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We construct realistic sensitivity curves for pulsar timing array searches for gravitational waves,
incorporating both red and white noise contributions to individual pulsar noise spectra, and the
effect of fitting to a pulsar timing model. We demonstrate the method on both simulated pulsars and
a realistic array consisting of a subset of NANOGrav pulsars used in recent analyses. A comparison
between the results presented here and measured upper limit curves from actual analyses shows
agreement to tens of percent. The resulting sensitivity curves can be used to assess the detectability
of predicted gravitational-wave signals in the nanohertz frequency band in a coherent, flexible, and
computationally-efficient manner.

I. MOTIVATION

Pulsar timing arrays (PTAs) are poised to make the first
detection of nanohertz gravitational waves (GWs) in the
next 2-5 years [1–4]. These galactic-scale GW detectors
search for correlations in the times of arrival (TOAs) of
the pulses from millisecond pulsars as a signature for the
presence of GWs [5–7]. The recent inception of GW astro-
nomy by the advanced LIGO and VIRGO ground-based
detectors [8, 9] and the multi-messenger observations of
binary neutron stars [10] have drastically changed our
understanding of stellar-mass compact objects. PTAs are
poised to complement these observations by observing
GWs from binary systems comprised of super-massive
black holes (SMBHs) in the centers of distant galaxies.

A common tool used to assess the observability of
GW sources across the spectrum are detection sensitivity
curves (see, e.g., [11, 12] and Figure 1). These curves are
basic “figures of merit,” constructed by the developers
of GW observatories to assess the sensitivity of current
detectors and to predict the sensitivity of future, next-
generation detectors. The wider astrophysics community
uses detection sensitivity curves as an initial estimate of
the ability of a given detector to observe GWs from a
particular source.

While detailed sensitivity curves for extant detectors are
usually published for each observation run, those for PTAs
are often simplified [11, 13, 14], only including identical
white-noise components and often assuming that all pulsar
observation epochs are evenly spaced and have the same
baseline of observations. When drawn, these curves are
often cut-off at the timespan of the observations and do not
include important insensitivities at frequencies of 1/yr and
2/yr, due to fitting for a pulsar’s astrometric parameters
(Figure 1). Sensitivity curves should be contrasted with
both measured upper limit curves from actual analyses
and similar upper limit or detection curves produced by
analyzing mock data containing simulated injected signals.
A measured upper limit curve is a frequency-dependent
illustration of the current limits on the amplitude of a GW
signal set by a particular detector (or detectors) analyzing
a particular set of real data. Upper limit or detection

Figure 1. Sensitivity curves for different GW observations
and the predicted spectra of various GW sources. Note, in
particular, the (over) simplicity of the PTA sensitivity curves
relative to those for LISA and LIGO. The goal of our paper
is to construct more realistic PTA sensitivity curves. (Figure
produced by gwplotter and based on [11].)

curves produced by analyzing simulated data typically use
the same data analysis routines that are run on the real
data, and hence are often as computationally-involved
as the real analyses. Sensitivity curves, on the other
hand, are not calculated by analyzing real or simulated
data. Rather they simply use properties of the detector
network (noise characteristics, configuration, observing
schedule, etc.) and expected properties of the signal being
searched for to assess the ability of a PTA, for example,
to detect such a signal. Sensitivity curves are not meant
as a replacement for a full analysis of real PTA data,
but instead allow researchers a coherent, flexible, and
compuationally-efficient framework to asses various PTA
configurations.

It has long been known that the fit to a pulsar’s timing
model acts as a filter function [15, 16], absorbing frequen-
cies in the pulsar timing data in a predictable manner.
These effects have been studied in the context of searches
for GWs [3, 16, 17]. Reference [18] go one step further,
showing how one can mitigate for losses in sensitivity
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using very-long-baseline interferometry to localize pulsars
sky locations without explicitly fitting for their positions
using the timing data.

Modern PTA data analysis strategies and algorithms
are designed with this complication of the timing model
fit in mind [19–25]. This formalism was used e.g., in [26]
to study PTA sensitivity curves for deterministic and
stochastic sources of GWs, calculating sensitivity curves
both analytically and numerically, using frequentist and
Bayesian methods. The approach in [26] is similar in
spirit to ours in that they start from the same likelihood
function as we do (Section II B), and they use properties
of the expected signal-to-noise ratios for deterministic
and stochastic GW signals to start to incorporate the
effect of timing model fits. Our analysis differs from
theirs in that we explicitly identify a component of the
likelihood function that encodes both the noise power
spectral density in a given pulsar’s data set and the effects
of the timing model fit. This information is combined
with known sources of realistic noise in pulsar timing
data, including time-correlated (red) noise, to construct
sensitivity curves for individual pulsars. (Reference [27]
also discusses the effect of red noise on the sensitivity of
pulsar timing searches for GWs, using a Fisher matrix
calculation to estimate the errors.) For an array of pulsars,
we use the expected signal-to-noise ratio of detection
statistics for both deterministic and stochastic GW signals
to construct effective sensitivity curves for the whole array.

A. Plan of paper

In Section II, we describe the basic formalism underly-
ing pulsar timing analyses—i.e., timing residuals, timing
models, and the effect of fitting to a timing model. This
leads us to timing-model-marginalized residuals and their
associated transmission functions, which play a key role
in the subsequent construction of detection sensitivity
curves. In Section III, we describe in detail the response
of pulsar timing measurements to both deterministic and
stochastic GWs. Then, in Section IV, we introduce detec-
tion statistics for both types of signals. The expressions
for their corresponding expected signal-to-noise ratios al-
low us to read off an effective strain-noise power spectral
density for the PTA, which has the interpretation of a
detection sensitivity curve. As an application of our ana-
lysis, we construct sensitivity curves for the NANOGrav
11-yr pulsars using realistic noise properties and timing
model fits, and compare our predicted sensitivities to pub-
lished upper limits. We conclude in Section V. We also
include Appendix A, in which we cast the results of an
early seminal paper [16] into the more modern notation
used in recent pulsar timing analyses.

The calculations provided in this work are packaged
in the Python package hasasia, available on the Python
Package Inventory (PyPI) and GitHub, with documenta-
tion and tutorials available at ReadTheDocs.

II. PULSAR TIMING ANALYSES

Here we review the formalism underlying pulsar timing
analyses used in GW searches. Readers interested in
more details should see [16, 19, 22, 23, 28]. The new
part of our analysis is the identification of the inverse-
noise-weighted transmission function N−1(f) given in
(20), which incorporates both the noise characteristics of
the pulsar and the effect of fitting to a timing model; see
Sec. II D.

A. Times of arrival and timing residuals

Let us start with a single pulsar. The measured pulse
times of arrival (TOAs) consist of three parts:1

t = tdet(ξ) + n+ h . (1)

The first term gives the expected TOAs due to determ-
inistic processes, which depend on intrinsic properties of
the pulsar (e.g., its spin period, period derivative, ...),
extrinsic properties of the pulsar (e.g., its sky location,
proper motion, distance from the solar system barycen-
ter, ...), and processes affecting the pulse propagation
(e.g., disperion delays due to the interstellar medium, re-
lativistic corrections, ...). The timing model parameters
are denoted by ξ. The second term is (stochastic) noise
intrinsic to the pulsar or to the measurement process it-
self. The third term is a perturbation to the pulse arrival
times induced by GWs, which in general will have contri-
butions from both deterministic and stochastic sources,
h = hdet + hstoch.

Timing residuals are then defined by subtracting the
expected TOAs (predicted by the timing model for an
initial estimate of the model parameters ξ0) from the
measured TOAs:

δt ≡ t− tdet(ξ0) = M δξ + n+ h , (2)

where

M ≡
(
∂tdet

∂ξ

) ∣∣∣∣
ξ=ξ0

(3)

is the design matrix. The above expression for δt is
obtained by Taylor expanding the timing model tdet(ξ)
around the initial parameter estimates ξ0, assuming that
the initial estimates are close enough to the true values
that only 1st-order terms in the parameter deviations δξ
are needed in the expansion. The design matrix M is a
rectangular matrix of dimension N ×Npar, with compon-
ents Mia. Each column of the design matrix encodes the
linearized fit to one parameter in the timing model.

1 To simplify the notation, we have not included indices to label the
particular pulsar (I = 1, 2, · · · , Np), the individual TOAs (i =
1, 2, · · · , N), or the timing model parameters (a = 1, 2, · · · , Npar).
If one wants to include those indices explicitly, one should write
tIi = tdetIi (ξa) + nIi + hIi.

https://pypi.org/project/hasasia/
https://github.com/Hazboun6/hasasia
https://hasasia.readthedocs.io/en/latest/


3

B. Fitting to a timing model

From the form of (2), one sees that errors δξ in our
orignal estimate ξ0 of the timing model parameters lead
to deterministic features in the timing residuals. For
example, an error in the pulse period leads to timing
residuals that grow linearly with time, δt ∼ t, while an
error in the period derivative leads to residuals that grow
quadratically with time, δt ∼ t2. Thus, we can improve
our estimates of the timing model parameters by fitting
for δξ in our linear timing model for the residuals.

This can be done in two ways, both of which take the
likelihood function

p(δt|δξ, Cn, Ch, θ) ∝

exp

[
−1

2
(δt−Mδξ − h(θ))TC−1(δt−Mδξ − h(θ))

]

(4)
as the starting point. In the above expression,

C ≡ Cn + Ch (5)

is the noise covariance matrix, which has contributions
from both detector noise Cn (i.e., noise intrinsic to the
pulsar and from the measurement process) and a poten-
tial GW background Ch. The term h(θ) are the timing
residuals induced by a deterministic GW source (e.g.,
the expected waveform from an individual SMBH binary
parametrized by θ).

(i) The first approach to fitting to the timing model is
to maximize the likelihood function with respect to the
parameter deviations δξ. Since δξ appears linearly in the
expression for the timing residuals (quadratically in the
argument of the exponential), the maximization is easy
to do. One obtains the standard result

δξML = (MTC−1M)−1MTC−1δt . (6)

From these maximum-likelihood estimates, we can then
form post-fit residuals

δtpost ≡ δt−M δξML = Rδt , (7)

R ≡ 1−M(MTC−1M)−1MTC−1 . (8)

Note that R is an N ×N matrix that implements the fit
to the linear timing model; it depends in general on both
the timing model (via M) and the detector noise (via C).
One can show that R is a projection operator (R2 = R),
and hence not invertible.

