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Using inspiral and plunge trajectories we construct with a generalized Ori-Thorne algorithm, we
use a time-domain black hole perturbation theory code to compute the corresponding gravitational
waves. The last cycles of these waveforms are a superposition of Kerr quasi-normal modes. In
this paper, we examine how the modes’ excitations vary as a function of source parameters, such
as the larger black hole’s spin and the geometry of the smaller body’s inspiral and plunge. We
find that the mixture of quasi-normal modes that characterize the final gravitational waves from
a coalescence are entirely determined by the spin a of the larger black hole, an angle I which
characterizes the misalignment of the orbital plane from the black hole’s spin axis, a second angle
θfin which describes the location at which the small body crosses the black hole’s event horizon,
and the direction sgn(θ̇fin) of the body’s final motion. If these large mass-ratio results hold at
less extreme mass ratios, then measuring multiple ringdown modes of binary black hole coalescence
gravitational waves may provide important information about the source’s binary properties, such as
the misalignment of the orbit’s angular momentum with black hole spin. This may be particularly
useful for large mass binaries, for which the early inspiral waves are out of the detectors’ most
sensitive band.

I. INTRODUCTION

In a companion paper (Ref. [1], hereafter Paper I), we
introduced a model describing the worldline followed by
a small body that orbits a Kerr black hole and is driven
by gravitational wave (GW) emission to inspiral until it
encounters a dynamical instability and plunges into the
hole’s horizon. Our model describes the transition from
inspiral to plunge for orbits that are misaligned from the
larger black hole’s equatorial plane, generalizing earlier
work by Ori and Thorne [2] which did this for equatorial
orbits. Our goal now is to use this model in order to
study the GWs produced by such misaligned plunges.

Our motivation for this study is to understand how
a coalescing binary’s final GW cycles depend on its or-
bital geometry as the binary enters its final plunge and
merger. Especially for binaries with total masses greater
than 50M� or so (which are amply represented in the
sample that LIGO and Virgo have discovered [3]), the
early inspiral waves are emitted at low frequencies for
which ground-based GW detectors have relatively poor
sensitivity. The inspiral richly encodes information about
the system’s masses and spins. However, if it is not in
the detector’s band, we cannot measure these waves well,
and we do not benefit from this rich encoding. By con-
trast, for systems with M & 50M�, the late merger and
final ringdown waves are generated at frequencies which
are nearly ideal for ground-based detectors. Especially
as detectors’ mid- and high-frequency noise is reduced in
future upgrades [4–9], we can expect these final merger
cycles to be measured ever more precisely. These final
cycles will also be important components of the waves
that are measured by the space-based detector LISA [10],
which will measure processes involving black holes of tens
of thousands to tens of millions of M�.

Our particular goal here is to characterize how strongly
different ringdown modes are excited as a function of the
inspiral and plunge geometry, as well as on the properties
of the binary’s larger black hole. Past work (e.g., Refs.
[11–13] for recent examples) has examined measurement
of multiple ringdown modes. Such work has typically fo-
cused on the fact that, for a Kerr black hole, each mode’s
frequency and damping time depends on the final merged
remnant hole’s mass and spin in a unique way. Measuring
two such modes and assuming the Kerr spacetime thus
suffices, at least in principle, to measure the merged rem-
nant’s mass and spin. Measuring more than two modes
makes it possible to test the Kerr hypothesis.

To date, not as much attention has been given to what
can be learned by measuring the amplitudes of ringdown
modes (though see Ref. [14] for an important recent ex-
ample to the contrary). The relative excitation of dif-
ferent modes depends on the geometry of the system as
it approaches its final state. This geometry, in turn, de-
pends upon the astrophysical history of the binary, with
the spins and orbit expected to be substantially aligned
for compact binaries that form in situ from stellar bina-
ries, and with these angular momentum directions largely
randomly oriented for binaries that form dynamically
through multi-body interactions (e.g., in globular clus-
ters); see Refs. [15–17] for recent discussion and review.

For a coalescence in which the orbital angular mo-
mentum is nearly parallel to the large black hole’s spin,
the (`,m) = (2, 2) ringdown mode is likely to be the
most strongly excited. If the orbit is substantially mis-
aligned from the larger hole’s spin axis, then modes with
(`,m) = (2, 2), (2, 1), or (2, 0) might be excited by
roughly the same amount. One must model all of the
binary’s GW modes and multipoles to completely assess
what can be learned from their measurement [18]. For
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the ringdown, a careful analysis is needed to understand
how the excitation of these modes depends on the coa-
lescence geometry.

