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1
Department of Physics, Syracuse University, NY 13244, USA

We present a new technique for sensing optical cavity mode mismatch and alignment by using a
cylindrical lens mode converting telescope, radio-frequency quadrant photodiodes, and a heterodyne
detection scheme. The telescope allows the conversion of the Laguerre-Gauss bullseye mode (LG01)
into the 45� rotated Hermite-Gauss (“pringle”) mode (HG11), which can be easily measured with
quadrant photodiodes. We show that we can convert to the HG basis optically, measure mode
mismatched and alignment signals using widely produced radio-frequency quadrant photodiodes,
and obtain a feedback error signal with heterodyne detection.

I. INTRODUCTION

Optical cavities are ubiquitously used in interfer-
ometry and in particular in the Laser Interferometer
Gravitational-wave Observatory (LIGO). Optical cavi-
ties must be aligned and mode matched to yield the
best performance. Alignment hardware and schemes are
well developed [1] while mode matching hardware and
schemes have not attained the same level of maturity.
This leads to a reduction of sensitivity for gravitational-
wave detectors such as Advanced LIGO [2]. Monitor-
ing mode matching and dynamically correcting for it
will ensure the best performance of future Advanced
LIGO upgrades. This is particularly true for the use
of non-classical squeezed vacuum states of light [3] cur-
rently being commissioned for use in Advanced LIGO,
as these states are exponentially sensitive to any optical
loss mechanism, including imperfect mode matching.

A theoretical description of misalignment and mode
mismatch is done by Anderson [4]. Optical cavity mis-
alignment and mode mismatching generate higher or-
der optical modes. The first relevant modes for cav-
ity misalignment are the well-known Hermite-Gaussian
modes HG10 and HG01, while the dominant mode rele-
vant for mode-mismatch is the Laguerre-Gaussian LG01

mode (LGlp where l is the azimuthal mode index and
p is the radial mode index). Higher order mode-sensing
techniques currently utilize CCD cameras, clipped pho-
todiode arrays [5], or bullseye photodiodes (BPD) [6].
These sensors provide feedback error signals for correct-
ing either the beam waist size or waist location, but also
have drawbacks. Some of the drawbacks include slow sig-
nal acquisition for CCD sensors, 50% reduction in sens-
ing capabilities for clipped arrays, and expensive custom
parts that are di�cult to setup for bullseye photodiodes.

While sensing mode matching is challenging, alignment
sensing is well developed in comparison and relies on
easily available RF quadrant photodiodes. By applying
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a ⇡

2 mode converter [7], we show that the LG01 mode
turns into a 45�-rotated HG11 mode, shaped perfectly
for a quadrant photodiode. After sensing with a quad-
rant photodiode (QPD) we are free to use well-known
heterodyne detection methods [4–6, 8] to extract a ro-
bust mode matching error signal. Thus the mode con-
verter allows using the usually discarded “pringle” quad-
rant combination (+-+-) in existing alignment schemes
for mode-matching feed-back (see FIG. I). This sens-
ing scheme remains valid for large deviations from ideal
mode-matching where a number of higher order modes
contribute to the error signal (appendix VC).
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FIG. 1. The concept of sensing mode mismatch using a mode
converter and heterodyne detection on a quadrant photodi-
ode. A LG01 mode is converted to a 45�-rotated HG11 mode
with a ⇡

2 mode converter. The mode converter consists of

two cylindrical lenses spaced by f
p
2 where f is focal length.

The incoming beam waist size w0 is centered between the two
cylindrical lenses and related to the cylindrical focal length

via f(w0) =
⇡w2

0
� /(1 + 1p

2
) [7].

II. MODELING MODE CONVERSION AND
ERROR SIGNALS

A. Mode Converter

To understand how we can convert a Laguerre-Gauss
|LG01i mode into a 45� rotated Hermite-Gauss |HG11i
mode we can decompose the beam in the |HGnmi ba-
sis. The |LG01i bullseye mode is the sum of exactly two
modes

|LG01i =
1p
2
|HG20i+

1p
2
|HG02i, (1)
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as illustrated in FIG. 2. However, if we instead subtract
the HG components instead of adding them, we will find
that

|HG45�rot
11 i = 1p

2
|HG20i �

1p
2
|HG02i. (2)

where |HG45�rot
11 i is the 45� rotated |HG11i mode.

This reveals that the only di↵erence between a
|HG45�rot

11 i mode and a |LG01i mode is a sign flip along
one axis, converting a parabolic wave front into a hyper-
bolic saddle point wave front.

FIG. 2. Beam decomposition of the |LG01i and |HG
45�rot
11 i

mode in the HG basis. Shown are the (real) field amplitudes
of the two relevant HG modes (left) and the resulting modes
(right). The intensity profile for each field is plotted in the
bottom right corner for each field image.

A ⇡

2 mode converter creates a region where Gouy phase
is accumulated at di↵erent rates for the each transverse
axis as seen in FIG. 3. The cylindrical lens focusing axis
accumulates ⇡

2 more phase than the non focusing axis.
Since second order modes accumulate twice the Gouy
phase, the |HG20i and the |HG02i see a phase accumu-
lation di↵erence of exactly ⇡. This flips the sign along
one axis via the Euler identity, �1 = ei⇡, and creates
the desired e↵ect seen in FIG. 2 and FIG. 11. Designing
a mode converter is described in appendix VA2 and by
Beijersbergen [9].

