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The detection of gravitational waves has offered us the opportunity to explore the dynamical
and strong-field regime of gravity. Because matched filtering is more sensitive to variations in the
gravitational waveform phase than the amplitude, many tests of gravity with gravitational waves
have been carried out using only the former. Such studies cannot probe the non-Einsteinian effects
that may enter only in the amplitude. Besides, if not accommodated in the waveform template,
a non-Einsteinian effect in the amplitude may induce systematic errors on other parameters such
as the luminosity distance. In this paper, we derive constraints on a few modified theories of
gravity (Einstein-dilaton-Gauss-Bonnet gravity, scalar-tensor theories, and varying-G theories), in-
corporating both phase and amplitude corrections. We follow the model-independent approach of
the parametrized post-Einsteinian formalism. We perform Fisher analyses with Monte-Carlo sim-
ulations using the LIGO/Virgo posterior samples. We find that the contributions from amplitude
corrections can be comparable to the ones from the phase corrections in case of massive binaries like
GW150914. Also, constraints derived by incorporating both phase and amplitude corrections differ
from the ones with phase corrections only by 4% at most, which supports many of the previous
studies that only considered corrections in the phase. We further derive reliable constraints on the
time-evolution of a scalar field in a scalar-tensor theory for the first time with gravitational waves.

I. INTRODUCTION

So far, general relativity (GR) is the most success-
ful theory of gravitation. This century-old theory which
exquisitely describes gravity as the curvature of space-
time has passed numerous tests with high precision [1].
Nonetheless, GR is not expected to be a complete de-
scription of gravity. The inconsistencies in galaxy rota-
tion curves [2–8] and the accelerated expansion of the
universe [9–16] are difficult to explain within the formu-
lation of GR without introducing dark matter and dark
energy. Moreover, a new theory is required to recon-
cile quantum mechanics with classical gravity [17, 18].
Hence, one needs to continue testing GR through var-
ious experiments and observations. Gravitational wave
(GW) observations are one of the most recent additions
to this venture [19–23] which have enabled us to probe the
formerly inaccessible strong, highly non-linear and dy-
namical regime of gravity. Since the strong-field regime
is precisely the place to look for evidence of beyond-GR
phenomena due to quantum gravity corrections [24, 25],
it is important to extract as much physics as possible
from the available GW data.

One can adopt either a model-independent or a theory-
specific method for testing gravity, although the former
is more efficient if one wishes to achieve constraints on
multiple theories with GW observations. One of the first
works on the theory-agnostic approach was taken in [26–
28] where each post-Newtonian (PN) term in the GR
waveform phase were treated independent and the au-
thors proposed to study the consistency among them.
One drawback of such an approach is that it cannot
capture the non-GR effects entering at PN orders that
are absent in GR (like −1PN order common in scalar-
tensor theories). To overcome this, Yunes and Preto-
rius proposed a new framework called parametrized post-

Einsteinian (PPE) formalism by introducing generic cor-
rections at any PN order to both the phase and the am-
plitude [29, 30]. A theory-agnostic data analysis pipeline
named TIGER has been developed [31, 32] and the LIGO
and VIRGO Scientific Collaboration (LVC) recently em-
ployed the generalized IMRPhenom (gIMR) waveform
model which has a one-to-one mapping with the PPE for-
malism in the inspiral part of the waveform phase. With
such waveforms, tests of gravity with the GW phase have
been carried out in [19–22, 33, 34].

Many of the previous studies on tests of GR with
GWs focused only on the phase corrections, though sce-
narios where amplitude corrections bear importance are
not uncommon. In some parity-violating theories, one
of the circularly-polarized modes is amplified while the
other one is suppressed, an effect called amplitude bire-
frigence [35–38]. Such an effect enters only in the GW
amplitude of circularly-polarized modes. Probing ampli-
tude corrections is also important in constraining grav-
itational theories with GW stochastic backgrounds [39].
Furthermore, theories with flat extra dimensions [40],
Horndeski gravity [41], and f(R) gravity [42] may pre-
dict amplitude damping that scales with the cosmological
distance. Such phenomena have been studied in Ref. [43]
in terms of a generalized GW propagation framework.
Possible bounds on the PPE amplitude parameters at
various PN orders were studied in [44] while both am-
plitude and phase corrections were included in [45] for
generic theories with scalar dipole radiation.

