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Carlos O. Lousto and James Healy
Center for Computational Relativity and Gravitation,

School of Mathematical Sciences, Rochester Institute of Technology,
85 Lomb Memorial Drive, Rochester, New York 14623

Binary black holes emit gravitational radiation with net linear momentum leading to a retreat
of the final remnant black hole that can reach up to ∼ 5, 000 km/s. Full numerical relativity
simulations are the only tool to accurately compute these recoils since they are largely produced
when the black hole horizons are about to merge and they are strongly dependent on their spin
orientations at that moment. We present eight new numerical simulations of BBH in the hangup-
kick configuration family, leading to the maximum recoil. Black holes are equal mass and near
maximally spinning (|~S1,2|/m2

1,2 = 0.97). Depending on their phase at merger, this family leads to
∼ ±4, 700 km/s and all intermediate values of the recoil along the orbital angular momentum of
the binary system. We introduce a new invariant method to evaluate the recoil dependence on the
merger phase via the waveform peak amplitude used as a reference phase angle and compare it with
previous definitions. We also compute the mismatch between these hangup-kick waveforms to infer
their observable differentiability by gravitational wave detectors, such as advanced LIGO, finding
currently reachable signal-to-noise ratios, hence allowing for the identification of highly recoiling
black holes having otherwise essentially the same binary parameters.

PACS numbers: 04.25.dg, 04.25.Nx, 04.30.Db, 04.70.Bw

I. INTRODUCTION

Soon after numerical relativity simulations [1, 2] neatly
revealed that astrophysical binary black holes may im-
part speeds of thousands of kilometers per seconds after
merger on the final black hole through gravitational re-
coil, a search for them intensified in the astronomical
community. These searches ranged from dynamical ef-
fects of their host galaxies [3–7] leading to displacements
from galaxy cores, to specific objects displaying features
that could be interpreted as differential velocities of thou-
sand of kilometers per second between narrow and broad
emission lines, like CID-42 [8–10], J0927+2943 [11–15],
J1225+1415 [16], J1050+3456 [17], and NGC1277 [18].
A systematic search was carried out and described in
[19–22]. A particularly promising study of 3C186 [23–
25] is currently underway. Early reviews on this field are
given in Refs. [26, 27].

Systematic numerical relativity simulations provided
a method to model the recoil of the final merged black
hole as a function of the precursor binary [28, 29], and to
determine that the maximum recoil is about 5,000 km/s
for maximally spinning, equal mass, holes in the hangup
kick configuration [30]. Aligned spins, on the other hand,
can only reach a maximum of just above 500 km/s, in an
antialigned configuration with mass ratio q ∼ 2/3 [31,
32]. While nonspinning holes only contribute about one
third of this value [33, 34]. See a review of the field in
[35]. Numerical studies can also include accreting mater
to determine electromagnetic counterparts of the recoil
[36–38].

Interestingly, the observability of these recoils with
gravitational wave detectors [39, 40] has been explored
recently. Here we test this question in the most favor-
able scenario, that of the hangup-kick recoil with ex-

plicit simulations of nearly maximal spins (α = |~α1,2| =

|~S1,2|/m2
1,2 = 0.97). We compare waveforms for configu-

rations within the hangup-kick family (See Fig. 1) lead-
ing to nearly maximally but opposed recoils and passing
through essentially vanishing recoil to see the required
signal-to-noise ratio to distinguish between them with
the analytic advanced LIGO sensitivity curve [41].

This paper is organized as follows, in the next section
II we describe the numerical relativity techniques that we
will use in the evolutions of the binary black holes. In sec-
tion III we describe the results of the simulations within
the hangup family with equal mass black holes and spin
magnitudes α = 0.97 for eight different spin orientations.
This systematic study provides a method to fit a sinu-
soidal dependence of the recoil velocity of the final black
hole as a function of the spin orientation. A new tech-
nique to identify this relative spin orientation at merger
from the waveform phase is described in subsection III A.
We also analyze in subsection III C the finite difference
errors of our simulations by studying one member of the
family with three resolutions and assess the differences
with respect to its extrapolated value. We end the paper
with a discussion, in section IV, of the potentially observ-
able recoil effects on these waveforms. We evaluate the
matching of our simulations with each other, taking as
a reference the one with the lowest recoil velocity, to see
the signal-to-noise (SNR) requirements to distinguish one
from the other by advanced LIGO. We also come back to
the first gravitational wave event GW150914, that we re-
cently reanalyzed in Ref. [42], to evaluate the likelihood
of recoils within a different simulation family, involving
one single spinning black hole.
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II. NUMERICAL TECHNIQUES