(ii) The second approach to fitting to the timing model
is to marginalize the likelihood function over the para-
meter deviations δξ, assuming flat priors for δξ. The result
of this marginalization is the timing-model-marginalized
(TMM) likelihood function [20, 22]

p(δt|Cn, Ch, θ) ∝

exp

[
−1

2
(δt− h(θ))TG(GTCG)−1GT (δt− h(θ))

]
,

(9)

where G is an N × (N −Npar) matrix constructed from
a singular-value decomposition of the design matrix

M = USV T , U = (F,G) . (10)

Here U and V T are orthogonal matrices of dimensions
N×N and Npar×Npar, respectively, and S is an N×Npar

diagonal matrix with the singular values along the diag-
onal. F is the N ×Npar matrix containing the first Npar

columns of U and G is the N × (N −Npar) matrix consist-
ing of the other columns of U . Note thatG depends only on
the timing model (via M) and not on the noise. In terms
of components, G ≡ Giα, where α = 1, 2, · · · , N −Npar.
Using G, one can construct associated TMM residuals

r ≡ GT δt , (11)

which are orthogonal to the timing model. Since U is
a unitary matrix, it follows that [GTG]αβ = δαβ . For
white noise (i.e., C proportional to the identity matrix),
we have the identity R = GGT .

Although both approaches for fitting to the timing
model have been used in the past (compare for instance
[28] with [23]), in this paper we will use the second ap-
proach, given that it is the one used most often for current
pulsar timing array searches for GWs.

C. Transmission functions

The process of fitting to a timing model removes power
from the post-fit or TMM residuals. This can be easily
demonstrated by calculating the variance of the TMM
residuals r ≡ GT δt. One finds

σ2
r =

∫ ∞

0

df T (f)P (f) , (12)

where P (f) is the (one-sided) power spectral density of
the original (pre-fit) timing residuals δt, and

T (f) ≡ 1

N

∑

k,l

(GGT )kle
i2πf(tk−tl) . (13)

Here tk and tl denote the times of arrival of the kth and
lth pulses, with k, l = 1, 2, · · · , N . The function T (f)
has the interpretation of a transmission function, select-
ively removing power associated with the timing model
fit. A plot of T (f) for a simple timing model consisting of
quadratic spin-down (i.e., fitting to the phase offset, spin
period, and period derivative of the pulsar), the pulsar’s
sky position, and the distance to the pulsar is shown in
Figure 2(a). Note that fitting to the sky position absorbs
power at and around a frequency of 1/year, corresponding
to the Earth’s yearly orbital motion around the Sun. Fit-
ting to the pulsar distance absorbs power at a frequency
of 2/year, which corresponds to a parallax measurement.
The quadratic spin-down parameter fit acts as a high-
pass filter, absorbing frequencies substantially below 1/T ,
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Fitting extracts power from the timing residuals

σ2
r = ∫

∞

0
df "( f )P( f )

Variance of TMM residuals:

r = GT δt
TMM residuals:

Transmission function:

"( f ) = 1
N ∑

k,l
(GGT)klei2πf(tk−tl)
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Figure 2. Transmission functions corresponding to a fit to a simple timing model. Panel (a): The ∼ f6 dependence of power
absorption at low frequencies is due to fitting the quadratic spin-down model for the pulsar, see [16]. Other absorption dips,
due to fits for the sky position and distance to the pulsar (parallax), can also be seen. The blue vertical line corresponds to a
frequency of 1/T , where T is the observation time. Panel (b): Dependence of the transmission function on the duration of the
observation. The spikes become deeper and narrower, and the knee frequency shifts to the left, as the observing time T increases.

where T is the time span of the data. The effect of the
observing time on the shape of the transmission function
is shown in Figure 2(b).

Pulsars in binaries famously have additional compon-
ents to the timing model that take into account the various
Doppler shifts due to binary motion and relativistic ef-
fects, if the line-of-sight passes by the companion (Shapiro
delay) or if the binary is in a tight enough orbit to observe
the loss of power due to GWs [29]. These components
of the timing model have a minimal effect on sensitiv-
ity curves for GWs as the frequencies in question are
much higher than those of the sources for which PTAs
are searching. We do not include these components when
simulating pulsar design matrices, but we will see the
(mostly subtle) changes they make when looking at the
design matrices of real pulsar data.

Finally, we note that one can also calculate an analogous
transmission function associated with the post-fit timing
residuals δtpost ≡ Rδt. One finds

σ2
post =

∫ ∞

0

df TR(f)P (f) , (14)

where

TR(f) ≡ 1

N

∑

k,l

Rkl e
i2πf(tk−tl) . (15)

This R-matrix transmission function was originally de-
scribed in [16], although from a slightly different perspect-
ive. In Appendix A, we cast the approach of [16] into the
more modern R-matrix notation.

D. Inverse-noise-weighted transmission function

It turns out that there is another way of obtaining a
quantity that behaves like a transmission function by
working directly with the TMM likelihood (9). The argu-
ment of the exponential can be written as − 1

2χ
2, where

χ2 ≡ (δt− h(θ))TG(GTCG)−1GT (δt− h(θ)) . (16)

If we write this in the Fourier domain by substituting

hk(θ) ≡ h(tk; θ) =

∫ fNyq

−fNyq

df h̃(f ; θ) ei2πftk , (17)

where tk ≡ k∆t and fNyq ≡ 1/(2∆t), we find

χ2 = 2T

∫ fNyq

−fNyq

df

∫ fNyq

−fNyq

df ′ (δ̃t(f)− h̃(f ; θ))

×N−1(f, f ′)(δ̃t∗(f ′)− h̃∗(f ′; θ)) , (18)

where

N−1(f, f ′)

≡ 1

2T

∑

k,l

ei2πftk [G(GTCG)−1GT ]kl e
−i2πf ′tl . (19)

The quantity N−1(f, f ′) is a function of two frequencies,
(f, f ′), but it turns out to be diagonally-dominated, with
the majority of its support on the diagonal f = f ′, as
shown in Figure 3(a). (The broadening of the diagonal
band at low frequencies is an artefact of using log-scale
axes for the frequencies.) The diagonal component

N−1(f) ≡ 1

2T

∑

k,l

[G(GTCG)−1GT ]kl e
i2πf(tk−tl) , (20)
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and three off-diagonal cross-sections of N−1(f, f ′) are
shown in Figure 4. (The fact that the off-diagonal cross-
sections are curved in panel (a) of Figure 4 is again due to
using log-scale axes for the frequencies.) A few remarks
are in order:

(i) For this particular example, the diagonal com-
ponent N−1(f) is identical in shape with the transmis-
sion function T (f) shown in Figure 2(a). The amp-
litude of N−1(f) differs from T (f) by a constant factor
1/P (f) = 1/(2σ2 ∆t), corresponding to a white noise
covariance matrix.2 Thus, for white noise

N−1(f) = T (f)/P (f) . (21)

This is illustrated in Figure 5(a). If we also include red
noise in the noise covariance matrix C by taking

Cij =

∫ fNyq

0

df cos[2πf(ti − tj)]P (f) , (22)

P (f) = 2σ2 ∆t+Af−γ , γ > 0 , (23)

then the relationship between N−1(f) and T (f)/P (f) is
only approximate,

N−1(f) ≈ T (f)/P (f) . (24)

This is illustrated in Figure 5(b).
(ii) Away from the dip at 1/yr, where there is suppres-

sion of power due to the timing model fit to the pulsar sky
position, the off-diagonal cross-sections are proportional
to Dirichlet sinc functions

DN ((f − f ′)∆t) ≡ 1

N

sin[Nπ(f − f ′)∆t]
sin[π(f − f ′)∆t] . (25)

When multiplied by T , a Dirichlet sinc function can be
thought of as finite-time approximation to the Dirac delta
function—i.e., δ(f − f ′) ' TDN ((f − f)′∆t). Dirichlet
sinc functions arise when taking the Fourier transform of
a discretely-sampled rectangular window of duration T =
N∆t, see e.g., [30]. This diagonally-dominated behavior
is what you would expect for N−1(f, f ′) if one had only
Gaussian-stationary noise. This is the case if one doesn’t
have to fit a timing model (Figure 3(b)). Then one can
simply replace G by the identity matrix, for which

N−1(f, f ′) =
1

2T

∑

k,l

ei2πftk [C−1]kl e
−i2πf ′tl

' P−1(f) δff ′ .

(26)

The approximate equality in the above equation is a con-
sequence of the Karhunen-Loeve theorem, which states
that the discrete Fourier transform operation defined by

2 For our white noise simulations, we take P (f) = 2σ2 ∆t, with
σ = 100 ns and ∆t = yr/20. These numerical values are often
chosen for pulsar timing simulations.

the unitary matrix Ujk ≡ 1
N e
−i2πjk/N approximately di-

agonalizes a stationary covariance matrix in the limit that
the observation time T = N ∆t is much larger than the
correlation time of the noise.

(iii) Since fitting to a timing model introduces non-
stationarities into the TMM residuals [22], one cannot
directly appeal to the Karhunen-Loeve theorem for the
general expression (19). One needs to explicitly check
the validity of the diagonal approximation for N−1(f, f ′)
as we have done in Figures 3 and 4. We have also nu-
merically computed the sum of N−1(f, f ′) over the full
two-dimensional array of frequencies (f, f ′) and compared
that to the sum of N−1(f, f ′) just along the diagonal
f = f ′. Even for the more challenging case of a red+white
noise covariance matrix (Figure 5(b)) and a fit to the our
quadratic spin-down model, the two summations agree to
within ≈ 6%.

(iv) Even though we transformed the likelihood function
into the Fourier domain to obtain expressions (19) and
(20) for N−1(f, f ′) and N−1(f), those expressions are
calculable directly in terms of the times-of-arrival tk and
tl. This means that these expressions for the inverse-
noise-weighted transmission functions are valid even for
irregularly-sampled data. Our use of a sampling period
∆t is only for convenience when discussing power spectra
or when calculating the Fourier transform of the GW
response; it is not a requirement for our sensitivity curve
analysis.

