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The dynamics of Maxwell-dilaton theory in Minkowski spacetime are studied using fully nonlinear,
numerical evolutions. This model represents the flat-space sector of Einstein-Maxwell-Dilaton theory
which has attracted interest recently because it is a well-posed alternative to general relativity, and
it also represents the abelian sector of Yang-Mills-Dilaton. As such, understanding its dynamics
may shed light on the dynamics of the respective larger systems. In particular, we study electric,
magnetic, and dyonic monopoles as well as the flux tubes studied previously by Gibbons and Wells.
Some scenarios produce large gradients that an increasing adaptive mesh refinement fails to resolve.
This behavior is suggestive, although far from conclusive, that the growth leads to singularity
formation. No sharp transition between singularity formation and either dispersion or stationarity
is found, unlike other nonlinear systems that have demonstrated behavior similar to black hole
critical behavior at such transitions.

I. INTRODUCTION

The Maxwell-Dilaton system contains an electromag-
netic field coupled non-minimally to a scalar field. The
dilaton acts as something of a scalar, attractive “grav-
ity” allowing for compact solutions such as those found
by Morris [1] and Gibbons and Wells [2].

This system also represents a particular sector of the
more general Einstein-Yang-Mills-Dilaton model. The
model studied here results from restricting to flat-space
and U(1) abelian gauge field [3]. If one instead allows
for curved space, one has the Einstein-Maxwell-Dilaton
model studied recently [4–12]. Understanding the dy-
namics of this simpler system may help elucidate aspects
of the more general system.

This nonlinear system is also interesting in its own
right. The monopole and flux tube solutions, as found
by Gibbons and Wells [2], can be used as initial data to
study their stability properties. The instability found in
the fully relativistic model of Ref. [4], because its analysis
relied on the equation of motion for the dilaton without
relying on a particular form for the metric, is expected to
remain in this restricted model. Some nonlinear systems
have demonstrated a type of critical behavior similar to
that found in gravitational scalar collapse [13], such as
Refs. [14–19], and so we look for such threshold behavior
here. Most of the behavior observed has been spherical
and the hope with this model is that such behavior at the
threshold may be less symmetric since the dynamics of
vacuum Maxwell only occurs outside spherical symmetry.

II. EQUATIONS OF MOTION

We begin by varying the appropriate action in flatspace

S =

∫
d4x

[
a0
(
∂φ
)2

+ a1 e
−2κφ FabF

ab
]

(1)

where φ is the dilaton, F ab is the Faraday tensor for
the electromagnetic field, and a0, a1, and κ are coupling
constants. The resulting system of equations consists of

the evolution equations

∇a∇aφ = −a1
a0
κ e−2κφ FabF

ab (2)

∇a
(
e−2κφF ab

)
= 0, (3)

and the constraints

∇[aFbc] = 0. (4)

Consistent with Ref. [2], we choose a0 = 1/2 and a1 =

1/4. Adopting Cartesian coordinates, we define Π ≡ ∂φ
∂t

so that we can re-express the evolution equations in first-
order differential form as

Ex,t = Bz,y −By,z + 2κ
(

ΠEx − φ,y Bz + φ,z By

)
(5)

Ey,t = Bx,z −Bz,x + 2κ
(

ΠEy + φ,xBz − φ,z Bx
)
(6)

Ez,t = By,x −Bx,y + 2κ
(

ΠEz − φ,xBy + φ,y Bx

)
(7)

Bx,t = Ey,z − Ez,y (8)

By,t = Ez,x − Ex,z (9)

Bz,t = Ex,y − Ey,x (10)

φ,t = Π (11)

Π,t = φ,xx + φ,yy + φ,zz + κe−2κφ ×[
Bx

2 +By
2 +Bz

2 − Ex2 − Ey2 − Ez2
]
. (12)

Commas within a subscript indicate partial derivatives
with respect to the subsequent coordinate so that φ,y is
equivalent to ∂φ/∂y.