The late orbital dynamics of spinning binary black
holes remain a fascinating area of research since the nu-
merical breakthroughs [43–45] solved the binary black
hole problem via supercomputer simulations. Among
the notable spin effects (without Newtonian analogs) ob-
served in supercomputer simulations are the hangup ef-
fect [46], which prompts or delays the merger of binary

black holes depending on the spin-orbit coupling, ~S · ~L,
being positive or negative (aligned spins or antialigned

spins with the orbital angular momentum ~L); the flip-
flop of individual black hole spins passing from aligned
to antialigned periods with respect to the orbital an-
gular momentum [47] the alignment instability [48] as
a case of imaginary flip-flop frequencies [49]; and the
total flip of the orbital angular momentum [50] under
generic retrograde orbits for intermediate mass ratio bi-
naries (q < 1/4).

Perhaps one of the most notable predictions of numer-
ical relativity are the large recoils (thousands of km/s)
of the final black hole remnant [1], and up to 5,000 km/s
[30]. Those results have been obtained from simulations
with spinning black holes of α = S/m2 = 0.7, 0.8, 0.9
and extrapolated to maximally spinning holes. More
recently, we introduced a version of highly-spinning
initial data, based on the superposition of two Kerr
black holes [51, 52], in a puncture gauge that can eas-
ily be incorporated into moving-punctures codes. In
Refs. [51, 53], we were able to evolve an equal-mass bi-
nary with aligned spins, and spin magnitudes of α = 0.95
and α = 0.99 respectively, using this new data and com-
pare with the SXS results of Ref. [54], finding excellent
agreement.

In order to verify the extrapolation to near maximally
spinning black holes and its evolution for a precessing sys-
tem (in particular here the binary has a bobbing motion),
we designed a set of 8 simulations in the hangup-kick
configuration with spins α = 0.97. These simulations in
turn will allow us to single out the effect of recoil as a
function of its merger phase and their observability with
gravitational wave detectors.

In table I we provide the 8 configurations spanning dif-
ferent initial orientations of the spin projection onto the
orbital plane S⊥, with respect to the line joining each
hole as described by the angle ϕ, and are chosen to in-

clude near maximum recoil in both z-directions (~L) and
near zero recoil. Here ϕ = φ(t = 0) and at that ini-
tial time Sx = S⊥ cosϕ and Sy = S⊥ sinϕ for one black
hole and reversed signs for the other. The polar angle θ
of the spin with respect to the orbital angular momen-

tum ~L has been chosen to maximize the recoil according
to the predictions in Ref. [28], i.e. reproduced here in
Eqs. (2), (3); and evaluated for α = 0.97 give the value
θmax = 50.98 degrees.

We have chosen the initial separations of the binaries
to guarantee around 7 orbits before merger and in or-
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FIG. 1. The hangup-kick configurations to maximize the
merger recoils. In our case spin magnitudes S1,2/m

2
1,2 = 0.97,

polar angle θ of 50.98◦ and m1 = m2. Simulations start at
an initial coordinate separation d/m = 9 and different angles
ϕ between the line connecting the BHs and the projection of
the spin onto the orbital plane.

TABLE I. Initial simple proper distance and spins of the BHs.
The initial coordinate separation in all cases is D/m = 9
and mass ratio q = 1. ADM masses are between 0.9880 and
0.9884. Each simulation in the series can be uniquely de-
scribed by the azimuthal spin angle, ϕ. Both spins have mag-
nitude 0.97 and polar angle θ of 50.98◦, and the angle ∆ϕ
between ~α1 and ~α2 is 180◦. In terms of the spin components
~α1 = (α1x, α1y, α1z) = (−α2x,−α2y, α2z).

ϕ mΩ22 d/m α2x α2y α2z

0 0.01032 12.5183 0.7536 0.0000 0.6107

30 0.01044 12.4045 0.6527 0.3768 0.6107

60 0.01053 12.2011 0.3768 0.6527 0.6107

90 0.01055 12.2128 0.0000 0.7536 0.6107

120 0.01051 12.3744 -0.3768 0.6527 0.6107

150 0.01046 12.4913 -0.6527 0.3768 0.6107

203 0.01046 12.4455 -0.6953 -0.2908 0.6107

291 0.01029 12.3250 0.2663 -0.7050 0.6107

der to estimate the accuracy of the finite resolution used
in those simulations we perform three simulations for a
member of the family (that with ϕ = 291◦), at increasing
resolutions by a factor 1.2 in order to study the conver-
gence of the relevant quantities for our studies. Those
results are reported later in subsection III C.