Our goal is to begin developing such an analysis. We
use black hole perturbation theory to provide an eas-
ily parameterized framework for studying how differ-
ent modes are excited by binary black hole coalescence.
Strictly speaking, our results thus only describe the limit
in which one member of the binary is far more mas-
sive than the other. We expect, however, that insight
from this limit will carry over to coalescences with gen-
eral mass ratio at least qualitatively, and perhaps even
provide good quantitative understanding for mass ratios
larger than some threshold. Numerical relativity will be
needed to explore late mode excitation by highly mis-
aligned coalescences for general mass ratios.

We find that mode excitation varies in a predictable
fashion as a function of certain parameters that describe
the final coalescence geometry. Given the spin a of the
larger black hole, we find the relative excitation of black
hole modes is determined by two angles: an angle I de-
scribing the inclination of the binary’s orbit relative to
the black hole’s equatorial plane, an angle θfin which
describes the polar location at which the smaller body
crosses the larger black hole’s event horizon, and its an-
gular direction sgn(θ̇fin) as it crosses. (Because we work
in perturbation theory and linearize all deviations from
Kerr in the small body’s mass µ, the absolute excitation
of ringdown modes also depends on this mass.)

This suggests that, if measurements by GW detectors
can accurately measure multiple ringdown modes, it may
be possible to use the relative amplitude of these modes
to learn about the binary’s spin-orbit misalignment. This
may be particularly valuable for ground-based measure-
ments of high mass systems for which the inspiral waves
(which encode spin-orbit misalignment through ampli-
tude and frequency modulation of the waveform) are
poorly measured. In other words, it may be possible to
get information about the system’s spin-orbit misalign-
ment from the late ringdown signal. At the very least,
the ringdown may provide information that complements
spin-orbit constraints obtained from earlier in the wave-
form, improving our ability to make inferences about the
nature of a measured binary black hole.

We begin with a synopsis of how we compute GWs
in Sec. II. We review the results of Paper I in Sec. II A,
describing how we build the worldline which the smaller
member of the binary follows as it inspirals and then
plunges into the larger black hole. As described in Sec.
II B, we then use this worldline to build the source term
for the time-domain Teukolsky equation, which allows
us to compute GWs produced by a small body follow-
ing that worldline. The last several to several dozen cy-
cles of the waveforms that we compute consist of ring-
ing modes of the larger black hole. We characterize this
mode content in Sec. III. We review the properties of
Kerr black hole quasi-normal modes in Sec. III A, discuss
important issues regarding the angular bases used to de-

scribed these modes and our data in Sec. III B, and then
describe our algorithm for extracting the mode content
of our waveforms in Sec. III C. In most of the cases that
we examine, the ringdown content we find is accurately
described as entirely due to superpositions of the “funda-
mental” quasi-normal black hole modes. In some cases,
we believe that we may be able to discern the presence
of the first overtone mode. Extracting this mode from
our waveform data requires some care; our procedure for
doing this extraction is described in Sec. V C.

Section IV describes how we parameterize ringdown, a
describes checks we instituted to make sure our results
are reasonable. We begin in Sec. IV A by describing how
the plunges which produce ringdown waveforms can be
characterized using four parameters: the black hole spin
a, an angle I describing the inclination of the orbital
plane, an angle θfin that describes where the plunge ter-
minates at the black hole, and the direction of the final
plunge’s angular motion, sgn(θ̇fin). As expected, we find
that these parameters work well to describe the ringdown
waveform. We next discuss in Sec. IV B certain symme-
tries which ringdown waveforms should inherit from the
Kerr spacetime, and verify that our results respect these
symmetries. Finally, we describe a comparison to pre-
vious results for the equatorial case in Sec. IV C. As we
describe, we do not expect perfect agreement because of
differing methodologies, but we find good agreement over
the regime where agreement is expected.

We show results in Sec. V. We begin with a catalog
of modes with spheroidal index ` = 2 in Sec. V A; ad-
ditional modes are shown in Appendix A. This catalog
indeed demonstrates that the excitation of each mode
depends cleanly and predictably on the geometry of the
final plunge, suggesting that the inverse problem — infer-
ring the properties of the plunge geometry from a spec-
trum of measured modes — may be feasible. We describe
in more detail interesting features we find in this catalog
in Secs. V B and V C, and discuss the impact of numerical
errors in Appendix. C. In Sec. V B, we report interesting
universality behavior that appears to emerge, at least at
shallow inclination angle, as we examine mode excitation.
In brief, across a wide range of spins, excitation of the
fundamental (`,m) mode appears to follow a universal
functional form that depends only on `−m or `+m. In
Sec. V C, we present results which suggest that the first
overtone mode can be discerned in our results for rapid
spin and shallow inclination angle, and provide further
evidence in Appendix D.

