differs from
theirs in two crucial ways:
(1) we allow for the fact that the masses and scalar

“charges” are not constant, as discussed below
Eq. (III.11);

(2) the skeletonization allows us to deal with higher PN
terms: the β0

A-dependent contributions in Eq. (IV.6)
cannot be captured by the approach of Ref. [18].

The coupling α to the Gauss-Bonnet scalar affects the
structure of the two-body Lagrangian only through the
term (IV.9). However, α also crucially affects the masses
mA(ϕ), and hence the values of the parameters m0

A, α
0
A,

β0
A which appear also in the “ordinary” scalar-tensor part

of the Lagrangian (IV.6). In the next section we will
study αA(ϕ0) for several selected EsGB coupling func-
tions, using the corresponding BH solutions and their
skeletonization (Sec. III).

B. Black hole sensitivities in a binary system:
the Einstein-dilaton-Gauss-Bonnet example

In subsection IVA we derived a PN two-body La-
grangian which generalizes that of GR through the quan-
tities αA and βA defined in Eqs. (IV.3) and (IV.4). We
now specialize this Lagrangian to a binary of EsGB BHs.
More precisely, our goal is to compute the “sensitivity
parameter” α0

A = αA(ϕ0) associated to BH A, which
is characterized by a constant irreducible mass µA (cf.
Sec. III B). The quantities α0

A play a central role: once
we know α0

A we can easily obtain β0
A, and quadratic com-

binations of α0
A [GAB , γ̄AB and β̄A : cf. Eq. (IV.8)] drive

all EsGB corrections to GR.
Taking the logarithmic derivative of mA(ϕ) given in

(III.8) yields

α0
A = −x

2
− x2A2(ϕ0)− x3A3(ϕ0)− x4A4(ϕ0) +O(x5) ,

(IV.10)
where

x ≡ αf ′(ϕ0)

µ2
A

(IV.11)

is the weak GB coupling of a constant-entropy BH. The
functions Ai(ϕ0) depend on the theory only through the
function f(ϕ0) and its derivatives f (n)(ϕ0):
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A2(ϕ0) =
f(ϕ0)

2f ′(ϕ0)
+

73f ′′(ϕ0)

480f ′(ϕ0)
, (IV.12a)

A3(ϕ0) =
73

480
+

f(ϕ0)2

2f ′(ϕ0)2
+

73f(ϕ0)f ′′(ϕ0)

240f ′(ϕ0)2
+

12511f ′′(ϕ0)2

241920f ′(ϕ0)2
+

12511f (3)(ϕ0)

483840f ′(ϕ0)
, (IV.12b)

A4(ϕ0) =
f(ϕ0)3

2f ′(ϕ0)3
+

73f(ϕ0)2f ′′(ϕ0)

160f ′(ϕ0)3
+

5505779f ′′(ϕ0)

26611200f ′(ϕ0)
+

227192473f ′′(ϕ0)3

12773376000f ′(ϕ0)3
(IV.12c)

+
31557593f ′′(ϕ0)f (3)(ϕ0)

1161216000f ′(ϕ0)2
+

73f(ϕ0)

160f ′(ϕ0)
+

12511f(ϕ0)f ′′(ϕ0)2

80640f ′(ϕ0)3
+

12511f(ϕ0)f (3)(ϕ0)

161280f ′(ϕ0)2
+

799607f (4)(ϕ0)

255467520f ′(ϕ0)
.

Moreover, in the following it will be convenient to resum
the Taylor expansion (IV.10) in the variable x by using
a diagonal (2, 2) Padé approximant (see e.g. [57, 58] for
discussions of Padé approximants):

α0
A,Padé = P2

2[α0
A, x] , (IV.13)

The Padé resummation, which replaces polynomials by
rational functions, has two important advantages: it can
improve the convergence of the expansion (IV.10) and
(perhaps more importantly) it can capture interesting
nonperturbative phenomena, as we clarify below. Using
Eqs. (IV.10) and (IV.13) we shall identify regimes where
the BH binary dynamics significantly departs from GR.
In the remainder of this section we focus on EdGB

gravity as a prototypical, well motivated special case of
EsGB theories. To improve readability, we relegate two
other important examples (quadratic and shift-symmetric
theories) to Appendix E.

Einstein-dilaton-Gauss-Bonnet theories

Using the conventions of Ref. [4], the “string-inspired"
subclass of EdGB theories is characterized by the expo-
nential coupling function

f(ϕ) =
e2ϕ

4
, (IV.14)

so that the fundamental action (II.1) is invariant under the
simultaneous redefinitions ϕ→ ϕ+ ∆ϕ and α→ αe−2∆ϕ,
with ∆ϕ an arbitrary constant. Recall that here the
parameter α (with no subscripts) denotes the fundamental
coupling to the GB invariant in the action (II.1).
The scalar coupling function for BH A of Eq. (IV.10)

then becomes

α0
A = −x

2
− 133

240
x2− 35947

40320
x3− 474404471

266112000
x4 +O

(
x5
)
,

(IV.15)
with

x =
αe2ϕ0

2µ2
A

. (IV.16)

This sensitivity preserves the symmetry of the fundamen-
tal action, in the sense that it is symmetric under the
transformation ϕ0 → ϕ0 + ∆ϕ, α→ αe−2∆ϕ.

The left panel of Fig. 1 shows various approximants of
the series (IV.15) truncated at order O(xn) as a function
of ϕ0, setting α/µ2

A = 0.1. The expansion coefficients
in Eq. (IV.15) are all negative, so the series diverges at
large ϕ0, with a slope which increases with the truncation
order n.
To accelerate the convergence of our expansion, we

Padé-resum it as in Eq. (IV.13). This operation reveals
a remarkable feature: the resummed sensitivity α0

A,Padé,
also shown in the left panel of Fig. 1, has a pole at

xpole =
αe2ϕpole

0

2µ2
A

= 0.445 . (IV.17)

The presence of a pole in the full, nonperturbative
coupling α0

A is at first sight surprising. Upon further
consideration, however, this feature is particularly appeal-
ing. While no exact analytical BH solutions are known
in EsGB theories, it is well-known that the area AH of a
static BH and the value ϕH of the scalar field at the hori-
zon must satisfy the following nonperturbative constraint
(see e.g. [12]):