We evolve the binary black hole data sets using the
LazEv [55] implementation of the moving puncture ap-
proach [44] with the conformal function W =

√
χ =

exp(−2φ) suggested by Ref. [56]. For the runs presented
here, we use centered, eighth-order finite differencing in
space [57], a fourth-order Runge Kutta time integrator,
and a 7th-order Kreiss-Oliger dissipation operator. We
use a Courant factor of 0.25 in the CCZ4 formulation
of the evolution equations [58]. Our code uses the Ein-
steinToolkit [59, 60] / Cactus [61] / Carpet [62]
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infrastructure. The Carpet mesh refinement driver pro-
vides a “moving boxes” style of mesh refinement. In
this approach, refined grids of fixed size are arranged
about the coordinate centers of both holes. The evolu-
tion code then moves these fine grids about the compu-
tational domain by following the trajectories of the two
black holes. At the outer boundary (located at 400M
for this paper’s simulations) we set Sommerfeld bound-
ary conditions. The first points in from the boundary are
updated using standard second-order stencils, the second
points using the standard fourth-order scheme (See [55]),
the third points using the standard sixth-order stencils
(See Ref. [63]), and the fourth points using the proposed
eighth-order scheme. We use 6 buffer points and the stan-
dard seventh-order Kreiss-Oliger dissipation operator.
We use AHFinderDirect [64] to locate apparent hori-
zons. We measure at it the mass and the magnitude of
the horizon spin using the isolated horizon (IH) algorithm
detailed in Ref. [65] and as implemented in Ref. [66]. We
measure radiated energy, linear momentum, and angular
momentum, in terms of the radiative Weyl Scalar Ψ4,
using the formulas provided in Refs. [67, 68]. We extract
the radiated energy-momentum at finite radius and ex-
trapolate to r = ∞ with the perturbative extrapolation
described in Ref. [69]. For the radiated quantities, we
use all modes up to and including `max = 6. Quasicircu-
lar (low eccentricity) initial orbital parameters are com-
puted using the 3rd. order post-Newtonian techniques
described in [70].

III. RESULTS

We summarize the results of our BBH evolutions in
Table II where the final black hole remnant properties
and peak waveform luminosity values are reported. The
modeling of remnant mass and spin for precessing bina-
ries is given in Ref. [29, 71] with both quantities bearing
a cos 2φ-dependence for the current family of simulations.
Here, we will particularly focus on the analysis of the re-
coil velocities with regards to the predictions for those
simulations with high spin (α = 0.97) from the extrap-
olation of previous fitting formulae cfr. in equations (2)
or (3).

In order to analyze the results of the present simula-
tions, We can fit the recoil to the form

Vrec = V1 cos(∆φ+ φ1) + V3 cos(3∆φ+ 3φ3), (1)

where V1, V3, φ1, and φ3 are fitting parameters and ∆φ
is the initial phase of the spin with respect to a reference
direction (in our case the y-axis).

Based on [30], we expected that the recoil would have
the form

V1 =
(
V1,1 + VAα cos θ + VBα

2 cos2 θ + VCα
3 cos3 θ

)
×

α sin θ, (2)

where V1 is the component of the recoil proportional to
cosφ, V1,1 arises from the “superkick” formula, and the

remaining terms are proportional to linear, quadratic,
and higher orders in Sz/m

2 = α cos θ (the spin compo-
nent in the direction of the orbital angular momentum).

A fit of the simulations reported in [28] to this
ansatz (2) showed that the truncated series appears to
converge very slowly with coefficients V1,1 = (3677.76 ±
15.17) km s−1, VA = (2481.21 ± 67.09) km s−1, VB =
(1792.45±92.98) km s−1, VC = (1506.52±286.61) km s−1

that have relatively large uncertainties. In what follows
we will neglect the contribution of V3 ∼ 100km/s; see
[28] for more details.

In addition, we proposed the alternative modeling

Ṽ1 =

(
1 + Eα cos θ

1 + Fα cos θ

)
Dα sin θ (3)

which can be thought of as a resummation of Eq. (2)
with an additional term Eα cos θ, and fit to D, E, F
(where we used the prediction of [72] to model the Ṽ1 for
θ = 90◦) and found D = (3684.73 ± 5.67) km s−1, E =
0.0705±0.0127, and F = −0.6238±0.0098. Note that E
is approximately 1/9 of F , indicating that coefficients in
this series get progressively smaller in a faster sequence
than in Eq. (2).

We can fit to the recoil dependence on the initial angle
φ between the spin and the y-axis. Alternatively, one can
seek a reference frame, closer to merger, when most of the
net recoil appears to be generated. In Refs. [29, 73] we
have described in a totally coordinate based frame (punc-
tures trajectories) the way to extract an instantaneous
orbital plane and spin projections as displayed in Figure
3 of reference [73] or Figure 1 of [29]. We implement here
a new measure of this angle about merger with respect
to the ϕ = 0 case as a reference. We introduce the no-
tion of using the peak amplitude phase of the waveform
φpeak, as a measure for the reference phase of the recoil
modeling and provide more detail in subsection III A.

