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Gravitational waves from binary neutron star coalescences contain rich information about matter
at supranuclear densities encoded by the neutron star equation of state. We can measure the
equation of state by analyzing the tidal interactions between neutron stars, which is quantified by
the tidal deformability. Multiple merger events are required to probe the equation of state over a
range of neutron star masses. The more events included in the analysis, the stronger the constraints
on the equation of state. In this paper, we build on previous work to explore the constraints that
LIGO and Virgo are likely to place on the neutron star equation of state by combining the first
forty binary neutron star detections, a milestone we project to be reached during the first year of
accumulated design-sensitivity data. We carry out Bayesian inference on a realistic mock dataset
of binaries to obtain posterior distributions for neutron star tidal parameters. In order to combine
posterior samples from multiple observations, we employ a random forest regressor, which allows
us to efficiently interpolate the likelihood distribution. Assuming a merger rate of 1540 Gpc−3 yr−1

and a LIGO-Virgo detector network operating for one year at the sensitivity of the third-observation
run, plus an additional eight months of design sensitivity, we find that the radius of a 1.4 M� neutron
star can be constrained to better than ∼ 10 % at 90% confidence. The pressure at twice the nuclear
saturation density can be constrained to better than ∼ 45 % at 90% confidence. We show that these
results are robust to our choice of parametrization for the neutron star equation of state.

I. INTRODUCTION

With the improving sensitivity of LIGO [1, 2] and
Virgo [3], we expect to increase the number of binary
neutron star detections using gravitational waves [4]. Bi-
nary neutron star coalescences provide rich information
about the neutron star equation of state, which can be
constrained by measuring the neutron star’s tidal in-
teractions. These tidal interactions are determined by
the neutron star’s dimensionless tidal deformability Λ,
which determines how the neutron star’s quadruple mo-
ment changes in response to the companion’s tidal field
(e.g. [5, 6]). The gravitational-wave detection of a binary
neutron star coalescence, GW170817 [7], placed the first
constraints on Λ, ruling out some of the stiffest proposed
equations of state [8].

In order to obtain a better measurement of the neutron
star equation of state, it is necessary to combine informa-
tion from an ensemble of binary neutron stars. The first
fully Bayesian study that combined information to con-
strain the equation of state using tidal interactions was
proposed by Del Pozzo et al. [9]. They simulated an as-
trophysically distributed gravitational-wave dataset and
showed that a few tens of observations were enough to
constrain the tidal deformability λ = Λ/G(Gm/c2)5 to
about 10% at a reference mass of 1.4M�. The method in
Ref. [9] fits the tidal deformability λ by Taylor expand-
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ing λ(m) around a fiducial mass of m = 1.4M�. Then,
Lackey and Wade [10] showed that λ can be measured
at 10-50 % in the range between 1-2M�, where most
of the information comes from the loudest ∼ 5 events.
Their method used Markov chain Monte Carlo simula-
tions to fit a model that follows the piecewise polytrope
parametrization of the equation of state. In order to re-
duce the computational cost of their study, they used
Fisher matrix approximations in some of the events con-
tained in their mock data study. Agathos et al. [11]
improved on [10] by including waveforms with tidal ef-
fects up to 1 post-Newtonian (1PN) order, neutron-star
spins, and termination of the waveform at the contact
frequency. While the results from Agathos et al. [11] are
broadly consistent with the findings of [10], Agathos et
al. find that a poorly chosen neutron-star mass prior can
bias inferences about the equation of state.

In this paper, we study how well we can constrain
the equation of state with gravitational-wave observa-
tions using the first forty expected binary neutron star
detections from the LIGO-Virgo network. We perform a
realistic mock data study, which introduces a few inno-
vations: (1) we use a reduced order quadrature model
waveform based on the IMRPhenomD NRTidal ap-
proximant [12–14] which significantly reduces the cost
of parameter estimation; (2) we run full parameter esti-
mation on all the events in our dataset that contain sig-
nificant information about the equation of state and (3)
we introduce a new interpolation method for combining
events, yielding an interpolation error of ≈ 0.3%.