We here study how much impact the amplitude cor-
rections may bring to tests of GR with GWs and provide
justifications for previous studies that only considered
the phase corrections. PPE amplitude corrections due
to generation mechanisms in various example theories
have been derived analytically in Ref. [46]. We compute
the constraints on some of those theories from both the
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phase and amplitude, focusing on leading PN corrections
to the tensorial modes only. We choose theories where
the leading correction enters at a negative PN order, and
the sensitivities of black holes (BHs) are known. Such
criteria lead us to choose Einstein-dilaton-Gauss-Bonnet
(EdGB) gravity, scalar-tensor theories, and varying-G
theories. We carry out Fisher analyses with Monte-Carlo
simulations utilizing the parameter posterior samples of
GW151226 and GW150914 released by LVC [47]1. Such
analyses with actual posterior samples produce more re-
liable results compared to the ones with sky-averaged
waveforms. In fact, when implementing such samples,
we can determine the credibility of the small coupling ap-
proximation in scalar-tensor theories, which allows us to
place reliable bounds on the time-evolution of the scalar
field from GW observations for the first time.

We find that the constraints derived from the phase
and the amplitude can be comparable in case of massive
binary systems like GW150914. Whereas for less massive
binaries with a larger number of GW cycles, the phase
always yields stronger constraints. Moreover, inclusion
of an amplitude correction to the waveform impacts the
bound on the phase correction as well since the former
can easily be related to the latter provided the dissipative
and conservative corrections do not enter at the same
order. The amount and direction of such effects vary
with the PN order of the corrections. All such constraints
in the theories under consideration are summarized in
Table I.

The rest of the paper is organized as follows. Sec-
tion II A briefly reviews PPE formalism while Sec. II B
summarizes the data analysis techniques. Section III A
is devoted to justifying our formalism against the one
by LVC in massive gravity [19] while we derive con-
straints on EdGB, scalar-tensor, and varying-G theories
in Secs. III B- III D. Section IV presents a summary of our
work while discussing the effects of an amplitude correc-
tion on that of phase. Appendix A compares the Phe-
nomB and PhenomD waveforms for constraining PPE
parameters.

II. METHODOLOGY

In this section, we explain how we perform our analy-
sis. We first explain the PPE formalism and the non-GR
waveform template. We then describe the Fisher anal-
ysis and how we construct probability distributions of
non-GR parameters.

1 We choose GW151226 and GW150914 as representa-
tives of low-mass and massive binaries respectively, fol-
lowing [20].

A. PPE Waveform

We begin by reviewing the PPE formalism briefly.
PPE gravitational waveform for a compact binary inspi-
ral in the frequency domain is given by [29]

h̃(f) = h̃GR(1 + αPPE u
a)eiδΨ , (1)

where h̃GR is the gravitational waveform in GR. αPPE u
a is

a correction to the GW amplitude with u ≡ (πMf)1/3,
M ≡ (m1m2)3/5/(m1 + m2)1/5 is the chirp mass with
component masses m1 and m2, and f is the frequency
of the GW. The constant αPPE controls the overall mag-
nitude of the correction, while the index a specifies at
which PN order the correction enters. One can write the
non-GR phase correction δΨ in a similar manner as that
of the amplitude as

δΨ = βPPEu
b . (2)

Together (αPPE, a) and (βPPE, b) are called the PPE pa-
rameters.

PPE modifications in Eq. (1) can enter through the
non-GR corrections to the binding energy and the GW
luminosity [29, 30], or alternatively to the frequency evo-
lution and the Kepler’s law [46]. We will follow the latter
approach and write the modified Kepler’s law as

r = rGR(1 + γru
cr ) , (3)

and the frequency evolution as

ḟ = ḟGR

(
1 + γḟu

cḟ

)
. (4)

Here, (γr, cr) and
(
γḟ , cḟ

)
parametrize the non-GR cor-

rections to the binary separation r and the frequency
evolution ḟ respectively. To leading PN order, the GR
contribution is given by [52, 53]

rGR =
( m

Ω2

)1/3

, ḟGR =
96

5
π8/3M5/3f11/3 , (5)

where m represents the total mass of the binary and Ω =
πf is the orbital angular frequency.

Utilizing the stationary phase approximation [54, 55]
and the quadrupole formula for the metric perturba-
tion [56], one can easily derive the amplitude and phase
of the dominant quadrupolar mode in Fourier space from
Eqs. (3) and (4) as

Ã(f) = ÃGR

(
1 + 2γru

cr − 1

2
γḟu

cḟ

)
, (6)

and

Ψ = ΨGR −
15γḟ

16(cḟ − 8)(cḟ − 5)
ucḟ−5 , (7)
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Theories Repr. Parameter

Constraints

GW150914 GW151226

Phase Amplitude Combined Phase Amplitude Combined

EdGB [48]

√
|ᾱEdGB| [km] (50.5) (76.3) (51.5) 4.32 10.5 4.32

ζEdGB 3.62 32.4 3.91 0.0207 0.709 0.0207

Scalar-Tensor [49, 50]
|φ̇| [104/sec] (3.64) (7.30) (3.77) 1.09 (5.60) 1.09

|m1φ̇| 6.87 16.4 7.15 0.688 3.66 0.688

Varying-G [46, 51] |Ġ0/G0| [106/yr] 7.30 137 7.18 0.0224 0.382 0.0220

TABLE I. 90% credible constraints on representative parameters of various modified theories of gravity from GW150914
and GW151226. For each of the GW events, “phase” and “amplitude” correspond to the cases where we include non-GR
corrections only to the GW phase and amplitude respectively, while “combined” is the case where we include both corrections
in the waveform and reduce the two constraints to a single one according to Sec. II B. ᾱEdGB is the EdGB coupling parameter
which is related to the dimensionless coupling by ζEdGB ≡ 16πᾱ2