B. Mode-Match Error Signal

As with any Pound-Drever-Hall-style sensing [1, 4–
6] scheme we sense the light using RF-demodulated
photodiodes. Since, after passing the mode-converter,
the mode-matching information is contained in the
|HG45�rot

11 i mode, we use a quadrant photodiode rotated
by a 45� relative to the mode-converter cylindrical lens
axis. After demodulation we add the diagonals and sub-
tract them from each other to get the error signal, see
FIG. 4. In contrast, for a bullseye photodiode-based
scheme we take the inner segment subtracted by the sum
of the outer segments. Both schemes also allow sensing
alignment and length signals (pitch, yaw and length).
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FIG. 3. A cylindrical lens mode converter is shown. The
beam shape is plotted with respect to the cylindrical lens
focusing and non focusing axis. As the beam passes through
the mode converter a factor of 90� or ⇡

2 is accumulated in the
focusing axis while the non focusing axis experiences normal
Gouy phase accumulation.
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FIG. 4. Combining the photodiode segments can yield pitch,
yaw, sum, and beam waist size or position. Left: quadrant
photodiode (QPD). Right: bullseye phododiode (BPD).

C. Maintaining alignment sensing

Typical optical cavity alignment sensing requires the
ability to measure the |HG01i and |HG10i modes with a
quadrant photodiode [4]. Thus we need to examine what
happens to the modes generated by misalignment after
they pass through the mode converter. If the nodal lines
of the |HG01i and |HG10i modes are at 0� or 90� rela-
tive to the mode-converter cylindrical lens axis, the two
modes are passed unchanged - albeit with a relative phase
shift of ⇡

2 between the two. In a Pound-Drever-Hall-
style alignment sensing scheme these modes beat against
the fundamental |HG00i mode, which passes the mode-
converter unchanged (see equations 17 to 21). Thus all
alignment signals are still present, but the signals for one
axis are shifted by ⇡

2 in sensing Gouy phase relative to
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the other axis.
The standard alignment sensing unit in gravitational-

wave detectors is a pair of RF quadrant photodiodes
(wave front sensors), installed on a sled behind a beam
splitter and a Gouy phase telescope, guaranteeing that
the two photodiodes are 90� Gouy phase apart. This
setup guarantees that every possible signal is accessible.
Installing a mode-converter in front of such a sensing sled
would thus preserve all alignment signals, only requiring
a new sensing matrix. At the same time it would provide
a sensor for one of the two possible mode-matching de-
grees of freedom. Since the orthogonal mode-matching
degrees of freedom is separated by 45� apart in Gouy
phase, it would not be sensed.

If sensitivity to only one mode-matching degrees of
freedom is required - as is often the case in gravitational-
wave interferometer applications - this simple upgrade
would su�ce, as long as the Gouy phase of the diodes
is carefully chosen. If sensing of both mode-matching
degrees of freedom is required, one can compromise by
placing the second photodiode at an intermediate Gouy
phase, somewhere between 45� and 90� Gouy phase away
from the first photodiode. The optimal location depends
on the sensing noise requirements. Alternatively one can
choose to install a third RF-quadrant photodiode 45�

Gouy phase away from diodes one and two.

D. Controlling mode-match in interferometers

Besides optimizing optical gain, the quality of mode-
matching between the various optical cavities in a
gravitational-wave interferometer matters for two criti-
cal reasons. First, gravitational-wave interferometers like
Advanced LIGO are now routinely using squeezed vac-
uum injected from the anti-symmetric port to reduce the
quantum noise level [3]. Imperfect mode-matching cou-
ples the regular quantum vacuum fluctuations back into
the readout, reducing the benefit from using squeezed
vacuum. Second, a number of important noise sources,
such as for example intensity noise on carrier and side-
band, phase noise on the sideband and beam jitter, cou-
ple to the gravitational-wave readout through higher-
order modes in the interferometer. While both 1st and
2nd order modes are problematic, an alignment sys-
tem actively cancels 1st-order modes. Thus the largest
higher-order modes are typically 2nd-order; they domi-
nate the noise couplings unless an active mode-matching
system suppresses them.

Alignment control of gravitational-wave interferome-
ters has been extensively studied [1], [10], [11], [12].
All systems are an extension of the single-cavity Pound-
Drever-Hall control scheme. The key di↵erences when go-
ing to a more complicated system of coupled cavities are:
(i) The beam splitter changes the sensing basis from indi-
vidual arm cavities to common/di↵erential arm cavities,
sensed at the symmetric and anti-symmetric port of the
beam splitter. And (ii) alignment signals from mirrors

in coupled cavities can be disentangled by using multiple
sensors operating with optical sidebands that are reso-
nant in di↵erent portions of the coupled cavities. This
design philosophy directly translates to mode-matching
sensors, except that the system uses the second order
transverse modes instead of the first order ones, requir-
ing the type of sensors described in paragraphs II B and
IIC.