III. TIMING RESIDUAL RESPONSE TO
GRAVITATIONAL WAVES

To proceed further in our calculation of pulsar timing
sensitivity curves, we need to describe in more detail the
timing residual response of a pulsar to an incident GW.
We will consider both deterministic and stochastic sources
of GWs. Interested readers should see [19–22] for more de-
tails. Readers already familiar with this material can skip
to Sec. IV, where we show how the inverse-noise-weighted
transmission function N−1(f) enters into expressions for
the expected signal-to-noise ratio of standard statistics
used to search for both deterministic and stochastic GW
signals.

A. Response to a single deterministic source

We will start by writing down the metric perturbations
hab(t, ~x) for a single deterministic source emitting plane

GWs in the direction k̂ (Figure 6). To do this we introduce
two coordinate frames: one associated with the solar
system barycenter (SSB) and the other associated with
the propagation of the GW. We will assume that the
source has a symmetry axis (e.g., the direction of the

orbital angular momentum vector ~L for a binary system),
and that the symmetry axis makes an angle ι with respect

to the line of sight k̂ from the GW source to the solar
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(a) (b)

Figure 3. Two-dimensional plot of the real part of the function N−1(f1, f2) for f1, f2 > 0 plotted on log-scale axes. Panel (a):
Re[N−1(f1, f2)] for white noise (C is proportional to the identity matrix) and a fit to the simple quadratic spin-down timing
model described in the main text. The small amplitude in the bottom-left hand corner of the plot is due to the absorption of
power by the timing model fit at and below 1/T . There is also suppression at f1 = f2 = 1/yr and f1 = f2 = 2/yr. Panel (b):
For comparison, a two-dimensional plot of Re[N−1(f1, f2)] for white noise, but without performing a timing model fit (so G is
proportional to the identity matrix).

system barycenter, and an angle ψ with respect to the

vector l̂ when projected onto the plane perpendicular to

k̂ (Figure 7). The vectors k̂, l̂, m̂ are defined in the solar
system barycenter frame by

k̂ = (− sin θ cosφ,− sin θ sinφ,− cos θ) ≡ −r̂ ,
l̂ = (sinφ,− cosφ, 0) ≡ −φ̂ ,
m̂ = (− cos θ cosφ,− cos θ sinφ, sin θ) ≡ −θ̂ ,

(27)

where (θ, φ) are the standard polar and azimuthal angles
on the 2-sphere in equatorial coordinates, and the origin
of coordinates is at the solar system barycenter. The
right ascension α and declination δ of a source are given
in terms of θ and φ by α = φ and δ = π/2− θ.

The angles ι and ψ are the inclination and polarization
angles of the source, respectively. They can be written in

terms of the unit vectors k̂, l̂, L̂ ≡ ~L/|~L|, and û via:

cos ι ≡ k̂ · L̂ , cosψ ≡ û · l̂ , (28)

where

û ≡ L̂× k̂
|L̂× k̂|

, v̂ ≡ k̂ × û , (29)

are two orthogonal unit vectors in the plane perpendicular

to k̂ (Figure 7). Note that ι = 0 or π corresponds to the
orbital plane being seen face-on or face-off; ι = π/2 or

3π/2 corresponds to seing the orbital plane edge on. The

unit vectors û, v̂ are related to l̂, m̂ by a rotation around

k̂ through the angle ψ as shown in Figure 7(b).
From û and v̂, we can construct a preferred set of

polarization tensors:

ε+ab(k̂, ψ) ≡ ûaûb − v̂av̂b ,
ε×ab(k̂, ψ) ≡ ûav̂b + v̂aûb ,

(30)

where a, b in the above and following expressions3 refer to
spatial indices in transverse-traceless coordinates (t, ~x) ≡
(t, xa), with a = 1, 2, 3. Using these polarization tensors,
we can expand the metric perturbations:

hab(t, ~x) = h+(t− k̂ · ~x/c; ι)ε+ab(k̂, ψ)

+ h×(t− k̂ · ~x/c; ι)ε×ab(k̂, ψ) (31)

or, equivalently,

hab(t, ~x) =

∫ ∞

−∞
df
[
h̃+(f ; ι)ε+ab(k̂, ψ)

+h̃×(f ; ι)ε×ab(k̂, ψ)
]
ei2πf(t−k̂·~x/c) , (32)

3 In footnote 1, we mentioned that a, b, · · · would also be used to
label the individual timing parameters ξa, with a = 1, 2, · · · , Npar.
It should be clear from the context whether an a index refers to
spatial indices (as above) or timing model parameters.
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Figure 4. Diagonal and off-diagonal cross-sections of N−1(f1, f2). Panel (a): Re[N−1(f1, f2)] from Figure 3(a) with off-diagonal
cross-sections shown by white-dotted lines. Panel (b): Diagonal component N−1(f) (the dotted vertical lines show the frequencies
of the off-diagonal cross-sections). Panels (c)-(e): Real part of the off-diagonal cross sections of N−1(f1, f2) for f = 1/(3 yr),
f = 1/yr, and f = 3/yr. Away from 1/yr, the off-diagonal cross-sections are proportional to Dirichlet sinc functions (the dotted
vertical lines indicate off-sets of ±1/T ).

where h̃+,×(f ; ι) are the Fourier transforms of h+,×(t; ι).
The timing residual response of a pulsar to such a determ-
inistic GW is then [31]:

h(t; k̂, ι, ψ) =

∫ ∞

−∞
df h̃(f ; k̂, ι, ψ) ei2πft , (33)

where

h̃(f ; k̂, ι, ψ) = R+(f, k̂, ψ)h̃+(f ; ι)

+R×(f, k̂, ψ)h̃×(f ; ι) , (34)

with

R+,×(f, k̂, ψ) ≡ 1

i2πf

1

2

p̂ap̂b

1 + p̂ · k̂
ε+,×ab (k̂, ψ)

×
(

1− e−i2πfD(1+k̂·p̂)/c
)
. (35)

Here p̂a is a unit vector pointing from the solar system
barycenter to the pulsar, and D is the distance to the

pulsar. The function R+,×(f, k̂, ψ) is the timing residual
response function of a pulsar to a monochromatic plane

GW propagating in direction k̂, with frequency f , polar-
ization +,×, and polarization angle ψ. The two terms
in the response function are called the ‘Earth term’ and
‘pulsar term’, respectively, since they involve sampling the
GW phase at Earth and at the location of the pulsar, a dis-
tance D away from Earth. The factor of 1/(i2πf) comes
from the fact that we are working with timing residuals,
as opposed to Doppler shifts in the pulse frequency.

For the analyses that we will do in this paper, we will
typically ignore the pulsar-term contribution to the timing
residual response to GWs, as this term will not contribute
to the cross-power when correlating the signal associated
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Figure 5. Plots of the inverse-noise-weighted transmission function N−1(f) for the simple quadratic spin-down model described
in the main text, and for white noise (a) and red+white noise (b). Panel (a): For white noise, the amplitude of N−1(f) is set by
the constant value of 1/P (f) indicated by the horizontal dashed line. Panel (b): The curved dashed line is a plot of T (f)/P (f),
which is an approximation to N−1(f) for P (f) consisting of red+white noise.

x
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ϕ

!
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"̂
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Figure 6. Definition of the unit vectors k̂, l̂, m̂. The direction
of propagation of the GW, k̂, is opposite the direction to the
source, n̂. The unit vectors l̂, m̂ are in the plane perpendicular
to k̂, and point in directions of constant declination and right
ascension, respectively.

with distinct pulsars. (The separation between pulsars
(∼ kpc) is much greater the wavelengths of the GWs that
we are sensitive to, which are of order . 10 lyr.) There is
a contribution, however, to the auto-correlated power for
a single pulsar, which comes from the exponential part of

|R+,×(f, k̂, ψ)|2:

∣∣∣1− e−i2πfD(1+k̂·p̂)/c
∣∣∣
2

= 2
[
1− cos

(
2πfD(1 + k̂ · p̂)/c

)]
' 2 , (36)

where we have ignored the cosine term since it is a rapidly-

oscillating function of the GW propagation direction k̂,
and hence does not contribute significantly when summed
over the sky. The value ‘2’ corresponds to the sum of the
Earth-Earth and pulsar-pulsar auto-correlation terms.

1. Circular binaries

To proceed further, we need to specify the form of
h+,×(t; ι) or its Fourier transform h̃+,×(f ; ι). For example,
for a circular binary

h+(t; ι) = h0(t)

(
1 + cos2 ι

2

)
cos 2Φ(t) ,

h×(t; ι) = h0(t) cos ι sin 2Φ(t) ,

(37)

where Φ(t) is the orbital phase and h0(t) is a dimensionless
amplitude given by

h0(t) =
4c

DL

(
GMc

c3

)5/3

ω(t)2/3 . (38)

Here DL is the luminosity distance to the source, Mc ≡
(m1m2)3/5/(m1 +m2)1/5 is the chirp mass of the binary
system, and ω(t) is the instantaneous orbital angular
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Figure 7. Relation between the unit vectors l̂, m̂ and û, v̂. Definition of: (a) inclination angle ι, and (b) polarization angle ψ.

Here ~L is the angular momentum vector and k̂ is the propagation direction of the GW. The vectors l̂, m̂ and û, v̂ are orthogonal
unit vectors in the plane perpendicular to k̂, defined by (27) and (29), respectively.

frequency, Φ(t) =
∫ t

dt′ ω(t′). For an evolving binary
system

dω

dt
=

96

5

(
GMc

c3

)5/3

ω(t)11/3 , (39)

which is a consequence of energy balance between the
radiated power in GWs and the orbital energy lost by the
binary system. The instantaneous GW frequency f(t) is
related to the orbital frequency ω(t) via ω(t) = πf(t).