EdGB/m
4 with m being the total mass of the binary. m1φ̇

corresponds to a dimensionless parameter in scalar-tensor theories where m1 is the mass of the primary BH while φ is the scalar
field. The bounds are derived by assuming subdominant non-GR corrections, which is realized whenever ζEdGB � 1 (m1φ̇� 1)
in EdGB (scalar-tensor) gravity. Numbers inside brackets mean such criterion is violated and the constraints are unreliable. G
is the gravitational constant with the subscript 0 representing the time of coalescence. An overhead dot denotes a derivative
with respect to time.

respectively. Eq. (7) is already in the PPE format, while
Eq. (6) can be reduced to such a form by keeping only
the dominant correction2.

In fact, the PPE phase and the amplitude parameters
may be related as follows. If the dissipative correction
(correction entering in the GW luminosity) dominates
over the conservative one (correction entering in the bind-
ing energy and Kepler’s law), we find

αPPE =
8

15
(a− 8)(a− 5)βPPE , (8)

while for the conservative-dominated case, we obtain

αPPE =
8

15

(8− a)(5− a)(a2 − 4a− 6)

a2 − 2a− 6
βPPE . (9)

On the other hand, when the aforementioned corrections
enter at the same PN order, no direct relation between
αPPE and βPPE exists. The exponents a and b in the
correction terms are related by the following equation
which is valid for all three cases:

b = a− 5 . (10)

The above formalism needs to be slightly modified for
theories containing time-varying gravitational constants.
Variations in the gravitational constants cause the masses
of the binary components to vary as well [57], and one
needs to take this into account when deriving the PPE
parameters [46].

2 A detailed derivation can be found in Ref. [46]

B. Data Analysis Formalism

We adopt a Fisher analysis [58] to estimate the statis-
tical errors of the non-GR parameters in various theories.
Such an analysis is valid for GW events with sufficiently
large signal-to-noise (SNR) ratios. We make the assump-
tions that the detector noise is Gaussian and stationary.
Let us write the detector output as

s(t) = h(t) + n(t) , (11)

where h(t) and n(t) are the GW signal and the noise
respectively. Let us also define the inner product of two
quantities A(t) and B(t) as

(A|B) = 4<
∫ ∞

0

df
Ã∗(f)B̃(f)

Sn (f)
. (12)

Here Ã(f) is the Fourier component of A, an asterisk (∗)
superscript means the complex conjugate and Sn (f) is
the noise spectral density. With the above definitions,
the probability distribution of the noise can be written
as

P (n = n0(t)) ∝ exp [− (n0|n0)] , (13)

and the SNR for a given signal h(t) can be defined as

ρ ≡
√

(h|h) . (14)

Under the assumptions of Gaussian and stationary noise,
the posterior probability distribution of binary parame-
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ters θa takes the following form:

P (θa|s) ∝ p(0) (θa) exp

[
−1

2
Γab∆θ

a∆θb
]
, (15)

where ∆θa = θ̂a − θa with θ̂a being the maximum like-
lihood values of θa. p(0) (θa) gives the probability distri-
bution of the prior information, which we take to be in
a Gaussian form for simplicity. Γab is called the Fisher
information matrix which is defined as

Γab = (∂ah|∂bh) , (16)

where ∂b ≡ ∂
∂θb

. One can estimate the root-mean-square
of ∆θa by taking the square root of the diagonal elements
of the inverse Fisher matrix Σab:

Σab =
(

Γ̃−1
)ab

= 〈∆θa∆θb〉 , (17)

where Γ̃ab is defined by

p(0) (θa) exp

[
−1

2
Γab∆θ

a∆θb
]

= exp

[
−1

2
Γ̃ab∆θ

a∆θb
]
.

(18)
To save computational time, we use IMRPhenomB

waveform. Reference [20] showed that the difference in
constraints on PPE phase parameters between IMRPhe-
nomB and IMRPhenomD waveforms are negligible for
propagation mechanisms at any PN order and for gener-
ation mechanisms at negative PN orders. In App. A, we
perform a similar comparison for generation mechanism
corrections in the amplitude using sky-averaged wave-
forms and show that the former is at least suitable for
constraining generation mechanisms that enter at nega-
tive PN orders, which is what we will consider in Sec. III.