III. EXPERIMENTAL DEMONSTRATION

A. Experimental Layout

The adaptive mode matching experiment at Syracuse
University was built to study and provide mode matching
sensor solutions for Advanced LIGO. FIG. 5 shows the
optical layout we used to compare two types of wavefront
sensing photodiodes.
A 1064 nanometer wave length Nd:YAG Mephisto S

laser beam passes through a 13 MHz locked triangular
mode cleaner. The triangular mode cleaner feedback and
sensing electronics are not shown, but consist of a typical
Pound-Drever-Hall (PDH) loop. The beam then passes
through a 25 MHz EOM for PDH locking and wave front
sensing. The phase modulated beam propagates to mode
matching lenses and then to a four segment thermal lens
actuator [13–15]. A telescope is built around the thermal
lens actuator such that the beam spot size is as big as
possible without clipping on the 1 inch optic. The beam
then enters a well-aligned and mode-matched optical cav-
ity. The reflected beam continues through a Gouy phase
telescope that also mode matches to a cylindrical lens
mode converting telescope. Additionally, this telescope
ensures that the beam size at the bullseye photodiode has
the correct size and Gouy phase. A radio-frequency bulls-
eye photodiode (BPD) and a radio-frequency quadrant
photodiode (QPD) are placed at similar Gouy phases for
a sensing comparison. The cavity reflected power is at-
tenuated by a factor of 0.30 and 0.12 on the QPD and
BPD respectively by various beam splitters. The optical
power is then sensed, demodulated, and sent to a digital
data acquisition system. In the digital system, the sig-
nals of each segment can then be combined to produce
error signals.
The experimental setup is very similar to our com-

puter simulation described in appendix VD and in FIG.
12. Though both model and experiment conclude that a
mode converter, paired with QPDs, is equivalent to the
use of BPDs there are a few subtle di↵erences. The model
uses four wavefront sensors. BPD2 and QPD2 are placed
at an e↵ective 0� Gouy phase from the actuator. The
second set, BPD1 and QPD1, are placed at an e↵ective
45� Gouy phase from the actuator. In our experimental
demonstration we place one BPD at 283� Gouy phase,
which is an e↵ective 39� from our actuator after phase
wrapping. Additionally, we place one QPD at 278� Gouy
phase, which after phase wrapping is at an e↵ective 34�
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FIG. 5. A locked pre-mode-cleaner produces a beam that
enters a 25 MHz EOM then propagates to a four segment
thermal lens actuator. The thermal lens allows for pitch, yaw
and beam size control. The cavity is aligned and well mode-
matched to the beam. The cavity reflected beam is split into
three paths. The first path leads to a single segment Pound-
Drever-Hall (PDH) locking photodiode. The second and third
path lead to a Gouy phase telescope that also shapes the
beam for the ⇡

2 mode converter. The quadrant photodiode
(RFQPD) is in the path with the mode converter while the
bullseye photodiode (RFBPD) is not. The Gouy phase at
both bullseye photodiode and quadrant photodiode are simi-
lar. After demodulation, the signals are combined in the data
acquisition system. Pitch, yaw, sum and mode-matching error
signals are extracted. The cavity reflected power is attenuated
by a factor of 0.30 before reaching the quadrant photodiode
and 0.12 before reaching the bullseye photodiode.
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FIG. 6. The telescope design from the mode cleaner to the
two mirror cavity is shown. Beam size and Gouy phase ac-
cumulation are plotted against propagation distance. Lenses
and the cavity waist location are represented by vertical lines
further described in Table 1.

from our actuator. Note that the Gouy phases for the
QPDs are reported with respect to the non-focusing axis
of the cylindrical lenses. The Gouy phase along the cylin-
drical lens focusing axis is an additional 90�. Also, in the
model we changed the input beam complex beam param-
eter to simulate either waist size or waist location only.
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FIG. 7. Similar to FIG. 6 the as built telescope layout is
shown. Here the beam propagates from the mode cleaner
to the two-mirror cavity input coupler and reflects instead
of transmits. The reflected beam then propagates to beam
focusing lenses and a cylindrical lens mode converter. The
reflected beam terminates at either a QPD or BPD wavefront
sensor at similar Gouy phases. The BPD is located on a
separate beam with the same profile as the blue y-axis plot,
see figure 5. The vertical (Y) and horizontal (X) beam axis
are shown. The only di↵erence between the beams is seen at
the ⇡

2 mode converter. We show that one axis is focused while
the other remains unchanged which adds a 90� Gouy phase
di↵erence between the axes.

In practice, our lens actuator caused a change in both
waist size and waist location at the same time.

B. Thermal Lens Actuator Telescope

The thermal lens actuating telescope is composed of
the first five lenses noted in FIG.6, FIG.7, and Table 1.
The first two lenses expand and collimate the beam into
the thermal lens actuator while the last two mode-match
into the optical cavity. A larger beam on the thermal lens
will provide better actuation range. The power overlap of
the Gaussian beam before and after a thermal lens with
focal length f is given by

|I|2 = 1� (⇡w
2(z)

2f� )2 +O
⇣

w
8

f4�4

⌘
. (3)

Thus a large beam spot size is needed for e↵ective actua-
tion. Furthermore, an annually heated thermal lens with
power Ph produces a power overlap of

|I|2 = 1�
⇣

w(z)
Roptic

⌘4
·
�
FOM ·Ph

4�

�2
(4)

where FOM is obtained from [13]. This means that the
two competing terms are the beam size and optic radius.
Incorporating these principles into a design yielded a

thermal lens actuating telescope that produced mode-
matching between 100% and slightly below 10%. Though
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f [m] d [m] Gouy phase Beam Size [µ m]

