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We study bulk viscosity arising from weak current Urca processes in dense baryonic matter at and
beyond nuclear saturation density. We consider the temperature regime where neutrinos are trapped
and therefore have non-zero chemical potential. We model the nuclear matter in a relativistic density
functional approach, taking into account the trapped neutrino component. We find that the resonant
maximum of the bulk viscosity would occur at or below the neutrino trapping temperature, so in
the neutrino trapped regime the bulk viscosity decreases with temperature as T−2, this decrease
being interrupted by a drop to zero at a special temperature where the proton fraction becomes
density-independent and the material scale-invariant. The bulk viscosity is larger for matter with
lower lepton fraction, i.e., larger isospin asymmetry. We find that bulk viscosity in the neutrino-
trapped regime is smaller by several orders of magnitude than in the neutrino-transparent regime,
which implies that bulk viscosity in neutrino-trapped matter is probably not strong enough to affect
significantly the evolution of neutron star mergers. This also implies weak damping of gravitational
waves emitted by the oscillations of the post-merger remnant in the high-temperature, neutrino-
trapped phase of evolution.

PACS numbers:

I. INTRODUCTION

The recent detection of gravitational waves by the
LIGO-Virgo collaboration, in coincidence with electro-
magnetic counterparts, has brought into focus the study
of the physics of binary neutron star mergers [1]. In
these events, a post-merger object is formed which either
evolves into a stable neutron star or collapses to a black
hole, once it cannot be supported by the differential ro-
tation. As seen in numerical simulations [2–15] there are
significant density oscillations in the post-merger rem-
nant, which can generate observable gravitational waves.

These oscillations will be damped eventually by dissi-
pative processes on characteristic secular time-scales con-
trolled by thermodynamics of background matter and the
kinetics of the relevant dissipative process. Bulk viscosity
is known to be one of the dissipative processes that could
efficiently damp certain classes of oscillations of general
relativistic equilibria.

Studies of damping mechanisms in the context of bi-
nary neutron star mergers are still at an embryonic stage.
Ref. [16] has suggested that modified Urca processes can
produce significant bulk viscous dissipation on timescales
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of order a few milliseconds, i.e., on time-scales that are
relevant to neutron star merger and post-merger evolu-
tion. This might then affect the emitted gravitational
signal. It remains less clear whether shear viscosity and
thermal conduction could play a significant role [16]. In
parallel, the electrical conductivity was computed in the
relevant regime to assess its impact on the evolution of
the electromagnetic fields. It was shown that the Hall
effect could be important on characteristic time-scales of
the merger and post-merger evolution [17, 18].

To quantify the amount of bulk viscous dissipation a
more detailed analysis is required that takes into account
the realistic temperature and density conditions encoun-
tered in this context. The aim of this work is to ob-
tain the bulk viscosity of dense matter created in neutron
star mergers in the temperature and density regime char-
acteristic for such events. Specifically, we will consider
the dominant weak-interaction processes of Urca type at
temperatures that are above the trapping temperature
Ttr ' 5 MeV [19, 20]. In this regime, the neutrinos have a
mean free path that is significantly shorter than the stel-
lar size, and consequently a non-zero chemical potential.
This affects the composition of the background baryonic
matter. Thus, compared to the extensively studied case
of cold neutron stars, the key new features that arise in
the neutron-star merger and post-merger context is the
higher temperatures at which the weak reactions take
place and the significantly different background compo-
sition of baryonic matter.
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The bulk viscosity of baryonic matter has been studied
extensively in the low-temperature limit for purely nucle-
onic matter [21–27], including possible leptonic contribu-
tions [28], for hyperonic matter [29–34], and for quark
matter [35–45] including the effects of an interface with
the nuclear matter envelope [46]. For a review see [47].
At temperatures T . 1 MeV the physics of bulk viscosity
is affected by the superfluidity of baryons [48–50], but
we will assume that the temperatures are always larger
than the critical temperatures for the pairing of various
baryons, as our focus is on the regime where neutrinos are
trapped, i.e., temperatures T ≥ Ttr. The neutrino trans-
parent case is discussed in Ref. [61] and Appendix D.

Physical conditions that are similar to those we are
aiming to study are encountered also in proto-neutron
stars born in supernova explosions. In this case, the
matter is much more isospin symmetrical, but the rest
of the physics is quite analogous. We will cover this case
as well having in mind the possibility of observations of
oscillations of a proto-neutron star, should a supernova
explosion occur within the detectable range.

In the present study we will assume that thermal
conduction is efficient enough to keep matter isother-
mal while it is being compressed and uncompressed. A
rough estimate (Ref. [16], Eq. (2)) gives the timescale
for relaxation of thermal gradients order of 1 sec
×(ztyp/km)2(T/10 MeV)2, where ztyp is the typical scale

of thermal gradients. Thus, for thermal gradients on a
distance scale of about 30m or less, the relaxation time
would be 1 ms or less, i.e., the characteristic time-scale
of binary neutron star merger. So, for density fluctua-
tions on this distance scale the assumption of isothermal
matter is the relevant one. In particular, if turbulent
flow arises in the merger then this could give flows and
density variations on such distance scale. On the scales
over which thermal conduction is inefficient, the matter
should be treated as iso-entropic. The formalism pre-
sented below can be simply adapted to this case. We
anticipate that for an adiabatic calculation the bulk vis-
cosity will be of the order as found here. We will return
to this problem in a separate work.

This work is organized as follows. In Sec. II we discuss
the rates of the two relevant processes. Section III de-
rives the corresponding formulae for the bulk viscosity of
matter. In Sec. IV we first describe the properties of the
background matter derived on the basis of the density
functional theory at a finite temperature which accounts
for a neutrino component with non-zero chemical poten-
tial (Subsec. IV A). This is followed by a discussion of
perturbed quantities and bulk viscosity in Subsec. IV B.
Our conclusions are collected in Sec. V.

In this work we use the natural (Gaussian) units
with ~ = c = kB = 1, and the metric gµν =
diag(1,−1,−1,−1).

II. URCA PROCESS RATES

We will consider the simplest composition of baryonic matter consisting of neutrons (n), protons (p), electrons (e),
muons (µ), and neutrinos at densities in the range 0.5n0 to 3n0 (n0 ' 0.16 fm−3) and temperatures in the range
Ttr ' 5 to 50 MeV. Other constituents and forms of matter have been proposed, but we will focus on the standard
scenario for this regime, which can serve as a starting point for future explorations of more complex phases of baryonic
matter. Note that positrons do not appear in matter in substantial amounts because the electron chemical potential is
of the order of 100 MeV, see below, Figs. 3 and 4. The weak processes involving positrons will be suppressed roughly
by a factor exp(−µe/T ) ' 0.1 at T = 50 and 0.01 at T = 30 MeV.

In the dynamically evolving environment of a neutron star merger, fluid elements undergo rhythmic cycles of
compression and decompression, which can lead to bulk viscous dissipation if the rate at which the proton fraction
relaxes towards its equilibrium value (“beta equilibrium”) is comparable to the frequency of the compression cycles.
To analyze this, we consider the simplest beta equilibration processes, the Urca processes:

n� p+ e− + ν̄e, (1)

p+ e− � n+ νe. (2)

The first process is the β-decay of a neutron and the second one is the electron capture on a proton. If the matter is
in β-equilibrium, then the chemical potentials of particles obey the relation

µn = µp + µe + µν̄ , (3)

µp + µe = µn + µν , (4)

where the neutrino and antineutrino chemical potentials are related by µν̄ = −µν , which leaves us with a single relation.
As noted above, the matter can be driven out of β-equilibrium by a cycle of compression and rarefaction, and this
can be characterized via a non-zero value of the chemical potential that measures the deviation from β-equilibrium

µ∆ ≡ µn + µν − µp − µe (5)

The rate at which µ∆ relaxes to zero is a measure of the speed at which the chemical constitution of the matter
adjusts to a change in pressure. We start with the computation of the β-equilibration rate assuming a given value of
µ∆ 6= 0.
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The squared matrix element of processes (1) and (2) is given by the well-known expression [51]∑
|MUrca|2 = 32G̃2(k · p′)(p · k′), (6)

where p′ and p refer to the four-momenta of the neutron and proton, k and k′ to the four-momenta of neutrino
(antineutrino) and electron, respectively, and the sum includes summation over the spins of neutron, proton, and
electron. Note that each of baryon four-momenta is dotted into a four-lepton momentum. We consider only the
Standard Model neutrinos (antineutrinos) which are left-handed (right-handed) only, therefore they have only one
projection of helicity that has to be counted. In the following, we will use the non-relativistic limit of the matrix
element (6) because in the temperature and density range that we consider the baryons are nonrelativistic to an
accuracy of about 10%.

Thus we keep only the contribution of time-like parts of the scalar products in the matrix element,

|MUrca|2 = 32G̃2p0p
′
0k0k

′
0, (7)

where index 0 refers to the time-like component of a four-vector, G̃2 ≡ G2
F cos2 θc(1 + 3g2

A), where GF = 1.166 · 10−5

GeV−2 is the Fermi coupling constant, θc is the Cabibbo angle (cos θc = 0.974) and gA = 1.26 is the axial-vector
coupling constant.

A. The rates of the processes n� p+ e− + ν̄e

The β-equilibration rate for the neutron decay n→ p+ e− + ν̄e is given by

Γ1p(µ∆) =

∫
d3p′

(2π)32p′0

∫
d3p

(2π)32p0

∫
d3k′

(2π)32k′0

∫
d3k

(2π)32k0

∑
|MUrca|2

× f(p′)[1− f(k′)][1− f(k)][1− f(p)](2π)4δ(4)(p+ k + k′ − p′), (8)

where f(p) = {exp[(Ep − µ)] + 1}−1 etc. are the Fermi distributions of particles, with energies Ep and chemical
potential µ. Similarly, the rate of the inverse process, i.e., p+ e− + ν̄e → n is given by

Γ1n(µ∆) =

∫
d3p′

(2π)32p′0

∫
d3p

(2π)32p0

∫
d3k′

(2π)32k′0

∫
d3k

(2π)32k0

∑
|MUrca|2

× f(k′)f(k)f(p)[1− f(p′)](2π)4δ(4)(p+ k + k′ − p′). (9)

Some of the phase-space integrals in Eqs. (8) and (9) can be carried out analytically; the details are relegated to
Appendix A. We find

Γ1p(µ∆) = G̃2m
∗2T 6

8π5

∫ ∞
−αe+αν

dy g (y − µ∆/T )

∫ y+αe−αν

0

dz ln

∣∣∣∣∣ 1 + exp(−y0)

1 + exp (−y0 − y + µ∆/T )

∣∣∣∣∣
×
∫ xmax

xmin

dx(x− αν)(y + αe − x)f(x− y)[1− f(x)], (10)

Γ1n(µ∆) = G̃2m
∗2T 6

8π5

∫ ∞
−αe+αν

dy [1 + g (y − µ∆/T )]

∫ y+αe−αν

0

dz ln

∣∣∣∣∣ 1 + exp(−y0)

1 + exp(−y0 − y + µ∆/T )

∣∣∣∣∣
×
∫ xmax

xmin

dx(x− αν)(y + αe − x)f(x)[1− f(x− y)], (11)

where αj ≡ µ∗j/T and index j = n, p, e, ν labels the constituents of matter with µ∗j being the effective chemical
potentials of particles (see Sec. IV A), m∗ stands for the nonrelativistic effective mass of a nucleon [66], the Fermi and
Bose functions of non-dimensional arguments have the form f(x) = (ex + 1)−1 and g(x) = (ex − 1)−1,

y0 =
m∗

2Tz2

(
αn − αp + y − z2 T

2m∗
− µ∆

T

)2

− αp, (12)

and the integration limits xmin and xmax are given by xmin/max = (y + αe + αν ∓ z)/2. The integration variables
y and z are the transferred energy and momentum, respectively, normalized by the temperature, and the variable x
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is the normalized-by-temperature antineutrino energy computed from the chemical potential, i.e., x = (εν̄ + µν)/T
(recall that antineutrino chemical potential is −µν). Note that in our rate calculations we numerically evaluate the
full three-dimensional integral. We do not use the Fermi Surface approximation (assuming that all momenta lie close
to the Fermi momentum) because it is no longer valid at the temperatures of interest to us.