We can compute the energy as an integral over space
of the energy density ρ

ρ = ρφ + ρE + ρB (13)

where the contributions have been separated individually
as

ρφ =
1

2

(
Π2 + φ2,x + φ2,y + φ2,z

)
ρE =

e−2κφ

2

(
E2
x + E2

y + E2
z

)
ρB =

e−2κφ

2

(
B2
x +B2

y +B2
z

)
. (14)
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The dilaton differentiates this model from electrovacuum
and provides for the conserved charge

Q =
κ

2π

∫
dx dy dz

[
φ,xEx + φ,yEy + φ,zEz

]
. (15)

Initial data must be solutions of the two constraint equa-
tions

0 =
(
e−2κφEx

)
,x

+
(
e−2κφEy

)
,y

+
(
e−2κφEz

)
,z

(16)

0 = Bx,x +By,y +Bz,z. (17)

The evolution equations preserve the constraints in the
sense that the solution at a given time generated from
integrating the evolution equations will also solve the
constraint equations. However, numerically any devia-
tions from the constraints could in principle grow. This
is called a free evolution and contrasts with a constrained
evolution in which the constraints equations are used in
place of an equal number of evolution equations. As
such, we can monitor the constraint residual which is
an absolute, but generally arbitrary, measure of the ex-
tent to which the solution at a given time fails to solve
the constraint equations. Numerical data presented be-
low suggests that residuals do not grow significantly for
the time scales considered here. It should be noted that
methods from the field of computational magnetohydro-
dynamics such as a divergence cleaning or constrained
transport could be used to control such growth.

We study the evolution of different initial data and
describe that data in the following sections describing
the results. The constant κ is equivalent to the α0 of
Ref. [4], and the results below adopt κ = 1 (see Ref. [2]
for a discussion explaining why a change to its numerical
value has no physical significance).

III. IMPLEMENTATION

We solve these equations using the distributive, adap-
tive mesh infrastructure for finite differences had [20].
We use fourth-order accurate, center differences in a
method of lines scheme with a third-order accurate
Runge-Kutta time integrator. We use Kreiss-Oliger-like
dissipation but with high order derivatives as a mild low-
pass filter to mitigate noise, as is fairly common in nu-
merical relativity codes.

We present the results of a particular numerical test in
Fig. 1. For these tests, we evolve what we call Gaussian
initial data which is smooth everywhere and satisfies the

constraints. Here, we set φ = 0 = ~B and

Ex = 0 (18)

Ey =

(
z

δ2z

)
Ae−x

2/δ2xe−y
2/δ2ye−z

2/δ2z (19)

Ez = −
(
y

δ2y

)
Ae−x

2/δ2xe−y
2/δ2ye−z

2/δ2z (20)
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FIG. 1: Demonstration of convergence for the Gaussian ini-
tial data in Eqs. (18)-(20) with 5 levels of FMR refinement.
(Top:) The convergence order is computed over just the finest

level and demonstrates convergence of the x-component of ~B.
(Middle:) The norm of the divergence of the magnetic field
decreases with resolution. (Bottom:) The fractional energy
change similarly decreases with resolution. All these indica-
tions suggest that the code is convergent and consistent.

for real parameters A, δx|y|z. In the figure, we compare
three different resolutions and demonstrate that the con-
vergence order is consistent with third order. Note that
these evolutions use fixed mesh refinement (FMR) and
the order is computed only by comparing the finest levels.
Also shown are the total divergence of the magnetic field
and change in total energy versus time. Both of these
represent errors and that the measures of error decrease
with increasing resolution represents a test of consistency
for the numerical solution.

IV. RESULTS

A. Monopoles

Another description of initial data are the monopoles
of Ref. [2]. The magnetic monopole can be expressed
in terms of a monopole charge P such that

φ =

(
1

κ

)
ln

[
Pκ

(
1

r
+

1

Pκ

)]
(21)

Br =
Pκ

r2
. (22)

Because the monopole is singular at the origin, a cutoff
r0 is instituted such that for r ≤ r0, the radius used in
the above equations is instead r0 so that near the origin,
for example, Bx = Pκx/r30.

