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The remnant star of a neutron star merger is an anticipated loud source of kiloHertz gravita-
tional waves that conveys unique information on the equation of state of hot matter at extreme
densities. Observations of such signals are hampered by the photon shot noise of ground-based
interferometers and pose a challenge for gravitational-wave astronomy. We develop an analytical
time-domain waveform model for postmerger signals informed by numerical relativity simulations.
The model completes effective-one-body waveforms for quasi-circular nonspinning binaries in the
kiloHertz regime. We show that a template-based analysis can detect postmerger signals with a min-
imal signal-to-noise ratios (SNR) of 8.5, corresponding to GW170817-like events for third-generation
interferometers. Using Bayesian model selection and the complete inspiral-merger-postmerger wave-
form model it is possible to infer whether the merger outcome is a prompt collapse to a black hole
or a remnant star. In the latter case, the radius of the maximum mass (most compact) nonrotating
neutron star can be determined to kilometer precision. We demonstrate the feasibility of inferring
the stiffness of the equation of state at extreme densities using the quasiuniversal relations deduced
from numerical-relativity simulations.

PACS numbers: 04.25.D-, 04.30.Db, 95.30.Sf, 95.30.Lz, 97.60.Jd

I. INTRODUCTION

The gravitational-wave (GW) signal GW170817 is
compatible with the inspiral of a binary neutron star
(BNS) of chirp mass M ∼ 1.186(1)M�, mass ratio q ∼
[1, 1.34] and tidal deformability parameter distributed

around Λ̃ ∼ 300 and smaller than ∼800 [1–3]. The
merger frequency of a BNS GW can be accurately pre-
dicted using numerical relativity (NR) results [4]. From

the probability distribution of Λ̃ measured for GW170817
one finds the merger frequency falls in the broad range
fmrg ∼ (1.2, 2) kHz, Fig. 1. The sensitivity of the detec-
tors in August 2017 was insufficient to clearly identify a
signal at frequencies f & fmrg [5, 6]. Indeed, LIGO-Virgo
searches for short (.1 s), intermediate (.500 s) and long
(days) postmerger transients from a neutron star (NS)
remnant resulted in upper limits of more than one order
of magnitude larger than those predicted by basic models
of quasi-periodic sources [7–12]. Various works have sug-
gested that for GW170817-like sources postmerger fre-
quencies are accessible only by improving the design sen-
sitivity of current detectors of a factor two-to-three or
with next-generation detectors [5, 13–15].

NR simulations predict that BNS mergers can form a
black hole (BH) from gravitational collapse of the merged
object or a NS remnant depending on the binary mass

and the NS matter equation of state (EOS), e.g. [17–
22]. NS remnants can collapse on dynamical (∼O(10) ms,
short-lived remnant) or longer timescales (long-lived rem-
nant), but can also reach a stable NS configuration. Kilo-
Hertz GWs contain the imprint of the merger remnant
dynamics. The main signature is a short GW transient
peaking at a few characteristic frequencies, the dominant
one being associated with twice the rotation frequency of
the remnant NS at f2 > fmrg [16, 21–30]. The transient
is more luminous for short-lived remnant than for long-
lived; an absolute upper limit to the energy per unit mass
is .0.126( M

2.8M�
) M�c2, where M is the binary mass

[12]. Long postmerger transients are also possible for
NS remnants developing nonaxisymmetric instabilities
and/or magnetars, but they are expected to be less lumi-
nous than the GWs on dynamical timescales, e.g. [7–11].
Recent analysis of GW170817 based on premerger GWs
combined with the pulsar constraints on the maximum
mass largely disfavor prompt collapse to BH [31]. Using
the NR relation between the frequency f2 and the tidal
deformability derived in [16] and the LIGO-Virgo poste-
riors for GW170817, one finds that a tentative wave with
peak luminosity larger than 0.1×1056 erg ·s−1 could have
been detected at f2 ∼ [2.5, 3.2] kHz (Fig. 1) if the instru-
ments were more sensitive. This is compatible with the
interpretation of the electromagnetic counterparts that
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FIG. 1. Gravitational-wave merger fmrg and postmerger peak
f2 frequency for GW170817. The distributions are estimated
from the LIGO-Virgo posteriors distributions [3] for the Λ̃
parameters using (i) the quasiuniversal relation proposed in
[4] for the merger frequency; (ii) the relation proposed in [16]
and further refined in this work for the postmerger peak fre-
quency. The distribution of f2 is cut at κT

2 < 70 to exclude
binaries that undergo prompt collapse at merger.

suggests the formation of a short-lived NS remnant [32–
36], although other scenarios are possible [37–41].

The data analysis of (short duration) postmerger sig-
nals can be performed with either morphology indepen-
dent approaches [14, 42] or using matched filtering tech-
niques based on waveform templates. While matched
filtering is proven to be an optimal method in case of
gaussian noise [43], its performance for postmerger anal-
ysis remains unclear due to the uncertainties of post-
merger templates. Current postmerger models comprise
frequency-domain statistical representation of NR wave-
forms [13, 44] or simple analytical models [27, 45–47].
A common aspect of all these approaches is the use
of NR information in terms of quasiuniversal (EOS in-
dependent) relations for the characteristic frequencies
[16, 25, 28, 48–51]. The relevance of these relations is
twofold: on one hand they are used for waveform mod-
eling, on the other hand they can be used to extract
information from the analysis.

Observations of kiloHertz GWs from NS remnants can
deliver constraints on the EOS of matter in a regime at
which nuclear interactions are still very uncertain. For
a canonical binary of mass M = (1.4 + 1.4)M�, tidal
interactions in the inspiral-merger part of the GW sig-
nal mostly inform about the EOS at about twice the
nuclear saturation density ρ0 ' 2.3× 1014 g cm−3, corre-
sponding to the maximal densities of the binary compo-
nents [31, 52]. However, NS remnants formed in merg-
ers reach densities ∼3 − 5ρ0 and temperatures in ex-
cess of ∼50 MeV, e.g. [53]. The strongest constraints
on the EOS at those extreme densities are currently pro-
vided by the mass measurements of two pulsars in bi-

nary systems [54, 55]. The latter give lower bounds for
the maximum mass of nonrotating stable NS in equilib-
rium (MTOV

max , hereafter simply referred as the maximum
NS mass): MTOV

max & (2.01±0.04)M� (PSR J0348+0432)
[54] and MTOV

max & (2.17 ± 0.11)M� (PSR J0740+6620)
[55].

Additional constraints on matter at extreme densities
can be inferred from the kiloHertz GW from merger
remnants by extracting NS properties via quasiuniversal
relations [16, 48, 56]. Moreover, new degrees of freedom
or matter phases at ∼3 − 5ρ0 can impact the remnant
dynamics and leave detectable imprints on the GW. Case
studies considered matter models including hyperon
production [57, 58] or zero-temperature models of phase
transitions to quark-deconfined matter [59, 60]. The
detectability of these effects crucially depends on the
densities at which the EOS softening (or stiffening) takes
place and would in principle need detailed waveform
models that are presently not available.

In this paper we construct the first phase-coherent
inspiral-merger-postmerger model for the BNS GW spec-
trum and demonstrate its applications to constrain the
NS EOS in GW astronomy observations.

Section II introduces a NR postmerger model for quasi-
circular binaries called NRPM, based on the quasiuniversal
relations of [16] and implemented using the NR database
of the computational relativity (CoRe) collaboration [61].

Section III discusses performances of NRPM using a val-
idation set of NR simulations. Section IV discusses how
to complete effective-one-body waveforms with NRPM in
order to obtain a phase-coherent model of the complete
inspiral-merger-postmerger waveform, valid from the cir-
cular adiabatic regime to the kiloHertz regime.

Section V demonstrates the use of the model in
template-based Bayesian data analysis applications. We
discuss the minimal requirement for postmerger detec-
tion. We demonstrate how to infer prompt collapse using
our complete spectrum model and Bayesian model selec-
tion. We show how to set constraints on the minimum
NS radius from a single event. Finally, we discuss how
to infer EOS stiffness at the extreme densities reached in
the merger remnant.