Concluding discussion is given in Sec. VI. In addition
to summarizing our findings, we suggest directions for
future work that may improve our ability to model ring-
down from misaligned binaries and to use these models
to learn about coalescing black holes from their measured
gravitational waves.
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II. GRAVITATIONAL WAVES FROM LARGE
MASS-RATIO INSPIRAL AND PLUNGE

To model the GWs from a large mass-ratio binary sys-
tem, we first compute the worldline that a small body
follows as it adiabatically evolves through a sequence of
geodesic orbits, and then compute the transition to a
plunging trajectory that carries it into the larger black
hole. We use this worldline to build the source function
to the time-domain Teukolsky equation [19, 20], solve this
equation [21, 22] to compute the GWs that arise from the
small body’s motion on this worldline, and then charac-
terize the quasi-normal modes (QNMs) that terminate
the waveform we find. In this section, we briefly summa-
rize the key steps in this analysis in order to set up how
we characterize the QNM content of these GWs.

A. Computing the inspiral, transition, and plunge
worldline: A brief synopsis

Paper I discusses in detail how we construct the world-
line describing how the small member of the binary in-
spirals and then plunges into its companion black hole.
Here we recap the main points of Paper I, emphasizing
aspects of this analysis that are important for this paper:

• The small body begins on an inclined circular Kerr
geodesic orbit, parameterized by initial radius r0

and inclination angle I. All orbit properties vary
smoothly over the domain I = 0◦ (prograde equa-
torial) to I = 180◦ (retrograde equatorial). The
initial orbit is taken to adiabatically inspiral due
to GW emission, shrinking in radius while keeping
I nearly constant [23]. Inspiral describes the sys-
tem until the small body comes near the separatrix
separating stable from unstable orbits.

• As the small body approaches the separatrix, inspi-
ral accelerates until its inward motion is no longer
adiabatic. We compute the transition connecting
inspiral to the final plunge by following the princi-
ples developed by Ori and Thorne [2], who showed
how to do this for equatorial orbits. Our “gener-
alized” Ori-Thorne procedure lifts this restriction,
allowing us to compute the transition for arbitrarily
inclined circular orbits.

• At very late times, the small body’s motion is well
approximated by a plunging geodesic (with con-
stant parameters) that crosses the event horizon.
In Boyer-Lindquist coordinates, this plunge termi-
nates the small body’s motion at some θ on the
horizon. This is an artifact of Boyer-Lindquist
time, and reflects the fact that the event horizon is
a surface of infinite redshift. As we discuss in Sec.
II B, this behavior ensures that the time-domain
Teukolsky equation goes over to its homogeneous
form at late times, which in turn ensures that the

final GW cycles we compute are QNMs, coherently
joined in phase to the preceding waveform.

Our worldline model requires us to make three ad hoc
choices. The first is how to define the end of “inspiral”
and the beginning of “transition.” The physics governing
the transition picks out a range of times for this moment.
We show in Paper I that the worldlines we develop vary
very little over that range. The second choice is how
to model the evolution of the orbit’s parameters E, Lz,
and Q during the transition. In Paper I, we refine Ori-
Thorne to eliminate unphysical discontinuities present in
their model, but note that there are many ways to im-
plement this refinement. The two which we have inves-
tigated barely differ from one another. We suspect this
would be the case for any reasonable model.

The third ad hoc choice describes when “transition”
ends and “plunge” begins. As with the first choice, the
physics of the transition picks out a range of times for this
moment. Disconcertingly, we find that the worldlines we
develop depend on this parameter in a non-negligible way
(see Sec. V B of Paper I, especially Fig. 7). This could
raise concerns that our conclusions will not be robust,
but will depend upon how we make this choice.

Fortunately, we find that the ringdown modes we find
are robust with respect to this choice, even though the
plunge worldlines are not. As we have outlined in the
Introduction, the ringdown modes we find depend on the
spin a of the larger black hole, the inclination angle I,
and an angle θfin which defines where the smaller body
plunges into the black hole. As we vary the end of transi-
tion, the relation between θfin and the worldline’s initial
conditions can change by quite a bit. However, the de-
pendence of the ringdown waves on θfin does not depend
on this choice. As long as we parameterize our modes
using the parameter set (a, I, θfin, sgn(θ̇fin)), our conclu-
sions are robust against how we choose to end the transi-
tion. See Appendix B for detailed discussion and results.