PMC N/A 0.0000 0� 371

Lens1 -0.574 0.7805 62� 803

Lens2 +2.291 0.9230 63� 2914

TL � inf to -10 1.2375 64� 3572

Lens4 +1.719 1.2630 64� 3625

Lens5 -0.574 1.4012 65� 1000

IC 0.33 m RoC 1.8462 92� 333

FP N/A 2.0102 137� 236

OC 0.33 m RoC 2.1742 182� 333

Lens6 0.45767 2.5022 122� 1335

Lens7 inf 2.6302 123� 1166

CL1 +0.100 3.4274 186� 260

CL2 +0.100 3.5688 227�, 317� 260

QPD N/A 4.3058 278�, 368� 1145

BPD N/A 4.7358 283�, 373� 1714

TABLE I. The as built parameters of the experimental setup
seen in FIG. 5, 6, 7 are listed. There are three paths to
note: PMC through OC for the cavity; PMC to OC then
reflected to Lens6, Lens7 and finaly the BPD; and PMC to
OC then reflected to Lens6, Lens7, CL1, CL2, and finally
to the QPD. This table is used to obtain the Gouy phase
di↵erence between: the actuator and the cavity; the actuator
and the QPD/BPD; and the cavity and the QPD/BPD.

significant mode mismatch can be generated, wavefront
sensors are best suited for measuring small amounts of
misalignment or mode mismatch. This means that for
relatively low input heating power, less than 5 watts, our
thermal lens actuator telescope could measurably mis-
match the beam into the optical cavity. The thermal
lens actuation is further explained with FIG. 8.

In addition to mode mismatching, this thermal lens
actuator also had the capability to create pitch and yaw
misalignment. This was used to verify the preservation
of alignment wavefront sensing.

C. Wavefront Sensor Calibration

In this subsection we discuss how we calibrated the
wavefront sensors and thermal lens actuator. The field
mode mismatch ✏ = (q0 � q)/(q � q⇤), generated by our
actuator, is is ultimately converted to digital counts (cts)
in the data acquisition system as follows.

The power mode mismatch |✏|2 was monitored via a
DC photodiode in the transmission of our optical cav-
ity. The power drop percentage is proportional to the
power mode mismatch |✏|2 as described by Anderson [4].
Our thermal lens actuator was set up so that we could
degrade the optical cavity mode matching from 100% to
just below 10% as seen in FIG 8. Though we had a wide
range for mode matching, we chose to induce between
100% and 91% mode matching or 9% mode mismatch.

We next calculated from first principles the expected
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lines in percentage. The thermal lens actuation path is seen
in red. As the thermal lens actuator changes the input beam
into the cavity, the power mode overlap decreases. Mode
mismatching can reach well below 10%.

reflected RF power due to mode mismatch. As stated
in equation 39 from the appendix a certain amount of
mode mismatch ✏ will induce the following reflected op-
tical power in watts peak for the quadrant photodiode

Pwatts peak QPD = 4 SSB C=(✏ei�GP )2⇡�1 (5)

and the following reflected optical power for the bullseye
photodiode

Pwatts peak BPD = 4 SSB C=(✏ei�GP )2e�1. (6)

Note that  C is the carrier field extracted from di-
rectly measuring the optical cavity transmitted power
 C =

p
Pcavtrans. It should also be noted that  SSB is

the single-sideband field back-calculated from measured
cavity transmitted power, cavity input power, cavity mir-
ror measured transmissivity, and also includes a 0.95%
intra-cavity loss term. The Gouy phase between the ac-
tuator and sensors ��G can be read from the telescope
table I above for both the BPD and QPD. The Gouy
phase separation between the BPD sensor and the ther-
mal lens actuator is 39� while the Gouy phase seperation
between the QPD sensor and the thermal lens actuator
is 34�.
We can now compare the RF power in watts peak cal-

culated from first principles to the RF power measured
from calibrated electronics. The reflected beam first trav-
els through several beam splitters which attenuate the
beam by a factor of ABPD = .300 for the bullseye and
AQPD = .119 for the quadrant. The optical power is
then converted to current at the photodiode. All the
electronics were calibrated by injecting voltage signals
and measuring the output. The response of the quadrant
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photodiode is 0.03 Amps/Watt at 1064 nm wavelength
and has a transimpedance 10,000 Volts/Amp. The re-
sponse of the bullseye photodiode is 0.20 Amps/Watt at
1064 nm wavelength and has a transimpedance of 7,100
Volts/Amp. These RF voltages are then demodulated
with our LIGO-built wavefront sensing electronic crate.
The wavefront sensing crate demodulates the RF signal
and contributes a factor of 6.7 gain. This gain was mea-
sured by injecting a 25 MHz sine wave at 12.7mV peak-
to-peak. The demodulated signal was not constantly in
phase so a 200 mHz wave at 190mV peak-to-peak was ob-
served. If the injection was perfectly in phase we would
see a DC voltage of 190mVpp/2=85 mV. From this we
calculate the factor of 6.7 gain by 6.7 = 85mV/12.7mVpp.
Now the demodulated signals are relatively low frequency
and are sent to the digital system. The digital system has
low pass filters, but do not alter the demodulated sig-
nals. We injected a known voltage into the digital data
acquisition system and obtained a conversion of 1V olt

1326cts .
Combining the beam splitter attenuation and all elec-
tronic gains leads to a direct conversion from cts to radio
frequency optical watts peak at 25 MHz.

For the quandrant photodiode we have

Pwatts peak QPD ·AQPD =

cts · 1V
1326C · 6.7 · 1A

10,000V · 1W
0.03A

and for the bullseye photodiode we have

Pwatts peak BPD ·AQPD =

cts · 1V
1326C · 6.7 · 1A

7,100V · 1W
0.2A .

We compress this whole calibration into a term CQ =
1V

1326C · 6.7 · 1A
10,000V · 1W

0.03A/AQPD for the quadrant pho-
todiode and similarly for the bullseye photodiode CB =

1V
1326C · 6.7 · 1A

7,100V · 1W
0.2A/ABPD.