24α2f ′(ϕH)2 <

(
AH

4π

)2

. (IV.18)

When the constraint is violated, the scalar field diverges
at the horizon and the BH becomes a “naked singularity"
(cf. [4, 12], or [59] for further numerical evidence). In
the EdGB subclass of theories studied here, and for a
skeletonized BH characterized by a constant irreducible
mass µA, we can use Eqs. (II.10) and (III.10) to write AH

in term of µA and ϕH, so the constraint above becomes

αe2ϕH

2µ2
A

<
2

1 +
√

6
. (IV.19)

This nonperturbative bound confirms the conclusion that
an EdGB BH solution with fixed Wald entropy µA must
become singular when the scalar field at the horizon ϕH

reaches a critical value.
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FIG. 1. Sensitivity α0
A = αA(ϕ0) of EdGB BHs as a function of the cosmological scalar field ϕ0. The left panel shows various

truncations of the Taylor series (IV.15) for a BH with α/µ2
A = 0.1. The right panel shows the (2, 2) Padé resummation α0

A,Padé

of Eq. (IV.13) for three different BHs with α/µ2
A = {1, 0.1, 0.01}. The Padé resummation improves the convergence of α0

A, and
it predicts the existence of a pole at xpole = 0.445 (dashed vertical lines).

Unfortunately, the prediction (IV.17) for the numerical
value of the pole cannot be directly compared with the
nonperturbative condition (IV.19). Such a comparison
would require us to relate the value ϕH of the scalar field
on the horizon to the value ϕ0 of the field at infinity.1
It is still significant that the Padé resummation predicts
the existence of a critical value for ϕ0 at which the BH
sensitivity α0

A diverges.
Figure 1 highlights the crucial role of the (cosmolog-

ical) background scalar field ϕ0 on the dynamics of an
EdGB BH binary. As ϕ0 increases, the BH transitions
progressively between two “universal” regimes:

(i) a decoupled regime where the BH is indistinguish-
able from a Schwarzschild BH in GR, since both
α0
A and β0

A = dαA/dϕ(ϕ0) (as well as higher-order
derivatives of α0

A) vanish; and

(ii) a regime with α0
A → −∞ (and β0

A → −∞) where
the BH is strongly coupled to the scalar field, induc-
ing large deviations to the GR two-body Lagrangian
through γ̄AB and β̄A/B [cf. Eqs. (IV.8)].

This “transition” is universal because the Wald en-
tropy µA only affects the location of the pole, as shown

1 An approximate relation between ϕH and ϕ0 can be found from
the solution (II.7c) for the scalar field and the horizon location
(C.1), which are both known in the perturbative limit (i.e., for
small coupling). Using Eq. (III.8) we can write mA in terms of
µA. Inserting the resulting ϕH(ϕ0) in (IV.19) then yields xpole =
0.331. Considering that the results of Sec. IIA break down in
the nonperturbative regime, this value is at least in qualitative
agreement with Eq. (IV.17). As another indication of convergence,
we checked that the diagonal, (2, 2) Padé approximant performs
“better” than off-diagonal Padé approximants, in the sense that
the pole location (IV.17) predicted by the diagonal approximant
is the closest to the value xpole = 0.331 that results from the
procedure described here.

in the right panel of Fig. 1: by Eq. (IV.17), ϕpole
A =

1
2 ln

(
2xpole µ

2
A/α

)
.

Qualitatively similar conclusions apply to EsGB the-
ories with different coupling functions. Two interesting
cases (quadratic and shift-symmetric theories) are dis-
cussed in Appendix E.

V. CONCLUSIONS

The result we presented at the end of the previous
section suggests that EdGB (and more generally, EsGB)
theories must be treated with great care: when ϕ0 is
too large, the response of the BH to the scalar field di-
verges and the two-body problem is not even well-defined.
Numerical work and/or higher-order expansions in the
coupling seem necessary to verify this conclusion and to
assess the convergence properties of the Padé resumma-
tion.
However, the result seems compatible with hints from

recent numerical work in various quadratic gravity theo-
ries. Simulations of stellar collapse and binary mergers
have been successful in the decoupling limit [25, 60–63],
but the extension to the “full” theory presents notable con-
ceptual and practical difficulties [33, 64–68]: for example,
there are open sets of initial data for which the character
of the system of equations changes from hyperbolic to
elliptic in a compact region of the spacetime. Our work
supports the expectation that quadratic theories should
only be studied and trusted (in an effective field theory
sense) in the weak-coupling regime.
An important limitation of our study is that the an-

alytic expansion of our BH solutions (and hence their
skeletonization) was performed around a Schwarzschild
background. This rules out, by construction, the scalar-
ized solutions discussed in the introduction. An extension
of our work to scalarized solutions is necessary and impor-
tant for gravitational-wave phenomenology. Note however
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that the PN Lagrangian (IV.6) is valid for any compact
binary system, including scalarized BHs. Indeed, the
bodies’ nature only affects the value of the coefficients
α0
A and β0

A [Eqs. (IV.3) and (IV.4)] entering the PN
Lagrangian. Therefore, our next step will be to generate
numerical scalarized BH solutions (with non-vanishing
ϕ∞, see section IIA) and to skeletonize them via the
matching conditions (III.6).

At least in the small-α regime, the results of Ref. [56],
supplemented by the Gauss-Bonnet contribution com-
puted here [Eq. (IV.9)], yield the full EsGB Lagrangian at
3PN order. It will be interesting to extend the effective-
one-body program to this more general class of theories:
see [69, 70] for similar work in “ordinary” scalar-tensor
gravity, and [28, 49] for related work in EMD theory.

Our work should find application in analytical studies
of dynamical scalarization (see [71]) and in future studies
of binary dynamics, using either the effective-one-body
formalism or numerical relativity.

We wish to conclude by highlighting two technical re-
sults that we consider conceptually important:

(1) At least during the inspiral, the mass function of
skeletonized BHs [Eq. (III.8)] is uniquely characterized
by their Wald entropy. We conjecture that this might be
true in all theories where the gravity sector differs from
the Einstein-Hilbert Lagrangian. It will be interesting to
test the validity of this conjecture and formally prove it.