We choose the following parameters as our variables
for the Fisher analysis:

θa ≡ (lnMz, ln η, χ, lnDL, ln t0, φ0, α, δ, ψ, ι, θPPE) ,

(19)

whereMz is the redshifted chirp mass, η ≡ m1m2/(m1+
m2)2 is the symmetric mass ratio and χ is the effective
spin parameter3. α, δ, ψ, and ι are the right ascension,
declination, polarization and inclination angles respec-
tively in the detector frame. The non-GR parameter
is represented by θPPE = αPPE or βPPE. We perform a
Monte Carlo simulation by using each set of the posterior
samples released by LIGO [47] for (Mz, η,DL, χ, α, δ, ι),
while we randomly sample the polarization angle ψ and
the coalescence phase φ0 in [0, π] and [0, 2π] respectively.
We impose prior information such that −1 ≤ χ ≤ 1,
−π ≤ (φ0, α, ψ) ≤ π, and −π/2 ≤ (δ, ι) ≤ π/2.

3 The effective spin parameter is defined as χ ≡
(m1χ1 +m2χ2) / (m1 +m2), where χA with A = (1, 2) is
the dimensionless spin of the Ath body.

We use the detector sensitivity of Advanced LIGO
(aLIGO) O1 run [59], and we consider the two detectors
at Hanford and Livingston. For simplicity, we assume
that the Livingston noise spectrum is identical to that of
Hanford [55]. For the Fisher integration, the minimum
frequency is taken to be 20 Hz while the maximum fre-
quency is same as the cutoff frequency above which the
signal power is negligible [60].

Now we are going to discuss how we compute the prob-
ability distribution of a non-GR parameter from the out-
put of a Fisher analysis with a Monte Carlo simulation.
We set the fiducial value of any non-GR parameter to
be zero for our analysis. We perform the following inte-
gration numerically to obtain the compound probability
density function4 of any parameter ξ :

P (ξ) =

∫
P (ξ|σξ)P (σξ) dσξ , (20)

where P (ξ) is the marginal (unconditional) probability
density function of ξ. P (ξ|σξ) ∝ exp[−(ξ − ξ̄)2/2σ2

ξ ] is
the conditional probability density function of ξ which
we assume to be a Gaussian distribution with a mean ξ̄
and a standard deviation σξ. P (σξ) is the probability
distribution of σξ computed from the Fisher analysis for
the entire posterior distribution.

Let us finish this section by explaining how we can
utilize both amplitude and phase corrections to derive
constraints on some theory. One can include αPPE or
βPPE as variables to the Fisher analysis as in Eq. (19)
and map them to a non-GR parameter of a theory to de-
rive constraints from the phase and amplitude indepen-
dently. We refer to such constraints as the “phase-only”
and “amplitude-only” bounds respectively. How can we
achieve a single constraint that accommodates both of
them? Recall the relations between the PPE parame-
ters in Sec. II A. One can rewrite αPPE in the waveform
in terms of βPPE according to Eqs. (8) or (9) and elimi-
nate the former variable from the analysis. We refer to
such constraints as the “phase & amplitude combined”
bounds5.

III. RESULTS IN EXAMPLE THEORIES

We now apply our analysis to some example theories.
We begin by studying massive gravity that yields correc-
tions in the phase through propagation mechanisms. We

4 If the distribution of a random variable y depends on a parameter
x, and if x follows a certain distribution P (x) (called the mixing
or latent distribution), the marginal distribution of y is called
mixture distribution or compound probability distribution and
is given by P (y) =

∫
P (y|x)P (x) dx [61].

5 Alternatively, one can rewrite the PPE corrections in the phase
and the amplitude in terms of non-GR parameters of a theory.
Performing Fisher analyses with such parameters as variables
lead to similar constraints as the ‘phase & amplitude combined”
bounds, although such an approach is not theory-agnostic.
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compare bounds from the Fisher analysis to those from
LVC’s Bayesian analysis to justify the former. We next
study EdGB gravity, scalar-tensor theories and varying-
G theories, which achieve the corrections through genera-
tion mechanisms entering at negative PN orders. Bounds
on these theories are summarized in Table I.

A. Validation of the Fisher Analysis: Massive
Gravity

The idea of introducing the mass to gravitons is rather
old [62], and many attempts have been made to construct
a feasible theory that allows one to do so [63]. Such a
theory may arise in higher-dimensional setups [64] and
has the potential to solve the cosmic acceleration prob-
lem [63]. Although gravitons with non-vanishing masses
may have additional polarizations as well [65], we here re-
strict our attention to the non-GR effects on the tensor
modes due to a massive dispersion relation.