Conventions For waveform modeling we mostly use
geometric units c = G = 1 and measure masses in terms
of Solar masses M�. The waveform strain is decomposed
in multipoles as

h+ − ih× = D−1
L

∞∑
`=2

∑̀
m=−`

h`m(t)−2Y`m(ι, ψ), (1)

where DL is the luminosity distance and −2Y`m are the
s = −2 spin-weighted spherical harmonics. In this pa-
per we shall compute the strain from the equation above
assuming only the ` = 2, m = ±2 modes and symmetry
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across the orbital plane1. The ` = m = 2 waveform mode
is decomposed in amplitude A(t) and phase φ(t) as

h22(t) = A(t) exp (−iφ(t)) ; ω(t) = φ̇(t) , (2)

where ω(t) also indicates the GW frequency and the dot
denotes the time derivative. The corresponding spherical
harmonics are

−2Y2,±2(ι, ψ) =

√
5

64π

(
1± cos(ι)

)2
e±2iψ , (3)

so that one obtains

h+ − ih× ≈
√

5

4π

A(t)

DL

×
[

1

2

(
cos2(ι) + 1

)
cos(φ(t))− i cos(ι) sin(φ(t))

]
,

where one sets ψ = 0. We work with quantities rescaled
by the total binary mass, i.e.

ω̂ := Mω = 2πf̂ , t̂ := t/M , Â := A/M , (4)

and further define the moment of merger (t̂mrg = 0) as
the time of the peak of A(t) (Fig. 2). Note that the
time t̂ refers to the retarded time in case of the NR data.
The binary mass is indicated with M = MA + MB , the
mass ratio q = MA/MB ≥ 1 and the symmetric mass
ratio ν = MAMB/M

2. GW spectra and frequencies are
instead discussed and shown in SI units with distances
expressed in Mpc.

II. NRPM MODEL

Our postmerger model builds on the results of [12, 16,
62] that showed the postmerger frequency peak correlates
with the tidal polarizability parameter

κT
2 =

3

2

[
ΛA

2 (XA)
4
XB + ΛB

2 (XB)
4
XA

]
, (5)

where Λi2 ≡ 2ki2(Mi/Ri)
5/3, with i = (A,B), are the

dimensionless quadrupolar tidal polarizability parame-
ters of the individual stars [63, 64], ki2 the dimensioless
quadrupolar Love numbers [65–68], (Mi, Ri) the mass
and radius and Xi ≡ Mi/M . Here we derive similar
relations also for other characteristic frequencies of the
spectrum and for the waveform’s amplitudes and charac-
teristic times. For nonspinning and slowly spinning BNS,
each of those quantities can be approximately modeled
in terms of the following set of physical parameters

θ =
(
ν,M, κT

2

)
, (6)

1 We are considering here only nonprecessing systems.

FIG. 2. Merger and postmerger waveform from two very dif-
ferent BNS with mass M = (1.35+1.35)M�. The MS1b BNS
is an example of long-lived remnant; the SLy BNS an exam-
ple of short-lived remnant collapsing at t̂ ∼ 1200 after merger
time, t̂ = t̂mrg. In both cases the postmerger waveform am-

plitude has characteristics maxima and minima Âi at times
t̂i with i = 0, ..., 3. Note the jump in the phase at t̂0, where
the instantaneous frequency is not defined.

that defines NRPM’s parameter space. The latter choice is
one of the key differences with respect to previous time-
domain models [27, 45, 46]. Other important differences
are the use of the largest-to-date set of NR simulations
and the possibility of constructing a time domain approx-
imant that is phase coherent with inspiral-merger models
(see Sec. IV).

We use 148 simulations of the computational relativ-
ity (CoRe) collaboration [61], plus 24 simulations in part
reported in [69] and in part unpublished. The set of sim-
ulations covers the range q ∈ [1, 1.5] and κT

2 ∈ [73, 458].

Figure 2 illustrates some of the qualitative features
common to all the merger+postmerger NR waveforms for
short- and long- lived NS remnants. The waveform fre-
quency at early times is approximately constant around

the f̂2 value. In many waveforms a further frequency
modulation is clearly present in the first milliseconds af-
ter merger. This feature is interpreted as the couplings

between f̂2 and a radial pulsation mode f̂0, in analogy
to what happens with nonlinear perturbations of equilib-
rium NS [24, 70–72]. In the latter case, nonlinear cou-
plings between proper modes result in new frequencies

given by f̂2±0 = f̂2 ± f̂0. In the case of BNS mergers,
the two secondary peaks in the GW spectra can be inter-

preted as the nonlinear pulsations of the remnant f̂2±0

[24]. These secondary frequency peaks in the spectrum
are well-studied, e.g. [21, 22, 73, 74] and can be clearly
seen in Fig. 5.

Although we will often refer to discrete frequencies
(spectral peaks), we stress that the GW frequency is not
constant but evolves (chirp-like) as the remnant becomes
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more compact and eventually collapses (see SLy data in
Fig. 2). The largest GW luminosity is emitted at early

times after merger at which f̂(t) is approximated by a

certain combination of f̂2, f̂2±0 [75]. The waveform’s am-
plitude after the merger peak has typically a minimum,
a maximum and at least a second oscillation. In Fig. 2
these extrema are labelled as Âi and occur at times t̂i
with i = 0, 1, 2, 3 where the minima have even indices.
Note that at t̂0 the GW phase has a jump and the in-
stantaneous frequency is not defined; this corresponds to
a moment in which the remnant has a strongly suppressed
quadrupolar deformation. At timescales ∼10−20 ms cor-
responding to t̂ ∼ 1000−2000 (M ∼ 2.7M�) the remnant
has either collapsed (short-lived) or dissipated most of its
energy via GWs. There is no significant GW emission at
timescales τ & 100 ms [29, 76] (see also Appendix C).

In the following we describe in detail the construction
of the time-domain model and how the NR information
is extracted.

A. Time-domain model

1. Frequency and Phase

We assume the GW frequency is composed of the three

main characteristic frequencies f̂2−0 < f̂2 < f̂2+0 and
construct a C1 model for ω̂(t) as follows. The frequency
model starts at t̂ = t̂mrg = 0 with the value of the merger

frequency ω̂mrg and its derivative ˙̂ωmrg taken either from
NR fits or from an inspiral-merger time-domain approx-
imant (see Sec. IV). We impose

ω̂(t̂mrg) = ω̂mrg (7a)

ω̂(t̂0 ≤ t̂ ≤ t̂1) = ω̂2−0 (7b)

ω̂(t̂2) = ω̂2+0 (7c)

ω̂(t̂ ≥ t̂3) = ω̂2 , (7d)

and use a cubic interpolant to join ω̂mrg to ω̂2−0 in the in-

terval (t̂mrg, t̂0) fixing the values of the function and of the
first derivatives at the interval’s extrema. The derivative
at t̂0 is taken as ˙̂ω(t̂ = t̂0) = 0. The frequency oscilla-
tion in the intervals (t̂1, t̂2) and (t̂2, t̂3) is modeled with a
sine function in such a way that ω̂2+0 is a maximum and
preserving the continuity and the differentiability of ω̂(t).
Note the model can be reduced to a single-frequency one
by simply joining ω̂mrg to ω̂2 at t̂3 and omitting ω̂2±0.
The phase of the waveform is finally given by integrating
the frequency model,

φ(t̂) =

∫ t̂

0

ω̂(t̂′)dt̂′ + φ0 , (8)

where φ0 is either arbitrary chosen or fixed by requiring
continuity with an inspiral-merger phase.

2. Amplitude

We assume the postmerger amplitude has two minima,
Âi with i = 0, 2, and two maxima, Âi with i = 1, 3, and
that it decays exponentially after the second maximum.
A C1 model for Â(t) is constructed assuming

Â(t̂mrg) = Âmrg (9a)

Â(t̂i) = Âi (9b)

Â(t̂ ≥ t̂3 + 5) = Â3 exp
[
−α

(
t̂− t̂3

)]
, (9c)

and using sine waves to connect maxima and minima.
We define fractional amplitudes βi = Âi/Âmrg with
i = 0, 1, 2, 3 of the extrema with respect to the merger
amplitude. The damping term α is set as the time scale
at which the waveform amplitude is 1/100 of the merger

value, i.e. when Â falls below the threshold

β4 = 10−2 . (10)

Indicating t̂4 such time, one obtains

α =
ln(100β3)

t̂4 − t̂3
. (11)

The timescale 1/α is identified from simulations and
has range ∼(3, 70) ms for BNS masses distributed M ∼
(2.5, 3)M�, if no collapse to a BH happens before [75]
(see also Sec. II B 2 for discussion on BH collapse).