We then solve for mode mismatch ✏ and have a fully
calibrated expression in terms of counts (cts).

✏Q =
ctsQ · CQ

4AQ S C
2
⇡
(� cos (2⇡��G))

(7)

✏B =
ctsB · CB

4AB S C2e�1(� cos (2⇡��G))
(8)

D. Experimental Results

The results show good agreement between the bulls-
eye photodiode (BPD) and the mode-converted quadrant
photodiode (QPD) as seen in FIG. 9. Additionally, both
QPD and BPD measured 9% mode mismatch which is
consistent with the 9% mode mismatch induced by the
thermal lens actuator. Note that the photodiode place-
ment was chosen to reduce the number of lenses needed
and to be relatively far away from a beam focal point,
such that the beam size could easily match the photodi-
ode size. This however resulted in a sub-optimal readout

Gouy phase choice (QPD: 34�+n·90�, BPD: 39�+n·90�,
where 45� + n · 90� would be orthogonal.) Though this
was a sub-optimal design choice, our results still clearly
demonstrate the robustness of the heterodyne detection
scheme. An ideal e↵ective Gouy phase accumulation be-
tween an actuator and sensor should be a multiple of
90�.
The small discrepancy between the amplitude of the

BPD and QPD error signals in FIG. 9 may be due to the
in phase (I) and quadrature phase (Q) manual tuning. In
the tuning we manually adjust the gain until the quadra-
ture signal is extinguished. However, the quadrature sig-
nal does not always go exactly to zero. The computer
simulation in the appendix is better suited for comparing
ideal BPD and ideal mode converted QPD error signals.
It should be noted that even the idealized simulation con-
tains some gain discrepancy which is due to the geometry
of the photodiodes.
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FIG. 9. Measured mode-mismatch response is shown as
9% mode mismatch is manually induced using the calibrated
thermal lens actuator. The thermal lens actuator is equally
heated radially thus ensuring only mode mismatch was in-
duced. Counts from our digital data acquisition system are
converted into mode mismatch ✏ as stated in III C. From
first principles our calibration also yields a |✏|2 = 9% mode-
mismatch at the maximum value on this plot. Finally we also
observed a 9% drop in cavity transmitted power.

IV. CONCLUSION

We theoretically derived the mode-matching error sig-
nal for bullseye photodiode (BPD) and mode-converted
quadrant photodiode (QPD) wave front sensing. We
showed that a mode-converted quadrant photodiode pre-
serves the ability to measure alignment whilst enabling
the ability to measure mode-match. We proposed a
sensing scheme usable by any heterodyne optical setup
directed towards Advanced LIGO, and experimentally
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demonstrated a side-by-side comparison of bullseye pho-
todiode and mode-converted quadrant photodiode sens-
ing. We should also point out that using a mode-
converted quadrant photodiode shifts the di�culties in
setting up a bullseye photodiode Gouy phase telescope
with a specific beam size to the placement of the mode
converter lenses, which is much easier to fine adjust.

We conclude that this mode-converter-based sensing
scheme could yield a non-invasive, inexpensive mode-
matching upgrade to terrestrial gravitational-wave de-
tectors such as Advanced LIGO, Advanced Virgo and
KAGRA. All RF quadrant photodiodes used for interfer-
ometer alignment in those detectors could be upgraded
by redesigning their respective Gouy phase telescopes to
include cylindrical lenses.

V. APPENDIX

A. Hermite-Gaussian modes with two complex q
parameters

1. Complex Beam parameters

The complex beam parameter of a Gaussian beam with
Rayleigh range zR, at a distance z from its waist, is de-
fined as

q = z + izR . (9)

Beam size w and phase front radius of curvature R are
then given by

1

q
=

1

R
� i

�

⇡w2
, (10)

where � = 2⇡/k is the wave length of the light. It allows
expressing the Gaussian beam in a simple form:

 (x, y, q) = A(x, y, q)e�ikz (11)

A(x, y, q) =
A

q
e�ik

x2+y2

2q (12)

where A is a complex constant (amplitude). It can be
helpful to introduce the field amplitude on the optical
axis,  = A/q, which now evolves along the z-axis due to
the Gouy phase evolution, but is una↵ected when passing
through a thin lens. Thus, for any given location on the
optical axis z, the Gaussian beam is completely described
by the two complex parameters  and q. The main ad-
vantage of this formalism becomes apparent when using
ray-transfer matrices M defined in geometric optics (e.g.
Saleh, Teich) to represent the action of a full optical sys-
tem. The two complex parameters (qf , f ) after the sys-
tem are given in terms of the initial parameters (qi, i)
by

M

0

B@

1
 i

1
 iqi

1

CA =

0

B@

1
 f

1
 fqf

1

CA , (13)

and the change of the Gouy phase through the system,
��, is given by

ei�� =

s
 f

 ⇤
f

 ⇤
i

 i

. (14)

This expression is consistent with the usual definition
of local Gouy phase for a Gaussian beam as � =
arctan z/zR, but preserves the Gouy phase when prop-
agating through a lens. To prove expressions 13 and 14
it is su�cient to verify them for a pure free-space prop-
agation and a pure lens.
If we now introduce astigmatism, either intensionally

with cylindrical lenses or accidentally through imperfec-
tions, cylindrical symmetry around the beam axis will
be lost. As long as we introduce this astigmatism along
a pre-determined axis (say the x-axis), we can simply
proceed by introducing separate q-parameters for the x-
and y-axis, qx and qy. Since ray-transfer matrices are in-
troduced with only 1 transverse axis, the propagation of
qx and qy is done with ray-transfer matrices defined for
the corresponding transverse axis. Thus we now have a
separately-defined beam size wx, wy, phase front radius
of curvature Rx, Ry, Rayleigh range zRx, zRy and Gouy
phase �x and �y for each of the two transverse directions.
The corresponding fundamental Gaussian beam is given
by