The problem of combining equation of state con-
straints from multiple events is an example of an inter-
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esting general class of problems in which (1) the prior
for an individual measurement is conditional on some
hyper-parameter; (2) the conditional prior spans some
d-dimensional subspace with fewer dimensions than the
full D-dimensional parameter space and (3) the equation
of state curves are deterministic, i.e., they live exactly on
a curve rather than have a probability defined over the
whole parameter space. As we discuss in greater detail
below, standard techniques from hierarchical modelling
fail when applied to such problems. In this paper, we dis-
cuss the subtleties associated with combining events. We
document the challenges arising from this unique class of
problem and propose a new solution, which employs a
random forest regressor to interpolate the likelihood dis-
tribution.

This paper is organized as follows. In Section II, we
describe the difficulties of combining a population of
gravitational-wave measurements to constrain the equa-
tion of state. In order to solve this problem, we describe
a new method that is based on interpolating the like-
lihood distribution using a random forest regressor. In
Section III, we present constraints that the LIGO-Virgo
detector network will place on the equation of state after
the first forty gravitational-wave observations. We dis-
cuss our results in Section IV and conclude in Section V.

II. METHOD

A. Equation of state parametrization

Gravitational-wave observations can be used to con-
strain the equation of state by measuring the tidal de-
formability of neutron stars. If we can measure these
tidal interactions, we can place constraints on relations
that model the equation of state such as pressure p
and density ρ (see e.g. [15]). While we cannot mea-
sure pressure and density directly, we can map p(ρ) onto
the measurable astrophysical parameters Λ(m) using the
Tolman-Oppenheimer-Volkoff equations and the relation-
ship between the tidal deformability, second Love num-
ber, and radius [16, 17].

Read et al. [18] showed that p(ρ) can be modeled as-
suming a piecewise polytropic relation between pressure
and density, where each polytrope is defined between
three different sections, i = 1, 2, 3. Each polytrope is
modeled by

p = Kiρ
Γi . (1)

Here, Ki is a constant and Γi is the adiabatic index.
The density transitions occur at ρ1 = 1014.7 g cm−3 and
ρ2 = 1015 g cm−3 [5, 17–19]. Demanding that p(ρ) is
continuous implies the equation of state can be fully de-
termined with only four numbers: Γi for i = 1, 2, 3 and
p1, the value of pressure at ρ1.

The mapping of p(ρ) onto Λ(m) allows us to cast the
neutron star equation of state measurement as a hierar-
chical model, where the neutron star parameters Λ and

Hyper-parameter Prior Minimum Maximum

log
(
p1/[dyne/cm2]

)
Uniform 33.6 34.8

Γ1 Uniform 2 4.5
Γ2 Uniform 1.1 4.5
Γ3 Uniform 1.1 4.5

TABLE I: Hyper-prior distributions used in our study. We
model the equation of state with three polytropes and assume
that we know the equation of state below the pressure p1.
The hyper-priors are chosen based on the discussions from
Refs. [10, 20] and are set to cover a wide range of equations
of state.

m are conditional on hyper-parameters Υ, which describe
the shape of the piecewise polytrope.

In this study, we follow the piecewise polytrope
model [18] to sample over the equation of state hyper-
parameters. We choose the hyper-priors following the
discussions from [10, 20]. The hyper-priors are shown
in Tab. I. Additionally, when we sample over the
piecewise polytrope hyper-parameters, we impose three
astrophysically-motivated constraints:

1. The maximum speed of sound cannot exceed the
speed of light. However, since the piecewise poly-
trope only fits the equations of state to an accuracy
of ∼ 4 %, we set the causality constraint only when
the speed of sound exceeds 1.1 times the speed of
light.

2. We only allow equations of state with maximum
masses above m = 1.97 M�, which is consistent
with the maximum TOV mass observed from pulsar
PSR J0348+0432 [21] and PSR J0740+6620 [22].

3. We restrict the tidal deformability to Λ ≤ 5000,
conservatively consistent with the gravitational-
wave measurement GW170817 [7].