B. NR information

The model’s parameters are summarized in Tab. I;
their values are fixed by constructing interpolating for-
mulas of NR data on the space of parameters θ.

1. Frequencies, amplitudes and times

The frequency information is extracted from the spec-
tra by identifying the three dominant peak frequencies.
Amplitudes Âi and the related times t̂i are extracted
from the waveforms (Fig. 2). Specifically, we construct
fit models using the variable [77] (see also Appendix A)

ξ = κT2 + c(1− 4ν) , (12)

where the constant c is also a fitting parameter. The
frequency and amplitude at merger Âmrg, and the peak
frequencies are well described by rational functions in the
form

FRational(κ
T
2 , q) = F0

1 + n1ξ + n2ξ
2

1 + d1ξ + d2ξ2
, (13)

where (F0, n1, n2, d1, d2) are the fitting parameters. The

amplitudes Âi for i = 0, 1, 2, 3 and the times t̂i are instead
fit by linear polynomials in ξ

FLinear(κ
T
2 , q) = p0 + p1ξ , (14)
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TABLE I. NRPM model parameters and their ranges, coefficients of NR fits with rational functions (F0,n1,n2,d1,d2) or with
linear functions (p0, p1), and fits’ χ2.

Parameter Description Range NR fit model c F0 n1 n2 d1 d2 p0 p1 χ2

f̂mrg Merger frequency [0.013872, 0.027953] Rational 3199.8 0.033184 0.0013067 0.00 0.0050064 0.00 - - 1.539× 10−5

f̂2 PM peak frequency [0.021789, 0.048804] Rational -52.655 7.6356 0.066645 4.0146 × 10−5 10.949 0.040276 - 9.702× 10−5

f̂2−0 PM secondary frequency [0.013756, 0.037838] Rational 5767.6 0.052182 0.002843 0.00 0.012868 0.00 - - 1.033× 10−4

f̂2+0 PM secondary frequency [0.029628, 0.071988] Rational 1875.5 4.5722 0.060385 1.0661 × 10−4 4.1506 0.027552 - - 5.213× 10−4

Âmrg Merger amplitude [0.17296, 0.27331] Rational 5215.0 0.34910 0.019272 -4.3729 × 10−6 0.028266 9.3643 × 10−6 - - 1.421× 10−4

Â0 1st mininum of PM amplitude [0.0023760, 0.049993] Linear -6735.8 - - - - - 0.032454 -6.8029 × 10−5 3.877× 10−3

Â1 1st maxinum of PM amplitude [0.059723, 0.21650] Linear 58542.0 - - - - - 0.17657 -3.7794 × 10−5 1.308× 10−3

Â2 2nd mininum of PM amplitude [0.016075, 0.15814] Linear -623.09 - - - - - 0.11601 -1.7376 × 10−4 4.700× 10−3

Â3 2nd maxinum of PM amplitude [0.049711, 0.19158] Linear 4486.2 - - - - - 0.15894 -1.7317 × 10−4 4.177× 10−3

t̂mrg Merger time 0 - - - - - - - - - -

t̂0 Time of Â0 [39.488, 77.146] Linear 241.88 - - - - - 37.181 0.086789 0.1509

t̂1 Time of Â1 [56.489, 162.76] Linear -4899.3 - - - - - 83.045 0.16377 2.124

t̂2 Time of Â2 [71.284, 416.15] Linear -6027.2 - - - - - 121.34 0.3163 18.17

t̂3 Time of Â3 [87.423, 506.15] Linear -6312.6 - - - - - 157.29 0.48347 18.28

t̂4 Time of Â = Âmrg × 10−2 [264.14, 5011.6] Linear 8573.6 - - - - - 1375.0 1.8460 413.3

FIG. 3. Characteristic frequencies information from NR simulations. Markers represent the frequencies extracted from the NR
data and the uncertainties are estimated using simulations at different resolutions; the black lines are the fits and the grey
bands are the 90% credible regions. Left and right panels show the same data: the colors on the left panel correspond to the
EOS variation, on the right panel to the mass ratio.

where (p0, p1) are fitting parameters. The results of the
fits are shown in Tab. I.

As an example, the peak frequency fits are shown in
Fig. 3. The uncertainty of the NR data computed from
simulations at multiple grid-resolutions is shown in the

plot as bars, if available. Note the f̂2 peaks determi-
nation is affected by a further error of ∼2− 8% due to
the discrete Fourier transform; larger errors affect the

f̂2±0 determination. The χ2 coefficients for the frequen-
cies fit are typically ∼10−4 (note the merger frequency
has χ2 ∼ 10−5), but some outliers are visible from the

plots at small ξ, or equivalently small κT
2 (since these

points correspond to q ∼ 1). We note that most of these
data points correspond to low-resolution simulations for
which error bars either cannot be computed (one reso-
lution available) or are unreliable (two low resolutions
available). For example, the ENG simulation at κT

2 ∼ 80
is a high-mass M = (1.7 + 1.7)M� BNS simulated at
a maximal grid resolution of h ≈ 0.365 km that does
not guarantee convergence even for the inspiral-merger

(cf. [78–80] and Appendix C). The frequency f̂2+0 model
is the most uncertain for the available data.



6

Table I (see also Appendix A) shows that, while post-
merger amplitude fits are well captured by the model
(χ2 ∼ 10−3), the postmerger times are more uncertain
(χ2 > 1) with the uncertainty growing for larger times.
This is expected since the quantities at later times are
less correlated with pre-merger parameters and NR data
are themselves more uncertain the longer the simulation
is. While uncertainties on “late-time” quantities do not
affect significantly the time-domain waveform (see dis-
cussion in Sec. III), they can affect the Bayesian parame-
ter estimation (Sec. V). Notably, the damping parameter
α is degenerate with part of the waveform amplitude in
Fourier space, and therefore fit biases can affect the esti-
mation of the luminosity distance.

2. Prompt collapse

NR simulations indicate that a NS binary merger will
be followed by a prompt collapse to a BH, if the total
gravitational mass M of the binary exceeds a threshold
mass. The latter can be roughly estimated as [19, 20]

Mthr = kthrM
TOV
max . (15)

where MTOV
max is the gravitational mass of the heaviest

stable nonrotating NS. Both MTOV
max and kthr depend, in

general, on the EOS, mass ratio, and spins. For a sample
of hadronic EOS and equal-mass nonspinning binaries,
the threshold parameter in Eq. (15) is found in the range
1.3 . kthr . 1.7 [19, 20, 31]. Moreover, kthr shows an
approximately EOS-independent linear behaviour in the
compactness C of a reference nonrotating NS at equilib-
rium, see [31] for a recent collection of literature data, fit
recalibration and discussion. Despite several NR efforts,
it remains challenging to construct a EOS-independent
(universal) relation for Mthr that is accurate and robust
across the entire parameter space. A data analysis ap-
proach based on Eq. (15), NRPM and EOS inference is
outlined in Appendix B.

We follow here an alternative route. By analyzing the
NR data of the CoRe collaboration, we have found that all
the 30 prompt collapse mergers are captured by the con-
dition κT

2 < 80, see also Ref. [12]. By further combining
the estimate with Eq. (15) for a sample of nonrotating
NS model with 13 EOS, leads to the following criterion
for prompt collapse [12]

κT
2 < κT

thr = 80± 40 . (16)

We adopt the above criterion in NRPM. In the context of
a Bayesian analysis, the threshold value can be either
prescribed or included in the set of intrinsic parameters.

This assumption is a simplification as the prompt col-
lapse threshold is primarily determined by the EOS pres-
sure support at large densities (or the maximum mass).
For example, for a EOS sufficiently soft at the postmerger
densities ρ & 3ρ0, where ρ0 is the nuclear density, but ad-
mitting small compactness at inspiral densities (ρ ∼ 2ρ0),

Eq. (16) might incorrectly predict a NS remnant signal
instead of a prompt collapse. In practice, we do not have
such EOS in our hadronic EOS sample but interesting
examples are the EOS with hyperons [81] or with phase
transitions to quark deconfined matter. We will discuss
how to deal with these cases using a specific example
below. Improvements in the modeling of the prompt
collapse threshold and the waveform amplitudes for the
short-lived cases are possible and will be considered in
the near future as more and more accurate simulations
will become available.