When the system is in beta equilibrium, µ∆ = 0 and the rates of the direct and inverse processes are equal
Γ1n = Γ1p ≡ Γ1 in exact β-equilibrium. For small departures from β-equilibrium, µ∆ � T , only the terms that are
linear in the departure µ∆ are of interest; the coefficients of the expansion involve the derivatives

λ1 ≡
∂Γ1p(µ∆)

∂µ∆

∣∣∣∣
µ∆=0

− ∂Γ1n(µ∆)

∂µ∆

∣∣∣∣
µ∆=0

=
Γ1

T
, (13)

where Γ1 is the rate in β-equilibrium (as defined above) and is given explicitly by

Γ1 =
m∗2G̃2

8π5
T 6

∫ ∞
−αe+αν

dy g(y)

∫ y+αe−αν

0

dz ln

∣∣∣∣ 1 + exp (−y0)

1 + exp (−y0 − y)

∣∣∣∣
×
∫ xmax

xmin

dx(x− αν)(y + αe − x)f(x− y)[1− f(x)]. (14)

Note that if in some density-temperature range neutrinos are trapped and are degenerate, i.e., µν � T , then one can
approximate εν ' µν , y ' 1, therefore x − y ' 2µν/T � 1, and the electron Fermi function f(x − y) in Eq. (14)
vanishes. If one were to extrapolate the neutrino-trapped rate to low temperature, one would find that Γ1 = λ1 = 0
in this limit.

In the case of neutrino-transparent matter, one should drop the antineutrino distribution f(x) and substitute µν = 0
in the neutron-decay rate Γ1p, while the rate of the inverse process Γ1n vanishes. In this case, the λ1 parameter is
given by

λ1 =
m∗2G̃2

8π5
T 5

∫ ∞
−αe

dy g(y)

∫ y+αe

0

dz

{
ln

∣∣∣∣ 1 + exp (−y0)

1 + exp (−y0 − y)

∣∣∣∣[1 + g(y)]

−f(y0 + y)− [f(y0 + y)− f(y0)]
m∗

z2T

(
αn − αp + y − z2 T

2m∗

)}
×
∫ xmax

xmin

dx x(y + αe − x)f(x− y). (15)

In the limit of strongly degenerate matter (T . 1 MeV [20]) we find the following limits for Γ1p and λ1 for the
neutrino-transparent case

Γ1p = αm∗2G̃2T 5pFeθ(pFp + pFe − pFn). (16)

where α = 3
[
π2ζ(3) + 15ζ(5)

]
/16π5 = 0.0168, and pFi are the Fermi-momenta of the particles, and

λ1 =
17

480π
m∗2G̃2T 4pFeθ(pFp + pFe − pFn). (17)

B. The rates of the processes n+ νe � p+ e−

The computation of the rates of the processes (2) is carried out in an analogous manner. The rates of the direct
and the inverse processes are given, respectively, by

Γ2p(µ∆) =
G̃2

2

∫
d3p′

(2π)32p′0

∫
d3p

(2π)32p0

∫
d3k′

(2π)32k′0

∫
d3k

(2π)32k0

∑
|MUrca|2

× f(p′)f(k)[1− f(k′)][1− f(p)](2π)4δ(p− k + k′ − p′), (18)

Γ2n(µ∆) =
G̃2

2

∫
d3p′

(2π)32p′0

∫
d3p

(2π)32p0

∫
d3k′

(2π)32k′0

∫
d3k

(2π)32k0

∑
|MUrca|2

× f(k′)f(p)[1− f(p′)][1− f(k)](2π)4δ(p− k + k′ − p′). (19)
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These rates can be reduced to the following (see Appendix A)

Γ2p(µ∆) = G̃2m
∗2T 6

8π5

∫ ∞
−∞

dy g(y − µ∆/T )

∫ ∞
|y+αe−αν |

dz ln

[
1 + exp (−y0)

1 + exp (−y0 − y + µ∆/T ))

]
×
∫ ∞
x̄min

dx(x+ αν)(y + αe + x)f(x)[1− f(x+ y)], (20)

Γ2n(µ∆) = G̃2m
∗2T 6

8π5

∫ ∞
−∞

dy [1 + g(y − µ∆/T )]

∫ ∞
|y+αe−αν |

dz ln

[
1 + exp (−y0)

1 + exp (−y0 − y + µ∆/T ))

]
×
∫ ∞
x̄min

dx(x+ αν)(y + αe + x)f(x+ y)[1− f(x)], (21)

with x̄min = (z − y− αe − αν)/2. One can verify that Γ2p = Γ2n when µ∆ = 0. In this case, the λ-parameter is given
by

λ2 ≡
∂Γ2p(µ∆)

∂µ∆

∣∣∣∣
µ∆=0

− ∂Γ2n(µ∆)

∂µ∆

∣∣∣∣
µ∆=0

=
Γ2

T
, (22)

where

Γ2 =
m∗2G̃2

8π5
T 6

∫ ∞
−∞

dy g(y)

∫ ∞
|y+αe−αν |

dz ln

∣∣∣∣ 1 + exp (−y0)

1 + exp (−y0 − y))

∣∣∣∣
×
∫ ∞
x̄min

dx(x+ αν)(y + αe + x)f(x)[1− f(x+ y)]. (23)

If we extrapolate the neutrino-trapped result into the low-temperature regime (where in reality neutrinos are no
longer trapped) of highly degenerate matter where the fermionic chemical potentials satisfy the condition µi � T
(i ∈ n, p, e, ν) the rate Γ2 given by Eq. (23) reduces to

Γ2 =
m∗2G̃2

12π3
T 3pFepFν(pFe + pFν − |pFn − pFp|). (24)

Thus, the computation of the parameters λ1,2, which determine the non-equilibrium relaxation rate of Urca processes
at arbitrary degeneracy of the involved fermions, non-zero temperature and in the presence of neutrino trapping
reduces to an evaluation of three-dimensional integrals given by Eqs. (14) and (23). These results are essentially

exact, the only approximation being the neglect of the terms O(m∗/E), where E =
√
p2 +m∗2, in the tree-level

weak-interaction matrix element. Note, however, that many-body correlations in the baryonic matter, which arise
from a resummation of particle-hole diagrams are not included yet. In other words, our results correspond to the
evaluation of the polarization tensor of baryonic matter in the one-loop approximation.

We consider also the neutrino-transparent case, where we have Γ2p = 0, and for λ2 we find

λ2 = −m
∗2G̃2

8π5
T 5

∫ ∞
−∞

dy [1 + g(y)]

∫ ∞
|y+αe|

dz

{
g(y) ln

∣∣∣∣ 1 + exp (−y0)

1 + exp (−y0 − y))

∣∣∣∣
− f(y0 + y)− [f(y0 + y)− f(y0)]

m∗

z2T

(
αn − αp + y − z2 T

2m∗

)}

×
∫ ∞
x̄min

dx x(y + αe + x)f(x+ y). (25)

In the limit of strongly degenerate matter (T . 1 MeV [20]), the rate Γ2n is the same as in the case of Γ1p

Γ2n = αm∗2G̃2T 5pFeθ(pFp + pFe − pFn). (26)

Similarly, the low-temperature limit for λ2 reads

λ2 =
17

480π
m∗2G̃2T 4pFeθ(pFp + pFe − pFn), (27)

therefore, the total rate λ ≡ λ1 + λ2 is given by

λ =
17

240π
m∗2G̃2T 4pFeθ(pFp + pFe − pFn), (28)

which agrees with the corresponding expression given in Ref. [48].
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III. BULK VISCOSITY

The purpose of this section is to derive a microscopic formula for the bulk viscosity. We will assume that the
matter is composed of neutrons, protons, electrons, muons, and neutrinos. Although there are large-amplitude
density oscillations in a merger [2, 16], we will restrict our analysis to the “subthermal” case where the matter is only
slightly perturbed from equilibrium by density oscillations of some characteristic frequency ω. We will not study the
“suprathermal” case of high amplitude oscillations, but it can only lead to an enhancement of the bulk viscosity when
the beta equilibration rate is slower than the density oscillation frequency, and, as we will show, in the neutrino-
trapped temperature range we are in the opposite regime of fast equilibration. In our analysis we take into account
the contribution of muons to the thermodynamic quantities, but neglect their contribution to the bulk viscosity, as it
is subdominant to the processes involving electrons.

In the case where neutrinos are trapped, the equilibrium with respect to weak interactions implies the conditions (3).
The charge neutrality condition implies np = ne + nµ. These two conditions are sufficient to fix the number densities
of the constituents for any given temperature T , the value of the baryon number density nB = nn+np and the lepton
number density nL = ne + nν . Here the neutrino net density is given by nν ≡ ñν − ñν̄ where ñν and ñν̄ are the
neutrino and antineutrino number densities, respectively.

Consider now small-amplitude density oscillations in the matter, with characteristic timescales that are long com-
pared to the strong interaction timescale ∼ 10−23 s. Since the strong interactions establish thermal equilibrium, the
particle distributions are always thermal (Fermi-Dirac or Bose-Einstein); the only deviation from equilibrium that is
induced by the oscillations is a departure from beta equilibrium, which can be expressed in terms of a single chemical
potential µ∆ (5).