These fits are displayed in Fig. 2 giving rise to an es-
timate of the maximum recoil for these configurations in
the form of the fitted amplitude of the sinusoidal depen-
dence on ∆φ as given by Eq. (1) to extract the lead-
ing cos ∆φ-dependence and have a control of the non-
leading cos 3∆φ term. The three different evaluations of
∆φ = ϕ = initial angle (in red circles), ∆φtraj = trajec-
tory angle as defined in [73] (in magenta triangles), and
∆φpeak from the waveform phase at the peak amplitude
(in blue squares), as defined in subsection III A below.

Table III displays the measured fitting parameters and
its statistical asymptotic standard errors with 4 degrees
of freedom. Evaluating Eqs. (2) and (3) with the parame-
ters for the series studied here (α = 0.97 and θ = 50.98◦),

we find V1 = 4675.97 ± 64.71 and Ṽ1 = 4678.90 ± 57.52
km/s respectively. Comparing to the three fits given in
table III, we see excellent agreement when using ∆φtraj
(4678.96 ± 40.82 km/s) and ∆φpeak (4678.90 ± 57.52
km/s).
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TABLE II. Final properties of the remnant BH. The final mass Mf/m, final spin αf , recoil velocity in km/s, and peak luminosity
in ergs/s are given. The number of orbits before merger and time of peak luminosity are also given. ∆φ representing the relative
phases with respect to the ϕ = 0 case.

ϕ ∆φpeak ∆φtraj 2Norbits Mf/m αf Vrecoil peak Lum. tHpeak

0 0 0 14.0095 0.9251 0.8525 -4014 5.603×1056 860.5

30 33.05 29.85 13.9915 0.9217 0.8461 -4622 6.076×1056 860.1

60 65.99 77.16 13.9859 0.9200 0.8446 -3882 6.228×1056 859.2

90 86.17 120.87 13.9689 0.9215 0.8496 -1846 5.811×1056 859.8

120 106.44 143.48 13.9685 0.9244 0.8550 531 5.390×1056 851.4

150 142.53 160.00 14.0011 0.9260 0.8565 2553 5.326×1056 857.3

203 203.51 201.85 13.9950 0.9225 0.8475 4579 5.965×1056 860.4

291 264.09 320.23 13.9673 0.9245 0.8536 186 5.487×1056 861.3

TABLE III. A fit A1 cos(∆φ − φ1) + A3 cos(3[∆φ − φ3]) to the Vrecoil with 4 degrees of freedom. For the three different
evaluations of ∆φ = ϕ = initial angle (in red circles), ∆φtraj = trajectory angle as defined in [73] (in magenta triangles)), and
∆φpeak from the waveform phase at the peak amplitude (in blue squares), as defined in this paper.

Parameters Initial angle Standard Error Trajectory angle Standard Error Waveform phase Standard Error

A1 4569.47 ±3.825 (0.083%) 4678.96 ±408.2 (8.724%) 4678.88 ±513.0 (10.96%)

φ1 0.4353 ±0.0008 (0.074%) 0.7960 ±0.0731 (9.432%) 0.2447 ±0.1094 (8.253%)

A3 152.22 ±3.822 (2.511%) 10.0268 ±388.4 (3873%) 9.96288 ±551.1 (5531%)

φ3 0.8814 ±0.00840 (0.147%) 0.0617 ±12.1 (741%) 0.7434 ±16.55 (883%)
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FIG. 2. The plots show the fits for the three different eval-
uations of ∆φ = ϕ = initial angle (in red circles), ∆φtraj =
trajectory angle as defined in [73] (in magenta triangles), and
∆φpeak from the waveform phase at the peak amplitude (in
blue squares), as defined in this paper.

A. Reference frame at peak waveform amplitude

The peak amplitude h22peak and peak waveform fre-

quency Ω22
peak modeling in aligned binaries simulations

was introduced in Ref. [74]. Here we use its definition
to determine a reference time and hence phase of the
waveform at which we can assign a recoil dependence of
the form (1) and as represented in Fig. 3. We compare
this gauge invariant method to determine the differential
(near merger) phase dependence to the coordinate based
method of [29, 73] that was used in the original hangup-
kick work [30] and to determine the numerical coefficients
in Eqs. (2) and (3). Note that the two methods defined
using a (near merger) measure as reference lead to very
similar results. The statistical errors of those methods
appear much larger than those measured from the initial
angle φ given the difficulties in measuring directions in
the strong dynamical regime of the merger phase.