III. VALIDATION OF NRPM

We compare the NRPM model to all non-spinning bina-
ries in CoRe database and to a “validation set” of 10 sim-
ulations that were not employed for the fits of Sec. II B.
The properties of the validation set are summarized in
Tab. II. The simulations span the relevant ranges in θ, in
particular covering the prompt collapse and short-/long-
lived remnant cases. We compute the mismatch [84]

F̄ = 1−max
φ0,t0

(h1(φ0, t0), h2)√
(h1, h1)(h2, h2)

, (17)

based on the Wigner scalar product between two wave-
forms

(h1, h2) = 4<
∫ fmax

fmin

h̃∗1(f) h̃2(f)

Sn(f)
df , (18)

and assuming advanced LIGO design sensitivity [85–87]
for the power-spectral-density (PSD) function Sn(f) and
[fmin, fmax] = [fmrg, 4096 Hz]. The value of F̄ represents
the loss in signal-to-noise ratio (squared) for waveforms
that are aligned in time and phase. Additionally, we
analyze time-domain phasing between the model and the
NR waveforms.

Mismatches against the CoRe data used in the fits are
shown in Fig. 4; the points relative to the validation set
waveforms are shown as cyan triangle markers. The plot
orders the binaries according to κT

2 . The largest mis-
matches are of order ∼0.65 for κT

2 . 200, smallest mis-
matches are of order ∼0.1, and on average F̄ ∼ 0.3. We
recall that a mismatch F̄ roughly corresponds to a frac-
tional reduction in detection rate of ∼1 − (1 − F̄ )3 for
sources that are uniformly distributed in space [88, 89].
Template banks for detection are usually constructed
such that the maximum value of F̄ across the bank is
0.03, thus allowing for a ∼10% loss in the detection rate.
The requirements for parameter estimation are believed
to be more restrictive than those for detection, but cur-
rent state-of-the-art binary-black-hole EOB waveforms
have F̄ ∼ (0.001 − 0.01), e.g. [90]. Mismatches of NRPM
with NR waveforms are obviously larger than those of
models that directly use the same NR data [13, 44, 46]
(Note however less than 40 simulations were used in those
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TABLE II. Properties of validation binaries and inference results for the subset of postmerger injections. The recovered
quantities are referred to the minimum SNR required to detect the postmerger signal and they correspond to median values
and 90% credible regions.

Properties Injections’ Recovery

EOS MTOV
max RTOV

max MA MB κT
2 f2 Ref. SNRMF SNRopt M q κT

2 f2 Rmax

[M�] [km] [M�] [M�] [kHz] (Min.) (Min.) [M�] [kHz] [km]

2B 1.78 8.47 1.35 1.35 23.6 — [82] — — — — — — —

SLy4 2.06 9.97 1.364 1.364 75.2 3.65 [53] 12 22 1.79+0.46
−0.17 1.33+0.11

−0.07 74+151
−4 5.22+0.03

−2.30 6.5+3.4
−0.3

BHBΛφ 2.10 11.63 1.50 1.50 90.0 3.39 [58] 10 13 2.50+0.10
−0.25 1.03+0.07

−0.03 79+28
−8 3.60+0.14

−0.07 9.3+0.2
−0.5

DD2 2.42 11.93 1.50 1.50 91.1 2.76 [58] 9 13 2.39+0.35
−0.29 1.10+0.13

−0.09 196+79
−68 2.74+0.02

−0.02 10.6+0.7
−0.7

SLy4 2.06 9.97 1.30 1.30 93.1 3.13 This work 8 13 2.40+0.26
−0.28 1.09+0.07

−0.08 137+54
−35 3.11+0.02

−0.02 9.9+0.5
−0.6

LS220 2.04 10.67 1.364 1.364 133.9 2.97 [53] 8 13 2.30+2.38
−0.44 1.28+0.17

−0.22 218+500
−99 2.95+0.03

−2.07 9.9+7.3
−0.7

LS220 2.04 10.67 1.4 1.33 133.9 3.03 This work 9 14 2.32+0.34
−0.25 1.25+0.09

−0.08 168+60
−54 3.00+0.02

−0.02 10.0+0.7
−0.5

DD2 2.42 11.93 1.364 1.364 157.5 2.39 [53] 7 12 1.94+2.75
−0.43 1.06+0.34

−0.06 414+252
−332 2.30+0.88

−1.42 10.9+10.9
−5.0

H4 2.03 11.66 1.45 1.25 210.7 2.33 [83] 6 8 4.01+0.97
−2.25 1.27+0.19

−0.24 183+554
−107 1.85+0.88

−0.99 16.8+2.3
−7.1

BHBΛφ 2.10 11.63 1.25 1.25 256.1 2.36 [58] 8 9 2.41+0.42
−0.26 1.07+0.15

−0.07 281+88
95 2.35+0.02

−0.02 11.5+0.9
−0.5

FIG. 4. Mismatches between NRPM model and the CoRe NR
waveforms. The validation set is indicated with cyan trian-
gle markers. Vertical bars indicate the range of mismatches
amongst NR waveform at different grid resolution (when avail-
able); a single marker indicates the mismatch between wave-
forms from two grid resolutions or the average from many
resolutions. LIGO design sensitivity [85–87] is used in the
calculation of F̄ and the frequency ranges start from fmrg

(computed with relation extracted above) and reach 4kHz.

works). They are instead comparable to those of [47] ob-
tained with a similar dataset and overall model design.

The mismatches should also be compared to the NR
uncertainties. For each binary, we plot an estimate of
the NR uncertainty obtained by computing the mismatch
between simulations at different resolutions. For most of
the NR data available it is neither possible to show con-
vergence of the postmerger waveform phase nor a mono-
tonic behaviour with grid resolution (but see [29, 58] for
counter examples and Appendix C for a discussion on er-

ror controlled postmerger waveforms). Hence, we prag-
matically compute mismatches between waveforms from
all the pairs of simulations at the different grid resolu-
tions available. From Fig. 4 it is clear that postmerger
NR data do not satisfy by themselves the F̄ . 0.03 crite-
rion, and NR mismatches are in many cases comparable
to those due to the modeling. A necessary condition for
the development of faithful postmerger models is thus the
improvement of the NR postmerger waveforms.

We further discuss time-domain phasing and spectra
for three binaries taken from the validation set and shown
in Fig. 5. The best match case is the BHBΛφ with
M = (1.25 + 1.25)M� (F̄ ∼ 0.1) for which the peak
frequency f2 = 2358 Hz is well reproduced by the model
(fit value ffit

2 = 2357 Hz) and the waveform remains in
phase for &10 ms after merger. Phase differences at late
times influence less the match since most of the energy
is radiated earlier. The DD2 with M = (1.50 + 1.50)M�
has a moderate match with NRPM. The model slightly

overestimates f̂2 predicting ffit
2 = 2871 Hz instead of

f2 = 2761 Hz. Some significant dephasing is observed
around t̂ ∼ 200 for several cycles, and it is likely the main
cause of the mismatch. The worst mismatch is obtained
with the SLy4 with M = (1.364 + 1.364)M� that pro-
duces a short-lived remnant collapsing in ∼13 ms. For
this BNS the peak frequency is underestimated by the
model (f2 = 3654 Hz vs ffit

2 = 3367 Hz). The NR fre-
quency evolution has several oscillations and increases
before collapse; these features are not modeled by NRPM.
Consequently, the model has a poor match. Note the

f̂2±0 are rather well estimated in this case.

Inspection of other waveforms confirms that mantain-
ing the phasing in the early postmerger signal is a key
factor for the overall accuracy of the model. In addition,

since the f̂2 fits of Sec. II are less accurate for small κT
2 ,

NRPM better describes the waveforms of BNS with larger
κT

2 corresponding to lower postmerger frequencies. Note
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FIG. 5. Complete TEOBResumS NRPM (2, 2) waveforms and corresponding spectra. Left panel: Time-domain TEOBResumS NRPM

(2, 2) waveforms compared with selected NR hybrids around merger. From top to bottom, BHBΛφ M = (1.25 + 1.25)M� is
the best mismatch case, DD2 M = (1.50 + 1.50)M� represents an intermediate case and SLy4 M = (1.364 + 1.364)M� is the
worst mismatch case. Right panel: Corresponding spectra from 400 Hz to 4 kHz with sources located at 40 Mpc and analytical
power spectral densities of LIGO design [85–87] and Einstein Telescope [91, 92].