(2) The Gauss-Bonnet contributions to the fields are
finite [Eq. (D.14)] and no regularization procedure is
necessary, at least at 1PN order. While further work is
necessary to determine whether this conclusion extends
to higher PN orders, this intriguing result is yet another
hint of the very special nature of EsGB gravity.
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Appendix A: The Einstein-scalar-Gauss-Bonnet field
equations in arbitrary dimension

Let us generalize our vacuum action (II.1) to arbitrary
dimensions:

ID=

∫
dDx
√
−g

16π

(
R− 2gµν∂µϕ∂νϕ+ αf(ϕ)R2

GB

)
.

(A.1)
In order to derive the associated Einstein field equations,
it is useful to rewrite the Gauss-Bonnet scalar as [29, 30]

R2
GB = RµνρσPµνρσ (A.2)

with

Pµνρσ = Rµνρσ − 2δµ[ρR
ν
σ] + 2δν[ρR

µ
σ] + δµ[ρδ

ν
σ]R (A.3)

=
1

4
δµνα1α2

ρσβ1β2
Rβ1β2

α1α2
,

where δα1···αN
β1···βN denotes the generalized Kronecker symbol,

which is the determinant of the N ×N matrix M built
from ordinary Kronecker symbols as M i

j = δαiβj . The
quantity Pµνρσ has the symmetries of the Riemann tensor
and is divergenceless: it can be easily shown using the
Bianchi identities that ∇µPµνρσ = 0.

The variation of the last term of (A.1) with respect to
gµν can therefore be written as:

δ(g)

∫
dDx
√
−gf(ϕ)R2

GB (A.4)

=

∫
dDx
√
−gf(ϕ)

(
Hµν δg

µν + 2P νρσ
µ δRµνρσ

)
,

where

Hµ
ν = 2RµαβγP

αβγ
ν − 1

2
δµνR2

GB

= −1

8
δµα1α2α3α4

ν β1β2β3β4
Rβ1β2

α1α2
Rβ3β4

α3α4

is the Gauss-Bonnet tensor. Now, using successively
δRµνρσ = 2∇[ρδΓ

µ
σ]ν with δΓµνρ = 1

2g
µλ(∇νδgλρ +

∇ρδgλν − ∇λδgνρ), integration by parts and the prop-
erties of Pµνρσ, one finds

δ(g)

∫
dDx
√
−gf(ϕ)R2

GB (A.5)

=

∫
dDx
√
−g
(
f(ϕ)Hµν + 4Pµανβ∇α∇βf(ϕ)

)
δgµν ,

modulo boundary terms ignored here.
The variation of the first two terms in (A.1) is elemen-

tary, and the full Einstein field equations are thus, in any
dimension D:

Rµν −
1

2
gµνR = 2∂µϕ∂νϕ− gµν(∂ϕ)2 (A.6)

− α
(
f(ϕ)Hµν + 4Pµανβ∇α∇βf(ϕ)

)
.

When D 6 4, the Gauss-Bonnet tensor Hµν vanishes
identically, as obvious from its expression above in terms
of the rank-five generalized Kronecker symbol. Taking
the trace of (A.6) finally yields Eq. (II.2a).
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Appendix B: Einstein-scalar-Gauss-Bonnet black
holes at order O(ε4)

Using the notation f (n)
∞ ≡ (dnf/dϕn)(ϕ∞) and recalling

that u = 2m/r, the remaining contributions to the static,

spherically symmetric BH solutions (II.3)–(II.7) to the
vacuum field equations (II.2) are:

A3 =
f

(2)
∞

f
(1)
∞

(
−73u3

90
+

73u4

36
+

647u5

450
+

557u6

900
+

1189u7

3150
− 243u8

140
− 667u9

945
− 43u10

108

)
, (B.1a)

A4 =

(
−73

45
− 362129f

(2)
∞

2

226800f
(1)
∞

2 −
12511f

(3)
∞

22680f
(1)
∞

)
u3 +

(
73

18
+

1139191f
(2)
∞

2

453600f
(1)
∞

2 +
12511f

(3)
∞

9072f
(1)
∞

)
u4 +

(
−298

225
+

7993913f
(2)
∞

2

2268000f
(1)
∞

2 −
12511f

(3)
∞

113400f
(1)
∞

)
u5

+

(
439

150
+

1694561f
(2)
∞

2

1134000f
(1)
∞

2 +
138689f

(3)
∞

226800f
(1)
∞

)
u6 +

(
−2231

450
+

1425247f
(2)
∞

2

1587600f
(1)
∞

2 +
218069f

(3)
∞

396900f
(1)
∞

)
u7 +

(
9979

2520
− 11507039f

(2)
∞

2

6350400f
(1)
∞

2 +
288377f

(3)
∞

635040f
(1)
∞

)
u8

+

(
−443

280
− 27378403f

(2)
∞

2

19051200f
(1)
∞

2 −
132829f

(3)
∞

238140f
(1)
∞

)
u9 +

(
8203

450
− 169633f

(2)
∞

2

170100f
(1)
∞

2 −
150041f

(3)
∞

272160f
(1)
∞

)
u10 +

(
−779

330
− 13558757f

(2)
∞

2

18711000f
(1)
∞

2 −
354643f

(3)
∞

748440f
(1)
∞

)
u11

+

(
−7

5
− 16763f

(2)
∞

2

81000f
(1)
∞

2 −
493f

(3)
∞

3240f
(1)
∞

)
u12 +

(
−9908

825
− 5f

(2)
∞

2

88f
(1)
∞

2 −
f

(3)
∞

22f
(1)
∞

)
u13 , (B.1b)

B3 = −f
(2)
∞

f
(1)
∞

(
73u2

30
+

73u3

45
+

73u4

36
+

103u5

50
+

413u6

225
+

57u7

35
+

253u8

420
+

11u9

54

)
, (B.2a)