Although it is a relief that our physical conclusions are
not impacted by how we choose these parameters, it is
a fundamental flaw of the generalized Ori-Thorne model
that these ad hoc choices exist. Work to improve this,
or at least to better inform how these choices should be
made, would be salubrious.

B. Solving the time-domain Teukolsky equation

Following the procedure of Paper I summarized in the
previous section, we make the worldline which the small
body follows as it inspirals and plunges into the large
black hole. We then use this worldline to build the source
term for the time-domain Teukolsky equation. This equa-
tion describes scalar, vector, and tensor field perturba-
tions to the spacetime of a rotating black hole. In Boyer-
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Lindquist coordinates, it takes the form [24]

−
[
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−
(
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(
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)
T, (2.1)

where M is the mass of the black hole, a its angular mo-
mentum per unit mass, ∆ = r2 − 2Mr + a2, and s is
the “spin weight” of the field. For s = −2, this equation
describes the radiative degrees of freedom of the gravita-
tional field, and is related to the Weyl curvature scalar
as Ψ = (r − ia cos θ)4ψ4. At future null infinity,

ψ4 =
1

2

d2

dt2
(h+ − ih×) . (2.2)

With this quantity in hand, h+ and h× can be easily
computed by a double time-integration.

The source T in Eq. (2.1) is computed from the small
body’s energy-momentum tensor,

Tαβ = µ
uαuβ

Σut sin θ
δ [r − r(t)] δ [θ − θ(t)] δ [φ− φ(t)] ,

(2.3)
where Σ = r2 + a2 cos2 θ and uα denotes components of
the small body’s 4-velocity along its worldline. To con-
struct T , project Tαβ onto certain legs of the Kinners-
ley tetrad, and then operate upon the resulting quantity
with a second-order differential operator. See Ref. [24]
for detailed discussion.

We solve Eq. (2.1) in the time domain, dynamically
providing information about the small body’s worldline
to make the source T for our inspiraling and plunging
body; Fig. 1 shows a representative example of the wave-
form produced by this procedure. Details of our approach
have been extensively described in past literature [19–
22], so we do not repeat this discussion here, modulo one
remark that is significant for the purposes of this cur-
rent work. Notice that the stress-energy tensor Tαβ is
inversely proportional to ut = dt/dτ . This factor con-
verts between time τ along the worldline and time t as
measured by a distant observer. As the small body ap-
proaches the event horizon, dt/dτ →∞. The source term
thus “redshifts away,” smoothly converting the Teukol-
sky equation to its homogeneous form and connecting
the GWs from the small body’s plunge phase to the Kerr
black hole’s QNMs very naturally.

III. CHARACTERIZING A WAVEFORM’S
QUASI-NORMAL MODE CONTENT

The analysis presented in Sec. II yields the waveform
produced by a small body that inspirals and plunges into

FIG. 1. Gravitational waves from a small body on an inclined
(I = 60◦) orbit that plunges into a spinning (a = 0.9M) black
hole at a final polar angle of θfin = 138.5◦ and angular direc-
tion θ̇fin < 0. The small body reaches the radius of the pro-
grade (equatorial) photon orbit at t = t0. Top panel shows
the numerical waveform we find following the calculation de-
scribed in Sec. II. Bottom shows the ringdown radiation pro-
duced by the small body plunging into the black hole. In both
panels, the waveform is normalized by a factor µ/D, where
µ is the small body’s mass and D is distance to the source.
Notice that the nature of the final ringdown waves varies sig-
nificantly depending on the relative orientation of the binary
and the system. The “face-on” waves (blue trace) show the
waveform as measured by an observer who looks down the
large black hole’s spin axis (θ = 0◦); the “edge-on” waves
(red trace) show the waves for an observer in the black hole’s
equatorial plane (θ = 90◦).

a black hole; an example is shown in Fig. 1. The final
cycles of these waveforms can be modeled as a linear su-
perposition of QNMs. In this section, we describe how
we characterize and extract the QNM content that de-
scribes the final cycles of inspiral and plunge waveforms
like that shown in Fig. 1.