FIG. 6. Mismatches between hybrid waveforms (TEOBResumS
+ NR) and the complete model TEOBResumS NRPM as function
of lower cut-off frequency fmin ∈ [50 Hz, fmrg]. The latter
quantity is taken from the NR fits.

the latter are the most favored in low SNR detections.
In other words, NRPM is more robust (uncertain) for long-
lived (short-lived) remnant, as expected. Finally, we test

a simpler version of NRPM with the single frequency f̂2

and find that some short-lived data are actually better
described by this simpler model which averages the fre-
quency evolution.

IV. TIME-DOMAIN
INSPIRAL-MERGER-POSTMERGER MODEL

A model for the time-domain inspiral-merger-
postmerger (IMPM) waveform is obtained by smoothly
attaching amplitude and phase of NRPM at the peak am-
plitude Âmrg of any time-domain inspiral-merger model.
Currently, the only time-domain waveforms that can re-
produce the merger peak amplitude are the effective-one-
body (EOB) ones. We thus use the tidal EOB model
developed in [82, 90, 93] and called TEOBResumS.

The attachment is done at the amplitude peak as de-
scribed in Sec. II A, but using the amplitude Âmrg, the

merger frequency ω̂mrg and its derivative ˙̂ωmrg of the

inspiral-merger waveform. Amplitudes Âi are then fixed
by computing the ratios βi. Examples of IMPM wave-
forms are shown in Fig. 5 and compared to NR wave-
forms. In order to perform a visual comparison, the NR
and TEOBResumS NRPM waveforms are aligned in phase
and time at merger. The figure shows the smooth at-
tachment at merger and the phase coherence of the post-
merger completion. The figure also highlights that NRPM
is more accurate for BNS with larger κT

2 , as discussed in
Sec. III.

A quantitative measurement of the phase coher-
ence is obtained by computing mismatches between
the TEOBResumS NRPM model and hybrid waveforms con-
structed joining TEOBResumS to NR data. We built such
hybrid waveforms starting from a GW frequency of 50 Hz
and for each BNS of the validation set. The mismatches
are computed as functions of the lower cut-off frequency
fmin, which takes values from 50 Hz to fmrg. where the
latter is obtained by the NR fits. Figure 6 shows the
mismatches as a function of fmin for the validation set.



9

Significant phase differences are accumulating between
500 Hz and 800 Hz where the NR merger is attached.
The last point of each line corresponds to the mismatch
between NRPM and NR; typical values are F̄ . 0.3 with
a minimum F̄ ∼ 0.1 consistently with what discussed in
Sec. III.

V. INJECTION STUDIES

To demonstrate the applicability of NRPM in the con-
text of Bayesian GW data analysis we consider a set
of experiments in which known signals are injected us-
ing zero-noise configuration and recovered using standard
Bayesian inference techniques. The experiments aim at
addressing the following questions:

(A) At which SNR can NRPM detect a PM signal?

(B) Is it possible to infer whether the merger remnant
collapsed to a BH or was a NS using the IMPM
model?

(C) What constraints can be set on the NS minimal
radius from the PM analysis solely?

(D) Is it possible to infer the EOS stiffness at the ex-
treme densities reached in the NS remnant using
the IMPM signal?

Given data d and hypothesis H, the posterior distribu-
tion of the parameters Θ is defined from Bayes’ theorem,

p(Θ|d,H) =
p(d|Θ, H) p(Θ|H)

p(d|H)
, (19)

where p(Θ|H) is the prior distribution for the parameters
Θ and p(d|Θ, H) is the likelihood function. For a single
detector i, the likelihood is defined as

log pi(d|Θ, H) ∝ −1

2
(d− hΘ, d− hΘ)i , (20)

where hΘ is the GW template, which depends on the pa-
rameters Θ. For a detector network it is obtained mul-
tiplying the likelihood of the single detectors. The term
p(d|H) is the evidence and it can be computed as the
marginalization of the likelihood function over the entire
parameters space.

We perform two sets of experiments using the ampli-
tude sensitivity densities (ASD) of the three Advanced
LIGO [85–87] and Advanced Virgo detectors [94]. In
the first set, we inject 9 postmerger signals of the val-
idation set reported in Tab. II placing the source at
2, 3, 4, 5, 6, 7, 8 Mpc and located at right ascension and
declination (α, δ) = (0, 0) with angle of view ι = 0, po-
larization angle ψ = 0 and sampled at 8192 Hz. In the
injections, we apply a Tukey window at merger in order
to isolate the postmerger signal and remove the contri-
butions from the inspiral. The distances approximately
correspond to postmerger SNRs from 4 to 16, with the

exact values depending on the particular BNS. The in-
jected NR signals are recovered with NRPM by analyzing
the frequencies [1024, 4096] Hz and fixing the sky location
of the source. Inference is performed on the extended set
of parameters

Θ = (MA,MB ,ΛA,ΛB , DL, ψ, t0, φ0) , (21)

where (t0, φ0) are the time shift and the merger phase,
respectively, and ψ is the polarization angle. In this pa-
per we prescribe the collapse threshold as κT

thr = 70; for
more general analysis the parameter can be included into
Θ. We also use the α parameter in Eq. (11) as esti-
mated from the NR fits but, as discussed in Sec. II B 1,
uncertainties on the α fit can lead to incorrect distance
estimates. In future analysis it should be explored the ef-
fect of promoting α to an inference parameter, effectively
allowing for a more agnostic analysis.

The posterior distributions of other parameters are re-
covered using their definitions or from the fits in case of
peak frequencies. Priors are set on chirp mass, mass ra-
tio and ΛA,B , that are bounded to Mc ∈ [0.5, 2.2]M�,
q ∈ [1, 1.5] and ΛA,B ∈ [50, 5000]. The prior distribu-
tions are uniform in the individual components MA,B

and ΛA,B . Bayesian inference is performed with the
nested sampling algorithm [95] as implemented in the
LALInference software package [96–98].

In the second set, we inject hybrid waveforms and
we recover with either the IM model or the IMPM
model. Specifically, we use the nonspinining surrogate of
TEOBResum developed in [99] and refer to the IM (IMPM)
model as TEOBResum ROM (TEOBResum ROM NRPM). The
choice of the priors is identical to the previous cases, ex-
cept for the chirp mass for which we use a smaller range
Mc ∈ [1, 2.2]M� and the frequency range analyzed is
[50, 4096] Hz. We note that the injection labelled as 2B
M + (1.35 + 1.35)M� is a prompt-collapse signal. NRPM
does not include a template for this type of sources and
then this waveform is excluded from the detectability ap-
plication, but it is included in the second set of injections
(Sec. V B).

Considering a GW170817-like source, an optimal SNR
∼3 could be achieved by the Advanced LIGO-Virgo de-
tectors at design sensitivity, while SNR ∼10 is expected
to be achieved by third generation detectors. From now
on, the SNR value we quote is the maximum value com-
ing from the matched-filtered SNR computation between
NRPM model and the injected signal.

A. Postmerger detectability

We discuss the results of the first set of injections em-
ploying only PM signals and NRPM. The matched filtering
analysis of the validation set gives evidence of postmerger
signals starting from network SNR ∼ 8 − 9. The latter
correspond to source distances of 4− 6 Mpc. We find
that statistical errors are larger than systematic uncer-
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FIG. 7. Marginalized posterior distributions of f2 for three injected cases at different SNRs: the first case, BHBΛφ M =
(1.25 + 1.25)M�, is a case where the peak frequency is well recovered and this is also supported by the low mismatch between
NRPM model and the injected signal. In the second case, DD2 M = (1.50 + 1.50)M�, we can see that for high SNRs biases
appear systematically and the recovered peak is below the injected one. The third case, SLy4 M = (1.364 + 1.364)M�, shows
a bimodal distribution: a dominant peak appears at frequency ∼5.2 kHz (beyond the Nyquist limit, not in the plot) while
the secondary peak is close to the injected value. The primary peak is compatible with the frequency f2−0 aliased at high
frequencies.

tainties at SNR .12 but the two become comparable for
higher SNRs.