We will focus on the non-GR corrections specifically to
the GW phase. Thus, the purpose of this section is sim-
ply to compare our Fisher analysis with the Bayesian one
performed by the LVC. Gravitons with a non-vanishing
mass travel at a speed smaller than the speed of light and
the non-GR effects accumulate over the distance. Mod-
ified dispersion relation for such gravitons is given by
E2 = p2c2 + m2

gc
4, where mg is the mass of the gravi-

ton while E and p are the energy and the momentum
respectively. The PPE phase parameters are [66]

βMG =
π2

λ2
g

M
1 + z

D , b = 3 , (21)

where

D =
z

H0

√
ΩM + ΩΛ

[
1− z

4

(
3ΩM

ΩM + ΩΛ

)
+O(z2)

]
.

(22)
Here, ΩM and ΩΛ are the energy density of matter and
dark energy respectively. H0 is the Hubble constant
while z is the redshift of the source. λg is the Comp-
ton wavelength of the graviton that is related to mg as
λg ≡ h/ (mgc), where h is Planck’s constant.

We compute the probability distribution of λg from
GW150914 according to the procedure outlined in Sec. II
and compare with the one obtained by the LVC [19]
(Fig. 1). The Fisher analysis with Monte Carlo simu-
lations yields λg < 1.2 × 1013 km at 90% CL, which is
in a good agreement with the LVC bound of 1.0 × 1013

km and thus shows the validity of the former. The dif-
ference in the two cumulative distributions of λg pre-
sented in Fig. 1 can be attributed to the fact that the
LVC used a more accurate Bayesian analysis and im-
posed a uniform prior on the graviton mass. The GW
bound has recently been updated by combining multiple
events [21]. The new bound is stronger than binary pul-
sar constraints [67, 68] but slightly weaker than the up-
dated solar system bounds [69]. The bound is also weaker
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FIG. 1. The cumulative probability distribution of the gravi-
ton Compton wavelength from GW150914. We show the ones
obtained from a Fisher analysis with Monte Carlo simulations
(blue solid) and from a Bayesian analysis by the LVC (red
solid). Each of the vertical dashed lines corresponds to the
lower bound of the distribution of the same color with 90%
confidence. Observe how the two different analyses give sim-
ilar bounds.

than the ones from the observations of galactic clus-
ters [70–72], gravitational lensing [73], and the absence
of superradiant instability in supermassive BHs [74].

B. Einstein-Dilaton-Gauss-Bonnet Gravity

EdGB gravity endows one of the simplest high-energy
modifications to GR [75, 76]. Such a theory is motivated
from low-energy effective string theories and also arises
as a special case of Horndeski gravity [77, 78]. The EdGB
action is given by introducing a quadratic-curvature cor-
rection (Gauss-Bonnet invariant) to the GR action which
is non-minimally coupled to a scalar field (dilaton) with
a coupling constant ᾱEdGB [79]6.

In EdGB gravity, BHs acquire scalar monopole charges
which may generate scalar dipole radiation if they form
binaries [48, 80–82]. Such radiation leads to an earlier
coalescence of BH binaries compared to that of GR and
modifies the gravitational waveform with the PPE pa-
rameters given by [20, 48]

βEdGB = − 5

7168
ζEdGB

(m2
1s̃

EdGB
2 −m2

2s̃
EdGB
1 )2

m4η18/5
, (23)

with b = −7 and

αEdGB = − 5

192
ζEdGB

(m2
1s̃

EdGB
2 −m2

2s̃
EdGB
1 )2

m4η18/5
, (24)

6 We use barred quantities for coupling constants in order to dis-
tinguish them from the PPE parameters.
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with a = −2. Here, ζEdGB ≡ 16πᾱ2
EdGB/m

4 is the di-
mensionless EdGB coupling parameter and s̃EdGB

A are the
spin-dependent factors of the BH scalar charges given by

s̃EdGB

A ≡ 2(
√

1− χA2 − 1 + χA
2)/χA

2 [81, 82]7.
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FIG. 2. Histogram distributions of the 90% CL bounds on
ζEdGB from a Fisher analysis with the phase correction only
(blue solid), the amplitude correction only (red dashed) and
combining the two corrections (green dotted-dashed). Fidu-
cial values are taken from the posterior samples of GW150914.
The samples that lie on the left side of the vertical black
dashed line satisfy the small coupling approximation with 90%
CL.

We now derive constraints on EdGB gravity from
GW150914 and GW151226. First, we estimate how well
these events satisfy the small coupling approximation
ζEdGB < 1. To do so, we extract the 90% CL upper
bound ∆ζEdGB from each sample of the posterior distri-
bution of a particular event. We then create histograms
with all the samples (see Fig. 2) and calculate the frac-
tion satisfying ∆ζEdGB < 1. For GW150914, 72% (42%)
of the samples satisfy the small coupling approximation
if ∆ζEdGB is derived from the phase (amplitude) correc-
tion only, while 71% of the posterior distribution satisfies
such approximation if the phase and amplitude correc-
tions are combined. A similar analysis with GW151226
gives 98% and 87% for the phase and amplitude correc-
tions respectively while combining the two yields almost
the same result as that of the phase-only case. Since the
fraction of samples satisfying ζEdGB < 1 is much higher
for GW151226 than GW150914 due to a larger number
of GW cycles and slower relative velocity of the binary
constituents, the former event places more reliable con-
straints on EdGB gravity compared to the latter one.