 (x, y, qx, qy) = A(x, y, qx, qy)e
�ikz (15)

A(x, y, qx, qy) =
A

p
qxqy

e�ik
x2

2qx e
�ik

y2

2qy (16)

where A is again a complex amplitude. Next we intro-
duce the Hermite-Gaussian basis set corresponding to the
fundamental Gaussian beam. In the literature this is typ-
ically done only relative to a single q-parameter, but it
directly generalizes to the case with separate qx and qy
parameters:

 nm(x, y, qx, qy) = Anm(x, y, qx, qy)e
�ikz (17)

Anm(x, y, qx, qy) = NAn(x, qx)Am(y, qy) (18)

Ap(⇠, q⇠) = eip�⇠

r
1

2pp!
 ⇠ Hp(

p
2
⇠

w⇠
) e

�ik
⇠2

2q⇠ (19)

 ⇠ =

r
2

⇡

ei�⇠

w⇠
=

r
2zR
�

i

q⇠
(20)

H0(⌘) = 1 , Hp+1(⌘) = 2⌘Hp(⌘)�
d

d⌘
Hp(⌘) (21)

Here, we redefined the overall amplitude N such that
the total power P in a mode is simply given by P =
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R
| nm|2dxdy = |N |2. That equations 15 and 16 are

of the same form as equations 17 to 21 can be seen
by using the identity izR/q = ei�w0/w. Furthermore
we defined  ⇠ in analog to the field amplitude  in-
troduced after equation 12, that is the field amplitude
on the optical axis of the fundamental mode. It thus
evolves, together with q⇠, according to equations 13 and
14. Note though that there is an extra Gouy phase
term for the higher order modes that is explicitly ex-
cluded from the definition of  ⇠. As a result, the overall
Gouy phase evolution of  nm(x, y, qx, qy) is proportional
to ei(n+1/2)�x+i(m+1/2)�y .

As expected, these modes still solve the paraxial
Helmholtz equation

(4T � 2ik
@

@z
)Anm(x, y, qx, qy) = 0 (22)

exactly. Finally, in the main text we use the simplified
bra-ket notation for readability:

|HGnmi = | nm(x, y, qx, qy)i. (23)

Specializing to the non-astigmatic qx = qy we also use
the two identities

|LG01i =
1p
2
|HG20i+

1p
2
|HG02i, (24)

|HG45�rot
11 i = 1p

2
|HG20i �

1p
2
|HG02i. (25)

Equation 24 relates the Hermite-Gaussian basis to the
Laguerre-Gaussian basis (see e.g. [7]) , while equation
25 directly follows from equations 17 to 21 under a 45�

rotation around the beam axis.

2. Design of the
⇡
2 mode-converter

Equations 24 and 25 highlight that the key require-
ments for a mode-converter capable of converting a
|LG01i into a |HG45�rot

11 i mode: We need a di↵erence
of ⇡ in phase evolution between the two 2nd order modes
|HG20i and |HG02i, leading to a relative sign flip. We
thus require a telescope consisting of at least two cylin-
drical lenses that

1. has a x-Gouy phase ��x and y-Gouy phase ��y
evolution that di↵ers by exactly ⇡

2 between the first
and last cylindrical lens (��x ���y = ⇡

2 ), and

2. again matches the x- and y- Gaussian parameters
qx and qy after the last cylindrical lens. Note that
technically the quadrant photo detector (QPD)
could be placed at the location of, and instead
of the last cylindrical lens. But that would make
any further downstream adjustment of the sensing
Gouy phase of the QPD impossible.

While there are an infinite number of solutions that fit
conditions 1) and 2) above, there is only one symmetric
solution with two cylindrical lenses with the same focal
length f and the waist exactly in the middle between the
two lenses. For this symmetric case, condition 2) requires
the x- and y- beam size to be identical at the lenses:

=
✓

1

qx
� 1

qy

◆
= =

 
1

d

2 + izRx

� 1
d

2 + izRy

!
= 0, (26)

where d is the separation between the lenses, zRx, zRy

are the Rayleigh ranges for the x- and y- Gaussian beam
profile, and = denotes the imaginary part. Excluding the
trivial solution zRx = zRy, this implies the condition

d

2zRx

· d

2zRy

= tan
��x
2

· tan ��y
2

= 1. (27)

This is equivalent to

cos
��x +��y

2
= 0. (28)

Using ��x ���y = ⇡

2 from condition 1., we thus find

��x =
3⇡

4
, ��y =

⇡

4
. (29)

Finally, since tan ⇡

8 = 1p
2+1

and tan 3⇡
8 = 1p

2�1
, we get

for the cylindrical focal length f of both lenses and the
lens separation d

f =
z0

1 + 1p
2

, d =
p
2f, (30)

where z0 = zRy = ⇡w
2
0

�
is the Rayleigh range of the in-

coming beam (no lens in y-direction).