The perturbed densities are written as nB(t) = nB0 + δnB(t), and nL(t) = nL0 + δnL(t), with nB0 and nL0 being
the unperturbed background densities of baryons and leptons. The time-dependence of the density perturbations is
taken as δnB(t), δnL(t) ∼ eiωt. The continuity equation ∂ni/∂t+ div niv = 0 then implies

δni(t) = − θ

iω
ni0, i = {B,L}, (29)

where v is the bulk (hydrodynamic) velocity of matter and θ = div v. (Note that we consider only linear perturbation
in densities.)

The density perturbations above imply density perturbation of particle number which can be separated into equi-
librium and non-equilibrium parts

nj(t) = nj0 + δnj(t), δnj(t) = δneq
j (t) + δn′j(t), (30)

where j = {n, p, e, ν} labels the particles. The variations δneq
j (t) denote the shift of the equilibrium state for the

instantaneous values of the baryon and lepton densities nB(t) and nL(t), whereas δn′j(t) denote the deviations of
the corresponding densities from their equilibrium values. Due to the non-equilibrium shifts δn′j(t) the composition
balance of matter is disturbed leading to a small shift µ∆(t) = δµn(t) + δµν(t)− δµp(t)− δµe(t), which can be written
as

µ∆(t) = (Ann −Apn)δnn(t) +Aννδnν(t)− (App −Anp)δnp(t)−Aeeδne(t) ≡
∑
i

siAiδni(t) (31)

where si = +1 for n, ν and −1 for p, e; An = Ann −Apn, Ap = App −Anp, and Ae = Aee, Aν = Aνν with

Aij =

(
∂µi
∂nj

)
0

, (32)

and index 0 denotes the static equilibrium state. The off-diagonal elements Anp and Apn are non-zero because of the
cross-species strong interaction between neutrons and protons. Since we treat the electrons and neutrinos as ultra-
relativistic non-interacting gas, we have kept only the terms that are diagonal in indices i, j, which we will further
denote simply as Ae and Aν . The computation of susceptibilities Ai is performed in Appendix B.

If the weak processes are turned off, then a perturbation conserves all particle numbers, therefore

∂

∂t
δnj(t) + θnj0 = 0, δnj(t) = − θ

iω
nj0. (33)

Once the weak reactions are turned on, there is an imbalance between the rates of weak processes given by Eqs. (14)
and (23). To linear order in µ∆ the imbalance is given by [23, 24, 45]

Γp − Γn = λµ∆, λ > 0, (34)
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where Γj = Γ1j + Γ2j and λ = λ1 + λ2 see Eqs. (13) and (22) (in the case of neutrino-transparent matter one should
use Eqs. (17) and (27) for λj). Then instead of Eq. (33) we will have the following rate equations which take into
account the loss and gain of particles via the weak interactions

∂

∂t
δnn(t) = −θnn0 − λµ∆(t), (35)

∂

∂t
δnp(t) = −θnp0 + λµ∆(t). (36)

We next substitute δnj(t) ∼ eiωt, eliminate µ∆ using Eq. (31), and employ the relations δnp = δnB − δnn, δne = δnp
and δnL = δne + δnν , and Eq. (29) to find

δnn(t) = − iωnn0 + λ(Ap +Ae +Aν)nB0 − λAνnL0

iω + λA

θ

iω
, (37)

δnp(t) = δne(t) = − iωnp0 + λAnnB0 + λAνnL0

iω + λA

θ

iω
, (38)

δnν(t) = − iωnν0 + λ(An +Ap +Ae)nL0 − λAnnB0

iω + λA

θ

iω
, (39)

where

A =
∑
j

Aj =

(
∂µn
∂nn

)
0

+

(
∂µp
∂np

)
0

−
(
∂µn
∂np

)
0

−
(
∂µp
∂nn

)
0

+

(
∂µe
∂ne

)
0

+

(
∂µν
∂nν

)
0

= − 1

nB

(
∂µ∆

∂xp

)
nB

, (40)

so A is the “beta-disequilibrium–proton-fraction” susceptibility: it measures how the out-of-beta-equilibrium chemical
potential is related to a change in the proton fraction. In order to separate the non-equilibrium parts of δnj we need
to find also the equilibrium shifts δneq

j . According to the definition of the β-equilibrium state we have µeq
n (t)+µeq

ν (t)−
µeq
p (t)− µeq

e (t) = 0, therefore

Anδn
eq
n (t) +Aνδn

eq
ν (t)−Apδneq

p (t)−Aeδneq
e (t) = 0. (41)

Using the relations δneq
n + δneq

p = δnB , δneq
e = δneq

p , δneq
e + δneq

ν = δnL, and substituting also δnB and δnL from
Eq. (29) we find

δneq
n (t) =

−(Ap +Ae +Aν)nB0 +AνnL0

A

θ

iω
, (42)

δneq
p (t) = δneq

e (t) = −AnnB0 +AνnL0

A

θ

iω
, (43)

δneq
ν (t) =

−(An +Ap +Ae)nL0 +AnnB0

A

θ

iω
. (44)

Then, according to Eq. (30), we find for δn′j

δn′n(t) = δn′ν(t) = − C

A(iω + λA)
θ, (45)

δn′p(t) = δn′e(t) =
C

A(iω + λA)
θ, (46)

with

C = nn0An + nν0Aν − np0Ap − ne0Ae = nB

(
∂µ∆

∂nB

)
xp

, (47)

so C is the “beta-disequilibrium–baryon-density” susceptibility: it measures how the out-of-beta-equilibrium chemical
potential is related to a change in the baryon density at fixed proton fraction. Now we are in a position to compute
the full non-equilibrium pressure which is given by

p(t) = p(nj(t)) = p
[
nj0 + δneq

j (t)
]

+ δp′(t) = peq(t) + δp′(t), (48)
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where the non-equilibrium part of the pressure, referred to as bulk viscous pressure, is given by

Π(t) ≡ δp′(t) =
∑
j

(
∂p

∂nj

)
0

δn′j(t). (49)

Using the Gibbs-Duhem relation dp = sdT +
∑
j njdµj , which is valid also out of equilibrium, we can write [67](
∂p

∂nj

)
0

=
∑
l

nl0Alj , (50)

from which we can identify (
∂p

∂nn

)
0

+

(
∂p

∂nν

)
0

−
(
∂p

∂np

)
0

−
(
∂p

∂ne

)
0

= C, (51)

where we used the symmetry relation Anp = Apn. Collecting the results (45), (46), (51) we find that the bulk viscous
pressure (49) is given by

Π =
C2

A

iω − λA
ω2 + λ2A2

θ. (52)

The bulk viscosity is the real part of −Π/θ,

ζ =
C2

A

λA

ω2 + λ2A2
, (53)

which has the classic resonant form depending on two quantities: the prefactor C2/A which is a ratio of susceptibilities
(40),(47), depending only on the EoS, and the relaxation rate λA which depends on the weak interaction rate λ =
λ1+λ2 (13),(22) and the susceptibility that relates µ∆ to the proton fraction. Note that if we extrapolate the neutrino-
trapped calculation to the low-temperature, degenerate limit, we can compute the susceptibility A analytically, see
Appendix B.

IV. NUMERICAL RESULTS

To quantify the amount of dissipation through bulk viscosity in the present context we need first to specify the
properties of β-equilibrated nuclear matter. We choose to do so using the density functional theory (DFT) approach to
the nuclear matter, which is based on phenomenological baryon-meson Lagrangians of the type proposed by Walecka,
Boguta-Bodmer and others [52–54]. We will use the parameterization of such a Lagrangian with density-dependent
meson-nucleon coupling [55] and will apply the DFT to nuclear matter with trapped neutrinos, see also [56].

A. Beta-equilibrated nuclear matter

The Lagrangian density of matter can be written as L = LN + Ll, where the baryonic contribution is given by

LN =
∑
N

ψ̄N

[
γµ
(
i∂µ − gωNωµ −

1

2
gρNτ · ρµ

)
− (mN − gσNσ)

]
ψN (54)

+
1

2
∂µσ∂µσ −

1

2
m2
σσ

2 − 1

4
ωµνωµν +

1

2
m2
ωω

µωµ −
1

4
ρµνρµν +

1

2
m2
ρρ

µ · ρµ,

where N sums over nucleons, ψN are the nucleonic Dirac fields with masses mN . The meson fields σ, ωµ, and ρµ
mediate the interaction among baryon fields, ωµν and ρµν represent the field strength tensors of vector mesons and
mσ, mω, and mρ are their masses. The baryon-meson coupling constants are denoted by giN with i = σ, ω, ρ. The
leptonic contribution is given by

Ll =
∑
λ

ψ̄λ(iγµ∂µ −mλ)ψλ, (55)
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where λ sums over the leptons e−, µ−, νe and νµ, which are treated as free Dirac fields with masses mλ; the mass of
electron neutrino is negligible and is set to zero. We do not consider electromagnetic fields, therefore their contribution
is dropped. The coupling constants in the nucleonic Lagrangian are density-dependent and are parametrized according
to the relation giN (nB) = giN (n0)hi(x), for i = σ, ω, and gρN (nB) = gρN (n0) exp[−aρ(x−1)] for the ρµ-meson, where
nB is the baryon density, n0 is the saturation density and x = nB/n0. The density dependence of the couplings is
encoded in the functions

hi(x) = ai
1 + bi(x+ di)

2

1 + ci(x+ di)2
. (56)

This parameterization has in total eight parameters, which are adjusted to reproduce the properties of symmetric
and asymmetric nuclear matter, binding energies, charge radii, and neutron radii of spherical nuclei, see Table I. We
recall that the Lagrangian of this model has only linear in meson field interaction terms and the coupling nucleon-
meson constants are density-dependent. We will also employ below the NL3 model [57] as an alternative, which has
density-independent meson-nucleon couplings but contains non-linear in meson fields terms.

TABLE I: Meson masses mi and their couplings giN to the baryons in DD-ME2 parametrization. The remaining parameters
specify the density dependence of the couplings.

σ ω ρ

mi [MeV] 550.1238 783.0000 763.0000

giN (n0) 10.5396 13.0189 3.6836

ai 1.3881 1.3892 0.5647

bi 1.0943 0.9240 —

ci 1.7057 1.4620 —

di 0.4421 0.4775 —

From the Lagrangian densities (54) and (55) we obtain the pressure of the nucleonic component

PN = −m
2
σ

2
σ2

0 +
m2
ω

2
ω2

0 +
m2
ρ

2
ρ2

03

+
1

3

∑
N

2JN + 1

2π2

∫ ∞
0

k4 dk

(k2 +m∗2N )1/2

[
f(ENk − µ∗N ) + f(ENk + µ∗N )

]
, (57)

where m∗N = mN − σ0gσN is the relativistic (Dirac) effective nucleon mass, µ∗N = µN − gωNω0 − gρNI3ρ
0
3 is the

nucleon chemical potential including the time component of the fermion self-energy, I3 is the third component of
nucleon isospin and σ0, ω0 and ρ0

3 are the mean values of the meson fields, ENk =
√
k2 +m∗2N is the single particle

energies of nucleons. The first three terms in this expression are associated with mean values of the mesonic fields,
whereas the last term is the fermionic contribution which is temperature-dependent.