B4 = −

(
73

15
+

362129f
(2)
∞

2

75600f
(1)
∞

2 +
12511f

(3)
∞

7560f
(1)
∞

)
u2 −

(
146

45
+

362129f
(2)
∞

2

113400f
(1)
∞

2 +
12511f

(3)
∞

11340f
(1)
∞

)
u3 −

(
73

18
+

1586827f
(2)
∞

2

453600f
(1)
∞

2 +
12511f

(3)
∞

9072f
(1)
∞

)
u4

−

(
169

75
+

254393f
(2)
∞

2

63000f
(1)
∞

2 +
12511f

(3)
∞

12600f
(1)
∞

)
u5 −

(
847

450
+

121219f
(2)
∞

2

32400f
(1)
∞

2 +
16831f

(3)
∞

16200f
(1)
∞

)
u6 −

(
1

45
+

2691779f
(2)
∞

2

793800f
(1)
∞

2 +
21394f

(3)
∞

19845f
(1)
∞

)
u7

−

(
2549

2520
+

479659f
(2)
∞

2

235200f
(1)
∞

2 +
25783f

(3)
∞

23520f
(1)
∞

)
u8 −

(
11

45
+

94471f
(2)
∞

2

85050f
(1)
∞

2 +
18829f

(3)
∞

27216f
(1)
∞

)
u9 −

(
583

90
+

35633f
(2)
∞

2

68040f
(1)
∞

2 +
6079f

(3)
∞

17010f
(1)
∞

)
u10

−

(
4504

825
+

5089f
(2)
∞

2

37125f
(1)
∞

2 +
611f

(3)
∞

5940f
(1)
∞

)
u11 −

(
1329

275
+

205f
(2)
∞

2

7128
(1)
∞

2 +
41f

(3)
∞

1782f
(1)
∞

)
u12 , (B.2b)

and finally
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ϕ2 =
f
(2)
∞

f
(1)
∞

[
73

60

(
u+

u2

2
+
u3

3
+
u4

4

)
+

7u5

75
+
u6

36

]
, (B.3a)

ϕ3 =

(
73

30
+

12511f
(2)
∞

2

7560f
(1)
∞

2 +
12511f

(3)
∞

15120f
(1)
∞

)
u+

(
73

60
+

12511f
(2)
∞

2

15120f
(1)
∞

2 +
12511f

(3)
∞

30240f
(1)
∞

)
u2 +

(
103

90
+

12511f
(2)
∞

2

22680f
(1)
∞

2 +
12511f

(3)
∞

45360f
(1)
∞

)
u3

+

(
133

120
+

12511f
(2)
∞

2

30240f
(1)
∞

2 +
12511f

(3)
∞

60480f
(1)
∞

)
u4 +

(
51

50
+

449f
(2)
∞

2

3024f
(1)
∞

2 +
12511f

(3)
∞

75600f
(1)
∞

)
u5 +

(
73

180
+

28531f
(2)
∞

2

453600f
(1)
∞

2 +
1595f

(3)
∞

18144f
(1)
∞

)
u6

+

(
17

10
+

13201f
(2)
∞

2

529200f
(1)
∞

2 +
839f

(3)
∞

21168f
(1)
∞

)
u7 +

(
57

40
+

239f
(2)
∞

2

43200f
(1)
∞

2 +
35f

(3)
∞

3456f
(1)
∞

)
u8 +

(
173

135
+

f
(2)
∞

2

972f
(1)
∞

2 +
f

(3)
∞

486f
(1)
∞

)
u9 , (B.3b)

ϕ4 =
f

(2)
∞

f
(1)
∞

[(
143467

8316
+

227192473f
(2)
∞

2

99792000f
(1)
∞

2 +
31557593f

(3)
∞

9072000f
(1)
∞

+
799607f

(4)
∞

1995840f
(2)
∞

)
u+

(
143467

16632
+

227192473f
(2)
∞

2

199584000f
(1)
∞

2 +
31557593f

(3)
∞

18144000f
(1)
∞

+
799607f

(4)
∞

3991680f
(2)
∞

)
u2

+

(
434551

62370
+

227192473f
(2)
∞

2

299376000f
(1)
∞

2 +
31557593f

(3)
∞

27216000f
(1)
∞

+
799607f

(4)
∞

5987520f
(2)
∞

)
u3 +

(
1020869

166320
+

227192473f
(2)
∞

2

399168000f
(1)
∞

2 +
31557593f

(3)
∞

36288000f
(1)
∞

+
799607f

(4)
∞

7983360f
(2)
∞

)
u4

+

(
2126053

415800
+

14761939f
(2)
∞

2

71280000f
(1)
∞

2 +
3703949f

(3)
∞

6480000f
(1)
∞

+
799607f

(4)
∞

9979200f
(2)
∞

)
u5 +

(
8051381

2494800
+

53790013f
(2)
∞

2

598752000f
(1)
∞

2 +
17053103f

(3)
∞

54432000f
(1)
∞

+
799607f

(4)
∞

11975040f
(2)
∞

)
u6

+

(
2128363

582120
+

178679f
(2)
∞

2

4752000f
(1)
∞

2 +
1469029f

(3)
∞

9072000f
(1)
∞

+
633287f

(4)
∞

13970880f
(2)
∞

)
u7 +

(
85573

16632
+

20000597f
(2)
∞

2

1862784000f
(1)
∞

2 +
35999071f

(3)
∞

508032000f
(1)
∞

+
59921f

(4)
∞

2280960f
(2)
∞

)
u8

+

(
4017613

748440
+

3517861f
(2)
∞

2

1047816000f
(1)
∞

2 +
15156781f

(3)
∞

571536000f
(1)
∞

+
449f

(4)
∞

40095f
(2)
∞

)
u9 +

(
22617977

4158000
+

9691879f
(2)
∞

2

10478160000f
(1)
∞

2 +
15718103f

(3)
∞

1905120000f
(1)
∞

+
2729f

(4)
∞

712800f
(2)
∞

)
u10

+

(
9714977

4573800
+

7553f
(2)
∞

2

47044800f
(1)
∞

2 +
13891f

(3)
∞

8553600f
(1)
∞

+
65f

(4)
∞

78408f
(2)
∞

)
u11 +

(
2447

3240
+

f
(2)
∞

2

46656f
(1)
∞

2 +
11f

(3)
∞

46656f
(1)
∞

+
f

(4)
∞

7776f
(2)
∞

)
u12

]
. (B.3c)

It is then simple to compute the Kretschmann scalar of the spacetime, with the result (recall that ε = αf
(1)
∞ /4m2):

RµνρσRµνρσ =
1

m4

[
3u6

4
+ ε2

(
−u7 + 2u8 − 33u9

2
+

7u10

4
+ u11 +

138u12

5

)
(B.4)