A. Quasi-normal modes

Teukolsky showed [24] that Eq. (2.1) separates after
decomposing in the frequency domain, yielding ordinary
differential equations which govern the θ and r depen-
dence of the field Ψ. The solution for a given mode with
(possibly complex) frequency σ then becomes

Ψ =

∞∑
`=2

∑̀
m=−`

∞∑
n=0

sR
aσ
`mn(r)sS

aσ
`mn(θ, φ)e−iσt . (3.1)
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The functions sS
aσ
`mn(θ, φ) are known as spin-weighted

spheroidal harmonics; when a = 0, they reduce to the
spin-weighted spherical harmonics sY`m(θ, φ) [25]. We
discuss these functions and their properties in further
detail below. See Ref. [26] for discussion of the radial
function sR

aσ
`mn(r), as well as for additional details re-

garding the spin-weighted spheroidal harmonics.
For certain frequencies, the modes (3.1) satisfy phys-

ical boundary conditions: they describe radiation that
is purely ingoing on the black hole’s event horizon, and
purely outgoing at null infinity. Such solutions are the
black hole’s QNMs. Frequencies for which such solu-
tions hold are written σ`mn, each labeled by the mode’s
spheroidal harmonic indices plus an overtone index n =
0, 1, . . . [26, 27]. These frequencies are complex, and can
be written

σ`mn = ω`mn − i/τ`mn . (3.2)

Given mode indices (`,m, n) and assuming that the end-
state of the merged system is a Kerr black hole, these
frequencies depend only on the black hole’s mass M and
spin parameter a. Code for computing ω`mn and τ`mn
for ringing modes of Kerr black holes, as well as tables
describing the results, are provided by E. Berti [26, 28].

The Teukolsky equation’s symmetry properties dic-
tate that for each mode (`,m, n), the separated angu-
lar equation is actually satisfied by two eigenfunctions:

sS
aσ
`mn(θ, φ) and sS

aσ
`−mn(π−θ, φ)∗, where ∗ denotes com-

plex conjugation. A given QNM is thus actually char-
acterized by pairs of frequencies ω`mn and −ω∗`−mn [28].
Specializing to spin weight s = −2 and bearing this sym-
metry in mind, we follow Ref. [28] [cf. their Sec. II A,
especially Eq. (2.9) and nearby text] and write the grav-
itational waveform for a mode as

h(t) =
∑
kmn

[
Akmne−i[σkmn(t−t0)−φkmn]

−2S
aσkmn

kmn (θ, φ)

+ A′kmnei[σ
∗
kmn(t−t0)+φ′kmn]

−2S
aσkmn

kmn (π − θ, φ)∗
]
.

(3.3)

(We explain why we have shifted the spheroidal index
from `→ k in the next section.) Here (Akmn,A′kmn) and
(φkmn, φ

′
kmn) are the mode amplitude magnitudes and

phases1 and t0 marks the time at which quasi-normal
ringing begins. Each mode’s absolute excitation depends
in addition on the small body’s mass µ and the distance
D to the binary: A`mn ∝ µ/D. In the results we present,
we set this factor to 1; one can then scale the amplitudes
by multiplying by µ/D.

We will imagine a waveform that is ringdown domi-
nated and thus is accurately described by Eq. (3.3) for

1 Our notation, which associates the QNM amplitudes labeled by
(k,m) with Akmn,A′kmn, φkmn, φ

′
kmn, is aligned with [28] and

[29], but differs from

t ≥ t0. However, for perturbations sourced by a plunging
body, it is not possible to absolutely determine the start
of the ringdown [30, 31]. Previous studies considering
comparable mass binaries have associated t0 with vari-
ous phenomenological indicators such as the peak of the
gravitational wave amplitude [29, 32] or the peak orbital
frequency [33]. Such associations are not well adapted
to inclined, extreme mass ratio orbits since the radiation
and orbital frequency do not always exhibit a clear peak.
In the analysis we describe below, we will take t0 to be the
time at which the small body reaches a radius equal to
that of the prograde equatorial photon orbit (see [34, 35]
for further discussion). Although the mode amplitudes
Akmn,A′kmn and phases φkmn, φ

′
kmn that we find then

depend on t0 (see [30] for further discussion on the time-
shift problem), our discussion of how the mode excitation

depends on (I, a, θfin, sgn(θ̇fin)) will be independent of t0.