B. Comparison to sensing with a bull’s-eye
detector

We use the term bull’s-eye photo-diode (BPD) for a
photodiode with a center segment of radius r, and addi-
tional outer segments arranged in a ring around the cen-
tral segment. Typically there are three outer segments
to still get alignment information from the detector (see
figure 4, right side).
When sensing mode mismatch with a BPD, matching

the center segment radius r to the Gaussian Beam spot
size w via w =

p
2r maximizes the mode-mismatch small

signal sensing gain, because at that radius the |LG01i
mode has a node. However, for this choice we find that
any residual length fringe deviation will couple directly
into the mode-mismatch error signal because

hHG00|BPD|HG00i = 1� 2e�1 ⇡ 0.2642 6= 0, (31)

where BPD is equal to 1 on the central segment (x2 +
y2 < r), and -1 on the outer segments (x2 + y2 > r).
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This coupling can be reduced to zero by choosing r0 =
w
p
0.5 ln 2 as central segment radius, at the cost of some

optical gain (see below). Either way though the BPD
has to be matched in size to the Gaussian beam. This
often makes adjusting the sensing Gouy phase of a BPD
a bit awkward, since it is not possible to simply slide
the detector across the optical axis. Furthermore, the
amount of clipping on the bull’s-eye photo-diode is set at
the time of manufacturing by the size of the outer ring
segments.

In contrast, a quadrant photo-diode (QPD) placed af-
ter a ⇡

2 mode-converter has none of these beam size con-
straints. Instead, the reference beam size is set by the
choice of the mode-converter through equation 30, and
can be changed by replacing the cylindrical lenses. The
QPD can be moved freely to optimize the sensing Gouy
phase and clipping, while any residual length fringe de-
viation does not couple to first order, since for a well-
centered beam we find

hHG00|QPD|HG00i = 0. (32)

Here we chose QPD = sign(x2 � y2).

C. Signal Gain for Sensing Mode-Mismatch

Since we want to sense a mode-mismatched Gaussian
beam |HGq

0

00i with beam parameter q0, we can expand
this beam in the unperturbed basis (q) as

|HGq
0

00i = e�i=✏
p
1� |✏|2 |HGq

00i+ ✏ |LGq

01i+O(✏2),
(33)

where = denotes the imaginary part and ✏ encodes the
waist size change �w0 and waist displacement �z of the
Gaussian beam via

✏ =
q0 � q

q � q⇤
=
�w0

w0
� i ⇤ �z

2zR
(34)

Equation 33 includes enough O(✏2) terms such that the
power coupling is accurately given to 2nd order by

|hHGq

00|HGq
0

00i|2 = 1� |✏|2 +O(✏3). (35)

To calculate the small signal gain for a mode-sensing
scheme we need the matrix element

�B = hHG00|BPD|LG01i = �2e�1e2i� ⇡ �0.7358 e2i�,
(36)

where � is the Gouy phase at the BPD. The minus sign is
an artifact of the definition of Laguerre-Gaussian modes
[7]. Here the central element radius of the BPD is r =
w/

p
2. For a BPD with central segment radius r0 =

w
p
0.5 ln 2 the numerical pre-factor drops to �ln(2) ⇡

�0.6931. See section VB for a discussion.
The equivalent matrix element for a QPD, after con-

verting the |LG01i mode into a |HG45�rot
11 i mode, is

�Q = hHG00|QPD|HG45�rot
11 i = 2

⇡
e2i� ⇡ 0.6366 e2i�.

(37)

If we use this approach to sense the matching of a
cavity (beam parameter q0) to its input beam using the
Pound-Drever-Hall (PDH) approach, we will use an up-
front RF phase modulation (modulation index �) with
a sideband frequency that is not resonant in the cavity.
The Gaussian beam reflected from this cavity has the
structure

| ini = |HGq
0

00iC +
i�

2
|HGq

00i+ +
i�

2
|HGq

00i� +O(�2),

(38)
where the indices C, + and � indicate carrier, upper
and lower sideband. We can sense this beam with either
a BPD or a QPD behind a mode-converter, and demod-
ulate the signal’s I quadrature. We find in first order of
� and ✏

I = P�=(�✏), (39)

where P is the e↵ective power on the photo diode - that
is ignoring any power that does not contribute the RF
signal, � is the modulation index, = denotes the imagi-
nary part, � is the matrix from equation 36 or 37, and ✏
is defined through equations 33, 34, 35.
For large mode deviations the power coupling from

equation 35 is given by the exact expression

|hHGq

00|HGq
0

00i|2 = |
2i
p
(=q0)(=q)
q0 � q⇤

|2, (40)

where = denotes the imaginary part, and the sensing sig-
nal from equation 39 generalizes to

I = P�=(hHGq

00|T † PD T |HGq
0

00i), (41)

where PD, is either the BPD or the QPD. Here T is the
action of both mode-converter telescope (for the QPD)
and Gouy phase telescope. Since we know the action of
both telescopes on the two-parameter Hermite-Gaussian
beams introduced in section VA, we can write the matrix
element of equation 41 as
X

n,m

ei�(n+m)hHGq

00|BPD |HGq

nm
ihHGq

nm
|HGq

0

00i (42)

and
X

n,m

inei�(n+m)hHGq

00|QPD |HGq

nm
ihHGq

nm
|HGq

0

00i.

(43)
These expressions are plotted in figure 10 with � = 0
for waist location variations and � = ⇡/4 for waist size
variations, taking into account modes up to n,m = 20.
BPD and QPD have comparable, although not identical
large signal gains.