Figure 3 presents cumulative probability distributions
of ᾱ2

EdGB
8 for GW150914 for three different cases with

7 For ordinary stars like neutron stars s̃EdGB
A are zero [48, 83].

8 We show the distribution of ᾱ2
EdGB instead of

√
ᾱEdGB as it is

the former that directly enters in the waveform.
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FIG. 3. Cumulative probability distributions of ᾱ2
EdGB ob-

tained from GW150914 for the same three cases as in Fig. 2.
Each vertical dashed line shows the corresponding 90% CL
upper bound of a solid line of the same color.

vertical lines representing the 90% CL of the correspond-
ing distribution. We found the 90% CL constraints on√
ᾱEdGB from each of the phase and amplitude correc-

tions as 50.5 km and 76.3 km respectively. Notice that
these bounds have the same order of magnitude. On
the other hand, combining the amplitude and phase cor-
rections leads to an upper bound of 51.5 km, which is
weaker than the phase-only constraint by 2% (to be dis-
cussed more in Sec. IV). Though above constraints may
not be reliable as the 90% CL bounds on ζEdGB do not
satisfy the small coupling approximation, which is shown
in Table I.

We now look at bounds on GW151226. We found that
this event yields 4.32 km and 10.5 km respectively from
the phase and amplitude corrections, while combining
the two only changes the result from the phase-only case
by 0.01%. These bounds are consistent with those in a
recent paper [84] that utilized the LVC posterior samples
including the non-GR phase corrections at −1PN order
while Ref. [85] found even stronger bounds by combining
multiple GW events. These GW bounds are comparable
to the one obtained from low-mass X-ray binaries [86].

Although GW150914 leads to weaker constraints on
EdGB gravity compared to GW151226, the effect of am-
plitude correction is more manifest for the former event.
This is because GW150914 has a smaller number of GW
cycles, and thus the amplitude contribution becomes rel-
atively higher than GW151226.

C. Scalar-Tensor Theories

Scalar-Tensor theories of gravity emerge from the di-
mensional reduction of higher-dimensional theories such
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as the Kaluza-Klein theory [87, 88] and string theo-
ries [89, 90]. In addition to the spacetime curvature,
scalar fields mediate an additional force which is intro-
duced through non-minimal couplings of scalar fields and
gravity [78, 91, 92]. Such theories can explain the acceler-
ated expansion of the universe [93–97], inflation [98–100],
primordial nucleosynthesis [101–104], and the structure
formation [105].

Certain scalar-tensor theories predict scalarization of
neutron stars [106, 107], which can also happen to
BHs if the scalar field evolves with time cosmologi-
cally [108, 109]. Compact binaries formed by such ob-
jects emit dipole radiation which modifies the GW phase
with [46, 110, 111]

βST = − 5

7168
η2/5(α1 − α2)2 (25)

with b = −7, and the GW amplitude as [46]

αST = − 5

192
η2/5(α1 − α2)2 (26)

with a = −2. Here αA represents the scalar charge of the
Ath binary component and depends on specific theories
and the type of compact objects. If we consider a bi-
nary consisting of BHs in a theory where the scalar field
φ obeys a massless Klein-Gordon equation, αA is given
by [109]

αA = 2mA φ̇ [1 + (1− χ2
A)1/2] , (27)

where φ̇ is the rate of change of φ with time.
One can use Eqs. (25)–(27) and the numerical analy-

sis described in Sec. II B to find constraints on φ̇ as long
as the small coupling approximation mAφ̇ < 1 is satis-
fied. In this regard, only 11.7% (13.5%) of the samples of
GW150914 satisfies such approximation with 90% confi-
dence level for the phase (combined) correction, while all
of the samples fail to do so for the amplitude correction.
Hence GW150914 cannot place any meaningful bound
on scalar-tensor theories considered here. On the other
hand, 90.4% of the samples from GW151226 meets the
small coupling criterion for the phase-only and combined
analyses, while the fraction is only 25% for the ampli-
tude correction. Thus, we derive reliable constraints from
GW151226 with the phase-only and combined analyses,
with both leading to φ̇ < 1.1× 104/sec9. This constraint
is 10 orders of magnitude weaker than the current most
stringent bound obtained from the orbital decay rate of
quasar OJ287 [109], though this is the first bound ob-
tained in the strong/dynamical regime.

9 A previous analysis with the sky-averaged waveform in Ref. [20]
could not place a reliable bound on scalar-tensor theories. Since
the posterior distributions of the GW events were not available
then, one could not determine how well those events satisfied the
small coupling approximation from a simple Fisher analysis.