B. Formalism

Our objective is to calculate the posterior distribution
on the hyper-parameters Υ = {Γ1,Γ2,Γ3, p1} that de-
scribe the equation of state. The posterior is given by
Bayes theorem,

p(Υ|~d) =
L(~d|Υ)π(Υ)

ZΥ
. (2)

Here, we introduce the likelihood L(~d|Υ), the hyper-
evidence ZΥ and the hyper-prior π(Υ). The hyper-prior
π(Υ), in our case, describes our prior belief about the
hyper-parameters Υ that model the equation of state.

We can think of this problem as follows. We have
some total likelihood function, which is the product of N
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FIG. 1: Example of posterior samples from parameter
estimation of two binary neutron star observations. Each
gravitational-wave measurement results in posterior samples
on the Λ(m) curve, represented by blue and orange dots. The
equation of state is defined by an infinitesimally thin curve,
represented by the black solid curve. None of the posterior
samples fall exactly on the black curve. This is the reason
why the usual hierarchical Bayesian inference is not directly
applicable to this problem.

single-event likelihoods

Ltot(~d|Υ) =

N∏
i

∫
dθiL(di|θi)π(θi|Υ). (3)

Here, θi are the waveform parameters for the ith event,
L(di|θi) is the likelihood function assuming the signal
hypothesis and π(θi|Υ) is the conditional prior for pa-
rameters θi given hyper-parameters Υ. In our specific
problem, θi refers to the 17 binary neutron star param-
eters and the hyper-parameters in Υ depend on the pa-
rameters that determine the equation of state, which we
denote ω = (m,Λ). We introduce κ to denote the param-
eters in θ that are not in ω. Equation 3 is challenging
to compute. We would normally analyze each event in-
dividually and then “recycle” the posterior samples (see
e.g. [23]):

Ltot(~d|Υ) =

N∏
i

ZiØ
ni

ni∑
k

π(θki |Υ)

π(θki |Ø)
(4)

=

N∏
i

ZiØ
ni

ni∑
k

π(ωki |Υ)

π(ωki |Ø)
. (5)

Here, we sum over ni posterior samples, where π(θki |Ø)
is the fiducial prior used for the initial analysis and ZØ

is the corresponding signal evidence. Since π(θki |ω) is
described by a curve in the (Λ,m) plane, no posterior
sample will fall exactly on this curve (see Fig. 1), and
so the recycling procedure fails because π(θki |Υ) always
evaluates to zero. In the parlance of importance sam-
pling, our proposal distribution fails to provide samples
for our target distribution.

In order to solve this problem, we devise a method
to interpolate the likelihood marginalized over nuisance
parameters. The method is as follows.

1. Run parameter estimation on each event using the
fiducial prior π(θ|Ø). The priors used in our in-
jection set are shown in Tab. II. For simplicity, we
consider non-spinning binary neutron stars.

2. The fiducial parameter estimation yields samples
from the posterior distribution in ω. The density
of these samples is proportional to the height of
the marginalized likelihood function Lκ(d|ω). Us-
ing the posterior sample density as a rough guide,
we chose “interpolation points” {ωj} for which we
calculate the κ-marginalized likelihood in the next
step:

Lκ(d|ω) ≡
∫
dκL(d|ω, κ)π(κ). (6)

The values of {ωj} are selected to give us the best
possible representation of the marginalized likeli-
hood so we can interpolate between different val-
ues of {ωj}. Additionally, we draw random sam-
ples from the prior to better sample the tails of the
distribution.

3. We launch a new inference job for each interpola-
tion point {ωj}. These inference jobs are identical
to the original inference job except we employ a
delta-function prior on ω so that these parameters
are fixed to the values of the interpolation point.
All of these inference jobs can be run in parallel
so this step takes less time than the previous step,
though it requires more compute cores. Since the
metric perturbation depends only on the intrinsic
parameters, it can be calculated just once at the
beginning of the job and cached for later use. Cal-
culating the strain given the metric perturbation is
an extremely fast calculation, enabling these new
jobs to run comparatively quickly. The Bayesian
evidence given by each job represents a marginal-
ized likelihood Lκ(d|ω).