The leptonic contribution to the pressure is given by

PL =
gλ
3π2

∑
λ

∫ ∞
0

k4 dk

(k2 +m2
λ)1/2

[
f(Eλk − µλ) + f(Eλk + µλ)

]
, (58)

where gλ is the leptonic degeneracy factor and Eλk =
√
k2 +m2

λ are the single particle energies of leptons. At non-zero
temperature, the net entropy of the matter is the sum of the nucleon contribution

SN = −
∑
N

2JN + 1

2π2

∫ ∞
0

dkk2

{[
f(ENk − µ∗N ) ln f(ENk − µ∗N )

+ f̄(ENk − µ∗N ) ln f̄(ENk − µ∗N )
]

+ (µ∗N → −µ∗N )

}
(59)

and the lepton contribution

SL = −
∑
λ

∫ ∞
0

dk

π2

[
f(Eλk − µλ) ln f(Eλk − µλ)

+ f̄(Eλk − µλ) ln f̄(Eλk − µλ)
]
, (60)
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where f̄(y) = 1 − f(y). The energy density of the system and other thermodynamical parameters, for example, the
free-energy can be computed in an analogous manner.
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 = 0.1

(a) (b)

FIG. 1: Particle fractions in neutron-star-merger matter,
(lepton fraction YL = 0.1). We plot Yi = ni/nB as functions
of the baryon density nB for temperatures (a) T = 5 MeV,
and (b) T = 50 MeV. At high temperature (panel (b)) the
net electron neutrino density becomes negative at sufficiently
low baryon density: the corresponding dotted line shows the
net anti-neutrino fraction.

In the case of the neutrino-transparent medium, the
composition of hadronic matter includes neutrons, pro-
tons, electrons and muons. Neutrinos are assumed to es-
cape. We will use the approximation that the beta equi-
librium conditions become µn = µp+µe and µµ = µe. At
the temperatures of interest to us there are corrections
to these expressions [20] but we will neglect them.

If the neutrinos are trapped in the matter they con-
tribute to the energy density and entropy of matter.
We take into account the two lightest flavors of neutri-
nos, electron and muon neutrinos, and their antineutri-
nos [68]. In this case, the chemical equilibrium conditions
read µn + µνl = µp + µl with l = {e, µ}, and the lepton
number nL conservation implies nl+nνl = nLl = YLlnB ,
where the lepton fractions YLl should be fixed for each
flavor separately. In our numerical calculations we will
consider two cases: (i) YL = 0.1 for both flavors, which
is typical for matter in binary neutron star mergers; (ii)
YL ≡ YLe = 0.4 and YLµ = 0 which are typical for matter
in supernovae and proto-neutron stars [58–60].

The neutrino transparent case Yν = 0 which applies for
temperatures below the transparency temperature Ttr '
5 MeV is discussed in Ref. [61] and Appendix D.

Before presenting our results on the bulk viscosity in
Sec. IV B we first discuss the thermodynamics of the un-
derlying relativistic density functional model of nuclear
matter, which will be used as the background equilib-
rium for our subsequent perturbation analysis. We will
employ the DD-ME2 parametrization of the density func-
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FIG. 2: Particle fractions in supernova matter, (lepton frac-
tion is YL = 0.4 for electrons, and is zero for muons). We plot
Yi = ni/nB as functions of the baryon density nB for tem-
peratures (a) T = 5 MeV, and (b) T = 50 MeV. The particle
fractions show little dependence on temperature.
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FIG. 3: Chemical potentials in the neutron-star-merger mat-
ter, (lepton fraction YL = 0.1). We plot µi as functions of the
baryon density nB/n0 for temperatures (a) T = 5 MeV, and
(b) T = 50 MeV. The labels n∗ and p∗ correspond to the
effective chemical potentials of the neutron and proton, re-
spectively, defined after Eq. (57). The effective baryon mass
m∗ ≡ m∗B is shown by the dotted lines.

tional given in Ref. [55].

Figures 1 and 2 show the particle fractions Yj = nj/nB
as functions of the baryon density normalized to the nu-
clear saturation density, which is n0 = 0.152 fm−3 in the
DD-ME2 model. Figures 1 and 2 refer to the cases of neu-
tron star mergers and supernovae, respectively. The re-
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FIG. 4: Chemical potentials in supernova matter, (YL = 0.4
for electrons). We plot µi as functions of the baryon density
nB/n0 for temperatures (a) T = 5 MeV, and (b) T = 50 MeV.

sults are shown for two temperatures T = 5 MeV (which
is of the order of Ttr) [panels (a)] and T = 50 MeV [pan-
els (b)], which is close to the upper limit of the tem-
perature range achieved in these events. Comparing the
panels (a) and (b) in Figs. 1 and 2 we see that the par-
ticle fractions are generally not sensitive to the temper-
ature for the given value of YL. The only exception is
for low lepton-fraction matter, where at low density and
high temperature (Fig. 1(b)), the net electron neutrino
density becomes negative, indicating that there are more
(electron) antineutrinos than neutrinos. As one would
expect, merger (low lepton fraction) matter has much
smaller electron neutrino fraction; the electron and muon
fractions are ∼ 10%, so by charge neutrality Yp = Ye+Yµ
the proton fraction is ∼ 20%.

Since the bulk viscosity is related to departure from
beta equilibrium, it is instructive to examine the chem-
ical potentials of particles as functions of density and
temperature. These are shown as functions of the baryon
density in Figs. 3 and 4.

There are two different chemical potentials for baryons:
the thermodynamic chemical potentials µn and µp, which
enter into the thermodynamic relations and the β-
equilibrium condition (3), and the effective chemical po-
tentials µ∗n and µ∗p, which enter into the baryon distribu-
tion functions and are defined after Eq. (57). We show
also the effective nucleon mass m∗ with dotted lines.

In low lepton-fraction matter at low density and high
temperature (Fig. 3(b)), we see that the neutrino chemi-
cal potentials become negative, as expected from the par-
ticle fraction results (Fig. 1(b)) which showed that there
are more antineutrinos than neutrinos in this regime.

For completeness and reference, we show the equation
of state (EoS) of the DD-ME2 model at two temperatures
in Fig. 5. For T = 50 MeV the EoS is shown for two val-
ues of lepton fractions corresponding to a supernova and
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FIG. 5: Equation of state of nuclear matter for several values
of the lepton fraction and the temperature.

10
4

10
6

C
2
/A

 [
M

e
V

4
]

T =  5  MeV
T = 50 MeV

1 2 3
n

B
/n

0

10
4

10
6

Y
L
 = 0.1

Y
L
 = 0.4

(a)

(b)

C
 =

 0

C
 =

 0

FIG. 6: The ratio of beta-disequilibrium–baryon-density sus-
ceptibility (47) squared C2 over A as a function of the baryon
density for two values of the temperature for (a) YL = 0.1
and (b) YL = 0.4.

binary-neutron-star merger settings. The increase in the
pressure at larger temperatures is due to the additional
thermal contribution from baryons and the contribution
from trapped neutrinos which is absent in the case when
T = 0.1 MeV.
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B. Perturbations and bulk viscosity

Now we turn to the discussion of perturbations on the
background equilibrium of matter presented above and
concentrate on the β-relaxation rates and the bulk vis-
cosity.

Our numerical calculations show that the main con-
tribution to the beta-disequilibrium–proton-fraction sus-
ceptibility A (40) comes from neutrinos whereas elec-
tron contribution is minor. The baryon contributions are
much smaller than those of leptons because of their finite
mass, see Eq. (B27). The contribution from ρ meson is
negligible in the whole regime of interest. The suscep-
tibility A does not depend strongly on the density and
the temperature and has roughly the same order of mag-
nitude A ∼ 10−3 MeV−2 in the relevant portion of the
phase diagram.

The beta-disequilibrium–proton-fraction susceptibility
C is an increasing function of density and has the same
order of magnitude in the cases of neutron star merg-
ers and supernovas. At sufficiently high temperatures
T & 30 MeV C crosses zero at a temperature-dependent
critical value of the density, close to saturation density.
The vanishing of C arises when the proton fraction in
beta-equilibrated matter is independent of the density
(passing through a minimum in this case). At the criti-
cal density the system is scale-invariant: it can be com-
pressed and remain in beta equilibrium. Thus the bulk
viscosity vanishes at the critical density.

Figure 6 shows the ratio C2/A as a function of den-
sity. As seen from the figure, this ratio is temperature-
sensitive only close to the point were C crosses zero.

In Appendix C we discuss the rates of neutron decay
and electron capture that combine to establish beta equi-
librium. Electron capture dominates because the neutron
decay process involves antineutrinos the population of
which is damped by a factor of exp(−µν/T ).

In Fig. 7 we show the beta equilibrium relaxation rate
λA, which determines where the bulk viscosity reaches its
resonant maximum (Eq. (53)). For comparison here we
show also the case of neutrino-transparent matter (solid
line). The relaxation rate is slowest in the neutrino-
transparent case and increases with the lepton fraction
in the neutrino-trapped case.

The relaxation rate λA of the neutrino-trapped mat-
ter is several orders of magnitude larger than the oscilla-
tion frequencies f = ω/2π . 10 kHz typical to neutron
star mergers and supernovas. In Fig. 7 the horizontal
lines for different oscillations frequencies intersect the λA
curves at low temperatures T . 0.1 MeV, indicating that
the resonant maximum occurs at low temperatures where
the assumption of neutrino trapping is no longer valid.
The neutrino-trapped regime lies at higher temperatures,
where the bulk viscosity is independent of the oscillation
frequency and takes the form ζ ≈ C2/(λA2).

In contrast, the neutrino-transparent matter features
bulk viscosity which strongly depends on the oscillation
frequency, see Ref. [61] and Appendix D for details.
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FIG. 7: The beta-equilibration relaxation rate λA as a func-
tion of the temperature for fixed values of the lepton fraction
for (a) nB/n0 = 0.5; (b) nB/n0 = 3. The horizontal lines
correspond to fixed values of λA = ω = 2πf for the frequen-
cies f = 1 kHz (dashed line) and f = 10 kHz (solid line).
The black dotted lines show the extrapolation of our results
for Yν = 0 case to the high-temperature regime T ≥ 10 MeV
where these are inapplicable.