It is fairly easy to show that for a binary system consist-
ing of SMBHs with component masses M ∼ 109 Msolar in
the PTA sensitivity band (nHz), the frequency evolution
of the binary over a decade-long observation is roughly
four orders of magnitude smaller than the frequency bin
width, 1/T , set by the total observation time T ∼ 10 yr.
Thus, for the purposes of this paper, we will take our
deterministic source to be a monochromatic binary with
f(τ) = f0 = const.

With this simplification, equations (37) and (38) be-
come

h+(t; ι, φ0) = h0

(
1 + cos2 ι

2

)
cos(2πf0t+ φ0) ,

h×(t; ι, φ0) = h0 cos ι sin(2πf0t+ φ0) ,

(40)

where φ0 is the initial phase and h0 is the (constant)
strain amplitude

h0 =
4c

DL

(
GMc

c3

)5/3

(πf0)2/3 . (41)

The Fourier transforms of h+,×(t; ι, φ0) are then

h̃+(f ; ι, φ0) = h0

(
1 + cos2 ι

2

)

× 1

2

[
eiφ0δ(f − f0) + e−iφ0δ(f + f0)

]
,

h̃×(f ; ι, φ0) = h0 cos ι

× 1

2i

[
eiφ0δ(f − f0)− e−iφ0δ(f + f0)

]
.

(42)
But since the signals are observed for only a finite duration,
the Dirac delta functions δ(f ∓ f0) should be replaced by
their finite-time equivalents δT (f ∓ f0) defined by

δT (f) ≡
∫ T/2

−T/2
dt e−i2πft =

sin(πfT )

πf
≡ T sinc(πfT ) ,

(43)
where T is the observation time for the pulsar. If one
wants to also include the discreteness ∆t of the time-series
data, then the Dirac delta functions should be replaced
by Dirichlet sinc functions, TDN [(f ∓ f0)∆t] (see (25)).
It turns out that the final (approximate) expressions that
we obtain, cf. (45) and (49), are independent of which
finite-time approximation we use.

2. Averaging over inclination, polarization, and sky position

Using the above expressions for h̃+,×(f ; ι, φ0) and (35)

for R+,×(f, k̂, ψ), we can calculate the squared response

|h̃(f)|2 averaged over the inclination of the source (defined
by the inclination and polarization angles ι and ψ), initial

phase φ0, and sky direction n̂ ≡ −k̂. This is relevant for
the case where these quantities are not known a priori.
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Defining

|h̃(f ; k̂)|2 ≡ 1

2π

∫ 2π

0

dφ0

(
1

4π

∫ 2π

0

dψ

×
∫ 1

−1

d(cos ι) |h̃(f ; k̂, ι, ψ, φ0)|2
)
, (44)

it is fairly easy to show that

2|h̃(f ; k̂)|2
T

' 4

5
R(f, k̂)Sh(f) (45)

where

R(f, k̂) ≡ 1

2

(
|R+(f, k̂, 0)|2 + |R×(f, k̂, 0)|2

)
, (46)

Sh(f) ≡ 1

2
h2

0 [δ(f − f0) + δ(f + f0)] . (47)

The factor of 4/5 in (45) comes from the average over

inclination angles (ι, ψ); R(f, k̂) encodes the timing re-
sidual response of a pulsar to a plane GW propagating

in direction k̂ averaged over the (+,×) polarizations and
the polarization angle ψ; and Sh(f) is the strain power-
spectral density of a monochromatic GW having frequency
f0. The approximate equality in (45) is there because
we made the approximation δ2

T (f ∓ f0) ' Tδ(f ∓ f0) for
the product of two finite-time Dirac delta functions. This
allows us to write Sh(f) in terms of ordinary Dirac delta
functions, which are formally singular at f = ±f0. But
this is not a problem, as Sh(f) will only need to be evalu-
ated under an integral sign for the expected signal-to-noise
ratio calculations that we will perform in Section IV A.
This approximation gives answers that are good to within
. 10% for noise power spectral densities that don’t vary
significantly over a frequency bandwidth ∆f ∼ 1/T in
the neighboorhood of ±f0.

If we also average over sky location, defining

|h̃(f)|2 ≡ 1

4π

∫
d2Ωk̂

(
1

2π

∫ 2π

0

dφ0

×
(

1

4π

∫ 2π

0

dψ

∫ 1

−1

d(cos ι) |h̃(f ; k̂, ι, ψ, φ0)|2
))

,

(48)

we find

2|h̃(f)|2
T

' 4

5
R(f)Sh(f) (49)

where

R(f) ≡ 1

8π

∫
d2Ωk̂

(
|R+(f, k̂, 0)|2 + |R×(f, k̂, 0)|2

)

=
1

12π2f2
.

(50)
Note that the expression for R(f) is independent of the
direction p̂ to the pulsar. The above expressions will
be used later on when defining the detection sensitivity
curves in Section IV.

B. Response to a stochastic GW background

For a stochastic GW background, the metric perturb-
ations can be written as a superposition of plane GWs
having different frequencies f , polarizations {+,×}, and

propagation directions k̂:

hab(t, ~x) =

∫
d2Ωk̂

∫ ∞

−∞
df
[
h̃+(f, k̂)e+

ab(k̂)

+h̃×(f, k̂)e×ab(k̂)
]
ei2πf(t−k̂·~x/c) , (51)

where e+,×
ab (k̂) ≡ ε+,×ab (k̂, 0). This is basically (32) but

allowing for contributions from different propagation dir-

ection k̂. Since we will assume that the sources producing
the GW background have no preferred polarization dir-
ection or symmetry axis, we have set ψ = 0 and ι = 0 in
the expansion for hab(t, ~x). The timing residual response
of a pulsar to the background is then

h(t) =

∫ ∞

−∞
df h̃(f)ei2πft , (52)

where

h̃(f) =

∫
d2Ωk̂

[
R+(f, k̂, 0)h̃+(f ; k̂)

+R×(f, k̂, 0)h̃×(f ; k̂)
]

(53)

with R+,×(f, k̂, 0) given by (35). As discussed there, we
will generally ignore the contribution of the pulsar term
to the response function, except when calculating the
auto-correlated power, which will have contributions from
both the Earth-Earth and pulsar-pulsar auto-correlation
terms.

The Fourier components h̃+,×(f ; k̂) that enter the plane-
wave expansion of the metric perturbations are random
fields. Their quadratic expectation values completely
define the statistical properties of the background, under
the assumption that it is Gaussian-distributed. For simpli-
city, we will assume that the GW background is stationary,

unpolarized, and isotropic,4 for which 〈h̃P (f ; k̂)〉 = 0 and

〈h̃P (f ; k̂)h̃∗P ′(f ′; k̂′) =
1

16π
Sh(f)δ(f − f ′)δPP ′δ2(k̂, k̂′) ,

(54)
where P = {+,×}. Here Sh(f) is the (one-sided)
strain power spectral density of the background (units of
strain2/Hz), which is related to the dimensionless energy-
density spectrum Ωgw(f) via

Sh(f) =
3H2

0

2π2

Ωgw(f)

f3
. (55)

4 See e.g., [30] for a review of analyses that drop these assumptions.
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It is also common to describe the background in terms of
it dimensionless characteristic strain defined by

hc(f) ≡
√
fSh(f) = Agw(f/fyr)

α , (56)

where the second equality assumes a power-law form for
the background. Note that for a background produced by
the cosmological population of SMBH binaries, α = −2/3.

1. GW contribution to the noise covariance matrix

Using the above expressions for the timing residual
response of a pulsar to a GW background, we can calcu-
late the GW contribution to the noise covariance matrix
when cross-correlating timing residuals associated with
two Earth-pulsar baselines I and J . Denoting the GW
contributions to the two sets of timing residuals as hI(t)
and hJ (t), respectively, one can show that the covariance
matrix is block-diagonal with components

Ch,IJ ≡ 〈hIhTJ 〉 − 〈hI〉〈hTJ 〉 = χIJ Ch , (57)

where

χIJ ≡
1

2
+

3

2

(
1− p̂I · p̂J

2

)[
ln

(
1− p̂I · p̂J

2

)
− 1

6

]

+
1

2
δIJ , (58)

and

Ch,ij =

∫ fNyq

0

df cos[2πf(ti − ti)]Ph(f) , (59)

Ph(f) = R(f)Sh(f) =
A2

gw

12π2

(
f

fyr

)2α

f−3 . (60)

The full noise covariance matrix, which includes contri-
butions instrinsic to the pulsar and to the measurement
process, is also block-diagonal with components

CIJ = δIJCn,I + Ch,IJ . (61)

Here Cn,I is given by (59), but with the pulsar noise
power spectral density PnI

(f) replacing Ph(f). This last
equation assumes that the noise contributions associated
with different pulsars are not correlated with one another.

The quantity χIJ ≡ χ(ζIJ ) defined in (58) is the value
of the Hellings and Downs [32] curve χ(ζ) for a pair of
pulsars separated by angle ζIJ = cos−1(p̂I · p̂J) (see Fig-
ure 8). It arises when cross-correlating the GW-induced
timing residuals for an unpolarized, isotropic GW back-
ground. Note that χIJ has been normalized such that
χII = 1 (for a single pulsar).

IV. SENSITIVITY CURVES

Ultimately, a detection sensitivity curve should tell us
how likely it is to detect a particular type of GW signal.

δt = 1
2c

̂pa ̂pb ∫
L

s= 0
ds hab(t(s), ⃗x (s))

Hellings & Downs curve 
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Figure 8. Hellings and Downs curve χ(ζ). Plotted is the
expected correlation for the timing residuals induced in a pair
of distinct Earth-pulsar baselines by an unpolarized, isotropic
GW background.

So it should depend not only on the properties of the noise
in the detector, but also on the type of signal that one
is searching for and the method that one uses to search
for it. So here we extend the formalism of the previous
two sections to define sensitivity curves for searches for
a deterministic GW signal from a circular binary and an
unpolarized, isotropic stochastic GW background. We
begin by writing down expressions for the optimal detec-
tion statistics for these two different sources and their
corresponding expected signal-to-noise ratios (SNRs) fa-
miliar from the literature in order to demonstrate how
the inverse-noise-weighted transmission function, N−1(f),
appears in these expressions. We will see that from these
expected SNRs, we can read off an effective strain-noise
power spectral density, which has the interpretation of a
detection sensitivity curve.