B. Spherical and spheroidal expansions

The numerical code which we use to solve Eq. (2.1)
[19–22] decomposes the gravitational radiation as

hN(t) =
∑
`,m

hN
`m(t)−2Y`m(θ, φ) , (3.4)

where hN
`m(t) = hN

`m,+(t)− ihN
`m,×(t) is the (`,m) spheri-

cal multipole component. The superscript N emphasizes
that each component is output from our numerical code.
Since we model the ringdown in the spheroidal basis, we
must take into account spherical-spheroidal mode mix-
ing [36–38]. This occurs because basis functions with the
same degree m overlap:

−2S
aσ`mn

kmn (θ, φ) =
∑
`

µ∗m`kn(aσ`mn)−2Y`m(θ, φ) , (3.5)

where k is the spheroidal harmonic order and ` is the
spherical harmonic order. In the Schwarzschild limit,
µm`kn collapses to δk`. Our definition of the overlap co-
efficient coincides with that used in Ref. [36], cf. their
Eq. (5). To avoid confusion, we use k to label spheroidal
harmonic decomposed QNMs, and label decompositions
based on spherical harmonics with `. Our code for com-
puting the coefficients µm`kn is based on the algorithm
described in Appendix A of Ref. [39] (see also [40]). It
has been validated to numerical precision using compari-
son data kindly provided by G. Cook, and agrees with E.
Berti’s online data tables (modulo an unimportant over-
all phase).

Equating the left-hand side of Eq. (3.4) to the left-
hand side of (3.3), multiplying both sides by −2Y

∗
`m(θ, φ),

integrating over the sphere and using Eq. (3.5), we find

hN
`m(t) =

∞∑
k=kmin

∞∑
n=0

[
am`kn(t) Ckmn + a′−m`kn(t) C′k−mn

]
,

(3.6)
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where kmin = max(2, |m|). In practice, the sums are
truncated at some finite maximum index; we discuss this
truncation in detail in the next section. The mode ampli-
tudes and phases have been absorbed here into complex
amplitudes,

Ckmn ≡ Akmneiφkmn , C′kmn ≡ A′kmneiφ
′
kmn , (3.7)

and the time dependent coefficients are given by

am`kn(t) = µ∗m`kn(aσkmn)e−iσkmn(t−t0) ,

a′m`kn(t) = (−1)`µm`kn(aσkmn)eiσ
∗
kmn(t−t0) . (3.8)

To derive these results, we have used the fact that

−2Y`m(π − θ, φ)∗ = (−1)` −2Y`−m(θ, φ) . (3.9)

It is important to note that the spherical multipole hN
`m

contains, in general, contributions from spheroidal modes
of both m and −m.

C. Mode extraction

Our work to characterize mode amplitudes can be con-
sidered an extension of Taracchini et al. [33], whose
analysis was limited to equatorial trajectories (I = 0◦

and 180◦). Initially, we extended their algorithm to in-
clude higher order modes. However, with this algorithm
the calculated mode amplitudes, especially sub-dominant
modes, are rather sensitive to the choice of fitting inter-
val. This makes it essentially impossible to draw robust
conclusions about the waveform’s mode content. Other
studies in the literature that rely on fits to damped sinu-
soids in either the time or frequency domain have dealt
with this ambiguity by choosing the fitting interval with
lowest error ([29, 30, 41, 42]). This choice leads to dis-
continuities in the mode amplitudes as a function of θfin,
which is a general symptom of the fact that the fit error
(as a function of chose fit interval), suffers from multiple
local minima. Oscillations in fit error, similar to those
discussed in [43], lead to jumps in the calculated mode
amplitude as θfin is incremented.

Our aim also differs from that of numerical relativity
analyses. Since we are working within BHPT, we know
the BH spin and mass a priori and can assume that the
ringdown comprises those Kerr QNM frequencies. In ad-
dition, numerical relativity analyses have primarily fo-
cused on non-precessing comaprable mass systems, where
the effect of higher order mode mixing (specifically be-
yond the (2,2) and (3,2) QNMs) can be neglected. It
remains to be determined whether the same trend holds
for highly precessing systems with larger mass ratios. In-
stead of neglecting mode mixing, our algorithm specifi-
cally addresses how to disentangle mode mixing by fac-
toring in the higher order spherical waveform modes, for
example in utilizing ψN

22, ψ
N
32 and ψN

42 simultaneously. An
exception is [42], which adopts an algorithm to measure
higher order modes and overtones. However, this algo-
rithm is based on a fit to a frequency domain waveform,

which still suffers from the ambiguity of fitting interval
choice.