We also see from Fig. 7, that λA is almost independent
of the baryon density in the range 0.5 ≤ nB/n0 ≤ 3 for
neutrino-trapped matter. At moderately temperatures
λ scales as λ ∝ T 2 for temperatures T ≤ 10 MeV: this
scaling is clearly seen from Eqs. (22) and (24), which are
applicable as long as the fermions are semi-degenerate,
i.e., T ≤ 10 MeV in the relevant density range.

Figure 8 shows the density dependence of the bulk vis-
cosity for various values of the temperature. Because
the beta relaxation rate λA is almost independent of the
baryon density, the density dependence of the bulk vis-
cosity follows that of the susceptibility prefactor C2/A,
and, therefore, as noted above, may drop to zero at a crit-
ical density where the system becomes scale-invariant.
The critical density is present only at sufficiently high
temperatures T ≥ 30 MeV.

The temperature dependence of the bulk viscosity is
shown in Fig. 9. The temperature dependence of ζ arises
mainly from the temperature dependence of the beta re-
laxation rate λA ∝ T 2 (see Eqs. (22) and (24)), so the
bulk viscosity decreases as ζ ∝ T−2 in the neutrino-
trapped regime, as can be seen also from Fig. 9. This
scaling breaks down at special temperatures where the
bulk viscosity has zeros when the matter becomes scale-
invariant (see our discussion of Fig. 6).

In order to check whether the high-temperature behav-
ior found in Fig. 9 is a universal behavior or is specific
to the EoS we used, we compared our results with those
obtained in the framework of NL3 model, see Fig. 10.
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lepton fraction is fixed at YL = 0.1 for panel (a) and at YL =
0.4 for panel (b). The shaded region shows the extrapolation
of our results to the neutrinoless regime T ≤ 5 MeV where
these are supposed to be inapplicable.

The figure shows that the minimums arise independently
of the equation of state, and, therefore, are typical to the
high-temperature regime of dense nuclear matter.

Comparing the results shown in panels (a) and (b) of
Figs. 8 and 9 we see that the bulk viscosity is generally by
a factor of few smaller for larger lepton fractions, which
is a consequence of larger values of λA for higher YL, as
was seen from Fig. 7. However, the order of magnitude
of the bulk viscosity is the same in both cases.

In Figs. 11 and 12 we combine and compare our re-
sults for the neutrino-trapped matter with the results for
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FIG. 10: Same as Fig. 9 for model NL3.

neutrino-transparent matter (see also [61]). In the inter-
val 5 6 T 6 10 MeV we interpolate the numerical results
for the bulk viscosity between the two regimes. We see
that the bulk viscosity in the neutrino transparent regime
is larger, for two reasons. Firstly, the beta relaxation rate
is slower, so the resonant peak of the bulk viscosity oc-
curs within its regime of validity, whereas for neutrino
trapped matter the regime of validity starts at temper-
atures well above the resonant maximum. Secondly, the
prefactor C2/A is larger in the neutrino-transparent mat-
ter, so the bulk viscosity reaches a higher value at its
resonant maximum.

It, therefore, seems likely that bulk viscosity will have
its greatest impact on neutron star mergers in regions
of the merger that are neutrino transparent rather than
neutrino trapped [61].

V. CONCLUSIONS

In this work, we have studied the bulk viscosity of
hadronic component of neutron stars composed of neu-
trons, protons, electrons, muons, and neutrinos. The
main new ingredient of our study is the trapped neu-
trinos, which modify significantly the composition of the
background equilibrium matter. We have derived semi-
analytical expressions for the weak interaction rates in
the case of trapped neutrinos and corresponding expres-
sions for the bulk viscosity. Our numerical study of the
relevant quantities displays the following features:

(a) Electron capture dominates. In neutrino-trapped
matter, beta equilibration, and hence bulk viscosity, is
dominated by the electron capture process and its in-
verse (2). Neutron decay and its inverse (1) involve an-
tineutrinos and are therefore suppressed by factors of
exp(−µν/T ).

(b) Role of susceptibilities. The beta-disequilibrium–
baryon-density susceptibility C (47) plays an essential
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of ν-transparent (T ≤ 5 MeV) and ν-trapped (T ≥ 10 MeV)
regimes. The oscillation frequency is fixed at (a) f = 1 kHz
and (b) f = 10 kHz.
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FIG. 12: Same as Fig. 11 but for model NL3.

role in the bulk viscosity since it measures the degree
to which matter is driven out of beta equilibrium when
compressed at constant proton fraction (i.e., without any
weak interactions). We find that C vanishes, i.e., the pro-
ton fraction becomes independent of density, at a critical
density that is in the vicinity of saturation density at high
temperatures T & 30 MeV. The subthermal bulk viscos-
ity vanishes at this critical density because the equilib-
rium value of the proton fraction is density-independent,
so compression does not drive the system out of beta
equilibrium.

(c) Temperature dependence. The bulk viscosity as a
function of temperature at fixed oscillation frequency ω
shows the standard resonant form (53), with a maximum
when the beta relaxation rate λA matches ω. At the

temperatures where our assumption of neutrino trapping
is valid (T & 5 MeV), we are always in the regime where
beta relaxation is fast (λA is greater than typical frequen-
cies for neutron star density oscillations, which are in the
kHz range) so ζ ≈ C2/(λA2). Since the relaxation rate
rises with temperature (due to increasing phase space),
the bulk viscosity drops with increasing temperature as
ζ ∝ T−2. This scaling can be understood, by noting
that the factor λA scales approximately as T−2. Given
that the remaining factor C2/A mildly depends on the
temperature (except the points where it goes to zero, see
Fig. 6), we recover the ζ ∝ T−2 scaling. At some temper-
atures and densities the material becomes scale-invariant,
so C goes through zero, driving the bulk viscosity to zero
at those points.

(d) Dependence on lepton fraction. The dependence of
the bulk viscosity on lepton fraction can be inferred from
Figs. 8, 9, and 10. It is seen that the bulk viscosity is
smaller for larger lepton fraction, specifically comparing
the cases of supernova matter with YL = 0.4 and neutron-
star/binary-merger matter with YL = 0.1 one finds that
the bulk viscosity of supernova matter is a few times
smaller compared to that of neutron-star/binary-merger
matter.

(e) Effect of neutrino trapping. In astrophysical scenar-
ios of supernova and binary-mergers, the object formed
in the aftermath of these events will cool eventually be-
low the neutrino trapping temperature Ttr. Therefore,
one may ask how the bulk viscosity of matter changes as
it passes through Ttr. Figure 11 shows the temperature
dependence of the bulk viscosity, where we combine the
results obtained in the neutrino-trapped (T > Ttr) and
neutrino-transparent matter (T < Ttr). It is seen that
the bulk viscosity of matter with neutrinos is several or-
ders of magnitude smaller than that for the matter which
is transparent to neutrinos.

(f) Dependence on the density-functional model. All
computations have been carried out for two alterna-
tive relativistic density functional models one being the
density-dependent DD-ME2 parameterization the other
being the NL3 non-linear parameterization. The key re-
sults show insignificant dependence on the chosen model,
therefore we conclude that our results are largely inde-
pendent of this input (see also Ref [62]).

(g) Relevance for mergers. It seems likely that the pres-
ence of neutrino-trapped matter will not be an impor-
tant source of bulk viscosity in mergers. Ref. [61] found
that the bulk viscosity in neutrino transparent matter
was just enough to yield dissipation times in the 20 ms
range. We find that bulk viscosity in neutrino-trapped
matter is thousands of times smaller, so the correspond-
ing dissipation times are likely to be too long to affect a
merger, provided other input in the analysis of Ref. [61]
does not change by orders of magnitude.

In the future it would be interesting to extend our dis-
cussion to more complicated compositions of dense mat-
ter which would include heavy baryons such as hyperons
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and delta-isobars [63, 64]. We also hope that this work
will help to clarify which dissipative processes are im-
portant enough to be worth including in hydrodynamic
simulations of neutron star mergers.
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Appendix A: Phase space integrals

For further computations it is convenient to write the energy conservation in the form δ(p0 ± k0 + k′0 − p′0) =
δ(εp ± εν̄/ν + εe − εn − µ∆), where we added and subtracted µ∆ in the argument of the δ-function, and denoted by εi
the energies of the particles computed from their chemical potentials, e.g., εp = p0 − µp. To simplify the calculation
of the β-equilibration rates it is useful to introduce a so-called “dummy” integration, so that, by substituting Eq. (7)
into the rates (8) and (18) we obtain

Γ1p(µ∆) = 2G̃2

∫
d4qI1(q) I2(q), (A1)

Γ2p(µ∆) = 2G̃2

∫
d4qI1(q) I3(q), (A2)

where

I1(q) =

∫
d3p′

(2π)3

∫
d3p

(2π)3
[1− f(p)]f(p′)(2π)4δ(4)(p− p′ + q), (A3)

I2(q) =

∫
d3k′

(2π)3

∫
d3k

(2π)3
[1− f(k′)][1− f(k)]δ(4)(k + k′ − q), (A4)

I3(q) =

∫
d3k′

(2π)3

∫
d3k

(2π)3
f(k)[1− f(k′)]δ(4)(k′ − k − q), (A5)

with δ(4)(p− p′ + q) = δ(p− p′ + q)δ(εp − εp′ + ω − µ∆), δ(4)(k′ ± k − q) = δ(k′ ± k − q)δ(εk′ ± εk − ω). The rates
of the inverse processes (9) and (19) can be obtained from Eqs. (A1) and (A2) by replacing f(pi) → 1 − f(pi) for
all particles. Thus, the problem reduces to the computation of three q-dependent integrals I1(q), I2(q) and I3(q) in
Eq. (A3)-(A5).