D. Error Signal Model

A computer simulation provided a convenient way for
testing our prediction before performing the experiment.
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FIG. 10. Large signal gain for mode sensing outside the
linear regime. Plotted is the imaginary part of the matrix
element in equation 41, as a function of waist size (top) and
waist location (bottom). For each plot the diode was placed
in the optimal sensing Gouy phase. The solid traces blue,
red and green are for a QPD placed after a mode-converter, a
BPD with inner segment radius r0 = w

p
0.5 ln 2 (no bias), and

a BPD with inner segment radius r = w
p
0.5, in that order.

All solid traces are calculated taking into account modes up
or order n,m = 20.The blue dash-dotted trace is the linear
approximation from equation 37 and 39. Finally, The cavity
is kept on resonance during the sweep - this a↵ects the large
signal behavior of all traces, as well as the small signal gain
(slope) of the green trace in the lower plot (BPD largest gain).
The small signal gains of the blue (QPD) and red (BPD no
bias) are independent of any length o↵set.

A combination of MATLAB and FINESSE [16] was used
to arrive at the mode mismatch error signal. FINESSE
uses ray transfer matrices while our MATLABmodel uses
the Fourier optic representation of lenses and beams. FI-
NESSE was previously used by Bond [17] to study optical
cavity mode mismatch. That study served as a basis for
comparison.

The optical layout seen in FIG. 12 was constructed to
compare the error signals generated by bullseye photo-
diodes and quadrant photodiodes. The input beam was
varied in waist size and waist location. This produced
mode mismatching which was calculated in the reflected
field. Higher order modes beat against the fundamental
sidebands yielding an error signal. At this point, the field
can be segmented and summed to reveal an error signal.
Measuring the reflected power at 0� and 45� Gouy phase
will isolate both degrees of freedom.

In the simulation, the bullseye photodiodes can mea-
sure mode mismatch at any Gouy phase since their sens-
ing radius is automatically adjusted to fit the beam.
However, in practice the bullseye photodiodes are manu-
factured with one specific sensing radius so the incident
beam needs to be shaped so that it not only fits, but also
is at the correct Gouy phase.

For quadrant photodiodes, the reflected field must first
pass through beam shaping optics and then a cylindrical
lens mode converter as seen in FIG. 12. The field is then
segmented into quadrants and the diagonals are summed
and subtracted from the orthogonal diagonal. This can

FIG. 11. MATLAB was used to model the ⇡
2 mode con-

verter using a Fourier optics representation of lenses. The
cylindrical lenses both had a focal length of f = 0.1m and
were seperated by f

p
2. The input beam waist was lo-

cated half way between the cylindrical lenses and had a size
of w0 = (f�(1 + 1/

p
2)/⇡)1/2. We propagate the |HG02i,

|HG20i, and |LG01i modes through the mode converting tele-
scope. HG modes oriented parallel or perpendicular to the
lens focusing axis will experience no structural change in in-
tensity profile (bottom right of each field image). HG modes
parallel to the lens focusing axis will get a sign flip in field.
The |LG01i mode converts into a 45� rotated |HG11i mode.
We can also see that alignment HG modes will be una↵ected
while mode mismatch |LG01i modes will be perfectly con-
verted into the HG basis.

be better understood by seeing the error signal combina-
tion in FIG. 4.
FIG. 11 shows the transverse electric field before and

after it passes through a ⇡

2 mode converter telescope.
The MATLAB model uses a heterodyne detection scheme
to measure the beat between the fundamental sidebands
and higher order mode mismatch modes [6]. The beam is
phase-modulated at 25 MHz, and the photodiode output
is demodulated with the same frequency. The cavity is
kept locked on resonance.
The simulation results can be seen in FIG. 13 and show

that we can generate a beam waist size and beam waist
location error signal. We isolate beam waist size and
beam waist position with both the bullseye and mode
converted quadrant photodiode. The cavity input beam
size is varied and results in the two error signal to the
left. Notice that only the BPD and QPD placed at 45�

Gouy phase are sensitive to this kind of o↵set while the
other two photodiodes see virtually no change. If instead
we look at the second plot where the beam input beam
waist position is shifted, we see that the opposite is true.
Now the BPD and QPD placed at 0� Gouy phase are
sensitive to this kind of o↵set while the other photodi-
odes are not. This is the optimal placement for sensing
mode mismatch. In practice we will want to also measure
misalignment and thus we’ll have to move the 2nd pho-
todiode to somewhere between 45� and 90� Gouy phase,
depending on the sensing noise requirements for align-
ment and mode-matching. This simulation is a direct
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Waist size = 581.96 micrometers
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FIG. 12. A 1 watt laser produces a beam at 1064 nanome-
ter wave length. The beam passes through an Electro Optic
Modulator (EOM) resonant at 9 MHz. The beam then passes
through a beam splitter then into a hemispherical resonant
optical cavity. The beam reflected from the cavity is then di-
rected back to the beam splitter where now the reflected beam
is directed to two paths. The first path contains two radio-
frequency bullseye photodiodes (RFBPD) of varying radii.
FINESSE automatically changes the bullseye photodetector
size to match the beam incident on it. Secondly the beam
passes through a beam shaping telescope then to a mode con-
verter before finally arriving at two radio-frequency quadrant
photodiodes (RFQPD). Each style of photodiode has one pho-
todiode that measures the beam at 0� Gouy phase and a sec-
ond photodiode that measures the beam at 45� Gouy phase.
This Gouy phase separation is ideal for measuring both beam
waist size and beam waist location.

comparison between known methods of wave front sens-
ing and our proposed scheme.
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FIG. 13. Mode mismatch error signals generated by the
FINESSE with MATLAB simulation. See appendix VD for
more details.
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