The parameters recovered by the analysis at the mini-
mal SNR are reported in Tab. II. For most of the cases,
the posterior distributions of the physical parameters in-
clude the injected values within the 95 % confidence re-
gions.However, some cases show degeneracies among the
model’s parameters. In general, the largest discrepancies
in the recovered parameters are induced by the inaccu-
racy of the NR frequency fit for the particular BNS. The
posterior distributions for f2 for three exemplary cases at
different SNRs are shown in Fig. 7. NRPM recovers the cor-
rect peak frequency within the uncertainties for all the in-
jected binaries except for the DD2 M = (1.50 + 1.50)M�
which will be discussed in the next Sec. V D.

For the injection BHBΛφ M = (1.25 + 1.25)M�, the
estimation of the parameters with NRPM is in agreement
with the injected properties. The posterior distributions
are unimodal and centered around the injected value. In
this case, the model is able to reconstruct the spectrum
of the signal and this fact is also motivated by the low
mismatch between this waveform and the model.

A difficult case is SLy4 M = (1.364 + 1.364)M� for
which the value of the masses and κT

2 are underestimated

to compensate the smaller values of f̂2 estimated from
the NR fits, and to obtain a signal matching the injec-
tion (f2 ∝ M−1). Moreover, the marginalized posterior
distribution of f2 has a bimodality. For this signal, f2

is at the edge of the frequency range where the sensitiv-
ity is smaller and the recovery with NRPM promotes the
subdominant peak f2−0 as main frequency, especially for
high SNR. However, the f2−0 is aliased to high frequen-
cies and the maximum of the marginalized posterior dis-
tribution of f2 is well above the Nyquist frequency of

∼4 kHz (not shown in the plot). The secondary maxi-
mum of the distribution is compatible with the injected
value within the uncertainties.

Another interesting case is BHBΛφ M = (1.50 +
1.50)M�: this postmerger signal is very short and the
remnant collapse after ∼3 ms. As consequence, the fre-
quency evolution is not trivial and none of the spec-
trum peaks is relevantly dominant, since the remnant
evolves towards collapse. Then, the recovered f2 peak is
overestimated while the f2−0 peak is correctly captures

(f inj
2−0 = 2.48 kHz vs f rec

2−0 = 2535+40
−48 Hz at SNR 11).

In general, we observe for some cases a shift in the
recovered value of the total mass M : this parameter
strongly correlates with the position of the frequency
peak and with its amplitude in the frequency domain.
The latter quantities are also determined by the damp-
ing time in Eq. (11), whose behavior is not well capture
by NR fits (Tab. I). These uncertainties propagate dur-
ing the parameter estimation routine and the results are
biased. However, these effects could be avoided including
α into Θ. Moreover, this estimation can be inferred with
high accuracy from the inspiral measurement at these
SNRs.

B. Inferring prompt-collapse

We discuss the results of the second injection set fo-
cusing on two different BNS: 2B M = (1.35 + 1.35)M�
which end in a prompt collapse, and BHBΛφ M =
(1.25 + 1.25)M� for which the outcome is a long-lived
remnant (see Fig. 5). In the context of Bayesian anal-
ysis, a natural approach for prompt-collapse inference
is to perform model selection between inspiral-merger
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TABLE III. Evidences computed for the prompt-collapse in-
ference. The uncertainties are estimated with the criterion
introduced in Ref. [95]. The label ‘noise’ is referred to the
template identically equal to zero.

Injection logBIM
noise logBIMPM

noise logBIMPM
IM

2B M = (1.35 + 1.35)M� 124845+1
−1 124775+1

−1 −70+2
−2

BHBΛφ M = (1.25 + 1.25)M� 107116+1
−1 107306+1

−1 190+2
−2

and inspiral-merger-postmerger models for given data.
In case of prompt collapse, the IM model should be fa-
vored with respect to the IMPM one, while in case of a
long-lived NS remnant it should be the opposite. Note
this analysis relies on the existence of a coherent model
for the full spectrum (modeling the IMPM phases), as
the one proposed here.

Specifically, we perform model selection using the
Bayes’ factor B, which quantifies the agreement of two
different competitive hypotheses, HA and HB , with the
data. The Bayes’ factor is defined as the ratio of the two
posterior probabilities, however it is possible to prove
that it can be computed as the ratio of the evidences,

BAB =
p(d|HA)

p(d|HB)
. (22)

If BAB > 1 (< 1), the hypothesis A (B) is favored. In
our case, the competitive models are TEOBResum ROM for
the IM, and TEOBResum ROM NRPM for the IMPM. For this
test we remove the constraint given by κT

thr on NRPM.
We inject the 2B and BHBΛφ signals using an

SNR∼12, sufficient to detect the postmerger signal with
NRPM. We recover with and without attaching NRPM model
at merger. The values of the Bayes’ factors obtained are
reported in Tab. III. The algorithm is able to distinguish
whether the remnant has undergone prompt collapse or
not: the Bayes’ factor for 2B M = (1.35 + 1.35)M� cor-
rectly favors the model without postmerger (logBIMPM

IM =

−70+2
−2). Similarly, for BHBΛφ M = (1.25+1.25)M� the

presence of postmerger signal is favored with respect to
the prompt collapse case (logBIMPM

IM = 190+2
−2).

We point out that numerical relativity simulations in-
dicate that in prompt collapse waveforms a signal, not
described by EOB waveforms, is present after the ampli-
tude peak. We find that the SNR contribution of this
short, .2 ms, postmerger signal in the full spectrum of
2B M = (1.35 + 1.35)M� is below 4%.

C. Constraints on NS minimal radius

As shown in Tab. II, at the minimal SNR the infer-
ence on f2 delivers a result accurate at 2 − 16% (two-
sigma). Using the EOS-independent relation of f2(R1.6)
from [45], this measurement could be translated into an
estimate of the radius of a nonrotating equilibrium star
of mass 1.6M� (R1.6) with an uncertainty of ∼1.5 km.

In a real scenario this is not particularly interesting
since the radius (or equivalently the tidal parameters,

R ∼ Λ̃1/5 [100, 101]) will be known with an accuracy at
least 100 times better from the inspiral-merger analysis.
We find from our runs that inspiral-merger inference at
the minimal postmerger SNR delivers δΛ̃/Λ ∼ 0.04 and
δR/R ∼ 0.008.

More interesting is to explore constraints on the radius
of the maximum mass (most compact) nonrotating equi-
librium NS RTOV

max [48], since the latter corresponds to the
largest matter densities that can be reached for a given
EOS. Using the CoRe NR data, we find an approximate
relation in the form

R̂max(f̂2) = (5.81±0.13)−(123.4±7.2)f̂2+(1121±99)f̂2
2 ,

(23)

where R̂max = RTOV
max /M and fitting χ2 = 7.4 × 10−5.

Measurements of PM signals at the minimum SNR de-
liver an estimation of Rmax accurate at the ∼8% level.
The fit uncertainty is smaller than statistical error at
SNR 8, and they become comparable for SNR 11. Fig-
ure 8 show the data and fit for Eq. (23) together with
examples of the the posteriors for RTOV

max . The latter can
be inferred with an uncertainty of ∼1km.

Some cases show biased results: for DD2 M = (1.50 +
1.50)M� the expected maximum radius underestimates
the RTOV

max predicted by the related EOS, while for H4
M = (1.45 + 1.25)M� the recovery overestimates the
relative value. This shifts are coherent with the erroneous
estimation of the total mass M , previously discussed in
Sec. V A.

D. Inferring EOS stiffness at extreme densities

We demonstrate the possibility of investigating the
EOS stiffness at extreme densities using the postmerger
GW observations and NRPM. We discuss the specific case
of EOS BHBΛφ and DD2, previously simulated by some
of the authors [58]. The BHBΛφ EOS is identical to DD2
except that at densities ρ & 2.5ρ0 (where ρ0 is the nuclear
density) it softens due to the formation of Λ-hyperons.
Inspiral-merger GW signals from binaries described by
the two EOS and M . 3M� are indistinguishable since
the individual NSs have maximal densities ρ . 2.5ρ0,
similar compactnesses and tidal parameters (same κT

2 ,
Fig. 9).