4. We create a function which interpolates between
interpolation points Lint

κ (d|ω) with a random forest
regressor [24]. Once the random forest is trained,
we can give it a new value of ω /∈ {ωj}, and the ran-
dom forest provides an estimate of the marginalized
likelihood Lκ(d|ω).

5. Using our new interpolated marginal likelihood, the
total likelihood for N events is

Ltot(d|Υ) =

N∏
i

∫
dωiLint

κ (di|ωi)π(ωi|Υ). (7)

As we change Υ, we obtain different curves in
ω, which do not pass through any of our original
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Parameter Unit Prior Minimum Maximum
M M� Uniform 1.05 1.45
q - Uniform 0.7 1

RA rad. Uniform 0 2π
DEC rad. Cos −π/2 π/2

cos(θjn) - Uniform -1 1
ψ rad. Uniform 0 π
φ rad. Uniform 0 2π
dL Mpc Comoving 10 400

TABLE II: Prior distributions used in our injection set. The
intrinsic parameters are the chirp mass M, and mass ratio
q. The dimensionless tidal deformabilities Λ are determined
using the SLy equation of state. The extrinsic parameters are
the right ascension (RA) and declination (DEC), inclination
angle θjn, phase of coalescence φ, polarization angle ψ, and
luminosity distance dL. The comoving prior in the luminosity
distance means that we assume a uniform prior in comoving
volume. We assume non-spinning binaries in all the injections.

samples, but we are able to evaluate the hyper-
likelihood anyway because we are able to interpo-
late throughout ω. In practice, the integral in Eq. 7
is carried out on a discrete grid so that the integral
is replaced by a sum over mass bins.

Ltot(d|Υ) =

N∏
i

∫
dωiLint

κ (di|ωi)π(ωi|Υ) (8)

Ltot(d|Υ) =

N∏
i

∫
dωiLint

κ (di|ωi)π(mi
1,m

i
2)

δ
(

Λ1 − Λ′1(m1|Υ)
)
δ
(

Λ2 − Λ′2(m2|Υ)
)

=

N∏
i

∫
dmi

1

∫
dmi

2 π(mi
1,m

i
2)

Lint
κ

(
di

∣∣∣∣mi
1,m

i
2,Λ

i
1(mi

1),Λi2(mi
2)

)
=

N∏
i

∑
α,β

π(mi,α
1 ,mi,β

2 )Lint
κ

(
di

∣∣∣∣mi,α
1 ,mi,β

2 ,

Λi1(mi,α
1 |Υ),Λi2(mi,β

2 |Υ)

)
∆m2. (9)

Here, the sum over α, β run over 200 primary and
secondary mass bins with width ∆m. For each bin,
Λ is determined by the equation of state parameters
Υ.

C. Interpolation with random forest

In order to interpolate between samples, we employ
the random forest regressor from the python package
scikit-learn [25]. Broadly speaking, the random forest
algorithm combines information from different decision

5 6 7 8 9
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)
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Λ
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Λ
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FIG. 2: Posterior distributions of the intrinsic parameters
ω = (M, q,Λ1,Λ2). The orange posteriors are obtained by
sampling the interpolated likelihood distribution. Our results
are compared to the original posteriors shown in blue. This
plot indicates than an interpolation error of ∼ 0.3% repro-
duces the original posteriors.

trees. A decision tree can be understood as a tree-like
model of branches where all outcomes are made based
on conditional control statements. The results of random
forest regressors are obtained by averaging over different
decision trees [24, 26].

The evaluation time and accuracy of the interpolation
depends on the number of decision trees and the num-
ber of interpolation points. We use 9× 103 interpolation
points, where 85 % of our dataset is used for training
and 15 % is used for testing. We find that with 50 de-
cision trees, the interpolation error is ∼ 0.3% and the
interpolated-likelihood evaluation time for one value of
ω = (M, q,Λ1,Λ2) is ≈ 0.05 ms. Increasing the number
of random trees may increase the accuracy, but this level
of accuracy is sufficient for our present purposes and the
interpolated likelihood evaluation time increases propor-
tionally to the number of decision trees.