+ ε3
(
−73f

(2)
∞

30f
(1)
∞

u7 +
73f

(2)
∞

15f
(1)
∞

u8 − 73f
(2)
∞

4f
(1)
∞

u9 − 347f
(2)
∞

20f
(1)
∞

u10 − 1799f
(2)
∞

200f
(1)
∞

u11 − 1013f
(2)
∞

150f
(1)
∞

u12 +
5687f

(2)
∞

105f
(1)
∞

u13 +
1133f

(2)
∞

42f
(1)
∞

u14 +
1309f

(2)
∞

72f
(1)
∞

u15

)

+ ε4
((
−73

15
− 362129f

(2)
∞

2

75600f
(1)
∞

2 −
12511f

(3)
∞

7560f
(1)
∞

)
u7 +

(
629

60
+

362129f
(2)
∞

2

37800f
(1)
∞

2 +
12511f

(3)
∞

3780f
(1)
∞

)
u8 +

(
−39− 1139191f

(2)
∞

2

50400f
(1)
∞

2 −
12511f

(3)
∞

1008f
(1)
∞

)
u9

+

(
2023

60
− 59519f

(2)
∞

2

1344f
(1)
∞

2 +
12511f

(3)
∞

5040f
(1)
∞

)
u10 +

(
−23057

300
− 276017f

(2)
∞

2

12000f
(1)
∞

2 −
73889f

(3)
∞

7200f
(1)
∞

)
u11 +

(
5769

25
− 1288367f

(2)
∞

2

75600f
(1)
∞

2 −
56587f

(3)
∞

4725f
(1)
∞

)
u12

+

(
−16417

105
+

6878401f
(2)
∞

2

117600f
(1)
∞

2 −
146081f

(3)
∞

11760f
(1)
∞

)
u13 +

(
77503

840
+

78844487f
(2)
∞

2

1411200f
(1)
∞

2 +
77767f

(3)
∞

3528f
(1)
∞

)
u14 +

(
−14417

12
+

655748f
(2)
∞

2

14175f
(1)
∞

2 +
931387f

(3)
∞

36288f
(1)
∞

)
u15

+

(
9733

60
+

7468747f
(2)
∞

2

189000f
(1)
∞

2 +
24436f

(3)
∞

945f
(1)
∞

)
u16 +

(
1051

10
+

356657f
(2)
∞

2

27000f
(1)
∞

2 +
2623f

(3)
∞

270f
(1)
∞

)
u17 +

(
4028179

3300
+

19915f
(2)
∞

2

4752f
(1)
∞

2 +
3983f

(3)
∞

1188f
(1)
∞

)
u18

)]
.

This expression diverges only at the origin r = 0, showing
that our BH solution is regular everywhere outside the

horizon, since rH > 0 when ε� 1: cf. Eq. (C.1).
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Appendix C: The thermodynamical variables of
Einstein-scalar-Gauss-Bonnet black holes

The solution presented in Sec. IIA and Appendix B
can be characterized by the thermodynamic quantities
defined in Sec. II B. Here, we give their expressions in

terms of the integration constants m and ϕ∞, denoting
ε ≡ αf (1)

∞ /4m2.
The location of the horizon uH = 2m/rH, the tem-

perature T (II.8), the Wald entropy Sw – as defined in
Eqs. (II.9) and (II.10) – and the scalar “charge” D defined
below (II.11) are given by

uH = 1 +
ε2

3
+ ε3

73f
(2)
∞

90f
(1)
∞

+ ε4

1646

495
+

362129f
(2)
∞

2

226800f
(1)
∞

2 +
12511f

(3)
∞

22680f
(1)
∞

+O(ε5) . (C.1)

T = 8πm

1 + ε2
73

30
+ ε3

12511f
(2)
∞

1890f
(1)
∞

+ ε4

4010597

138600
+

227192473f
(2)
∞

2

16632000f
(1)
∞

2 +
799607f

(3)
∞

166320f
(1)
∞

+O(ε5)

 . (C.2)

Sw = 4πm2

[
1 + ε

4f∞

f
(1)
∞

+ ε2
73

30
+ ε3

12511f
(2)
∞

3780f
(1)
∞

+ε4

3189931

415800
+

227192473f
(2)
∞

2

49896000f
(1)
∞

2 +
799607f

(3)
∞

498960f
(1)
∞

+O(ε5)

 . (C.3)

D = 2m

ε+ ε2
73f

(2)
∞

60f
(1)
∞

+ ε3

73

30
+

12511f
(2)
∞

2

7560f
(1)
∞

2 +
12511f

(3)
∞

15120f
(1)
∞


+ε4

143467

8316
+

227192473f
(2)
∞

2

99792000f
(1)
∞

2 +
31557593f

(3)
∞

9072000f
(1)
∞

+
799607f

(4)
∞

1995840f
(2)
∞

 f
(2)
∞

f
(1)
∞

+O(ε5)

 . (C.4)

Appendix D: The two-body Lagrangian at first
post-Newtonian order

In this appendix we derive the PN two-body Lagrangian
of EsGB theories, Eq. (IV.6). For a bound binary system,

we compute the relativistic corrections in the weak field,
slow velocity approximation at order O(m/r) ∼ O(v2),
where r is the distance separating the bodies and v is
their relative velocity.

Our first goal is to solve the EsGB field equations (IV.2)
sourced by two point particles:

Rµν = 2∂µϕ∂νϕ− 4α

(
Pµανβ −

1

2
gµνPαβ

)
∇α∇βf(ϕ) + 8π

∑
A

(
TAµν −

1

2
gµνT

A

)
, (D.1a)

�ϕ = −1

4
αf ′(ϕ)R2

GB + 4π
∑
A

dsA
dt

dmA

dϕ

δ(3)(x− xA(t))√
−g

, (D.1b)

where we recall that TµνA is the distributional stress-energy
tensor of the skeletonized body A located at xµA = (t,xA):

TµνA = mA(ϕ)
δ(3)(x− xA(t))√
ggαβ

dxαA
dt

dxβA
dt

dxµA
dt

dxνA
dt

. (D.2)

At 1PN order and in Cartesian coordinates, it is con-
venient to expand the metric around Minkowski as [72]:

g00 = −e−2U +O(v6) , (D.3a)

g0i = −4gi +O(v5) , (D.3b)

gij = δije
2U +O(v4) , (D.3c)

where, as we show below, U = O(v2) and gi = O(v3). We
can also expand the scalar field ϕ as

ϕ = ϕ0 + δϕ+O(v6) , (D.4)

with δϕ = O(v2). The masses mA(ϕ) are expanded
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around the value ϕ0 of the scalar field at infinity, using
the quantities defined in Eqs. (IV.3) and (IV.4):

mA(ϕ) = m0
A

[
1 + α0

Aδϕ+
1

2
(α0
A

2
+ β0

A)δϕ2 +O(v6)

]
.