The notion that the phase of the waveform at peak
luminosity as a reference in the strong field regime, near
the merger of the two black holes, is a very interesting
one, since it is amenable to be generalized in the fully
precessing case. In that case one has to determine the
orbital plane orientation from the direction of the maxi-
mum power of gravitational waves at the peak luminos-
ity. Also measure the phase of the waveform along that
privileged direction. Appropriate families of simulations
to extract modeling parameters should then be designed.
This will be the subject of a future research by the au-
thors.
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FIG. 3. This figure displays the use of the method to de-
termine the waveform phase at the peak amplitude from the
simulation time at which this peak is observed for the ϕ = 0◦

configuration.

B. Recoil Generation

These systems provide an illustrative example of how
the recoil is cumulated during late inspiral, merger, and
ringdown. Due to the symmetry of these systems, the re-
coil of the remnant BH is solely in the z-direction, which
is aligned with the gravitational wave extraction frame.
The recoil can be calculated from individual modes of
Ψ4 =

∑∞
l=2

∑l
m=−lA

l,m
(
−2Y

l,m(θ, φ)
)

by Eqs. (3.15),
(3.18), and (3.19) in [75]:

dPz

dt
= lim

r→∞

r2

16π

∑
l,m

∫ t

−∞
dt′Al,m (4)

×
∫ t

−∞
dt′
(
cl,m Āl,m + dl,m Āl−1,m

+ dl+1,m Āl+1,m
)
,

cl,m =
2m

l (l + 1)
,

dl,m =
1

l

√
(l − 2) (l + 2) (l −m) (l +m)

(2l − 1)(2l + 1)
.

Table IV shows the contributions to the recoil from the
mode pairs of Eq. 5 that contribute more than 10 km/s
for the three simulations that appear in Fig. 4. These
three simulations are the ones with the near maximal,
near zero, and near minimal recoil velocities (top to bot-
tom). To good approximation, when the amplitude of
the (2,2) mode is larger than the amplitude of the (2,-2)
mode, the recoil velocity will increase. This is easiest to
see near merger, as in the top panel of Fig. 4, but is
true throughout. In this panel, the red (2,2) dominates
from late inspiral through ringdown, resulting in a near
maximal recoil for these configurations. In the bottom
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FIG. 4. Plots of the (2,2) (red) and (2,-2) (blue) modes of
the strain for the three simulations in the series that show
near maximal, near minimal, and near zero recoil. The recoil
velocity versus time (green) is shown using the right y-axis.
Note that in the bottom panel, the range of the right-hand
y-axis is reversed (runs from +800 at the bottom to -4800 at
the top).

panel, the opposite is true, the blue (2,-2) dominates over
the same range, and the recoil is approximately the same,
but in the opposite direction (note the y-axis on the right
is reversed). The middle panel is interesting, in that it
exhibits a late-time continuation of the orbital wobbling
leading to an in-phase cancellation or anti-kick, where
at first we obtain a large recoil (around 1,000 km/s) fol-
lowed by another large recoil which cancels the original,
resulting in a final recoil close to 0. This anti-kick can
be explained again by which mode is dominating near
merger. At first, the blue (2,-2) is dominating in the late
inspiral, but as we approach the peak, red (2,2) domi-
nates, producing the large positive recoil. However, dur-
ing ringdown, blue (2,-2) dominates again producing the
large negative recoil cancellation. Table IV shows that
the contributions of the (2,2) and (2,-2) mode with them-
selves produce the largest contributions to the recoil, but
will always carry an opposite sign (because of the clm co-
efficient.) For the near maximal and near minimal con-
figurations, these two modes account for approximately
90% of the kick, leaving the remaining approximately
400 km/s to the other mode pairs. Interestingly in the
near zero configuration, the (2,2) and (2,-2) mode pairs
only contribute 85 km/s after the cancellation, leaving
the bulk of the recoil (an additional 100 km/s) to the
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TABLE IV. Mode pair contributions to the recoil velocity
in the z-direction as in Eq. 5 for the near maximal, near
zero, and near minimal recoil configurations. Only pairs with
contributions > 10 km/s are included here.