A. Matched filtering for a deterministic GW signal

For a deterministic GW signal, we can use the method
of matched filtering to construct an optimal detection
statistic. This method has been used extensively in the
PTA literature, [28, 33–35] and is also the basis for the
approximate deterministic sensitivity curves in [26]. Let-
ting QI denote the filter function for pulsar I (where
I = 1, 2, · · · , Np), we define

Ŝ ≡
∑

I

QTI rI =
∑

I

∑

α

QIαrIα , (62)

where rI ≡ GTI δtI are the TMM residuals for pulsar I.
The filter function is determined by maximizing the expec-
ted signal-to-noise ratio, ρ ≡ µ/σ, of Ŝ. The expectation

value of Ŝ is given by

µ ≡ 〈Ŝ〉 =
∑

I

QTI G
T
I hI(θ) (63)

and its variance is given by

σ2 ≡ 〈Ŝ2〉 − 〈Ŝ〉2 =
∑

I

QTI Σn,IQI , (64)
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where Σn,I ≡ GTI Cn,IGI is the noise covariance matrix
for rI . This result for the variance assumes that the
only GW contribution to the timing residuals is from a
deterministic GW source, and not from a stochastic GW
background. The presence of a stochastic background
would contribute to both the diagonal and off-diagonal
block matrices (see (61)). In what follows, we will assume
that the off-diagonal terms are small compared to the
diagonal (auto-correlated) terms. But we will replace
Σn,I by ΣI ≡ GTI CIGI , where CI ≡ Cn,I + Ch, thereby
allowing a stochastic background to contribute to the
auto-correlated noise (sometimes called GW self-noise).

Using the above results for the mean and variance of
Ŝ, the square of the expected signal-to-noise ratio is

ρ2 ≡ µ2

σ2
=

∑
I,J Q

T
I G

T
I hI(θ)Q

T
J G

T
J hJ(θ)

∑
K Q

T
KΣKQK

, (65)

with the optimal filter given by

δρ2

δQI
= 0 ⇒ QI = Σ−1

I GTI hI(θ) . (66)

Note that QI is a noise-weighted version of the TMM
signal waveform, as expected for a matched-filter statistic.
Using this expression, the expected signal-to-noise ratio
becomes

ρ2(θ) =
∑

I

hI(θ)
TGIΣ

−1
I GTI hI(θ)

=
∑

I

hI(θ)
TGI(G

T
I CIGI)

−1GTI hI(θ) .
(67)

By evaluating this last expression in the frequency domain,
using (19) for N−1

I (f, f ′) and restricting to the diagonal
component N−1(f) as discussed in Section II D:

ρ2(θ) ' 4

∫ fNyq

0

df
∑

I

|h̃I(f ; θ)|2N−1
I (f) . (68)

Recall that θ denote the set of GW parameters. This
expression is now written in a form where the formalism
of Section II D is easily used. For the case of a circular

binary discussed in Section III A 1, θ = {k̂, ι, ψ, φ0}.

1. Detection sensitivity curve for sky and
inclination-averaged sources

To proceed further, we first consider the case of GWs
from a single binary system averaged over the initial phase,
inclination of the source, as well as its sky location. Using
(49) for |h̃I(f)|2, we have

〈ρ2〉inc, sky ' 4

∫ fNyq

0

df
∑

I

TI
2

4

5
R(f)Sh(f)N−1

I (f)

= 2Tobs

∫ fNyq

0

df
Sh(f)

Seff(f)
,

(69)

where

Seff(f) ≡
(

4

5

∑

I

TI
Tobs

1

SI(f)

)−1

, (70)

SI(f) ≡ 1

N−1
I (f)R(f)

, (71)

and Tobs is a time-scale characteristic of the PTA, here
chosen as the time span of the full data set. Here, SI(f)
is the strain-noise power spectral density for pulsar I, and
Seff(f) is an effective strain noise power spectral density
for an array of pulsars. Given how Seff(f) appears in the
expression for the expected signal-to-noise ratio, we will
use it, or its dimensionless characteristic strain,

heff(f) ≡
√
fSeff(f) (72)

as a sensitivity curve for detecting a deterministic GW
source averaged over its initial phase, inclination, and sky
location. A plot of Seff(f) for the array of pulsars in the
NANOGrav 11-year data [36] is shown in Figure 9. Our
calculation uses the noise parameters of the pulsars to
build the covariance matrix used in calculating N−1(f),
as discussed in Section IV B. In addition the sky positions,
TOAs and TOA errors are used. Note that for a mono-

10−9 10−8 10−7

Frequency [Hz]

10−14

10−13

10−12

C
h

ar
ac

te
ri

st
ic

S
tr

ai
n

,
h
c

Deterministic

Figure 9. Sensitivity curve for a single deterministic GW
source averaged over its initial phase, inclination, and sky
location. This plot was constructed using the NANOGrav
11-year data.

chromatic source, Sh(f) has a very simple form given by
(47), which implies

ρ̄ ≡
√
〈ρ2〉inc, sky ' h0

√
Tobs

Seff(f0)
. (73)
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2. SNR and characteristic amplitude sky maps for
inclination-averaged sources

If we average over initial phase and source inclination,

but not over sky location, cf. (45) for |h̃I(f, k̂)|2, we obtain

〈ρ2(k̂)〉inc ' 4

∫ fNyq

0

df
∑

I

TI
2

4

5
RI(f, k̂)Sh(f)N−1

I (f)

= 2Tobs

∫ fNyq

0

df
Sh(f)

Seff(f, k̂)
,

(74)
where

Seff(f, k̂) ≡
(

4

5

∑

I

TI
Tobs

1

SI(f, k̂)

)−1

, (75)

SI(f, k̂) ≡ 1

N−1
I (f)RI(f, k̂)

, (76)

with RI(f, k̂) given by (46). These expressions are
analogous to (70), but with added dependence on the

propagation direction k̂ of the GW. It turns out that

we can factor out the k̂ dependence on the right-hand

side of the above expression for Seff(f, k̂) if we ignore
the frequency-dependent part of the pulsar-term contribu-

tion to |RPI (f, k̂, 0)|2, as discussed in the context of (36).
Making this approximation,

Seff(f, k̂) '
(

12

5

∑

I

TI
Tobs

1

SI(f)

×
[
(F+
I (k̂))2 + (F×I (k̂))2

])−1

, (77)

where F+,×
I (k̂) are defined by

F+,×
I (k̂) ≡ 1

2

p̂aI p̂
b
I

1 + p̂I · k̂
e+,×
ab (k̂) . (78)

As before, it is easy to do the integral over frequency for
a monochromatic source, for which Sh(f) is given by (47).
The result is

ρ(n̂) ≡
√
〈ρ2(k̂)〉inc ' h0

√
Tobs

Seff(f0, k̂)
, (79)

where the direction n̂ of the source on the sky is opposite

the direction of GW propagation, n̂ = −k̂. A plot of ρ(n̂)
for a pair of 109 solar-mass BHs at a luminosity distance of
100 Mpc, emitting monochromatic GWs at the frequency
f0 = 8 nHz is shown in Figure 10.

Finally, it is a simple matter to recast the form of the
sky map so that we solve (79) for the strain amplitude h0

of a monochromatic binary, cf. (41), that would produce
a particular value of the signal-to-noise ratio ρ:

h0(n̂) = ρ

√
Seff(f0, k̂)

Tobs
. (80)

1.0 1.5 2.0 2.5 3.0 3.5

Figure 10. Sky map of the expected matched-filter signal-to-
noise ratio ρ(n̂) for a monochromatic circular binary (GW
frequency f0 = 8 nHz) consisting of a pair of 109 solar-mass
BHs at a luminosity distance of 100 Mpc. The stars show the
locations of the NANOGrav pulsars. This plot was constructed
using the NANOGrav 11-year data.

A sky map of h0(n̂) is shown in panel (a) of Figure 11 for
ρ = 2 using the NANOGrav 11-year data. For compar-
ison, panel (b) shows the actual 95% confidence-level
upper limit map taken from the NANOGrav 11-year
single-source paper [37]. Our sensitivity calculation gives
h0 = 1.82× 10−15 at a right ascension and declination of
(17.6 h, 0◦) for the most sensitive sky location, while the
full NANOGrav Bayesian analysis gives h0 = 1.82×10−15

at a right ascension and declination of (17.6 h, 9.6◦). This
agreement is impressive in the sense that the full Bayesian
analysis done by the NANOGrav collaboration took thou-
sands of cpu-hours to complete, whereas the calculation
using our formalism takes less than ten minutes on a
laptop. It is unsurprising in the sense that, since PTAs
have not made a detection of GWs, the statistics of PTAs
are still dominated by the pulsar noise, observation ca-
dence and PTA configuration, all characteristics used in
the sensitivity curve calculation.

B. Single-pulsar characteristic strain noise curves

For an individual pulsar, we will use the characteristic
strain

hc,I(f) ≡
√
fSI(f) , SI(f) ≡ 1

N−1
I (f)R(f)

, (81)

to characterize its polarization and sky-averaged sens-
itivity; see (71). Plots of single-pulsar characteristic
strain-noise sensitivity curves for the simple quadratic
spin-down model described in Section II A and for both
white and red+white noise are shown in Figure 12. More
realistic single-pulsar strain-noise sensitivity curves can
be constructed using a subset of the NANOGrav 11-year
pulsars (Figure 13) [36]. These pulsars have noise contri-
butions specified by the parameters EQUAD, ECORR,
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Figure 4. Sky-averaged 95% upper limit on the GW strain amplitude
from a circular SMBHB as a function of GW frequency, with and without
BAYESEPHEM (solid, blue curve and dashed, red curve, respectively). At the
lowest frequencies ( fgw . 4 nHz), the analysis with BAYESEPHEM was more
sensitive than the analysis without, but there was no difference in sensitivity
at higher frequencies.