D. Varying- G Theories

Many metric theories of gravity that violate the strong
equivalence principle [1, 112, 113] predict time variation
in the gravitational coupling parameter G [114]. Scalar-
tensor theories are examples where G varies as a function
of the asymptotic scalar field [115], which may vary over
time. Any such time-dependence of G leads to a varia-
tion in the effective masses of compact bodies, which in
turn makes them experience anomalous cosmic accelera-
tion [57]. Such phenomena alter the gravitational wave-
form through the modifications of the binary orbital evo-
lution and the energy balance law [46].

We now show the PPE modifications due to a time
variation in the gravitational constant. In fact, the
amount of gravitational coupling that appears in differ-
ent sectors of a gravitational theory may not be unique.
Einstein-Æther theory [116] and Brans-Dicke theory with
a cosmologically evolving scalar field [115] are examples
of such theories in which various gravitational constants
exist. Reference [46] studied a generic case with two dis-
tinct gravitational constants in Kepler’s law (conserva-
tive sector) and GW luminosity (dissipative sector). Here
we place constraints on the special case where these two
constants coincide with each other. Let the masses and
the Newton’s constant vary according to the following
equations:

mA(t) ≈ mA,0 + ṁA,0(t− t0) , (28)

G(t) ≈ G0 + Ġ0(t− t0) . (29)

Here, a subscript 0 denotes that the quantity is measured
at the time t = t0, and an overhead dot means a deriva-
tive with respect to time. Eqs. (28) and (29) modify the
GW phase and amplitude as [46]

βĠ = − 25

851968
Ġ0 η

3/5
0 [(11 + 3s1 + 3s2)m0

−41(s1m1 + s2m2)] (30)

with b = −13, and

αĠ =
5

512
η

3/5
0 Ġ0 [−(7− s1 − s2)m0

+13(s1m1 + s2m2)] (31)

with a = −8 respectively. Here sA is the sensitivity of
the Ath binary component defined as

sA = − G

mA

∂mA

∂G

∣∣∣∣
t0

. (32)

Employing Eqs. (30) and (31), GW150914

(GW151226) imposes constraints on |Ġ0/G0| from
the phase-only and amplitude-only analyses as
7.30 × 106 yr−1 (2.24 × 104 yr−1) and 1.37 × 108 yr−1

(3.82 × 105 yr−1) respectively, with the combined anal-
yses yielding slight improvements over the phase-only
results. Unlike the EdGB and scalar-tensor cases, the
amplitude-only analyses yield much worse bound than
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that from the phase-only cases even with GW150914.
Notice also that for varying-G theories, the combined
bound is slightly stronger than the phase-only bound
(to be discussed more in the subsequent section). These
bounds are much less stringent compared to the other
contemporary constraints [115]. However, future space-
borne detectors such as LISA [117, 118] will be able to
obtain constraints up to 13 orders of magnitude stronger
compared to the aLIGO ones [51, 119].

IV. CONCLUSION AND DISCUSSION

In this analysis, we have derived constraints on scalar-
tensor, EdGB and varying-G theories from GW150914
and GW151226. To do so, we performed Fisher anal-
yses with Monte-Carlo simulations using the posterior
samples constructed by LVC. In particular, we derived
reliable constraints on the time-evolution of the scalar
field in scalar-tensor theories from GW observations for
the first time.

We explored how amplitude corrections contribute to
the constraints on such theories. We derived three sets of
bounds on each theory: phase-only, amplitude-only, and
from both phase and amplitude combined. We found
that for binaries with large masses such as GW150914,
where we have less number of cycles, the bounds from the
amplitude and phase can be comparable to each other.
On the other hand, combined analyses yield constraints
that differ from the phase-only case at most by 3.6%
for the theories under consideration. Hence, at least in
theories where the leading corrections enter at negative
PN orders, the phase-only analyses as done in previous
literature [20, 84, 85, 119, 120] can produce sufficiently
accurate constraints.

-4 -3 -2 -1 0

n PN

-2

0

2

4

6

8

δ
β

×
 1

0
0

FIG. 4. Comparison of combined and phase-only analyses
at different PN orders from GW150914 with a sky-averaged
phenomB waveform. We show δβ = (βcomb − βphase) /βphase,
where βphase and βcomb are bounds on βPPE from phase-only
and combined analyses respectively. When δβ is positive (neg-
ative), the combined analyses yield weaker (stronger) bounds
than the phase-only ones.

Depending on the prior information and the PN order
of the non-GR correction, a combined analysis can yield
stronger or weaker constraint compared to a phase-only
one. With the priors mentioned in Sec. II B, the frac-
tional difference between βPPE for the two cases is pre-
sented in Fig. 4. From −4 PN to −2.5 PN correction, the
combined analyses give rise to slight improvements over
the phase-only constraints, while for other cases, the for-
mer is weaker with a maximum deterioration of 8.5% at
−1 PN order. Nonetheless, it would be safer to include
both phase and amplitude corrections in the analysis as a
lack of the former in the waveform may cause systematic
errors on GR parameters such as luminosity distance if
non-GR corrections exist in nature.