`1 m1 `2 m2 V (ϕ = 30◦) V (ϕ = 291◦) V (ϕ = 203◦)

2 2 2 2 9122.37 6779.79 4818.65

2 -2 2 -2 -4893.59 -6865.65 -9019.23

2 -2 3 -2 -228.74 -435.80 -507.18

2 2 3 2 521.46 334.62 227.70

3 2 3 2 26.51 14.06 10.35

3 -2 3 -2 -10.09 -25.43 -25.50

4 4 4 4 85.99 47.51 20.80

4 -4 4 -4 -21.93 -32.93 -84.98

higher mode pairs. If the same analysis were applied to
an aligned system, where the spins are aligned with the
orbital angular momentum, we would still obtain very
large recoil contributions from the (2,2) and (2,-2) mode
pairs. However, due to the symmetry, these would cancel
completely (and all other mode pairs), to give a net-zero
recoil in the z-direction.

C. Convergence of the numerical simulations

Numerous convergence studies of our past simulations
have been performed. In Appendix A of Ref. [31], in Ap-
pendix B of Ref. [76], and for nonspinning binaries are
reported in Ref. [34]. For very highly spinning black holes
(s/m2 = 0.99) convergence of evolutions was studied in
Ref. [53] and for (s/m2 = 0.95) in Ref. [32] for unequal
mass binaries. For our current simulations we studied
in detail one member of the hangup kick family, that
with the lowest recoil, at an initial spin orientation angle
ϕ = 291◦. With three resolutions, lowering our standard
resolution for the whole family by factors of 1.2. Resolu-
tions are denoted by “NXXX”, where XXX is a number
related to the resolution in the wavezone. For example,
“N144”, the standard resolution for these simulations,
has a wavezone resolution of M/1.44, and “N100”, has a
resolution of M/1.00. We then assume that a quantity Ψ
behaves with resolution h in the range of low hL to high
hH as Ψ(h) = Ψ(exact) +Ahn, where we compute Ψ(h)
at the three resolutions hL, hM , hH .

Figure 5 displays the medium minus high resolutions
rescaled by a power 1.2n to match the low minus medium
waveform phase and amplitudes. This provides a simple
way to display the 6th order convergence as expected
due to the combination of our 4th order Runge-Kutta
integration in time and the 8th order finite differences
algorithm implemented in our evolution code.

We evaluate the extrapolation to infinite resolution
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FIG. 5. Amplitude and phase convergence to 6th order for
the phase and amplitude of Ψ4 for the ϕ = 291◦ case study.
Insets in each panel show a moving average of the convergence
order.

Ψ(exact)→ Ψ∞ as

Ψ∞ =
ΨHΨL −ΨM

2

ΨH − 2 ΨM + ΨL
(5a)

〈A〉 =
ΨL

2 − 2 ΨLΨM + ΨM
2

ΨH − 2 ΨM + ΨL
, (5b)

n = − 1

ln (f)
ln

∣∣∣∣ΨH −ΨM

ΨL −ΨM

∣∣∣∣, (5c)

where we also determine the constant A → 〈A〉 and the
convergence rate n. We have also assumed that the low,
medium, and high resolutions are related by a common
factor f as hM = hL/f and hH = hL/f

2, as is the case
presented here with f = 1.2. Note that the extrapolated
waveform is independent of this common factor f or the
convergence power n and only depends on the combi-
nation of computed waveforms (or other quantity under
study).
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Pointwise convergence on waveforms is hard to achieve
(still we see some merit in showing our 6th order con-
vergence at later times in Fig. 5), but it is strictly not
necessary to produce accurate results. We verified that
the differences of our waveform with their extrapolations
to infinite resolution are well well below the requirements
of, for instance, NRAR standards [77]. The NRAR ref-
erence frequency is Mω22 = 0.2 and the allowed values
are dA/A ≤ 1% and dPhase< 0.25. For the N144 simula-
tions we achieve dA/A = 0.031% and dPhase= −0.0069
with respect to its extrapolation to infinite resolution and
infinite observer location.

We found roughly the expected 4th-8th order conver-
gence as displayed in Table V for the values of the recoil
velocity and peak luminosity (measured from waveforms)
as well as the final black hole mass and spin (as mea-
sured on the apparent horizon and independently by a
quasi-normal mode fitting [78, 79]). The results of an ex-
trapolation to infinite resolution and the differences with
respect to the standard resolution (labeled as N144) are
displayed in Tables V and VI to provide a measure of
the expected errors for the whole family of simulations.
Generically, for other simulations, we monitor the ac-
curacy by measuring the conservation of the individual
horizon masses and spins during evolution as well as the
level of satisfaction of the Hamiltonian and momentum
constraints. All eight N144 configurations show compara-
ble behavior in these quantities indicating that numerical
errors are under control.