To compute the integral I1(q) we use the following identity between the Fermi f(p) and Bose g(p) functions

f(p′)[1− f(p)] = g(q)[f(p)− f(p′)]. (A6)

Then, integrating over neutron momentum and separating the angular part of the remaining integral we obtain
(ω̃ = ω − µ∆)

I1(q) = (2π)−1g(q)

∫ ∞
0

dp p2[f(εp)− f(εp + ω̃)]

∫ 1

−1

dx δ(ω̃ + εp − εp+q), (A7)

where x is the cosine of the angle between p and q. Using the non-relativistic spectrum for the nucleons εi =
p2/2m∗ − µ∗i , i = {p, n}, we obtain for I1(q)

I1(q) = (2π)−1g(q)

∫ ∞
0

dp p2[f(εp)− f(εp + ω̃)]
m∗

pq
θ(1− |x0|), (A8)

where x0 is the zero of the argument of the δ-function, i.e.,

x0 =
m∗

pq

(
µ∗n − µ∗p + ω̃ − q2

2m∗

)
. (A9)

The step-function sets the following limit on the momentum of a particle

p ≥ pmin =
m∗

q

∣∣∣∣µ∗n − µ∗p + ω̃ − q2

2m∗

∣∣∣∣ . (A10)

Taking now the momentum integral we finally obtain (note that g(q) depends only on ω)

I1(q) = g(ω̃)
m∗2

2πq

∫ ∞
εmin

dεp [f(εp)− f(εp + ω̃)] = g(ω − µ∆)
m∗2T

2πq
ln

∣∣∣∣∣ 1 + exp
(
− εmin

T

)
1 + exp

(
− εmin+ω−µ∆

T

) ∣∣∣∣∣, (A11)

where the lower limit εmin follows from pmin, i.e.,

εmin =
p2

min

2m∗
− µ∗p =

m∗

2q2

(
µ∗n − µ∗p + ω − µ∆ −

q2

2m∗

)2

− µ∗p. (A12)
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We now transform the second integral (A4)

I2(q) =

∫
d3k′

(2π)3

∫
d3k

(2π)3
[1− f(k′)][1− f(k)]δ(εk′ + εk − ω)δ(k + k′ − q)

=

∫
k2dk

(2π)5
[1− f(ω − εk)][1− f(εk)]

∫ 1

−1

dy δ
(
k +

√
k2 + q2 − 2kqy − ω′

)
, (A13)

where we neglected the electron mass and introduced the short-hand notation ω′ = ω + µe − µν . The argument of
the δ-function is zero at

y0 =
q2 − ω′2 + 2ω′k

2kq
, (A14)

therefore for the δ-function, we obtain (note that the δ-function also implies ω′ − k ≥ 0)

δ
(
k +

√
k2 + q2 − 2kqy − ω′

)
=
ω′ − k
kq

θ(ω′ − k)δ(y − y0), (A15)

and ∫ 1

−1

dyδ
(
k +

√
k2 + q2 − 2kqy − ω′

)
=
ω′ − k
kq

θ(ω′ − k)θ(1− |y0|). (A16)

The condition |y0| ≤ 1 sets the following limits on the momentum k

−2kq ≤ q2 − ω′2 + 2ω′k ≤ 2kq, (A17)

therefore the following two inequalities must be satisfied simultaneously

(ω′ + q)(q − ω′ + 2k) ≥ 0, (ω′ − q)(q + ω′ − 2k) ≥ 0. (A18)

Note that because of the condition ω′ ≥ k ≥ 0 we have ω′ + q ≥ 0. Then the first condition in Eq. (A18) gives
k ≥ (ω′ − q)/2. Next, if ω′ ≥ q, the second condition implies k ≤ (ω′ + q)/2 ≤ ω′. If ω′ ≤ q instead, then the first
condition is satisfied automatically, and the second one gives k ≥ (ω′ + q)/2 ≥ ω′, which is not allowed. Substituting
these results into Eq. (A13) we obtain

I2(q) = θ(ω′ − q) 1

q(2π)5

∫ (ω′+q)/2

(ω′−q)/2
kdk (ω′ − k)[1− f(ω − εk)][1− f(εk)]. (A19)

The integral I3(q) given by Eq. (A5) is transformed as follows

I3(q) =

∫
d3k′

(2π)3

∫
d3k

(2π)3
f(k)[1− f(k′)]δ(εk′ − εk − ω)δ(k′ − k − q)

=

∫
k2dk

(2π)5
f(εk)[1− f(εk + ω)]

∫ 1

−1

dy δ
(
−k +

√
k2 + q2 + 2kqy − ω′

)
. (A20)

The argument of the δ-function is zero at

y0 = −q
2 − ω′2 − 2ω′k

2kq
, (A21)

and for the δ-function we obtain (note that the δ-function also implies ω′ + k ≥ 0)

δ
(
−k +

√
k2 + q2 + 2kqy − ω′

)
=
ω′ + k

kq
θ(ω′ + k)δ(y − y0), (A22)

therefore ∫ 1

−1

dyδ
(
−k +

√
k2 + q2 + 2kqy − ω′

)
=
ω′ + k

kq
θ(ω′ + k)θ(1− |y0|). (A23)
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The condition |y0| ≤ 1 sets the following limits on the momentum k

−2kq ≤ q2 − ω′2 − 2ω′k ≤ 2kq, (A24)

therefore the following two inequalities must be satisfied simultaneously

(ω′ + q)(q − ω′ − 2k) ≤ 0, (ω′ − q)(q + ω′ + 2k) ≤ 0. (A25)

Because of the condition ω′ + k ≥ 0 we have ω′ + q + 2k ≥ 0. Then the second condition in Eq. (A25) gives q ≥ ω′.
Next, if ω′ ≥ −q, the first condition implies k ≥ (q−ω′)/2 ≥ −ω′. If ω′ ≤ −q instead, then the first condition implies
k ≤ (q − ω′)/2 ≤ −ω′, which is not allowed. Substituting these results into Eq. (A20) we obtain

I3(q) = θ(q − |ω′|) 1

q(2π)5

∫ ∞
(q−ω′)/2

kdk (ω′ + k)f(εk)[1− f(εk + ω)]. (A26)

Combining now Eqs. (A1), (A2), (A11), (A19) and (A26) we obtain the final formulas for Γ1p and Γ2p given in the
main text by Eqs. (10) and (20). The rates of the inverse processes Γ1n and Γ2n given by Eqs. (11) and (21) can be
obtained in an analogous manner.

For the derivatives of the rates Γ1p and Γ1n we obtain

∂Γ1p(µ∆)

∂µ∆

∣∣∣∣
µ∆=0

=
m∗2G̃2

8π5
T 5

∫ ∞
−αe+αν

dy g(y)

∫ y+αe−αν

0

dz

{
[1 + g(y)] ln

∣∣∣∣∣ 1 + exp (−y0)

1 + exp (−y0 − y)

∣∣∣∣∣
−f(y0 + y)− [f(y0 + y)− f(y0)]

m∗

z2T

(
αn − αp + y − z2 T

2m∗

)}
×
∫ xmax

xmin

dx (x− αν)(y + αe − x)[1− f(x)]f(x− y), (A27)

∂Γ1n(µ∆)

∂µ∆

∣∣∣∣
µ∆=0

=
m∗2G̃2

8π5
T 5

∫ ∞
−αe+αν

dy [1 + g(y)]

∫ y+αe−αν

0

dz

{
g(y) ln

∣∣∣∣∣ 1 + exp (−y0)

1 + exp (−y0 − y)

∣∣∣∣∣
−f(y0 + y)− [f(y0 + y)− f(y0)]

m∗

z2T

(
αn − αp + y − z2 T

2m∗

)}
∫ xmax

xmin

dx (x− αν)(y + αe − x)f(x)[1− f(x− y)]. (A28)

In the same way we obtain for Γ2p and Γ2n

∂Γ2p(µ∆)

∂µ∆

∣∣∣∣
µ∆=0

=
m∗2G̃2

8π5
T 5

∫ ∞
−∞

dy g(y)

∫ ∞
|y+αe−αν |

dz

{
[1 + g(y)] ln

∣∣∣∣ 1 + exp (−y0)

1 + exp (−y0 − y))

∣∣∣∣
−f(y0 + y)− [f(y0 + y)− f(y0)]

m∗

z2T

(
αn − αp + y − z2 T

2m∗

)}

×
∫ ∞
x̄min

dx (x+ αν)(y + αe + x)f(x)[1− f(x+ y)], (A29)

∂Γ2n(µ∆)

∂µ∆

∣∣∣∣
µ∆=0

=
m∗2G̃2

8π5
T 5

∫ ∞
−∞

dy [1 + g(y)]

∫ ∞
|y+αe−αν |

dz

{
g(y) ln

∣∣∣∣ 1 + exp (−y0)

1 + exp (−y0 − y))

∣∣∣∣
−f(y0 + y)− [f(y0 + y)− f(y0)]

m∗

z2T

(
αn − αp + y − z2 T

2m∗

)}

×
∫ ∞
x̄min

dx (x+ αν)(y + αe + x)f(x+ y)[1− f(x)]. (A30)

From these expressions, it is straightforward to obtain Eqs. (13), (15), (22) and (25) of the main text.



19

1. Low-temperature Urca rates

In the case of highly degenerate matter we have µi/T →∞, therefore εmin/T → ±∞. Thus we find from Eq. (A11)
(for µ∆ = 0)

I1(q) =
m∗2ω

2πq
g(ω)θ(−εmin). (A31)

In terms of momenta the condition εmin ≤ 0 can be written as |p2
Fn − p2

Fp − q2| ≤ 2qpFp, where we neglected ω ∼ T
terms, therefore

θ(−εmin) = θ(pFn + pFp − q)θ(q − |pFn − pFp|). (A32)

In the case of neutrino-transparent matter, we can also set q = pFe, therefore for Eq. (A31) we obtain

I1(q) =
m∗2ω

2πq
g(ω)θ(pFp + pFe − pFn). (A33)

To obtain the low-temperature limit of integral I2 in the case of neutrino-transparent matter we drop the neutrino
momentum and neutrino distribution and approximate |k′| = pFe in the first equation of (A13), which gives

I2(q) =

∫
k2dk

(2π)3

∫
dk′

(2π)3
[1− f(k′)]

∫
dΩk δ(εk′ + εk − ω)δ(pFe − |q|). (A34)

Performing the integrations over k′ and Ωk we obtain

I2(q) =
4π

(2π)6
δ(pFe − |q|)

∫ ∞
0

dk k2[1− f(ω − εk)]. (A35)

Substituting Eqs. (A33) and (A35) into the neutron decay rate (A1) we find

Γ1p =
m∗2G̃2

4π5
T 5pFeθ(pFp + pFe − pFn)

∫ ∞
0

dxx2

∫ ∞
−∞

dy yg(y)f(x− y). (A36)

In the same manner we can obtain the low-T result for Γ2n in the neutrino-transparent matter

Γ2n =
m∗2G̃2

4π5
T 5pFeθ(pFp + pFe − pFn)

∫ ∞
0

dxx2

∫ ∞
−∞

dy y[1 + g(y)]f(x+ y). (A37)

The integrals appearing in Eqs. (A36) and (A37) can be computed successively

∞∫
−∞

dy yg(y)f(x− y) =

∫ ∞
−∞

dy y[1 + g(y)]f(x+ y) =
1

2

x2 + π2

1 + ex
, (A38)

and

1

2

∫ ∞
0

dx x2x
2 + π2

1 + ex
=

3

4

[
π2ζ(3) + 15ζ(5)

]
= 20.5633, (A39)

from which we obtain the low-T results (16) and (26) of the main text.
Next, we find the low-temperature limit of Eqs. (15) and (25). By replacing ω → ω − µ∆ in Eq. (A33) we find

∂I1
∂µ∆

∣∣∣∣
µ∆=0

=
(ω
T

[1 + g(ω)]− 1
)m∗2

2πq
g(ω)θ(pFp + pFe − pFn). (A40)

Therefore, the low-temperature limit for λ1 can be found by replacing y → {y[1 + g(y)]− 1}/T in Eq. (A36). Thus

λ1 =
m∗2G̃2

4π5
T 4pFeθ(pFp + pFe − pFn)

∫ ∞
0

dxx2

∫ ∞
−∞

dy g(y)
{
y[1 + g(y)]− 1

}
f(x− y). (A41)
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Similarly, λ2 can be obtained from Eq. (A37) by replacing y → −[yg(y)− 1]/T

λ2 =
m∗2G̃2

4π5
T 4pFeθ(pFp + pFe − pFn)

∫ ∞
0

dxx2

∫ ∞
−∞

dy [1 + g(y)][1− yg(y)]f(x+ y). (A42)

The double integrals in Eqs. (A41) and (A42) are identical and are equal to 17π4/120. Substituting this value we
obtain the final results given by Eqs. (17) and (27).