In this paper, we considered only the leading
PN corrections in the inspiral part of the wave-
form, but how important are higher-PN correc-
tions and modifications in the merger-ringdown
portion? Reference [20] partially addressed this
question by taking Brans-Dicke theory as an ex-
ample whose leading correction enters at −1PN
order, similar to EdGB gravity and scalar-tensor
theories considered here. Appendix B of [20]
shows that including higher-PN corrections only
affects the bound from the leading PN correc-
tion by 10% at most for GW150914. More-
over, for EdGB gravity, including the correc-
tion to the black hole ringdown frequency and
damping time only affects the bound from the
leading PN corrections in the inspiral by 4.5%
for GW150914 [121]. Thus, it is likely that
the bounds presented here are valid as order-of-
magnitude estimates.

A possible avenue for future work includes repeating
the calculation presented here but with a Bayesian anal-
ysis using a more accurate waveform such as PhenomD,
PhenomPv2 or effective-one-body ones. In particular, it
would be interesting to investigate whether the amplitude
correction contribution entering at positive PN orders is
negligible like the negative PN cases reported here. It
is also interesting to repeat the analysis here to
all the other events in GWTC-1 [59] and study
how much the bounds on each theory improve by
combining these events. Another possibility is to take
into account non-tensorial polarization modes following
e.g. [30]. For future detectors with improved sensitivi-
ties, the ability to measure amplitude corrections may
be dominated by calibration errors10.
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Appendix A: Comparison of Bounds on PPE
parameters with PhenomB and PhenomD

Waveforms

Even though the PhenomD waveform produces more
accurate results, we utilized the PhenomB one in this
paper throughout because the latter is simpler and saves
computational time when performing Monte Carlo simu-
lations. In this appendix, we compare constraints on the
PPE parameter αPPE from both waveforms to justify our
method.

Let us discuss the distinct features of the two wave-
forms first. Both PhenomB and PhenomD waveforms
are spin-aligned (non-precessing) frequency-domain phe-
nomenological models of gravitational waveforms [60,
122]. The PhenomB waveform is calibrated for mass
ratios up to m1/m2 = 4 and spin components of χi ∈
[−0.85, 0.85] are unified into a single effective spin. On
the other hand, the PhenomD waveform covers a larger
region of the parameter space with mass ratios upto 18
and spins of χi ∈ [−0.95, 0.95], with both spins intro-
duced independently. The waveform contains a much
higher order in PN terms in the inspiral than the Phe-
nomB waveform and further introduces an intermediate
phase connecting the inspiral and merger-ringdown por-
tions, which make such waveforms more reliable than the
PhenomB ones.
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FIG. 5. Comparison of 90% confidence constraints on αPPE

from GW1501914 with the PhenomB and PhenomD wave-
forms for generation effects.

We now estimate the constraints on the PPE ampli-
tude modification from the two waveforms. Since mod-
ifications to propagation mechanisms used for massive
gravity in Sec. III A do not give rise to amplitude correc-
tions, we here focus on modifications to generation mech-
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FIG. 6. Similar to Fig. 5 but with inspiral signals only. The
Fisher analyses are truncated at 104Hz which is corresponding
to the transition frequency between the inspiral and merger
portions of the PhenomB waveform, and we use the inspiral
portion of the PhenomD waveform all the way up to this cutoff
frequency.

anisms. We performed Fisher analyses with sky-averaged
PhenomB and PhenomD waveforms and derived upper
bounds on αPPE at different PN orders. As shown in
Fig. 5, the results from the two waveforms agree very
well at negative PN corrections but deviate from each
other at the positive ones. On the other hand, truncating
the Fisher analyses at the end of the inspiral phase show
significant agreement between the two waveforms at pos-
itive PN orders (Fig. 6), suggesting that the deviation in
Fig. 5 originates mainly from the intermediate/merger-
ringdown portion.

The example theories considered in this paper acquire
leading non-GR corrections either from propagation ef-
fects or from the generation effects with the latter enter-
ing in negative PN orders. A comparison between the
PhenomB and PhenomD results for constraining βPPE

presented in Ref. [20] reveals consistency on constraining
modifications to propagation mechanisms at both pos-
itive and negative PN orders, while the two waveforms
show agreement only at negative PN orders for constrain-
ing modifications to generation mechanisms. Together
with the results on amplitude corrections discussed above
confirms that the results of this paper should not change
significantly if one utilizes the PhenomD waveform in-
stead. On the other hand, for constraining theories
like dynamical Chern-Simons or noncommutative grav-
ity where the leading correction enters at a positive PN
order, the PhenomB waveform is not expected to produce
reliable results.
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