We consider two pairs of binaries: a “low mass” with
M = 2.5M� pair and “high mass” with M = 3M� pair.
The individual NS of the low mass BNS have central den-
sity ρ ≈ 2.35ρ0 and there are essentially no Λ-hyperons
at these densities in the BHBΛφ EOS. The BNS rem-
nants relative to the latter EOS reach approximately
ρ ≈ 2.80ρ0 at which BHBΛφ differs from the DD2 EOS.
The GW postmerger signals have very similar f2 frequen-
cies, but they are in principle distinguishable at suffi-
ciently high SNR [58]. The individual NS of the high
mass BNS have ρ ≈ 2.75ρ0; the presence of Λ-hyperons
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FIG. 8. Characteristic postmerger frequency f̂2 against R̂max

extracted from NR data for different EOS. The black solid
line represents the fit with its 90% credible region. Right
panel shows the marginal posterior distributions of f̂2 for
three selected injections while the top panel shows the re-
spective R̂max marginal distributions.

significantly affect the postmerger dynamics. The DD2
binary produces a remnant surviving for &20 ms while
the BHBΛφ binary collapse within ∼2 ms as a result of
the EOS softening. The postmerger signals are conse-
quently very different, as illustrated in Fig. 9 (bottom
panel).

Figure 10 shows 68% and 95% confidence regions of
the marginal posterior distributions in the (f2, κ

T
2 ) plane

as summary plot of the inference results at two different
SNR; the left panels refers to the low mass BNSs, right
panels to high masses. The postmerger analysis of the
low mass BNSs returns the injected values and it agrees
with the inference from the inspiral analysis. At SNR 16
some deviations are visible in the posteriors distribution
indicating that such small differences might be detectable
with more accurate models and measurements.

The postmerger analysis of the high mass DD2 M =
(1.50+1.50)M� shows that the injected frequency is cor-
rectly captured by the recovery, while the frequency esti-
mated from the inspiral-merger analysis and the fit is
slightly overestimated (as expected, Cf. Fig. 5). As
a consequence of this, the κT

2 posterior from the post-
merger analysis is not compatible with the inspiral mea-
surement at the minimal SNR (upper right panel). How-
ever, at higher SNR the correct κT

2 is consistently recov-
ered within the 68% confidence region (lower right panel).

For the BHBΛφ high mass M = (1.50 + 1.50)M� case,
we find instead inconsistencies between κT

2 and f2 pos-
teriors computed from the IM and PM analysis respec-
tively. The postmerger analysis return a f2 higher than

FIG. 9. Binary neutron stars described by the BHBΛφ
and the DD2 EOS and simulated signals [58]. Top: Mass
of individual spherical equilibrium NS as a function of the
central density. Markers refer to simulated BNS. Bottom:
Real part of the (2, 2) waveforms for BNSs with mass M =
(1.50 + 1.50)M� and M = (1.25 + 1.25)M�.

the injected signal, especially at high SNR. At the same
time, the κT

2 distribution from the postmerger analysis
if shifted towards lower values at larger SNR and rails
against the prompt-collapse value κT

2 ∼ 70, significantly
departing from the inspiral measurement κT

2 IM = 93+2
−3.

The templated-analysis of the postmerger clearly tries to
fit the higher frequencies of the signal (f2 = 3.39 kHz)
and the short postmerger signal collapsing to BH. The
high frequencies of the BHBΛφ binary are incompatible
with the quasiuniversal of the NRPM model, due the phys-
ical softening of the EOS. Thus, the analysis the post-
merger signal effectively implies a softer EOS then the
analysis of the inspiral implies.

In a real GW measurement the difference in the in-
ferences of κT

2 (PM vs IMPM results in the high-mass
BHBΛφ case) will give an indication of the EOS soften-
ing at densities larger than those of the individual NS.
The constraint follows from the breaking of the quasi-
universal relation f2(κT

2 ), but the latter does not nec-
essarily imply the presence of new degrees of freedom
or phase transitions (Cf. [59]). The case studies suggest
that a measurement at SNR &11 leads to deviations from
the expected values larger than the 90% credible regions,
which is sufficient to make a prediction with significance
greater than one-sigma level.
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FIG. 10. Inference of EOS properties at extreme densities. Left panel: marginalized posterior distributions of f2 and κT
2 for

the “low mass” cases (SNR 11 and 16). The postmerger posteriors agree with the value predicted by the fit and with the
measurement from the inspiral. Right panel: marginalized posterior distributions of f2 and κT

2 for the “high mass” cases (SNR
11 and higher). The panels also shows f2(κT

2 ) fits related to the injected values with the associated 90% credible regions. The
uncertainties associated to the injected f2 are the widths of the relative peaks in the frequency domain.

VI. CONCLUSION

NRPM is a time-domain analytical model for post-
merger waveforms with minimal, but physically moti-
vated, parameters describing the morphology of the post-
merger waveforms in the binary (intrinsic) parameter
space defined by Eq. (6). Combined with inspiral-merger
effective-one-body waveforms, it forms an approximant
coherent in phase on the full frequency range observed
by ground-based interferometers. Future directions in
the modeling of postmerger waveform will include the
extension of the CoRe database and the application of
statistical/data reduction methods for the construction
of more accurate and reliable templates[13, 44]. Central
goals for numerical simulations are a better characteriza-
tion of the prompt collapse threshold and error-controlled
postmerger waveforms with microphysical EOS and un-
equal masses.

The current accuracy of the model seems sufficient for
the recovery of signals with postmerger SNR ∼8.5. These
results, although for a limited set of injections, suggest
that Bayesian template-based analyses of the postmerger
require higher SNRs than morphology independent anal-
ysis [14, 42]. The latter references claim that about 90%
of the signal can be reconstructed at SNR ∼5. Although
a direct comparison of a detectability threshold in the
two types of methods is difficult, the apparent higher re-
quirement in SNR of the template-based methods is un-
surprising, since the latter attempt to model and recover
the entire postmerger signal, as opposed to only captur-
ing its dominant feature. Additionally, the uncertainties
associated to numerical relativity simulations and to the
related fits significantly contribute in the mismatch (av-
eraging to F̄ ∼ 0.3, Fig. 4) and therefore affect the de-
tectability in the template-based method. An advantage
of our method is the possibility of performing coherent
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analysis of the inspiral-merger-postmerger spectrum. We
showed that a straightforward application of our models
in the context of Bayesian model selection is the inference
of prompt collapse/remnant star scenarios.

The quasiuniversal (approximately EOS independent)
relations established in this paper extend previous re-
sults and can be employed also with other modeling tech-
niques. On the one hand, they are key to build wave-
form models because they connect the main signal’s fea-
tures with the binary (progenitors NS) properties. On
the other hand, their direct use to constraining the EOS
is not always relevant. GW measurements of R1.6 or
κT

2 from f2 will not add significantly new information on
the EOS at extreme densities because the inspiral signals
of the same sources will deliver more accurate measure-
ments (stronger EOS constraints) of the same quantities.
For example, the NS radius at fiducial masses would be
known at .10 meters precision from inspiral measure-
ments against the kilometer precision of postmerger mea-
surement, with the meter precision being more accurate
than any quasiuniversal relation known to date.

With this in mind, we have explored a recalibration
[Eq. (23)] of the relation RTOV

max (f2) connecting the peak
frequency to the radius of the most compact NS [48]. The
latter effectively corresponds to the maximal NS central
densities, and it is unlikely that such NS will be compo-
nents of a binary system. A single postmerger signal at
minimal SNR would deliver RTOV

max within error of ∼8%
(few kilometers). Assuming no systematic effect from
the template-based inference, the uncertainty on RTOV

max

at minimal SNRs are comparable.
A second constraint of the EOS at extreme densities

could come from the identification of softness effects.
We demonstrated that inconsistencies in the tidal po-
larizability and in the characteritsic frequency peak in-
ferred independently from the inspiral-merger and post-
merger analysis can indicate EOS stiffening/softening at
densities ∼3 − 5ρ0 already at minimal SNR for detec-
tion. Note this approach has similarities to the inspiral-
merger-ringdown consistency tests performed on BHs sig-
nals [102–105]. It is important to stress that no specific
physical mechanism determining the softening/stiffening
is modeled in NRPM (nor in the NR relations), but the in-
formation follows from the breaking of the specific quasi-
universal relation. An interesting development would be
to perform model selection on different postmerger mod-
els, should NR quasiuniversal models based on specific
EOS parameterization/families become available.
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Appendix A: Quasiuniversal relations

We collect in this appendix various plots of quasinuni-
versal relations for amplitudes and times. Fig. 11 shows
amplitudes and times fits extracted from NR data of CoRe
collaboration and implemented in NRPM model. The ro-
bustness of those relations is further demonstrated using
the independent data from SACRA code [51] that were not
used in this work. To this purpose Fig. 12 shows a com-
parison between the f2 extracted from the SACRA catalog
[51] and the CoRe data and fits.