In the case where neutrinos remain trapped in the degenerate regime, one finds I2(q) = 0, because in this limit the
distribution function of antineutrinos is exponentially suppressed. To obtain the low-temperature limit of I3(q) we
substitute k = pFν and ω′ = µe − µν = pFe − pFν in Eq. (A26) (εk ≡ k − pFν) to find

I3(q) =
pFepFν
q(2π)5

θ(1− |y0|)
∫ ∞
−pFν

dεk f(εk)[1− f(εk + ω)]. (A43)

The inequalities (A25) in this approximation are independent of εk and imply

|pFe − pFν | ≤ q ≤ pFe + pFν . (A44)

Combining now Eqs. (A2), (A31) and (A43) and approximating pFν/T →∞ for Γ2 we obtain

Γ2 =
m∗2G̃2

8π5
T 3pFepFν

∫ pFe+pFν

|pFe−pFν |
dq θ(pFn + pFp − q)θ(q − |pFn − pFp|)

∫ ∞
−∞

dx f(x)

∫ ∞
−∞

dy yg(y)f(−x− y). (A45)

The last two integrals give 2π2/3, and for the q-integral we have∫ pFe+pFν

|pFe−pFν |
dq θ(pFn + pFp − q)θ(q − |pFn − pFp|)

= (pFe + pFν − |pFn − pFp|)θ(pFn + pFp − pFe − pFν)θ(pFe + pFν − |pFn − pFp|)θ(|pFn − pFp| − |pFe − pFν |)
+(pFn + pFp − |pFe − pFν |)θ(pFe + pFν − pFn − pFp)θ(pFn + pFp − |pFe − pFν |)θ(|pFe − pFν | − |pFn − pFp|)
+(pFe + pFν − |pFe − pFν |)θ(pFn + pFp − pFe − pFν)θ(|pFe − pFν | − |pFn − pFp|)
+(pFn + pFp − |pFn − pFp|)θ(pFe + pFν − pFn − pFp)θ(|pFn − pFp| − |pFe − pFν |). (A46)

In neutron star matter we have typically pFn + pFp ≥ pFe + pFν ≥ |pFn− pFp| ≥ |pFe− pFν |, and we obtain the final
result given by Eq. (24).

Appendix B: Computation of susceptibilities Aj

To compute the susceptibilities Aij given by Eq. (32) we use the following formula for the particle densities

ni =
gi

2π2

∫ ∞
0

p2dp [fi(p)− f̄i(p)], (B1)

where gi is the degeneracy factor, and f(p) and f̄(p) are the distribution functions for particles and antiparticles,
respectively. For neutrons, protons, and electrons we have gi = 2, and for neutrinos gν = 1.

Differentiating the left and right sides of Eq. (B1) with respect to nj and exploiting the expressions

∂fi
∂nj

= −fi(1− fi)
1

T

(
m∗√

m∗2 + p2

∂m∗

∂nj
− ∂µ∗i
∂nj

)
,

∂f̄i
∂nj

= −f̄i(1− f̄i)
1

T

(
m∗√

m∗2 + p2

∂m∗

∂nj
+
∂µ∗i
∂nj

)
, (B2)

in the case of baryons we obtain

δij = −
(
∂m∗

∂nj

)
I−1i +

(
∂µ∗i
∂nj

)
I+
0i, (B3)

where

I±qi =
1

π2T

∫ ∞
0

p2dp

(
m∗√

m∗2 + p2

)q
[fi(1− fi)± f̄i(1− f̄i)], i = {n, p}. (B4)
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The average values of the meson fields are given by [65]

gωω0 =

(
gω
mω

)2

(nn + np), gρρ03 =
1

2

(
gρ
mρ

)2

(np − nn), (B5)

which gives (recall that µ∗i = µi − gωω0 − gρρ03I3i)

Bij ≡
∂µ∗i
∂nj

= Aij −
(
gω
mω

)2

− I3iI3j
(
gρ
mρ

)2

. (B6)

The scalar field is given by

gσσ = m−m∗ = − gσ
m2
σ

∂U(σ)

∂σ
+

1

π2

(
gσ
mσ

)2 ∑
i=n,p

∫ ∞
0

p2dp
m∗√

p2 +m∗2
[fi(p) + f̄i(p)], (B7)

with U(σ) being the self-interaction potential of the scalar field, therefore

∂m∗

∂nj
=

gσ
m2
σ

∂2U(σ)

∂σ2

∂σ

∂nj
+

(
gσ
mσ

)2(
∂m∗

∂nj

)(
I+
2n + I+

2p

)
−
(
gσ
mσ

)2 (
BnjI

−
1n +BpjI

−
1p

)
−
(
gσ
mσ

)2(
∂m∗

∂nj

) ∑
i=n,p

1

π2

∫ ∞
0

p2dp
p2

(p2 +m∗2)3/2
[fi(p) + f̄i(p)]. (B8)

The last term is suppressed in the non-relativistic limit and can be neglected, after which we obtain

∂m∗

∂nj
= −

(
gσ
mσ

)2 (
BnjI

−
1n +BpjI

−
1p

)
1−

(
gσ
mσ

)2 (
I+
2n + I+

2p

)
+ 1

m2
σ

∂2U
∂σ2

. (B9)

Substituting this into Eq. (B3) we obtain the following equations for coefficients Bij

BijI
+
0i − γ

(
BnjI

−
1n +BpjI

−
1p

)
I−1i = δij , (B10)

where

γ =
1

I+
2n + I+

2p − β
, β =

(
mσ

gσ

)2(
1 +

1

m2
σ

∂2U

∂σ2

)
. (B11)

In the case of i 6= j we find from Eq. (B10)

Bnp = γBpp
I−1pI

−
1n

I+
0n − γI

−2
1n

, Bpn = γBnn
I−1nI

−
1p

I+
0p − γI

−2
1p

. (B12)

Substituting these expressions into Eq. (B10) for i = j we obtain

Bnn =
I+
0p − γI

−2
1p

I+
0nI

+
0p − γI

+
0pI
−2
1n − γI

+
0nI
−2
1p

, Bpp =
I+
0n − γI

−2
1n

I+
0nI

+
0p − γI

+
0pI
−2
1n − γI

+
0nI
−2
1p

, (B13)

and

Bnp = Bpn =
γI−1pI

−
1n

I+
0nI

+
0p − γI

+
0pI
−2
1n − γI

+
0nI
−2
1p

. (B14)

In the non-relativistic limit we will use the expansion m/
√
m2 + p2 ' 1−p2/2m2 in the integrals (B4). We will further

drop the contribution of antiparticles because it is not important for the regime of interest. Then I+
0i = I−0i ' Ĩ2i,

I+
1i = I−1i ' Ĩ2i − Ĩ4i/2m∗2, and I+

2i = I−2i ' Ĩ2i − Ĩ4i/m∗2, where

Ĩqi =
1

π2T

∫ ∞
0

pqdp fi(1− fi). (B15)



22

Then in the non-relativistic limit we find for Eq. (B11)

γ =
1(

Ĩ2n + Ĩ2p

) +
1(

Ĩ2n + Ĩ2p

)2

(
Ĩ4n + Ĩ4p
m∗2

+ β

)
, (B16)

and

I+
0nI

+
0p − γI

+
0pI
−2
1n − γI

+
0nI
−2
1p = −β Ĩ2pĨ2n

Ĩ2n + Ĩ2p
. (B17)

Then

Bnn = − 1

β
+

1

Ĩ2n + Ĩ2p

Ĩ2p

Ĩ2n
+

1

m∗2β

(
Ĩ2p

Ĩ2n

Ĩ4n + Ĩ4p

Ĩ2n + Ĩ2p
− Ĩ4p

Ĩ2n

)
, (B18)

Bpp = − 1

β
+

1

Ĩ2n + Ĩ2p

Ĩ2n

Ĩ2p
+

1

m∗2β

(
Ĩ2n

Ĩ2p

Ĩ4n + Ĩ4p

Ĩ2n + Ĩ2p
− Ĩ4n

Ĩ2p

)
,

Bnp = Bpn = − 1

β
− 1

Ĩ2n + Ĩ2p
+

1

2m∗2β

(
Ĩ4n

Ĩ2n
+
Ĩ4p

Ĩ2p
− 2

Ĩ4n + Ĩ4p

Ĩ2n + Ĩ2p

)
. (B19)

We next obtain the two combinations relevant to the bulk viscosity

Bnn −Bpn =
1

Ĩ2n
− 1

2m∗2β

(
Ĩ4p

Ĩ2p
− Ĩ4n

Ĩ2n

)
, Bpp −Bnp =

1

Ĩ2p
− 1

2m∗2β

(
Ĩ4n

Ĩ2n
− Ĩ4p

Ĩ2p

)
. (B20)

Substituting the expression for β from Eq. (B11) and recalling Eq. (B6) we obtain

An =
1

Ĩ2n
+

1

2

(
gρ
mρ

)2

+
1

2m∗2

(
gσ
mσ

)2(
1 +

1

m2
σ

∂2U

∂σ2

)−1
(
Ĩ4n

Ĩ2n
− Ĩ4p

Ĩ2p

)
, (B21)

Ap =
1

Ĩ2p
+

1

2

(
gρ
mρ

)2

+
1

2m∗2

(
gσ
mσ

)2(
1 +

1

m2
σ

∂2U

∂σ2

)−1
(
Ĩ4p

Ĩ2p
− Ĩ4n

Ĩ2n

)
. (B22)

For leptons we have simply

Ae =
1

Ĩ2e
, Aν =

2

Ĩ2ν
. (B23)

where the lepton energies in the intergal are taken as εp = p− µL. Then

A =
∑
i

Ai =
1

Ĩ2n
+

1

Ĩ2p
+

1

Ĩ2e
+

2

Ĩ2ν
+

(
gρ
mρ

)2

, (B24)

and

nnAn − npAp =
nn

Ĩ2n
− np

Ĩ2p
+
nn − np

2

(
gρ
mρ

)2

+
nn + np

2m∗2

(
gσ
mσ

)2(
1 +

1

m2
σ

∂2U

∂σ2

)−1
(
Ĩ4n

Ĩ2n
− Ĩ4p

Ĩ2p

)
. (B25)