(D.5)
Here a “0” subscript indicates that the quantity is eval-
uated at ϕ = ϕ0. In a harmonic coordinate system and

at 1PN order we have ∂µ(
√
−ggµν) = ∂tU + ∂igi = 0,

R00 = −�ηU +O(v6), and R0i = −2∆gi +O(v5). The
Gauss-Bonnet term contributes to the field equations
through P0i0j + 1

2Pij = −(∂ijU) + δij∆U + O(v4) and
R2

GB = 8 [(∂ijU)(∂ijU)−∆U∆U ] + O(v6), so the field
equations read

�ηU = −4π
∑
A

m0
A

[
1 +

3

2
v2
A − U + α0

Aδϕ

]
δ(3)(x− xA(t)) + 4αf ′(ϕ0) [∆ϕ∆U − (∂ijϕ)(∂ijU)] +O(v6) , (D.6a)

∆gi = −4π
∑
A

m0
Av

i
Aδ

(3)(x− xA(t)) +O(v5) , (D.6b)

�ηϕ = 4π
∑
A

m0
Aα

0
A

[
1− 1

2
v2
A − U +

(
α0
A +

β0
A

α0
A

)
δϕ

]
δ(3)(x− xA(t)) + 2αf ′(ϕ0)

[
(∆U)2 − (∂ijU)(∂ijU)

]
+O(v6) ,

(D.6c)

where �η = ηµν∂µ∂ν is the flat D’Alembertian and ∆ =
δij∂i∂j is the flat Laplacian.
When the Gauss-Bonnet coupling is switched off, i.e.,

α = 0, the system above reduces to the standard scalar-
tensor field equations at 1PN. We can now solve these
equations using standard methods (see, e.g. [53, 54] or
[27]) through the relativistic Green’s function

�ηG(x, x′) ≡ −4πδ(3)(x− x′)δ(t− t′) , (D.7)

which, as we focus here on the conservative sector, is
half-retarded, half-advanced:

G(x, x′) =
1

2

[
δ(t− t′ − |x− x′|

|x− x′|
+
δ(t− t′ + |x− x′|

|x− x′|

]
=
δ(t− t′)
|x− x′|

+
|x− x′|

2
∂2
t δ(t− t′) + · · · . (D.8)

All derivatives are understood in a distributional sense.
The new α-driven sources of Eqs. (D.6a) and (D.6c)

enter (formally) at 1PN level. To evaluate them we must
replace U and ϕ by their leading (0PN) expressions, yield-

ing equations of the form:

∆h12 = ∆
1

|x− y1|
∆

1

|x− y2|
− ∂ij

1

|x− y1|
∂ij

1

|x− y2|
.

(D.9)

The solution h12(x) can be found as follows. When y1 6=
y2, we can replace the gradients ∂i by derivatives with
respect to the source locations y1 and y2:

∆h12 =

(
∂2

∂yi1∂y
i
1

∂2

∂yj2∂y
j
2

− ∂2

∂yi1∂y
i
2

∂2

∂yj1∂y
j
2

)

× 1

|x− y1||x− y2|
. (D.10)

Now note that ∆−1 commutes with the yi-derivatives,
and recall the well-known result first established by Fock
(see, e.g. [73]),

∆−1

(
1

|x− y1||x− y2|

)
= ln(|x− y1|+ |x− y2|+ |y1 − y2|) .

(D.11)
A rather lengthy but straightforward calculation then
yields:

h12(x) =
1

4|x− y1|3|x− y2|3

(
|x− y1|2 + |x− y2|2 − |y1 − y2|2 +

|x− y1|3 + |x− y2|3

|y1 − y2|

+
|x− y1|3|x− y2|2 + |x− y1|2|x− y2|3 − |x− y1|5 − |x− y1|5

|y1 − y2|3

)
. (D.12)

It can be checked that the contribution from the first set of derivatives in Eq. (D.10) vanishes identically: the first,
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“Dirac squared” term in Eq. (D.9) can be ignored.
The case y1 = y2 can be inferred from Eq. (D.12).

Denoting n1 ≡ x−y1

|x−y1| and n12 ≡ y2−y1

|y2−y1| , and taking the
limit ε ≡ |y1 − y2| → 0, we find:

h12(x) =
1− 3(n12 · n1)2

2|x− y1|3ε

+
2− 9(n12 · n1) + 15(n12 · n1)3

4|x− y1|4
+O(ε) .

(D.13)

We can finally average out n12 over spatial directions
using 〈ni12〉 = 0, 〈ni12n

j
12〉 = δij/3, and 〈ni12n

j
12n

k
12〉 = 0:

h11(x) =
1

2|x− y1|4
. (D.14)

The simplicity of Eq. (D.14) is striking: the Gauss-
Bonnet contributions to the fields are finite, and no regu-
larization procedure (see e.g. [74]) is necessary to solve
Eq. (D.6) at 1PN order. The generalization of this re-
markable fact to higher PN orders is left to future work.

We can now solve Eq. (D.6) to find:

U(x) =
∑
A

m0
A

ρA

[
1 +

3

2
v2
A −

∑
B 6=A

m0
B

r
(1 + α0

Aα
0
B)

]
− 4αf ′(ϕ0)

∑
A,B

m0
Am

0
Bα

0
AhAB(x) +O(v6) , (D.15a)

gi(x) =
∑
A

m0
Av

i
A

|x− xA(t)|
+O(v5) , (D.15b)

ϕ(x) = ϕ0 −
∑
A

m0
Aα

0
A

ρA

[
1− 1

2
v2
A −

∑
B 6=A

m0
B

r

(
1 + α0

Aα
0
B −

β0
Aα

0
B

α0
A

)]
+ 2αf ′(ϕ0)

∑
A,B

m0
Am

0
B hAB(x) +O(v6) ,

(D.15c)

where xµ = (t,x) and

1

ρA
=

1

|x− xA(t)|
+

1

2
∂2
t |x− xA(t)|

=
1

|x− xA(t)|

[
1 +

1

2
v2
A −

1

2
(nA · vA)2

]
+

1

2
(nA · aA) , (D.16)

with nA = (xA − x)/|xA − x| and aA = dvA/dt.