We give an euristic justification of the quasiuniveral
relations (employed here and elsewhere to summarize NR
information) and of the choice of the parametrization.
The discussion follows from the original argument given
in [82].

While the choice of the parameter in Eq. (12) should
be primarily considered as an operative choice, it can
be in part justified based on perturbative arguments.
In the effective-one-body (EOB) description of the two-
body dynamics or, equivalently in this case, in the post-
Newtonian formalism, the interbinary potential A(u),
where u = GM/(rc2), is the main quantity which de-
scribes the binary dynamics. The radial force governing
the circular motion is given by

dA

dr
= −u2

(
−2 + â′0(ν, u) + â′T (κA` , ν, u)

)
, (A1)

where, â0 and âT are the point-mass and the tidal cor-
rections to the Newtonian term respectively (we neglect
here spin interactions). The tidal contribution is in gen-
eral parametrized by the multipolar tidal polarizability
coefficients κA` of each NS [64]. At leading order in 1/c2

the two terms above read

â0(ν, u) ∝ νu2 , âT (κA` , ν, u) ∝ −κT
2 u

3 . (A2)

Hence, finite mass-ratio and tidal effects are
parametrized at leading order by ν and κT

2 = κA2 + κB2 .
Note the two contributions are associated with different
powers in u (different post-Newtonian orders) and have
opposite sign.

As noted in [82], in the strong field regime (where
the expansion above is not accurate), and in particular
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FIG. 11. Characteristic amplitudes and times information from NR simulations. Markers represent the quantities extracted
from the NR data; the black lines are the fits with their 90% credible regions. All upper panels show the same data; the colors
on the left panels correspond to the EOS variation, on the right panel the mass ratio. Note that we impose a lower bound for
Â0 equal to zero for all those values of ξ that lead to negative results in the fits.

FIG. 12. Postmerger frequencies f2 from CoRe database (gray
crosses) and from SACRA catalog [106, 107] (colored dots), av-
eraged on different resolutions. The black solid line is the
quasiuniversal relation for f̂2 extracted from CoRe data with
its 90% credible region.

close to the EOB last stable orbit u ∼ 0.14, the tidal
term âT can become numerically comparable to â0 as
κT

2 ∼ O(100). This reflects the physical fact that the
tidal term grows faster (∼ 1/r3) at small separations
than the non-tidal one (∼ 1/r2). Based on this picture,
it is thus natural to interpret the NR data in terms of κT

2

because the latter is the theoretically justified parameter
that encode the main effects of the EOS and masses on
the dynamics.

Interestingly, the κT
2 parameter approximately cap-

tures the collapse threshold and disk masses for nearly
equal masses BNS [12, 35]. On the one hand, this might

be intuitive since κT
2 contains information on the com-

pactness of the binary. On the other hand it is not nec-
essarily expected, given that the collapse is controlled
by the maximum mass (pressure) supported by the EOS
at densities much higher than those of the individual
NSs. Thus, one should not expect the κT

2 parameter
to completely or accurately capture the strong field dy-
namics; for this reasons we defined the NR relations as
quasiuniversal relations. For example, to capture the lu-
minosity of binaries with mass-ratios significantly differ-
ent from unity, it is necessary to correct the leading-order
post-Newtonian coefficient by a function of ν [12]. Sim-
ilarly, in this paper we have introduced the parameter ξ
in Eq. (12) to better capture mass-ratio effects. The logic
behind Eq. (12) is precisely to introduce a term that can
account for the strong-field effect of â0(ν, u). However,
for the reasons above, the ξ parameter cannot properly
describe quantities affected by significant tidal disrup-
tion. An extreme case is for the example the disk mass
in BH-NS binaries [108, 109].

Appendix B: Bayesian analysis with EOS inference

Constraints on the matter EOS can be extracted from
the GW signal by performing inference on a parame-
terized family of EOS [52, 110–112]. Instead of sam-
pling macroscopic EOS-related parameters, we can di-
rectly sample the function p(ρ) that defines the EOS.
Given this information, it is possible to infer the proper-
ties of each NS, such as tidal parameters and radii.

This method can be applied also with the complete
model proposed in this work, as described in Sec. IV. In
this case, it is possible to use Eq. (15) in combination
with information from the EOS (instead of the tidal pa-
rameters and Eq. (16)), in order to infer whether the rem-
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FIG. 13. Dependence of NR waveform on the grid resolu-
tion for the simulation SLy4 M = (1.30 + 1.30)M�. VLR,
LR, SR, HR stand respectively for maximal resolutions h =
[0.415, 0.246, 0.185, 0.136] km in each direction.

nant undergoes a prompt collapse to a BH. In particular,
MTOV

max and the maximum NS compactness Cmax would
be calculated from the inferred EOS while kthr can be
estimated from the inferred Cmax using NR fits [20, 31].
This approach gives an alternative way to include prompt
collapse in complete waveform models based on NRPM
which we will further explore in future work.

Appendix C: Robustness of NR postmerger
waveforms

As discussed in the main text a main limitation in the
construction of accurate postmerger models is the qual-
ity of NR postmerger waveforms. While the accuracy of
inspiral-merger BNS waveforms has been studied in some
detail and clear waveform convergence can be shown us-
ing high-order finite-differencing methods [79, 80, 113–
115], the latter are less effective in postmerger simula-
tions. Except for notable cases [29, 58], the robustness of
postmerger waveform with grid resolution has not been
studied in detail. We discuss here a resolution study of
a long postmerger waveform.

Amongst the validation binaries, we simulated the evo-
lution of the long-lived remnant employing a microphys-
ical EOS SLy4 [116] starting from a binary system of
individual NS masses of 1.30 M� at different resolu-

tions. These simulations span six orbits before merger
and last for more than 100 ms after merger. Such in-
tegration times can be demanding in terms of compu-
tational time but NR codes allow stable evolutions at
rather low grid resolution, e.g. [76, 117–119]. Evolu-
tions are performed with the WhiskyTHC code [79, 115,
120, 121] using a fifth-order monotonicity-preserving re-
construction within a standard second order finite vol-
ume scheme [79]. Stars are covered with resolutions of
h = [0.415, 0.246, 0.185, 0.135] km in each direction, re-
spectively Very Low Resolution (VLR), Low Resolution
(LR), Standard Resolution (SR), High Resolution (HR),
where SR is our standard for production runs [69] (but
note we performed also several HR simulations in past
work). We use seven 2:1 refinement levels and Courant-
Friderich-Lewy factor of 0.075 for the timestep.

The (2, 2) waveforms from runs at different resolution
are shown in Fig. 13. The waveform’s amplitude has a
non-monotonic behavior with increasing resolution. For
example, the extrema in the time window t ∈ (30, 60) ms
are similar for VLR and SR but different from those of
the LR data. The numerical high-frequency noise affect-
ing the frequency reduces in magnitude the higher the
resolution is, but it is mainly correlated to the ampli-
tudes’ minima. Hence, also the frequency noise is not
converging with resolution at the considered resolutions.
We check the waveform phase convergence and found
that the phase has a monotonic behavior with the grid
resolution only until few milliseconds after merger; the
long-term data are not in convergence regime at these
resolutions.

Results at resolution VLR show the appearance of spu-
rious frequencies at f < f2 around 40 ms; the latter
are not present at higher resolutions. These frequencies
have been erroneously interpreted as physical convective
modes [118], which are instead not developed on these
timescales even using a microphysical EOS. A careful in-
spection of the dynamics and multipolar waveform re-
veals instead physical spiral modes with m = 1 geometry
[29, 49, 122, 123]. The GW frequency of the mode is
f1 = f2/2 and could be added to NRPM model [49], but it
corresponds to a weak GW emission [29].

We conclude that, to the best of the current knowl-
edge, postmerger waveforms on timescales of ∼100 ms
are well described in terms of the frequencies and ampli-
tudes modeled by NRPM. The production of high-quality
NR postmerger waveforms is an urgent goal.
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