IV. DISCUSSION

We compute the waveforms a and b matching as the
inner product in frequency f -domain

M = 〈a|b〉k ≡ 2

∫
|f |>fmin

df
[ã(f)]∗b̃(f)

Sh,k(|f |)
. (6)

where the kth detector’s noise power spectrum is Sh,k(f)
and we adopt a low-frequency cutoff fmin. By construc-
tion, we maximize over both a time and phase shift be-
tween waveforms. For our analysis of GW150914, we
adopt the same noise power spectrum employed in pre-
vious work [80, 81], the advanced LIGO design sensi-
tivity noise curve. We use a reference total mass of
Mtotal = 74M� and fmin = 30Hz. This choice of Mtotal

starts our waveform frequencies just below 30Hz after an
initial windowing function is applied. The minimal SNR
needed to distinguish between the two waveforms, given
the mismatch is SNR2 ≥ 1

1−M .
To determine if waveforms from within this family

of configurations can be distinguished between different
members of the family, we perform a series of matches
between configurations. That is, we choose a simulation
and reconstruct the gravitational wave at a given polar
and azimuthal angle and use this as our reference wave-
form. For each of the other configurations in the series,

we can then calculate the match against our reference
waveform and produce a “world map” of matches. We
calculate the match

Mi(ξ, ψ) = 〈ϕref [ξref , ψref ]|ϕi[ξ, ψ]〉, (7)

where i runs over each configuration, and where ξ and
ψ are the angles used to reconstruct the second wave-
form at a given point in the skymap: 0 ≤ ξ ≤ π, and
−π < ψ ≤ π. In Fig. 6, we chose ϕref = 291◦ re-
constructed at ξref = 0◦ = ψref and calculate the SNR
from the minimum, maximum, and mean matches over
the world map. We show that the last few cycles of grav-
itational waveforms from black holes in the hangup-kick
configuration, leading to a large recoil of the final rem-
nant of the BBH merger, is potentially measurable by
LIGO with reasonable SNR, i.e. around approximately
30. For comparison, the matching between different res-
olutions of the reference case, ϕ = 291◦, gives us SNR of
the order of 96 and 25 for N120 and N100 respectively.
Extrapolation to infinite resolution of the simulations N∞
leads to a SNR of over 100 in order to differentiate the
N144 from the N∞ result.

Given the spin misalignments of comparable masses
BBH observed in the current detections [82], these kind
of configurations seems not so unlikely to occur in nature.
While the search for detecting very highly spinning black
holes with gravitational wave observations continues, it
is important to search for them with the appropriated
highly spinning templates and our simulations can con-
tribute to fill in this gap near maximally spinning holes
and properly cover this region of BBH parameter space.
Parameter estimation techniques directly using numeri-
cal relativity waveforms from catalogs have been applied
successfully for GW150914[42] and GW170104[83] and
will be the subject of further applications for O2 LIGO-
Virgo observations.

Phenomenological modeling of waveforms, such as
the PhenomP [84] mimicking precession from rotating
aligned cases leads to misevaluations of the recoil. See
however new attempts to take recoil into account in other
waveform models [85, 86] and an improved analysis of
GW150914 using a two spins effective one body model in
[87], and a two spin precessing Phenomenological model
in [88].

In Ref. [42] we have been able to use a different fam-
ily of simulations of binary black holes with one single
spinning hole with amplitude α = 0.8 at all different
orientations covering the two dimensional space of ini-
tial (θ, ϕ). Those lead to a “world heat map” as shown
in the figure 8 of [42] for the likelihood lnL to repre-
sent the signal GW150914. Bit-equivalent data to the
frames used for this study is available through GWOSC
(Gravitational Wave Open Science Center) [89], and the
likelihood, lnL, is calculated using the RIFT framework
[90, 91] (an algorithm to perform Rapid parameter infer-
ence on gravitational wave sources via Iterative FiTting).
In addition to this 3-parameter space estimation, we can
consider the subfamily with the mass ratio q and incli-
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TABLE V. Convergence of key quantities for the ϕ = 291◦ system with three resolutions. Richardson extrapolation is used to
determine the convergence order and infinitely extrapolated values. Recoil velocities are given in km/s and peak luminosities
are ergs/s. The final mass and spin are calculated two ways, from the apparent horizon (labeled “AH”) and from a ringdown
analysis of the 2,2 mode [78, 79] (labeled “rd”). The fifth row shows the difference between the extrapolated and N144 values,
and the sixth row shows the percent difference between the two. There is an exception for the quantity in the last column,
φh22,peak. If we were to take the phase at a fixed time near peak for each resolution, we would observe and order of convergence
between 5 and 6. However, since we take the phase at the peak for each resolution, and the time of peak is already convergent
at an order of 5.5, we observe higher than normal convergence for the phase when measured this way.