The two-body Lagrangian can now be straightforwardly
obtained à la Droste-Fichtenholz, a technique which, at
this order, is equivalent to computing, e.g., a Fokker
Lagrangian [75]. First, one writes the Lagrangian of, say,

body A considered as a test particle in the fields of B:

LA = −mA(ϕ)
dsA
dt

(D.17)

= −mA(ϕ)
√
e−2U + 8giviA − e2Uv2

A +O(v6) ,

where U , gi and ϕ are given by (D.15), setting formally
m0
A = 0 and x = xA. In particular, Eq. (D.16) can be

rewritten as

1

ρA
=

1

R

[
1 +

1

2
(vA · vB)− 1

2
(n · vA)(n · vB)

]
+

1

2

d

dt
(n · vA) , (D.18)

with r = |xA − xB | and n = (xA − xB)/r. Note that the
last term is a total time derivative, that can be ignored
in the Lagrangian (D.17).
The final two-body Lagrangian LAB is easily inferred

from LA. Indeed, the only Lagrangian that is symmetric
under exchange of the bodies (A ↔ B), and whose re-
sulting equations of motion reduce to those of LA in the
test-mass limit m0

A � m0
B is:
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LAB = −m0
A −m0

B +
1

2
m0
Av

2
A +

1

2
m0
Bv

2
B +

m0
Am

0
B

r
(1 + α0

Aα
0
B) +

1

8
m0
Av

4
A +

1

8
m0
Bv

4
B

+
m0
Am

0
B

r

[(vA · vB
2

(−7 + α0
Aα

0
B)
)

+

(
v2
A + v2

B

2
(3− α0

Aα
0
B)

)
−
(

(n · vA)(n · vB)

2
(1 + α0

Aα
0
B)

)]
− m0

Am
0
B

2r2

[
m0
A

(
(1 + α0

Aα
0
B)2 + β0

Bα
0
A

2
)

+m0
B

(
(1 + α0

Aα
0
B)2 + β0

Aα
0
B

2
)]

+
αf ′(ϕ0)

r2

m0
Am

0
B

r2

[
m0
A(α0

B + 2α0
A) +m0

B(α0
A + 2α0

B)
]

+O(v6) , (D.19)

which is straightforwardly rewritten as Eq. (IV.6).
This completes our derivation.

Appendix E: Sensitivities for quadratic coupling and
shift-symmetric theories

In Sec. IVB we studied BH sensitivities in one of the
best motivated subclasses of EsGB theory, namely EdGB
gravity. Here we generalize the analysis to quadratic and
shift-symmetric EsGB theories.

a. Quadratic coupling

Let us consider EsGB theories where the coupling func-
tion depends only on ϕ2, i.e. is of the form [12]

f(ϕ) = −e
−λϕ2

2λ
(E.1)

with λ > 0. The EsGB action (II.1) is symmetric under
ϕ→ −ϕ. The coefficients appearing in the scalar coupling
function α0

A [cf. Eqs. (IV.10) and (IV.12)] now read

Aquad
2 (ϕ0) =

−120 + 73λ

480λϕ0
− 73λϕ0

240
, (E.2a)

Aquad
3 (ϕ0) =

110376λ2 − 87577λ3

241920λ2
+

30240− 36792λ+ 12511λ2

241920λ2ϕ2
0

+
12511λ2ϕ2

0

40320
, (E.2b)

Aquad
4 (ϕ0) =

−798336000 + 1456963200λ− 990871200λ2 + 227192473λ3

12773376000λ3ϕ3
0

(E.2c)

+
−5827852800λ2 + 9578872320λ3 − 3685838076λ4

12773376000λ3ϕ0
+

(−11230775040λ4 + 9239974444λ5)ϕ0

12773376000λ3
− 102384391λ3ϕ3

0

266112000
.

In the special case λ = 1 we find

α0
A = −x

2
+

(
47

480ϕ0
+

73ϕ0

240

)
x2 (E.3)

+

(
3257

34560
+

5959

241920ϕ2
0

+
12511ϕ2

0

40320

)
x3

+

(
15007361

1824768000ϕ3
0

− 5431787

1064448000ϕ0
+

497700149ϕ0

3193344000

+
102384391ϕ3

0

266112000

)
x4 +O(x5)

with

x =
α(ϕ0 e

−ϕ2
0)

µ2
A

.

As expected, under a sign inversion ϕ0 → −ϕ0 we have
α0
A → −α0

A and β0
A = (dαA/dϕ)(ϕ0) → β0

A, so that the
two-body Lagrangian [Eqs. (IV.6) and (IV.8)] is invariant.

For EsGB theories with quadratic couplings of the form
(E.1), a BH with irreducible mass µA is regular outside
the horizon if the condition (IV.18) is satisfied, i.e. if

αe−λϕ
2
H

2µ2
A

(√
6|ϕH| −

1

λ

)
< 1 . (E.4)

For λ = 1, this condition is satisfied for all ϕH whenever
α/µ2

A < (α/µ2
A)crit = 3.715, and then BH A can never

reach the singular configuration, whatever the value of
the background scalar field ϕ0.