In order to vet the interpolation, we sample the new
interpolated-likelihood to obtain posterior distributions
of the intrinsic parameters. The posterior distributions
from the exact likelihood and the interpolated likelihood
are shown in Fig. 2. The interpolated likelihood distri-
butions shown in Fig. 2 are consistent with the exact
likelihood, which indicates that the random forest inter-
polation is effective.

There are other machine-learning algorithms that
could be as effective as random forests, for example, neu-
ral network regressors [27, 28]. While these algorithms
have been used in recent studies, exploring the advan-
tages/disadvantages of these algorithms is left for future
study. All our simulations are done within the Bayesian
inference library Bilby [29] and the LIGO algorithm
library LALSuite [30]. We use the Dynesty nested-
sampler [31].



5

III. MOCK DATA STUDY

We demonstrate our method with a mock data study.
We assume a detector network consisting of the two Ad-
vanced LIGO detectors and Advanced Virgo. We assume
that LIGO and Virgo operate at the expected sensitiv-
ity of the third observation run (O3) for one year, plus
eight months of design sensitivity. We assume that the bi-
nary neutron star range of LIGO Hanford and LIGO Liv-
ingston at design sensitivity is 190 Mpc, while the range
of Virgo at design sensitivity is 140 Mpc. During O3, we
additionally assume that the binary neutron star range of
LIGO Hanford, LIGO Livingston and Virgo are 100 Mpc,
130 Mpc and 50 Mpc respectively [32].

We assume a merger rate of 1540 Gpc−3yr−1, which
is consistent with a realistic binary neutron star merger
rate [7]. Based on this rate, we expect to detect N =
40+10
−11 binary neutron star mergers (90% credible inter-

val) with a network matched filter signal-to-noise ratio
exceeding the usual threshold of 12. In Tab. II we show
the prior distributions of our injection set. This results in
binaries with individual masses between 1M� and 2M�.
The tidal deformabilities are determined using the SLy
equation of state [33].

Due to the fact that binary neutron stars can be in-
band for long periods of time—for example GW170817
was in band for ≈ 2 minutes [7]— we use a reduced-
order-model (ROM) gravitational waveform to acceler-
ate Bayesian parameter estimation [34]. A reduced-
order model removes redundant waveform calculations
by reduced-order quadrature (ROQ) integration. In this
study, we use an ROQ implementation of the IMRPhe-
nomD NRTidal waveform approximant [12–14], which
is a spin-aligned waveform that includes tidal interac-
tions and which models the inspiral, merger and ring-
down. This allows us to run full parameter estimation
for each gravitational-wave measurement in ≈ 4 hours.
This is an improvement compared to Ref. [10], where
they used the TaylorF2, TaylorT1 and TaylorT4
approximants without an ROQ implementation of these
waveforms.

We investigate the result from Lackey and Wade [10],
which states that most of the equation of state infor-
mation comes from the loudest ∼ 12 % of events. We
calculate the Bayes factor comparing the non-black hole
evidence ZΛ6=0 to the black hole evidence ZΛ=0,

BF =
ZΛ6=0

ZΛ=0
. (10)

Then, we evaluate (10) for events with a range of dif-
ferent signal-to-noise ratios. We rank events from loud
to quiet, where “event rank”=1 is defined as the loudest
event. Our results are shown in Fig. 3, where we plot
the cumulative ln BF as a function of “event rank”. We
see that the ln BF plateaus at SNR ≈ 20. This means
that events with SNR < 20 do not add significant in-
formation about the equation of state, compared to the
loudest events in our dataset. We find that most of the

1 2 3 4 5 6 7 8

Event rank

2

4

6

8

10

ln
B

F

61.0 40.5 30.4 26.4 25.3 20.5 20.4 19.7
SNR

FIG. 3: Cumulative ln(BF) as a function of event rank. We
rank events from loud to quiet, where event rank=1 is defined
as the loudest event. The ln BF is calculated between the
hypothesis that Λ 6= 0 and Λ = 0. The event rank is shown in
the lower horizontal axis and its corresponding SNR is shown
in the upper horizontal axis. We find that after SNR ≈ 20,
the ln BF starts to plateau. This means that past SNR ≈ 20,
signals do not significantly add substantial information about
the equation of state. Our analysis focuses only on signals
where SNR > 20.

information comes from the loudest ∼ 15 % of events,
which is consistent with Ref. [10]. The remainder of our
study focuses only on analyzing the loudest eight events.