The dynamics observed for magnetic monopoles is
demonstrated in Fig. 2. The magnetic monopole appears
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FIG. 2: Dynamics of the magnetic monopole. Shown are
snapshots of the x−component of the magnetic field and the
dilaton on the x-axis for a magnetic monopole with P = 0.1
and radial cut-off r0 equal to either 0.1 or 0.4. The magnetic
field settles more quickly than the dilaton which “sheds” some
excess field, but the overall solution settles quickly to a sta-
tionary solution that depends on r0.

stable for all charges tried. The effect of the cutoff ap-
pears to be that the solution “sees” a charge that de-
pends on the cutoff. In particular, the dilaton settles
into different solutions dependent on r0. A small value
of r0 demands a higher resolution to capture the gradi-
ents, particularly in the magnetic field (as opposed to the
dilaton).

We can define an electric monopole similarly

φ = −
(

1

κ

)
ln

[
Pκ

(
1

r
+

1

Pκ

)]
(23)

Er =
Pκ

r2
. (24)

Again, P is the monopole charge and r0 is the length
scale at which the solution is cut-off. Three representa-
tive evolutions are shown in Fig. 3. For small monopole
charge, the solution appears stable, similar to the mag-
netic case. For large monopole charge, however, the so-
lution appears unstable with the dilaton becoming more
and more negative in time.

One may expect critical behavior to appear in between
these two regimes as has been observed in gravitational
scalar collapse [13] and in certain non-gravitating nonlin-
ear theories [14–19]. However, instead there appears to
be a third regime intermediate between small and large
charge in which the dilaton becomes more negative at
early times and then saturates.
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FIG. 3: Three regimes of dynamics for the electric monopole.
The solution at three different times is shown for three dif-
ferent charges. For small charges, the monopole appears dy-
namically stable (see the P = 0.1 case shown in blue). For
large charges, the dilaton grows at the center until the code
no longer resolves the solution (see the P = 0.35 case shown
in green). Instead of a sharp transition, there appears to be a
regime in which the dilaton grows but saturates or otherwise
stops growing (see the P = 0.27 case shown in red). Here
the cut-off value, r0, is equal to 0.1 and note that the spatial
extent of the simulation extends much further than what is
shown.

Likewise, we define a dyonic monopole as

φ = 0 (25)

Br =
Pκ

r2
(26)

Er =
Pκ

r2
. (27)

Here P is both the electric and magnetic monopole charge
and r0 is the length scale at which the solution is cut-off.
Because we consider here only dyonic monopoles with
equal electric and magnetic charges, the natural choice is
for the dilaton to vanish.

The dynamics of these monopoles is represented in
Fig. 4. Two regimes are observed depending on the
charge P . For small charge, the solution appears sta-
ble whereas for large charge, the evolution indicates in-
stability. In particular, the dilaton becomes more and
more negative while the electric field grows larger than
the magnetic field. Both these behaviors suggest that
the instability found for electric monopoles dominates
the dynamics in this regime.

B. Flux Tubes

Another type of solution, namely the fluxtube as dis-
cussed in Refs. [1, 2], describes a “string” of confined
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FIG. 4: Demonstration of instability in the dyonic monopole.
The solution at a few different times is shown for two charges,
P = 0.25 (stable) and P = 0.373 (unstable).

magnetic flux. Here, we consider the dynamics and sta-
bility of such tubes with generalized initial data given
by

f(z) = Ae−z
2/δ2 (28)

ρ̄ =

√
(x+ f cos kz)

2
+ (y + f sin kz)

2
(29)

φ =
1

2κ
log

[
4a2

κ2H2 (1 + a2ρ̄2)
2

]
(30)

Bz = He2κφ. (31)

Here, the real function f(z) serves to introduce a wiggle
with wavenumber k, amplitude A, and width δ to the
original flux tube described by real constants a and H
where H describes the magnetic strength of the tube.
For parameter A = 0, one has a vertically oriented flux
tube.