Note that the condition above is not very restrictive, as
the coupling constant α/µ2

A is expected to be small. The
same conclusions apply to the case λ 6= 1, as illustrated
in the left panel of Fig. 2. In the white region of the
{α/µ2

A, λ} plane, the inequality (E.4) is satisfied for any
value ϕH of the scalar field at the horizon. In the shaded
area, the inequality (E.4) is violated within two symmetric
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FIG. 2. Left panel: Parameter space {α/µ2
A, λ} in quadratic EsGB theory. The white area represents the parameter space

for which the bound (E.4) is satisfied ∀ϕH. At the boundary with the shaded area, (E.4) has two symmetric roots in the ϕH

variable. In the shaded area, (E.4) is violated within two symmetric ϕH intervals. Right panel: The example λ = 1. The bound
(E.4) is violated in two symmetric ϕH intervals when α/µ2

A > 3.715.
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FIG. 3. Scalar coupling αA(ϕ0) of BHs in theories with quadratic coupling of the form (E.1) with λ = 1. Left panel: Taylor
series (E.3) truncated at order O(xn) and its (2, 2) Padé resummation α0

A,Padé, for the special case α/µ2
A = 1. Right panel:

αA,Padé(ϕ0) for three different BHs with α/µ2
A = {0.5, 1, 2.17}. When α/µ2

A becomes larger than the critical value corresponding
to (α/µ2

A)
Padé
crit = 2.17, two singularities appear at ϕcrit

0 = ±0.42.

ϕH intervals. At the boundary between these two regions,
these intervals reduce to two points.

The right panel focuses on the special case λ = 1. When
α/µ2

A > (α/µ2
A)crit, the inequality (E.4) is violated when

ϕH takes values in two intervals which are symmetric with
respect to the origin. In the limit α/µ2

A → +∞, these in-
tervals tend to ]−∞,− 1

λ
√

6
] and [ 1

λ
√

6
,+∞[, respectively.

Figure 3, which is completely analogous to Fig. 1, shows
α0
A(ϕ0) for λ = 1. The left panel (where we set α/µ2

A = 1
for simplicity) shows that the Taylor series converges
much faster than in the dilatonic case and that, unlike the
dilatonic case, the sensitivity (E.3) is finite ∀ϕ0. The right
panel shows the Padé-resummed coupling αPadé

A when
λ = 1. The Padé approximation suggests that two poles
in αPadé

A (ϕ0) appear at some critical coupling (α/µ2
A)Padé

crit

such that (α/µ2
A)Padé

crit = 2.17. This value is qualitatively
comparable to the nonperturbative prediction given below

Eq. (E.4). A more accurate estimate of (α/µ2
A)Padé

crit using
higher-order expansions in α is an interesting topic for
future work.
Once again, the scalar field value ϕ0 at infinity plays

a major role. As |ϕ0| increases, the sensitivity |α0
A| also

does, until it reaches an extremum at

ϕextr
0 = ± 1√

2λ
+O(x) , (E.5)

where

αA(ϕextr
0 ) = ∓ α

2µ2
A

1√
2eλ

+O(x2) (E.6)

and βA(ϕext
0 ) = 0. Here e is Euler’s number. In

the limit |ϕ0| � |ϕextr0 |, instead, α0
A → 0 and β0

A =
(dαA/dϕ)(ϕ0) → 0, so the BH is indistinguishable from
the Schwarzschild solution. Finally, the sensitivity “turns
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FIG. 4. Scalar coupling αA(ϕ0) of BHs in the shift-symmetric theory (E.7). Left panel: Taylor series (E.8) truncated at order
O(xn) and its (2, 2) Padé resummation α0

A,Padé, for the special case α/µ2
A = 0.1. Right panel: α0

A,Padé for three different BHs
with α/µ2

A = {1, 0.1, 0.05}.

off” when ϕ0 = 0: αA(0) = 0. This is because α0
A is asso-

ciated to the BH solutions of Sec. II A, which were derived
in the weak Gauss-Bonnet coupling limit: see Eq. (II.3).
When ϕ0 = 0, f ′(ϕ∞) = 0 and the solution reduces to
the Schwarzschild metric. Note that the branch of “spon-
taneously scalarized” BH solutions with nonperturbative
scalar hair and ϕ∞ = 0 [11, 12, 42] is not included in our
analysis. A numerical calculation of their sensitivities α0

A
and β0

A is left for future work.

b. Shift-symmetric theories

As a third and last example, let us consider shift-
symmetric theories [8, 9] with

f(ϕ) = 2ϕ . (E.7)

The action (II.1) is symmetric under the shift symmetry
ϕ → ϕ + ∆ϕ, where ∆ϕ is a constant. The sensitivity
(IV.10) reads

α0
A = −x

2
− ϕ0

2
x2 −

(
73

480
+
ϕ0

2

2

)
x3

−
(

73ϕ0

160
+
ϕ0

3

2

)
x4 +O(x5) (E.8)

with

x =
2α

µ2
A

, (E.9)

and it is also invariant under ϕ0 → ϕ0 + ∆ϕ, since then
µ2
A = Sw/4π → µ2

A + 2α∆ϕ: cf. Eq. (II.10).

In Fig. 4 we plot α0
A as a function of ϕ0. The left panel

(where we set α/µ2
A = 0.1 for concreteness) shows that

the series (E.8) converges on a narrow interval. When
ϕ0 is large and positive, α0

A diverges with a slope which
increases with the truncation order O(xn); when ϕ0 is
large and negative, α0

A diverges, but sign(α0
A) = (−1)n

depends on the truncation order. To improve the conver-
gence properties of the expansion (E.8), we try a diagonal
(2, 2) Padé resummation, also shown in the left panel of
Fig. 4. The features of the Padé resummation resemble
the dilatonic case of Sec. IVB:

(i) when ϕ0 → −∞ the BH decouples from the scalar
field, i.e. α0

A → 0 and β0
A = (dα0

A/dϕ)(ϕ0)→ 0;

(ii) as ϕ0 increases , the BH becomes strongly coupled
to the scalar field: α0

A → −∞ and β0
A → −∞ as ϕ0

approaches a pole located at

ϕpole
0 =

1

2

(
µ2
A

α
−
√

1095

30

)
. (E.10)

Once again, ϕ0 plays a crucial role. The BH’s irreducible
mass µA only affects the location of the pole through
Eq. (E.10), as shown in the right panel of Fig. 4. The
features highlighted above are again valid within the
nonperturbative bound (IV.18), which now reads

ϕH <
1

2

(
µ2
A

α
−
√

6

)
. (E.11)

This equation predicts the existence of a maximum value
for ϕH which depends linearly on α/µ2

A. A numerical
study and higher-order expansions in α, possibly com-
bined with Padé resummation techniques, would be useful
to confirm these predictions.
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