In Fig. 4 we show the joint posterior for (R,m) and
(p, ρ) obtained using the loudest eight events in our
mock data study. Assuming the piecewise polytrope
parametrization of the equation of state, we find that the
radius of a 1.4M� neutron star is constrained to better
than 10% at 90% confidence corresponding to a precision
of ±1 km. At the same time, the pressure at twice the
nuclear saturation density can be constrained to better
than 45% at 90% confidence.

In order to explore how the constraint on the neutron
star equation of state depends on the equation of state
parametrization, we analyze the same dataset with the
spectral decomposition parametrization [37]. Using the
same priors outlined in Ref. [20], we find that the ra-
dius of a 1.4M� neutron star can be constrained to bet-
ter than ∼ 10 %, consistent with the piecewise polytrope
parametrization.

IV. DISCUSSION

We show that after an observation time of one year
of LIGO/Virgo operating at O3 sensitivity, plus eight
months of design sensitivity, we can constrain the neu-
tron star radius to ∼ 10% at 90% confidence. Our re-
sults are consistent with Ref. [10], where they showed
that the neutron star radius can be measured to ∼ 10%
after one year of LIGO/Virgo design sensitivity. Our re-
sults are consistent with Ref. [10] because the number of
detections used in their study correspond roughly to the
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FIG. 4: Top panel: 90% credible interval of the posterior dis-
tribution of radius as a function of mass. The shaded grey and
green posteriors are obtained from analyzing respectively the
loudest four and eight events from our dataset with the piece-
wise polytrope parametrization. The dark-blue dashed pos-
teriors are obtained from analyzing the loudest eight events
of our dataset with the spectral decomposition parametriza-
tion. Bottom panel: 90% credible interval of the pressure
as a function of radius and the ratio between the pressure
and the pressure given by the SLy equation of state pSLy.
The gray vertical lines represent the dividing densities of the
piecewise polytrope. We assume that binary neutron stars
follow the SLy equation of state and the merger rate is fixed
to 1540 Gpc−3 yr−1.

number of detections used in this study.
The work in [10] showed that the vast majority of infor-

mation comes from the loudest five events. We confirm

this statement by calculating the Bayes factor between
ZΛ6=0/ZΛ=0. From Fig 3, we can see that the cumula-
tive Bayes factor significantly grows for loud events, but
plateaus for events with SNR≈ 20, which confirms the
statement that the vast majority of information comes
from the loudest few events. Our Bayes factor estimation
is possible because we use a nested sampler algorithm,
which returns a Bayesian evidence for every parameter
estimation run.

In this study, we use an ROQ implementation of the
IMRPhenomD NRTidal waveform approximant [12–
14], which includes inspiral, merger and ringdown. This
is in contrast to the waveforms used in Ref. [10], which
used inspiral-only waveforms containing post-Newtonian
(PN) terms up to 3.5PN, in the point-particle terms.
Their study shows that not including 4PN terms adds
systematic biases which can sometimes be larger than
the 95% credible interval of their mass and pressure
constraints. In this study, we use the IMRPhe-
nomD NRTidal approximant, which is calibrated with
effective-one-body and numerical relativity waveforms.

Agathos et al. [11] showed that a poorly chosen prior
for neutron-star mass can bias inferences about the
neutron-star equation of state. While we do not account
for prior mismatch in our study, this effect should be
taken into account when data from many binary neutron
star detections are combined. The long-term solution,
we believe, is to employ a population model, which can
be fit using hierarchical modeling [23]. Such models are
already used to infer the shape of the binary black hole
mass spectrum [35]. In this way, the neutron-star mass
prior for each event is informed by the distribution in-
ferred by the other events.