2⇥10�15 3⇥10�15 4⇥10�15 6⇥10�15 10�14

GW Strain Upper Limit, h95

Figure 5. The 95% upper limit on the GW strain amplitude from a circular
SMBHB with fgw = 8nHz as a function of sky position from an analysis of the
11-year data set, plotted in equatorial coordinates using the Mollweide pro-
jection. We used the DE436 ephemeris model with BAYESEPHEM to model
uncertainty in the SSB. The positions of pulsars in our array are indicated by
stars, and the most sensitive sky location is indicated by a red circle. The 95%
upper limit ranged from 2.0(1)⇥ 10-15 at our most sensitive sky location to
1.34(4)⇥10-14 at our least sensitive sky location.

rameters to determine how much each individual pulsar con-
tributed to these signals. In a dropout analysis, the model for
a pulsar’s residuals [Eq. (1)] is modified so that the GW signal
could be turned on or off in each individual pulsar:

�t = M✏+ nwhite + nred + s , (30)

where  2 {0,1}. The GW parameters were held fixed at
the values that maximized the likelihood of a standard GW
search, and dropout parameters ka were introduced into the
signal model, which were drawn from a uniform prior be-
tween 0 and 1. These parameters determined whether the sig-
nal was turned on or off in a particular pulsar:

a =
⇢

0 ka < kthreshold
1 ka � kthreshold

, (31)

where kthreshold sets the prior on whether the signal should be
included in a pulsar. For the analyses in this paper, we used
kthreshold = 1/2, meaning that the prior assumed it was equally

likely that the GW be turned on or off. At each iteration of the
MCMC, the astrophysical properties of the GW were fixed,
and the only thing that varied was which pulsars’ residuals
contained the GW signal. The posteriors of the dropout pa-
rameters indicated how much support there was for the GW
in each pulsar.

The dropout method tests the robustness of the correla-
tions in the signal by determining whether evidence for the
signal comes from correlations between multiple pulsars, or
it only originates from a single pulsar. It is similar to the
dropout technique in neural networks, where units are ran-
domly dropped during training in order to strengthen the net-
work (Srivastava et al. 2014). This method is also similar to
jackknife resampling (Efron & Stein 1981); however, in jack-
knifing, samples are removed in order to estimate the bias in
parameter estimation, whereas in dropout analyses the param-
eter values are held fixed, and the dropout parameters indicate
how much each pulsar is biasing the parameter estimation. An
upcoming paper will further describe and develop this method
(Vigeland et al. 2019)

We performed two dropout analyses. The first was on the 9-
yr data set at fgw = 15nHz. The analysis of the 9-year data set
found an increase in the 95% strain upper limit at fgw = 15nHz
compared to the upper limits at neighboring frequencies. Fur-
thermore, as shown in Figure 6, we found that the strain up-
per limit decreased significantly when PSR J0613-0200 was
removed from the 9-year data set. However, there was very
little difference in the Bayes factor: B10 = 1.4(1) with all pul-
sars, and B10 = 1.11(4) excluding PSR J0613-0200. Figure 7
shows the results of a dropout analysis. We fixed the GW sig-
nal parameters to the best-fit values from a detection analysis
including all pulsars, and only allowed the dropout parame-
ters to vary. We set kthreshold = 1/2, so that there was an equal
prior probability of the signal being included or excluded in
the model for each pulsar’s residuals. PSR J0613-0200 had
the largest Bayes factor while all other pulsars had Bayes fac-
tors of order 1, from which we concluded that the increase
in the strain upper limit at fgw = 15nHz was caused by an
unmodeled non-GW signal in PSR J0613-0200. We have ap-
plied advanced noise modeling techniques to this pulsar, using
more complex models for the red noise, and modeling time-
dependent variations in the dispersion as a Gaussian process
rather than with DMX. These results will be discussed in an
upcoming paper.

We also performed a dropout analysis on the 11-yr data
set at fgw = 109nHz, for which the detection searches had
found B10 = 15(6). Figure 8 shows the Bayes factors for each
pulsar’s dropout parameter. We found that PSR J1713+0747
had the strongest Bayes factor for including a GW signal at
this frequency, with B10 = 96.2(1), indicating that most of
the evidence for this signal comes from the residuals of PSR
J1713+0747. We did not perform an analysis removing PSR
J1713+0747 because it is one of the most sensitive pulsars
in the NANOGrav PTA, and removing it always decreases
our sensitivity to GWs. Since J1713+0747 significantly con-
tributes to every GW analysis, it is unsurprising that noise
in this pulsar can be confused for a GW. A noise analysis
of J1713+0747 is underway using the advanced noise mod-
eling techniques that were also applied to J0613-0200, and
the results will be discussed in an upcoming paper. Future
CW analyses of PTA data will be able to definitively deter-
mine the source of this signal with additional timing data and
the incorporation of advanced noise modeling techniques into

(b)

Figure 11. Panel (a): Sensitivity sky map for the strain amp-
litude of a monochromatic continuous-wave source, calculated
using the NANOGrav 11-year data [38]. The stars show the
locations of the NANOGrav pulsars and the red dot shows
the most sensitive sky location. For this plot, we have taken
f0 = 8 nHz and ρ = 2. Panel (b): For comparison, a 95%
confidence-level upper limit sky map taken from the NANO-
Grav 11-year single-source paper [37].

and EFAC [36, 38, 40, 41], which are denoted by Q, Jij ,
and F in the following expression for the noise covariance
matrix:

Cn,ij = F 2 [σ2
i δij +Q2δij ] + Jij . (82)

Here σ2
i are individual TOA errors, which are associated

with the finite-signal-to-noise ratio determination of the
pulse arrival times (obtained by correlating the observed
pulses with a pulse template). EQUAD are white noise
contributions to the covariance matrix that add in quad-
rature with the TOA errors. EFAC is an overall scale
factor that can be used to adjust the overall uncertainty
if necessary. ECORR are noise contributions that are cor-
related within an observing epoch, but not from epoch to
epoch. Hence the ECORR contributions to the covariance
matrix are block diagonal. Red noise, modeled as a power
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Figure 12. Single-pulsar characteristic strain-noise sensitivity
curves for the simple quadratic spin-down timing model fit
described in the main text and for white noise (solid curve)
and red+white noise (dashed curve). The vertical blue line
corresponds to a frequency of 1/T .

law, was added for those pulsars that show significant
detections in the NANOGrav 11-year data set [36]. In
Figure 13, B1937+21, J1713+0747 and J1909-3744 have
injections of red noise. This can be distinguished by the
“flatter” appearance of the sensitivity curves around the
minimum, as compared to the other pulsars. For a de-
tailed list of noise parameters, and to see which pulsars
have significant detections of red noise, consult Table 2
in [38].

The NANOGrav 11-year pulsars also have more com-
plicated timing model fits than the simple quadratic
spin-down model described in Section II A. In Fig-
ure 13, one can see that pulsar J1024-0719 is fit to a
cubic spin-down model, leading to a steeper frequency-
dependence (∼f−5/2) at low frequencies. One also sees
that J1713+0747 and J1853+1303 are in binary systems:
there are additional spikes at the binary orbital frequency
and twice the binary orbital frequency for J1853+1303.
Finally, these pulsars have timing models that also include
fits to a piecewise-constant, time-dependent dispersion
measure fluctuation (DMX), which is associated with per-
turbations of the dispersion of the radio pulses as they
propagate through the interstellar medium from the pulsar
to a radio receiver on Earth. (The lower-(radio)frequency
components of a pulse are delayed more than the higher-
frequency components.) Fitting to DMX in the timing
model leads to broadband absorption of power relative to
a timing model that does not fit for DMX. A piecewise-
constant fit to the dispersion measure variations allows
processes with all timescales represented in the data to
be removed: from the large-timescale variations, due to
the slow movement of the interstellar medium, down to
the short-timescale changes from the scintillation and
scattering of the radio pulses. Figure 14 shows plots of the
transmission function for NANOGrav pulsar J1944+0907,
with and without DMX included in the timing model.
Other models exist for dispersion measure variations and
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Figure 13. Single-pulsar characteristic strain-noise sensitivity curves for a subset of NANOGrav 11-year pulsars. The ∼f−5/2

behavior for PSR J1024-0719 is evidence of a fit to a cubic spin-down model for the pulsar spin frequency. The cubic term in
the fit is needed due to an acceleration of the pulsar, evident in the TOAs from its unusually-long binary period [36, 39]. The
additional spikes seen for J1713+0747 and J1853+1303 show that the pulsar is in a binary system; the second binary spike for
J1853+1303 is the second harmonic of the binary orbital frequency.

Figure 14. Plots of transmission functions showing the effect of
including time-dependent dispersion measure (DMX) into the
timing model fit. Including DMX in the timing model leads
to broadband absorption of power (solid blue curve) relative
to that for a timing model without DMX.

are treated exhaustively in [42]. The transmission func-
tion’s dependence on these models depends greatly on the
type of model being used. Alternatively, one can trade
out the effect of dispersion measure variations on the
transmission function by making the dispersion measure
variation model part of the noise analysis, rather than part

of the marginalized timing model, effectively replacing
the power loss with uncertainty in the dispersion measure
model parameters; see, e.g., [27, 43].

C. Optimal cross-correlation statistic for a
stochastic GW background

The derivation of the optimal cross-correlation statistic
for a stochastic GW background is similar to that presen-
ted above for a single deterministic GW, expect that we
work with data from pairs of pulsars. Starting with a
single distinct pair, labeled by I and J , we define

ŜIJ ≡ rTI QrJ , (83)

where rI and rJ are the TMM residuals for pulsars I and J
(assuming that we have already fit for all deterministic GW
sources), and Q is an mI ×mJ matrix, where mI ≡ NI −
Npar,I , etc. As before, we determine the filter function Q

by maximizing the signal-to-noise ratio of ŜIJ . Similar
derivations appear in the literature [23, 28, 44–46]. The
final result for the optimal filter is

Q ∝ Σ−1
I ΣIJΣ−1

J , (84)

where

ΣI ≡ GTI (Cn,I + Ch)GI ,

ΣIJ ≡ χIJ GTI ChGJ .
(85)
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The expected squared signal-to-noise ratio for this optimal
choice of Q is then

ρ2
IJ = Tr

[
ΣJI Σ−1

I ΣIJΣ−1
J

]
. (86)

The above calculation assumes that we are in the weak-
signal limit where the cross-correlation terms are assumed
to be negligible compared to auto-correlation terms (i.e.,
we assume that the GW signal power is much less than
that for the intrinsic pulsar and measurement noise).