Vrecoil αAH
f αrd

f MAH
f /m Mrd

f /m 10−56 · Lpeak |rh22|peak th22,peak φh22,peak

N100 227.41 0.853399 0.852138 0.923310 0.919861 5.4062 0.475254 962.804 89.793

N120 193.35 0.853569 0.852581 0.923599 0.920597 5.4578 0.476050 962.595 89.800

N144 186.03 0.853642 0.852786 0.923705 0.920937 5.4867 0.476328 962.519 89.801

Inf. Extrap. 184.03 0.853697 0.852963 0.923766 0.921230 5.5235 0.476476 962.476 *

Inf. - N144 -2.00 0.000055 0.000177 0.000061 0.000293 0.0368 0.000148 -0.043 *

% difference -1.09 0.0065 0.0208 0.0066 0.0318 0.6673 0.0311 -0.005 *

Conv. Order 8.4 4.6 4.2 5.5 4.2 3.2 5.8 5.5 *

TABLE VI. Convergence of radiated energy and angular momentum for the ϕ = 291◦ system with three resolutions with the
same format as Table V. Each column is extrapolated independently. In addition, we also calculate the convergence order,
labeled “AH Order” in the last row, using the Richardson extrapolated value from the horizon quantity (thus the “AH”) as
the extrapolated value and resolving for the order using the N120 and N144 resolution.

Erad
gw Erad

AH Erad
gw − Erad

AH Jrad
gw Jrad

AH Jrad
gw − Jrad

AH

N100 0.06376 0.06513 -0.00137 -0.46213 -0.46564 0.00351

N120 0.06419 0.06484 -0.00064 -0.46355 -0.46504 0.00148

N144 0.06443 0.06473 -0.00030 -0.46429 -0.46481 0.00052

Inf. Extrap. 0.06471 0.06467 0.00000 -0.46508 -0.46467 -0.00003

Conv. Order 3.3 5.5 4.1 3.6 5.3 4.1

AH Order 4.4 4.9 7.0 6.8
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FIG. 6. We display the SNR required to differentiate the
hangup recoil waveforms from the member of the family with
lowest recoil magnitude, Vref = 186 km/s at initial ϕ = 291◦

Larger recoils are easier to mismatch, while nearby ones re-
quire SNR above 20. Lines indicate the minimum, maximum,
and mean matches over the azimuthal and polar reconstruc-
tion angles of a given configuration against the ϕ = 291◦,
ξ = 0 reference configuration.

nation angle θ leading to the highest log-likelihood lnL
and use this one remaining φ-parametrized subfamily to
parametrize the φ-dependence of the recoil. The resulting
“orbits” from the interpolation of the data are displayed
in Fig. 7, showing the top three lnL families and the
preference for recoils of about −1, 500 km/s. For each
of the curves in Fig. 7 corresponding to a mass ratio,
we select the θ-angle with the highest likelihood lnL as
displayed in Fig. 8.

Ultimately, determining accurately the recoil of the fi-
nal hole from a binary system is paramount to determine
(given a mass ratio) the spin orientations at merger. Be-
ing able to determine the “phase” of the spin relative
to the linear momentum of the holes at the merger (as
determined by the maximum amplitude of radiation) al-
lows us to predict the recoil of the remnant black hole.
Such determination has been performed for GW150914
[42] leading to estimated recoils of around 1,500 km/s
as displayed in Fig. 7-8. The differences this induces
on the merger and ringdown phases can be estimated as
well, as a consistency check and a test of the theory of
gravitation.

For the source of GW150914 we were also able to es-
timate the inclination of the orbit from purely numerical
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FIG. 7. The orbits in the maximum likelihood lnL and recoil
velocity space of the simulations reported in Figure 8 of Ref.
[42] for GW150914. Top panel shows the fit to the lnL and
recoil separately that together form the ellipses in the bottom
panel. The recoil velocity uses a fit V = A1 cos(ϕ−φ1) and the
log-likelihood uses lnL = A2 cos(ϕ−φ2)+A3 cos(3ϕ−3φ3)+
B, where A1, φ1, A2, φ2, A3, φ3, and B are fitting parameters.
The data and ellipses in the bottom panel subtract off the
cos(3ϕ) terms.

waveforms, as displayed in Figure 9 of Ref. [42]. The
ability to find a single maximum, not bimodal, orien-
tation of the binary, is somewhat related to the mea-
sure of precession and this in turn is related to the spin
misalignment with the orbital angular momentum that
may induce large recoil velocities, those depending on
the merger phase that we model in this paper for the
maximum recoil configurations.

The application of this techniques that we tested in
the case of the first gravitational wave signal GW150914,
can be used in other detections of BBH mergers, as
GW170104 and others in O2 [82] and forthcoming ob-
servations and will be the subject of a future paper by
the authors.
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