In this study, we explore in greater detail a different
method to interpolate the likelihood distribution using a
random forest regressor which leads to an interpolation
error of ∼ 0.3%. Our method is different from the Gaus-
sian kernel density estimation algorithm used in [10]. The
interpolation method is important because a poor inter-
polation accuracy can bias the hyper-posterior p(Υ|d).

One factor that could change our results is the choice of
priors for the piecewise polytrope parametrization. Par-
ticularly, [20] shows that different low-density starting
points of the piecewise polytrope parametrization result
in different mass-radius constraints. In this study, we
followed the parametrization used in Refs. [10, 18].

In our analysis, we require that the equation of state
allow for a maximum mass in excess of m = 1.97M� in
order to be consistent with the pulsars PSR J0348+0432
and PSR J0740+6620. However, Miller et al. [36] argue
that a smooth prior on maximum mass (informed by ra-
dio observations) is preferable to a hard cut-off. In future
work, it will be useful to revisit prior constraints on the
maximum neutron star mass.

We compare our results using two different
parametrizations of the equation of state: the piecewise
polytrope and the spectral decomposition parametriza-
tion. Although these parametrizations are consistent
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between ρ ≈ 1014.2 g cm−3 and ρ ≈ 1015 g cm−3, we note
differences at densities near 1014.1 g cm−3 and & 1015 g
cm−3. The differences near 1014.1 g cm−3 are explained
by the choice of reference pressure p0, where we use the
value of p0 = 5.36 × 1032 dyne cm−2 to reflect that the
equation of state is well constrained below the nuclear
density [20].

We find that the differences above ≈ 1015 g cm−3

are explained by the fact that this region of parame-
ter space is mostly dominated by the prior on causality
and high mass neutron star observations. Since the prior
that we use in the piecewise polytrope is narrower above
≈ 1015 g cm−3, we find that the piecewise polytrope is
more tightly constrained above this density. In partic-
ular, we find that the pressure at six times the nuclear
saturation density is constrained to ∼ 30% and ∼ 50%
assuming the piecewise polytrope and spectral decompo-
sition parametrization, respectively.

Another algorithm that can be used to infer equation
of state hyper-parameters is RIFT [38]. This method in-
terpolates the likelihood distribution over a grid of source
parameters using a Gaussian process regressor. In order
to recover the parameters of astrophysical sources, the
algorithm obtains an interpolated continuous represen-
tation of the likelihood, which can also be used to over-
come the “stacking problem” that we address here in our
study.

Finally, in some circumstances, it is possible that we
will observe bias in our hyper-posterior p(Υ|d) due to
small errors in our interpolation. If this happens, we
can fix the problem with an iterative procedure. We can
carry out steps 1-5 of our interpolation method described
in Sec. II B in order to obtain a posterior predictive dis-
tribution in ω. We can use the posterior predictive distri-
bution to choose additional interpolation points ωj . This
amounts to an adaptive mesh refinement where the inter-
polated likelihood Lk is calculated with greater density
in ω depending on the data, helping to control systematic
error as we combine more events. This ability to adap-
tively refine the interpolation is a potential advantage

over Gaussian kernel density estimation.

V. CONCLUSION

We present a new method to combine information from
an ensemble of gravitational-wave observations to con-
strain the neutron-star equation of state. Our method
interpolates the likelihood distribution with an error of
0.3% using a random forest regressor. Our interpola-
tion algorithm is an alternative to the Gaussian kernel
density estimation method used in [10]. We demon-
strate how LIGO and Virgo are likely to constrain the
radius and pressure of binary neutron stars with the
first forty detections. We show that the radius of a
1.4M� neutron star can be constrained to ∼ 10% at
90% confidence and the density at twice the nuclear sat-
uration density can be constrained to ∼ 45% at 90%
confidence. Finally, we combine gravitational-wave mea-
surements by running full parameter estimation on events
with SNR≥ 20 using an ROQ implementation of the IM-
RPhenomD NRTidal approximant, which significantly
reduces the cost of parameter estimation.
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