We can then combine the signal-to-noise ratios for each
distinct pair in quadrature since, in the weak-signal limit,
there is negligible correlation between these estimators:

ρ2 '
∑

I

∑

J>I

ρ2
IJ . (87)

As we saw for deterministic GWs, it is useful to write the
above expression for the expected squared signal-to-noise
ratio in the frequency domain. Proceeding as we did there,
we find

ρ2 '
∑

I

∑

J>I

2TIJχ
2
IJ

×
∫ fNyq

0

df S2
h(f)R2(f)N−1

I (f)N−1
J (f) , (88)

where Ph(f) = R(f)Sh(f), and where N−1
I (f) is defined

by (20). This suggests defining the following effective
strain-noise power spectral density for the whole PTA:

Seff(f) =

(∑

I

∑

J>I

TIJ
Tobs

χ2
IJ

SI(f)SJ(f)

)−1/2

, (89)

which includes contributions from the Hellings and Downs
factors χIJ and the individual pulsar strain-noise power
spectral densities SI(f) ≡ 1/(N−1

I (f)R(f)). Note that
Seff(f) has dimensions of strain2/Hz, and that

ρ2 ' 2Tobs

∫ fNyq

0

df
S2
h(f)

S2
eff(f)

(90)

in terms of Seff(f).
A plot comparing dimensionless characteristic strain

curves hc(f) ≡
√
fSeff(f) for stochastic GW backgrounds

for the NANOGrav 11-year pulsars is given in Figure 15.
The three curves show the effect of including a contri-
bution from the GWB to the auto-power spectra of all
the pulsars (blue versus dashed-orange curves) and the
false improvement in sensitivity that arises if one fails to
include the red-noise component of the individual pulsar
noise covariance matrices (green versus dashed-orange
curves). Typical PTA sensitivity curves that one sees in
the literature incorrectly ignore this red noise component,
[13, 26].

Since calculating sensitivity curves of this type is much
more computationally efficient than doing real data ana-
lyses or analyzing simulated data with injected signals,
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Figure 15. Comparison of stochastic sensitivity curves (ef-
fective characteristic strain noise) for the NANOGrav 11-year
PTA. All the curves include realistic pulsar noise characterist-
ics and individual timing model fits. The blue curve includes a
contribution to the auto-power spectra, produced by a GWB
at the level of Agwb = 1 × 10−16. The dashed-orange curve
shows the sensitivity without including the GWB, and the
green curve shows what happens if you also ignore the red
noise contributions to the noise covariance matrices.

another use of this formalism is making predictions about
the sensitivity of PTAs into the future. Figure 16 shows
a simulated PTA at various stages of maturity. All of the
pulsars have a precision of 1 µs and red noise correspond-
ing to a GWB of AGWB = 6× 10−15. Half of the pulsars
in each curve additionally have power-law red noise with
ARN = 10−13 and γ = 2. The array starts with 35 pulsars
that range in time span from 3 years to 10 years. The
next sensitivity curve shows the sensitivity 10 years later,
with the addition of 15 pulsars, with a minimum of 3
year baseline. The most sensitive curve shows the PTA
another 10 years later with 75 pulsars, now spanning from
3 years to 30 years.
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Figure 16. A simulated pulsar timing array with sensitivity
curves shown at 10, 20 and 30 years into its observing campaign.
All pulsars have 1 µs precision and a GWB of AGWB = 6 ×
10−15. Half of the pulsars, for each time span, additionally
have power-law red noise with ARN = 10−13 and γ = 2.
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1. Comparing stochastic and deterministic sensitivity curves

Although one uses different statistics to search for de-
terministic and stochastic GW signals, it is interesting
to compare the sensitivity curves for these two different
cases. Figure 17 shows plots of the deterministic and
stochastic sensitivity curves for the NANOGrav 11-year
pulsars (taken from Figure 9 and Figure 15, dashed-orange
curve). Note that the sensitivity curve for a single de-
terministic source is lower than that for a stochastic back-
ground, since the Hellings and Downs factors χIJ in (89)
reduce the effective number of pulsar pairs that contribute
to the stochastic analysis. To demonstrate this explicitly,
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Figure 17. Comparison of the sensitivity curves for the NANO-
Grav 11-year pulsars to a single deterministic GW signal and
a stochastic GW background; see also Figures 9 and 15. The
two curves differ by a factor of ∼ 2.6.

compare equations (70) and (89) for Seff(f) assuming that
all the pulsars have the same noise characteristics and
timing model fits (i.e., SI(f) ≡ S(f) for all I), and that
all the pulsars are observed for the full observation time
(i.e., TI ≡ TIJ ≡ Tobs). Then

Sdet
eff (f) =

5

4Np
S(f) , (91)

Sstoch
eff (f) =

(∑

I

∑

J>I

χ2
IJ

)−1/2

S(f) , (92)

where Np is the number of pulsars. Since the maximum
value of χIJ for any pair of pulsars is 1/2, we have

∑

I

∑

J>I

χ2
IJ ≤

Np(Np − 1)

2

1

4
, (93)

which implies

(∑

I

∑

J>I

χ2
IJ

)−1/2

>
2
√

2

Np
, (94)

Thus,

Sstoch
eff (f) >

2
√

2

Np
S(f) ⇒ Sstoch

eff (f) > Sdet
eff (f) . (95)

Although we have compared the full sensitivity curves
Seff(f) for deterministic and stochatic GW sources, we
note that the corresponding signal-to-noise ratio for a
monochromatic deterministic source uses only the value
of the sensitivity curve at a single frequency f = f0

(see (73)); while that for a stochastic source involves an
integral of Seff(f) over all f (see (90) and the discussion
in Section IV C 3).

2. Pairwise stochastic sensitivity curves

As a by-product of the stochastic sensitivity curve ana-
lysis, we obtain pairwise stochastic sensitivity cuves

hc,IJ ≡
√
fSIJ(f) , SIJ(f) ≡

√
Tobs

TIJ

√
SI(f)SJ(f)

|χIJ |
,

(96)
by simply restricting ourselves to a single term in the sum
(89). Plots of such curves are useful as a diagnostic for
comparing the contribution of different pulsar pairs to
the stochastic optimal statistic signal-to-noise ratio. Fig-
ure 18 shows pairwise sensitivity curves for a subset of the
NANOGrav 11-year pulsars, comparing pairwise correla-
tions of some of the most and least sensitive NANOGrav
pulsars.

3. Power-law integrated sensitivity curves

For stochastic backgrounds that have a power-law spec-
trum, cf. (56), it is possible to construct a sensitivity curve
that takes into account the improvement in sensitivity that
comes from integrating over frequency [13]. Given a range
of power-law indices, one determines the amplitude of each
power-law background that yields a prescribed value of
the optimal statistic signal-to-noise ratio ρ (e.g., ρ = 1).
The envelope of these power-law backgrounds defines
the power-law-integrated sensitivity curve for the PTA.
Figure 19 shows the ρ = 1 power-law integrated sensitiv-
ity curve for the NANOGrav 11-year data set using the
dashed-orange characteristic strain-noise curve from Fig-
ure 15. For the expected GWB spectral index of α = −2/3
we calculate an amplitude of AGWB = 1.55×10−15 needed
to obtain SNR = 1. Compare this to the full NANOGrav
11-year Bayesian analysis 95% credible upper limit value of
AGWB = 1.67×10−15 and the frequentist optimal statistic
results of AGWB = 9.8± 4.7× 10−16 and SNR = 0.8± 0.7.
Our result is within 10% of the Bayesian result and reas-
onably close to the optimal statistic results, given that
both the SNR and amplitude have error bars.
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Figure 18. Pairwise stochastic sensitivity curves (effective
characteristic strain noise) for a subset of NANOGrav 11-
year pulsar pairs. Since pulsars J1747-4036 and J1903+0327
are two of the least-sensitive pulsars in the NANOGrav 11-
year data set, their pairwise sensitivity curve is worse (that
is, higher) than the other pairs shown here. The sensitivity
curve for J1713+0747 and J1903+0327 is significantly better,
since J1713+0747 is the most sensitive pulsar in the data set;
while that for J1713+0747 and J1744-1134 is the best, since
both of these pulsars are individually very sensitive and their
angular correlation is χIJ = 0.3304. Pulsars J1713+0747 and
J1909-3744 are also both individually very sensitive, but since
their angular correlation is only χIJ = 0.0058, their pairwise
sensitivity curve is an order of magnitude worse than that for
J1713+0747 and J1744-1134.
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Figure 19. Power-law-integrated sensitivity curve for the
NANOGrav 11-year data set. The blue line is the stochastic
sensitivity curve for the NANOGrav 11-year data set. Each of
the straight grey lines represents a power-law GWB detectable
with an optimal-statistic signal-to-noise ratio ρ = 1 for the
plotted spectral index. The envelope of these lines (i.e., the
maximum value of all the power-law backgrounds at a given
frequency) defines the power-law-integrated sensitivity curve
for the PTA. The orange line is the power-law with spectral
index of α = −2/3, corresponding to a GWB background, at
the amplitude needed for a detection with an SNR = 1; in this
case, AGWB = 1.55× 10−15.

V. DISCUSSION

We have presented a method for constructing realistic
detection sensitivity curves for pulsar timing arrays, valid
for both deterministic and stochastic GW signals. We can
include different noise characteristics and the effect of fit-
ting to a timing model via an inverse-noise-weighted trans-
mission function N−1

I (f) ≈ TI(f)/P (f). Single-pulsar
sensitivity curves are then calculated from the strain-
noise power spectral density SI(f) ≡ 1/(N−1

I (f)R(f)),
where R(f) is the polarization and sky-averaged timing
residual response of a pulsar to a passing GW. Detec-
tion sensitivity curves for multiple pulsars (i.e., a PTA)
are similarly constructed from an effective strain-noise
power spectral density Seff(f), which is a combination of
single-pulsar strain-noise power spectral densities SI(f),
cf. (70), (75), (89), appropriate for the GW source that
one is interested in detecting.