Taking into account also Eq. (B5) and the non-relativistic limit of Eq. (B7) we obtain

C =
nn

Ĩ2n
− np

Ĩ2p
− ne

Ĩ2e
+ 2

nν

Ĩ2ν
− gρρ03 +

gσσ

2m∗2

(
1 +

1

σm2
σ

∂U

∂σ

)(
1 +

1

m2
σ

∂2U

∂σ2

)−1
(
Ĩ4n

Ĩ2n
− Ĩ4p

Ĩ2p

)
. (B26)

The terms containing U(σ) vanish in the case of DD-ME2 model and are numerically very small in the case of NL3
model. We find also, that the terms ∝ gρ in Eqs. (B24) and (B26) are negligible in comparison to the first four terms.
The last term in Eq. (B26) is comparable to the rest of the terms.
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In the case of degenerate matter the susceptibilities can be computed analytically

A =
π2

m∗

(
1

pFn
+

1

pFn

)
+

π2

p2
Fe

+
2π2

p2
Fν

+

(
gρ
mρ

)2

, (B27)

C =
p2
Fn − p2

Fp

3m∗
+
pFν − pFe

3
+
p2
Fn − p2

Fp

2m∗2
gσσ − gρρ03. (B28)

which agree with the results of Refs. [34, 65].
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FIG. 13: The neutron decay rate Γ1 as a function of the
temperature for fixed values of the baryon density. The lepton
fraction is fixed at YL = 0.1 for (a) and at YL = 0.4 for (b).

Appendix C: Beta equilibration rates

In this appendix we discuss the numerical results for
the β-equilibration rates Γ1 and Γ2 given by Eqs. (14)
and (23). Figures 13 and 14 show the temperature de-
pendence of the neutron decay and the electron capture
rates, respectively, for various values of the density and
lepton fraction.

Figs. 13 and 14 demonstrate that the electron capture
process and its inverse (2) dominate the beta equilibra-
tion and hence the bulk viscosity. The electron capture
rate Γ2 is always many orders of magnitude larger than
the neutron decay rate Γ1. This is because we are study-
ing neutrino-trapped matter, where the trapped species is
typically neutrinos rather than antineutrinos (Figs. 1, 2)
so any process involving antineutrinos will be suppressed
by factors of exp(−µν/T ).

As seen from the upper panels of the figures, Γ1 is a
rapidly increasing function of the temperature and expo-
nentially vanishes at low temperatures because of vanish-
ing antineutrino density in the degenerate matter. The
threshold of temperature below which Γ1 practically van-
ishes is located at higher temperatures for higher lep-
ton fractions, because the suppression of the antineutrino
density is stronger for larger YL.

The temperature dependence of the electron capture
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FIG. 14: The electron capture rate Γ2 as a function of the
temperature for fixed values of the baryon density. The lepton
fraction is fixed at YL = 0.1 for (a) and at YL = 0.4 for (b).

rate differs significantly from that of Γ1. Indeed, Γ2 in-
creases with the temperature according to a power-law
Γ2 ∝ T 3 up to the temperatures T ' 10 MeV, as seen
from the low-temperature limit given by Eq. (24). This
scaling breaks down at higher temperatures T ≥ 10 MeV
and sufficiently low densities nB ≤ n0, where the finite
temperature effects become important in the evaluation
of the integral (23). We have checked numerically that
the exact result for Γ2 (23) tends to its low-temperature
limit (24) as T ≤ 1 MeV.

Comparing the upper and lower panels in Figs. 13 and
14, we see that Γ1 is smaller for larger lepton fraction,
whereas Γ2 shows the opposite behavior. The reason for
this behavior is clear: the neutron decay rate Γ1 is pro-
portional to the antineutrino (number) density, whereas
the electron capture rate Γ2 is proportional to the neu-
trino density. Because the electron neutrino fraction in-
creases with the increase of YL, as was seen from Figs. 1
and 2, the antineutrino population becomes more sup-
pressed at higher YL, thus leading to smaller Γ1 and
larger Γ2.
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FIG. 15: Particle fractions as functions of the baryon density
for neutrino-transparent matter Yν = 0 for two values of the
temperature: (a) T = 1 MeV; (b) T = 5 MeV.

Appendix D: Bulk viscosity of neutrino-transparent
matter

In this Appendix we are interested in the domain of
temperatures T ≤ Ttr where the matter is neutrino trans-
parent (Yν = 0). Below the temperature T ' 1 MeV, the
modified Urca process becomes important [20] therefore
our results are strictly relevant for the temperature do-
main 1 ≤ T ≤ 5 MeV. To account for uncertainty in the
value of Ttr the numerical results will be shown up to
T = 10 MeV. The particle fractions are shown in Fig. 15.
In this case muons appear only above a certain baryon
density nB & n0, where the condition µe ≥ mµ ' 106
MeV is satisfied. Below this threshold, the proton and
electron fractions are equal, as required by the charge
neutrality condition, whereas above the threshold the
condition Yp = Ye + Yµ is satisfied.

The relevant β-equilibration rates Γ1p and Γ2n are
shown in Fig. 16 and as functions of the temperature.
Both quantities rapidly increase with the temperature
and are exponentially damped in the low-temperature
limit. The reason is that the condition pFp + pFe ≥ pFn
is never satisfied for the given model of hadronic mat-
ter because of very small proton fraction Yp ≤ 7 %, see
Fig. 15. As a consequence, the direct Urca processes for
neutrino-transparent matter are always blocked at low
temperatures, therefore in that regime, the modified Urca
processes should be accurately taken into account [20].

Quantitatively, the neutron decay rate Γ1p in the case
of Yν = 0 is larger than in the case of YL = 0.1, whereas
the electron capture rate is smaller. This result can be
anticipated from Eqs. (14) and (23), where one should
substitute αν = 0 in the neutrino-transparent case. How-
ever, the rate Γ1p again remains much smaller than Γ2n,
and only at sufficiently high densities approaches Γ2n,
as seen in Fig. 17, since both quantities have the same
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FIG. 16: The neutron decay rate Γ1p (a) and the electron
capture rate Γ2n (b) as functions of the temperature for fixed
values of the baryon density in the neutrino-transparent case.
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FIG. 17: The neutron decay rate Γ1p (a) and the electron
capture rate Γ2n (b) as functions of the baryon density for
fixed values of the temperature in the neutrino-transparent
case Yν = 0.

low-temperature limit given by Eqs. (16) and (26).
We remark also, that the behavior of λ1 and λ2 is

very similar to that of Γ1p and Γ2n, respectively. At
densities nB ≥ n0 we have approximately λ1 ' Γ1p/T
and λ2 ' Γ2n/T , as it was the case of neutrino-trapped
matter, see Eqs. (13) and (22).

Next, we show the density dependence of the bulk vis-
cosity in Fig. 18. As in the case of Yν 6= 0, the fre-
quency dependence of ζ can be neglected at sufficiently
high temperatures T ' 10 MeV (see Fig. 7), and, be-
cause the product λA is almost density-independent, the
bulk viscosity as a function of density increases as C2.
For smaller temperatures T . 5 MeV the frequency de-
pendence of ζ becomes important, and the bulk viscosity
drops rapidly with ω. We show the bulk viscosity for
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FIG. 18: The density dependence of the bulk viscosity
for various values of the temperature and the oscillation fre-
quency in the case of Yν = 0. In the case of high temperatures
(the violet curve) ζ becomes independent of the frequency.

three values of the frequency in Fig. 18 for T = 5 MeV.
The general increase of ζ with the density, in this case, is
again caused by the factor C2, but the hump structures
of ζ in the range arise from the weak density-dependence
of the product λA. In the case of T = 1 MeV we have
already the opposite limit ω � λA (see Fig. 7), therefore
the bulk viscosity scales as ζ ∝ λC2, which rapidly in-
creases with the density and drops to zero at sufficiently
low densities nB . 2n0. We have checked that our low-
temperature result for T = 0.1 MeV agrees with the re-
sult of the bulk viscosity shown in Fig. 2 of Ref. [48]
obtained for direct Urca processes for the same state of
hadronic matter.

For comparison, we show also the bulk viscosity of the
neutrino-transparent matter for the nuclear model NL3
in Fig. 19. The results obtained within two models DD-
ME2 and NL3 differ mainly in the low-temperature re-
gion, where the bulk viscosity is strongly suppressed at
low densities because of blocking of direct Urca processes.
The suppression sets in at lower densities in the case of
the NL3 model because this model predicts larger proton
and electron fractions than the DD-ME2 model.

Figures 20 and 21 show the temperature dependence
of the bulk viscosity for models DD-ME2 and NL3, re-
spectively. It has a maximum at the temperature where
ω = λA, and the slope of the curve on the right side of the
maximum is larger than in the case of Yν 6= 0 because
of stronger λ = λ(T ) dependence. Using the approxi-
mate scaling λ ∝ T 4, we find that Tmax = (ω/λ0A)1/4,
where λ0 is the value of λ(T ) at T = 1 MeV, i.e., the
maximum shifts to higher temperatures for higher fre-
quencies. As seen from a comparison of Figs. 8 and 9
with Figs. 18 and 20, the bulk viscosity is larger in the

case of neutrino-transparent matter, as expected.
We also compare our results with the high-frequency
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FIG. 19: Same as Fig. 18, but for model NL3.

(low-temperature) result of Ref. [24] obtained from di-
rect Urca processes for the neutrino-transparent matter.
Choosing the parameters, e.g., T = 1 MeV, f = 1 kHz,
nB = 2n0, we find from Figs. 1 and 2 and Eq. (13) of
Ref. [24] the values ζ ' 3.5 · 1028 g cm−1 s−1 for the
model I, and ζ ' 1029 g cm−1 s−1 for model II, whereas
our calculations give much lower result ζ ' 1021 g cm−1

s−1. The reason for this is the lower proton fraction in
our model, which leads to blocking of direct Urca pro-
cesses at low temperatures and, therefore, to lower bulk
viscosity.

1 2 4 8
T [MeV]

10
21

10
24

10
27

10
30

ζ
 [

g
 c

m
-1

 s
-1

]

n
B
/n

0
 = 3

n
B
/n

0
 = 2

n
B
/n

0
 = 1

n
B
/n

0
 = 0.5

1 2 4 8
T [MeV]

Y
ν
 = 0

f = 1 kHz f = 10 kHz
(a) (b)
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kHz and (b) f = 10 kHz.
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