The dynamics of certain solutions are shown in Fig. 5.
An unperturbed, straight tube appears stable. Note that
the tube necessarily hits the boundaries of the computa-
tional domain, and thus stability is suspected based on
short evolutions before boundary effects become signifi-
cant throughout the domain. Likewise, for non-vanishing
A, the “wiggled” string also appears stable with the per-
turbation quickly propagating away, leaving what ap-
pears to be the unperturbed, stationary string.

C. Evidence for Singularity Formation

Our final comment concerns whether this model per-
mits singularity formation or whether the large growth
observed in the previously mentioned unstable cases ul-
timately saturates. Numerics likely cannot fully answer
this question of global existence, but it can suggest an

FIG. 5: Evolutions of a perturbed (blue circles) and an un-
perturbed (red triangles) flux tube. Shown are 1D slices of
the energy density ρ at the times indicated for x = 0 = z.
Also shown is the known, static solution (black solid line) al-
though it is hardly visible because the other solutions overlay
it. The unperturbed solution remains quite close to the static
solution for the duration of the evolution. The wiggly flux
tube oscillates around the static solution with the oscillation
damped quickly by outgoing radiation visible in the frames
t = 3.0 and t = 4.1. Noisy boundary effects are becoming
apparent in the last frame. Here H = 1 and a = 1 for both
solutions, and the perturbation is described by parameters:
A = 1, k = 2π/5, and δ = 4.

answer. And so instead of considering initial data which
itself needs to be regularized, such as the introduction of
a cut-off scale r0 with the monopoles, we instead return
to the initial data found in Eqs. (18)-(20) and for which
convergence was demonstrated in Fig. 1. This initial data
is smooth everywhere.

We characterize the dynamics in Fig. 6 for large ampli-
tude by showing snapshots of the various contributions
to the energy density as defined in Eq. (14). The initial
data quickly evolves such that the energy concentrates
along the x-axis. The adaptivity places refined grids in
this vicinity. However, runs with increasing number of al-
lowed levels of adaptive mesh refinement (AMR) all show
dynamics in which the concentration reaches the grid res-
olution. This behavior suggests that the concentration
occurs without limit, but of course such an extrapolation
is a guess because the continuum equations could dictate
saturation at a scale beyond the reach of these runs.
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FIG. 6: Evolution of initial data of the form found in
Eqs. (18)-(20) towards apparent singularity. Slices along the
x− and y− axes of the different contributions to the en-
ergy density for a particular evolution with Gaussian initial
data. The energy concentrates along the x−axis, shrinking
to roughly a line with thickness of order the grid spacing.
Note: (i) the much smaller spatial bounds of the right col-
umn of plots versus the left, and (ii) a plot over z− would
be similar to that of y−. Increasing the number of AMR
levels resolves the concentration of energy better and delays
slightly the point at which the code cannot handle the large
gradients. That increasing resolution demonstrates this same
concentration is suggestive of singularity formation. Shown is
the highest resolution case with seven levels of AMR.

V. CONCLUSION

Numerical evolutions of various forms of initial data in
the Maxwell-Dilaton system indicate various regimes of

stability and instability. In particular, an instability for
certain electric dominated scenarios seen in the gravitat-
ing case appears to carry-over to this flatspace model [4].

A particular case which demonstrated unstable growth
was studied with increasing adaptive refinement that was
unable to fully resolve the growth. This behavior was
suggestive that the growth is unbounded and will ulti-
mately form a singularity, although the numerics here
cannot be conclusive.

Certain systems that demonstrate two disparate dy-
namical regimes such as singularity formation and sta-
tionarity or singularity versus dispersion have also
demonstrated critical behavior at the threshold similar
to black hole critical behavior [13]. However, no such
behavior is found in this model.
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