The realistic sensitivity curves that we have calculated
can be used to assess the detectability of different GW
signals by existing or planned PTAs. This is in contrast
to the usual approach in the literature where PTA sensit-
ivity curves are computed using a highly simplified model.
The computational cost of producing these sensitivity
curves is minimal; they can be calculated much faster
than analyzing simulated data containing injected signals.
By properly incorporating realistic noise properties and
the effect of timing model fits into the sensitivity curves,
we can produce detectability estimates that agree quite
well with the more-computationally-involved calculations.
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Appendix A: Casting the Blandford et
al. analysis [16] in more modern notation

When using pulsar timing data to search for GWs,
one needs to take into account the effects of fitting to
a deterministic timing model when doing any type of
additional signal analysis. Following [16], we define the
residuals R (t) as the difference between the observed
arrival times of the pulses and the expected arrival times as
determined by our best guesses to the parameters. These
residuals are fit to an expression linear in the corrections
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to the unknown parameters, αa.5 (Noise terms are added
later in their analysis.) We start in the notation of [16],
and then translate to expressions in terms of modern PTA
GW analyses:

R (t) =

Npar∑

a=1

αaψa (t) . (A1)

We will define Ri ≡ R (ti), which is a vector of length N ,
and ψia ≡ ψa (ti), which is a 2-dimensional matrix with
dimensions N ×Npar. (Note we have reversed the order
of the indices on ψia from that in [16], to be consistent
with later work.) In more modern PTA data analysis
papers, like [22] or [23, 47], this matrix is referred to as
the design matrix of the timing model (our Mia.) The
above expression for the residuals can be transformed into
an orthonormal basis

Ri =

Npar∑

a=1

α′aψ
′
ia, ψ′ia ≡

Npar∑

b=1

ψibLba , (A2)

where

N∑

i=1

ψ′Taiψ
′
ib = δab . (A3)

Using these definitions we calculate a relation that will
be useful in the next section. To simplify the notation
a bit we will use the Einstein convention of summing
over repeated indices without including summation sym-
bols, using matrix transposes where necessary. Thus, for
example, the orthonormality conditions can be written as

δab = ψ′Taiψ
′
ib = LTacψ

T
ciψidLdb . (A4)

Since a change of basis change is invertible, we can act
with the inverse transformation matrices:

L−Tea δabL
−1
bf = L−Tea L

T
acψ

T
ciψidLdbL

−1
bf ,

L−Tea L
−1
af = ψTeiψif ,

(A5)

where L−T denotes the inverse of the transpose matrix
LT , which is the same as the transpose of the inverse
matrix L−1. Finally, using the well-known identity for
the inverse of a product of two matrices:

(
L−Tea L

−1
af

)−1

=
(
ψTeiψif

)−1 ⇒ LfaL
T
ae =

(
ψTeiψif

)−1
.

(A6)

1. Least-squares regression

One finds the best fit to a timing model by minimizing
a χ2 function, which we will define below. In [16] an

5 In our notation, R(t) is δti and αa is δξa.

ordinary least squares (OLS) minimization is used. In
subsequent PTA papers a weighted-least-squares (WLS)
regression is used, where each residual is weighted by the
inverse of the TOA error, Wi ≡ 1/σi. In the most modern
work a generalized least squares (GLS) regression is used
where the noise covariance matrix, Nij , is used, encoding
covariances between all residuals:

χ2 ≡
(
Ri − α′aψ′Tai

)
N−1
ij

(
Rj − ψ′jbα′b

)
. (A7)

Here we solve the GLS minimization problem, restricting
to simpler scenarios if needed—i.e., N−1

ij = σ−2
i δij for

the case of WLS, and N−1
ij = δij for OLS (as noise is not

taken into account during the OLS fit). We minimize
the expression for χ2 above by finding the root(s) of the
derivative with respect to the parameters:

0 =
∂χ2

∂α′a
= −ψ′TaiN−1

ij Rj + ψ′TaiN
−1
ij ψ

′
jbα
′
b + (transpose) .

(A8)

Solving for α′b gives

α′b =
(
ψ′TaiN

−1
ij ψ

′
jb

)−1
ψ′TakN

−1
kl Rl. (A9)

In [16], they consider OLS fitting. There the noise is
taken into account after the fit, but its existence is implicit
throughout. For instance the difference between the LHS
and RHS side of their Equation (2.9) would be zero if
there was no noise. Setting Nij = δij gives

α′b =
(
ψ′Taiψ

′
ib

)−1
ψ′TajRj = δ−1

ab ψ
′T
ajRj = ψ′Tbi Ri . (A10)

This is the result that [16] reports for the best fit. For
WLS fitting, we have

α′b =
(
ψ′TaiW

2
ijψ
′
jb

)−1
ψ′TakW

2
klRl , (A11)

where W 2
ij ≡ σ−2

i δij .

2. Transmission function for ordinary least-squares
regression

The transmission function is defined by [16] as the
transfer function relating the power in the pre-fit residuals
Ri to that in the post-fit residuals

Rpost
i ≡ Ri − ψ′iaα′a , (A12)

where α′a are the best-fit values to the parameter de-
viations, determined by the χ2 minimization procedure
discussed above. For the case of OLS fitting, which [16]
consider, α′a is given by (A10), implying

Rpost
i ≡ Ri − ψ′iaψ′TajRj = (δij − ψ′iaψ′Taj )Rj . (A13)
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The variance in the post-fit residual is then

σ2
post ≡

1

N
〈RpostTRpost〉

=
1

N
〈RjRk〉

(
δji − ψ′jaψ′Tai

) (
δik − ψ′ibψ′Tbk

)

=
1

N
〈RjRk〉

(
δjk − ψ′jaψ′Tak − ψ′jbψ′Tbk + ψ′jaψ

′T
aiψ
′
ibψ
′T
bk

)

=
1

N
〈RjRk〉

(
δjk − ψ′jaψ′Tak

)
,

(A14)
where we used orthogonality of the ψ′ja to get the last
line. Since the covariance matrix 〈RiRj〉 is related to its
power spectral density P (f) via

〈RiRj〉 =

∫ ∞

0

df P (f) ei2πf(ti−tj) , (A15)

it follows that

σ2
post =

∫ ∞

0

df T (f)P (f) , (A16)

where

T (f) ≡ 1− 1

N
ψ′iaψ

′T
aje

i2πf(ti−tj)

= 1− 1

N
ψ̃′a (f)

(
ψ̃′a (f)

)† (A17)

with ψ̃′a the Fourier transforms of the basis functions:

ψ̃′a (f) = ψ′iae
i2πfti . (A18)

Making this substitution and transforming ψ′ia back to
the original basis, we find

T (f) = 1− 1

N
ψibLbaL

T
acψ

T
cje

i2πf(ti−tj)

= 1− 1

N
ψib
(
ψTckψkb

)−1
ψTcje

i2πf(ti−tj)

=
1

N

(
δij − ψib

(
ψTckψkb

)−1
ψTcj

)
ei2πf(ti−tj) ,

(A19)
which is an expression for transmission function in terms
of the original design matrix ψia.

3. Transmission function for generalized
least-squares regression

For the case of GLS fitting, the best-fit values for the
timing parameter deviations are given by (A9), for which
the post-fit residuals are given by

Rpost
i = Ri − ψ′ia

(
ψ′TbjN

−1
jk ψ

′
ka

)−1

ψ′TbmN
−1
mjRj

=
(
δij − ψ′ia

(
ψ′TbkN

−1
kl ψ

′
la

)−1
ψ′TbmN

−1
mj

)
Rj .

(A20)
We can write this in terms of the original basis as

Rpost
i =

(
δij − ψicLca

(
LTbeψ

T
ekN

−1
kl ψldLda

)−1
LTbfψ

T
fmN

−1
mj

)
Rj

=
(
δij − ψicLcaL−1

ad

(
ψTekN

−1
kl ψld

)−1
L−Teb L

T
bfψ

T
fmN

−1
mj

)
Rj

=
(
δij − ψid

(
ψTekN

−1
kl ψld

)−1
ψTemN

−1
mj

)
Rj ,

(A21)

which has exactly the same form as (A20) with ψ′ia replaced by ψia. The variance of the post-fit residuals is thus

σ2
post ≡

1

N
〈RpostTRpost〉

=
1

N

(
δij − ψia

(
ψTblN

−1
lm ψma

)−1
ψTbnN

−1
nj

)
〈RjRk〉

(
δki −N−1

kq ψqc
(
ψTdrN

−1
rs ψsc

)−1
ψTdi

)
.

(A22)

Since 〈RiRj〉 ≡ Njk for GLS fitting, we get

σ2
post =

1

N

(
Nik − ψia

(
ψTblN

−1
lm ψma

)−1
ψTbk

)(
δki −N−1

kq ψqc
(
ψTdrN

−1
rs ψsc

)−1
ψTdi

)

=
1

N

(
Nikδki − ψia

(
ψTblN

−1
lm ψma

)−1
ψTbi − ψic

(
ψTdrN

−1
rs ψsc

)−1
ψTdi

+ψia
(
ψTblN

−1
lm ψma

)−1
ψTbkN

−1
kq ψqc

(
ψTdrN

−1
rs ψsc

)−1
ψTdi

)

=
1

N

(
Nikδki − ψia

(
ψTblN

−1
lm ψma

)−1
ψTbi

)

=
1

N

(
δij − ψia

(
ψTblN

−1
lm ψma

)−1
ψTbkN

−1
kj

)
Nij ,

(A23)
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where we used the symmetry of Nij throughout. Finally, using (A15) for Nij , we recover (A16) with

T (f) = TR (f) ≡ 1

N

(
δij − ψia

(
ψTblN

−1
lm ψma

)−1
ψTbkN

−1
kj

)
ei2πf(ti−tj) . (A24)

We thus obtain the same R-matrix-dependent transmission function TR(f) found in (15), with the R-matrix given by

the expression in parentheses, Rij ≡ δij − ψia
(
ψTblN

−1
lm ψma

)−1
ψTbkN

−1
kj .
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