Before describing our mode extraction algorithm in
detail, we introduce some simplifications to the general
framework we have described. First, we will typically ne-
glect overtone modes, n ≥ 1. The damping times τkmn
tend to decrease fairly rapidly with n [44]. The funda-
mental mode n = 0 thus dominates the ringdown, espe-
cially for “late” times t − t0 & 25M . We thus mostly
focus on n = 0, and drop the sum over n (though see
the following section for discussion of including the first
overtone).

Second, for the situations that we consider, the coeffi-
cients µm`kn tend to peak at k = `, falling off rapidly in
magnitude away from this peak. As such, we truncate the
sum over k at kmax = `+K`, where K` is found by deter-
mining how many spheroidal modes must be included to
accurately fit the spherical mode numerical data hN

`m(t);
we elaborate on this below. Equation (3.6) becomes

hN
`m(t) =

`+K`∑
k=kmin

[
am`k0(t) Ckm0 + a′−m`k0(t) C′k−m0

]
.

(3.10)
With this framework in hand, our goal now is to calculate
the mode amplitudes Ckm0 and C′km0 given hN

`m(t), for
which we have developed the following algorithm:

• Consider a set of N spherical multipoles (`i,m).
Choose kmin = `1 where `1 = max(2, |m|), `2 =
`1 + 1, . . ., `N = `1 + N − 1. Choose the factor
K` appearing in Eq. (3.10) such that K`1 = N − 1,
K`2 = N − 2, . . ., K`N = 0.

• Consider a moment t = tj ; evaluate Eq. (3.10) and
its time derivative at this moment. This yields 2N
linear equations which can be inverted for the 2N
unknown mode amplitudes Ckm0 and C′k−m0.

• Check consistency of the algorithm by computing
the mode amplitudes at multiple times. If the ring-
down model is consistent with the data, then we
find that each Ckm0 and C′k−m0 settles down to a
constant during the time period in which the wave-
form is QNM dominated. If these amplitudes do
not stabilize to a constant, then the model is not
adequate. It may be that the model needs to in-
clude more spheroidal modes (in which case we in-
crease N and repeat the algorithm), or that the
radiation is simply not QNM dominated.

• When the model is consistent with data, we denote
by an overbar the values to which the amplitudes
settle down: C̄km0, C̄′k−m0. In practice, we de-
termine C̄km0 and C̄′k−m0 by calculating a moving
average with fixed size ∆t. We then associate C̄km0

and C̄′k−m0 with the average in the interval with
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FIG. 2. Extraction of mode amplitudes, following the algorithm described in Sec. III C. We show results for a small body on
an inclined (I = 20◦) orbit that plunges into a black hole with a = 0.9M , crossing the horizon at polar angle θfin = 72.1◦ and

with θ̇fin < 0. The two left panels show the numerical mode amplitudes for m = 2 versus time [see Eq. (3.6)]. The two middle
panels and the top-right panel illustrate how our method of fitting to the ringdown converges as more spheroidal multipoles are
included in the fit. In the top middle, we consider fits using only k = 2 modes, N = 1. The extracted amplitudes (green curves)
never settle to a constant, indicating that our model has not captured the waves’ full mode content. The extracted amplitudes
are closer to constants when we fit both k = 2 and k = 3 modes (bottom middle; green curves show k = 2 amplitudes, red show
k = 3), N = 2, though we still find oscillations especially for k = 3. We finally find good behavior when we fit k = 2, k = 3,
and k = 4 (violet curves showing the k = 4 amplitudes), N = 3. The extracted amplitudes stabilize to constants in the interval
25M . t− t0 . 120M . At earlier times, the numerical waveform is not yet ringdown dominated, and at later times, the wave
has decayed away, and the extraction is noise dominated. The bottom right panel shows the residuals δhN

22 = hN
22−hRD0

22 of the
N = 3 ringdown model hRD0

22 .

the least variance. The ringdown model becomes

hRD0
`m (t) =

`+K`∑
k=kmin

[
am`k0(t) C̄km0 + a′−m`k0(t) C̄′k−m0

]
.

(3.11)
The “0” in the superscript on the right-hand side of
Eq. (3.11) labels the fact that this model is based
on the n = 0 fundamental ringdown modes.

We illustrate this algorithm with an example. The left
panel of Fig. 2 shows the final several numerical GW cy-
cles hN

22 arising from a small body inspiraling and plung-
ing into a black hole with a = 0.9M . The orbit is inclined
at I = 20◦, and crosses the horizon at a final polar angle
θfin = 72.1◦ with angular velocity θ̇fin < 0. We first try to
fit these waves using a model with N = 1 (i.e., using only
the ` = 2 modes). The middle top panel of Fig. 2 shows
the coefficients A220 and A′2−20 we find in this case. We
find no span of time at which A220 and A′2−20 settle down
to constants. The choice N = 1 poorly describes these
data.

Consider next fits using a model with N = 2 (i.e., now
using the ` = 2 and ` = 3 modes). As the middle bottom
panel of Fig. 2 shows, the fit is improved, but we still see
oscillations in the extracted amplitudes. This indicates
that there is still room for improvement in this model.
Finally, the top right-panel shows the fit for N = 3 (now
including modes ` = 2, ` = 3, and ` = 4). Here at
last we find that the amplitudes have settled down to
a nearly constant level, at least over the time interval
25M . t − t0 . 120M . At earlier times, the signal is
not yet QNM dominated; at later times, the modes have

decayed away, and our fit becomes noise dominated. The
residual δhN

22 ≡ hN
22−hRD0

22 shown in the lower-right panel
illustrates that the fit describes the numerical data well
over this time interval.

D. Overtones

The ringdown model hRD0
`m (t) only includes fundamen-

tal QNMs. As we will show in Sec. IV, this model is
consistent with data during the late ringdown. However,
in the early ringdown, overtone modes (which tend to
decay much more quickly than the fundamental) may
be present, and a “fundamentals-only” model will not
capture their contributions to the radiation that arises
from the small body’s final plunge. For larger spins (for
which the rapid decay of the overtones is not so rapid), it
may be feasible to isolate their contribution to the early
ringdown. Past work has similarly proposed techniques
to isolate overtones from numerical relativity models of
binary black hole coalescence [42], where the initial “per-
turbation” is very large and overtone excitation is impor-
tant.

Suppose we have computed a fundamental-only ring-
down model hRD0

`m (t). Define the residuals from this
model as

δhN
`m(t) = hN

`m(t)− hRD0
`m (t) . (3.12)

In principle, we could repeat the algorithm described in
Sec. III C, but using δhN

`m rather than hN
`m, and fitting

with modes which have n = 1. In practice, because the
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overtones are quite short-lived, we do not find a time do-
main over which their amplitudes settle down to a con-
stant level. In Sec. V C, we describe a modification to
our mode extraction algorithm which we use to account
for this difficulty and to estimate overtone amplitudes.

One could imagine iterating further, yielding ever
higher order fits to the ringdown overtones. In practice,
we expect that this method will be greatly limited by
numerical accuracy, and that it is likely to be quite chal-
lenging to find all but perhaps the n = 1 overtones. Even
in that case, overtones are most likely to be discernible
only if the black hole’s spin is quite rapid (so that the
overtone’s decay is relatively slow). Evidence that we
may be finding the first overtone with a = 0.99M is pre-
sented in Sec. V C.

IV. PARAMETERIZATION, CHECKS, AND
COMPARISONS WITH PAST WORK

Before discussing the results we find, we describe how
we parameterize our data, examine symmetries that our
results should respect, and check that our results behave
as expected in the Schwarzschild limit, where spherical
symmetry implies certain relations among the different
amplitudes. We also verify that our results agree with
past work in the equatorial limit. We then explore the
inclined Kerr case in Sec. V.

A. A clean and complete parameterization

The ringing cycles that we wish to study are sourced
by the final moments of the small body’s worldline. To
describe those waves, we need a parameterization that
completely characterizes the small body’s final motion
on its worldline as it plunges into the black hole.

Begin by considering the circular and inclined geodesic
orbits on which the small body initially moves. Circular
geodesics of Kerr black holes are generally described us-
ing the orbit’s radius r and some angle describing the
orbit’s tilt from the equatorial plane. We use the angle
I, defined (in radians) by

I = π/2− [sgn(Lz)]θm , (4.1)

where θm is the minimum value of the Boyer-Lindquist
angle θ reached on an orbit. I smoothly varies from 0◦ for
prograde equatorial orbits to 180◦ for retrograde equato-
rial orbits. For Schwarzschild, I corresponds exactly to
the angle at which the orbit is inclined from the equato-
rial plane. Although not quite amenable to such a simple
interpretation for general spin, it provides a useful notion
of orbit tilt for Kerr as well. An orbit with inclination I
oscillates in θ in the range

90◦ − I ≤ θ ≤ 90◦ + I (prograde) ,

I − 90◦ ≤ θ ≤ 270◦ − I (retrograde) . (4.2)

It turns out that I remains nearly constant during the
small body’s inspiral and plunge [39]. This means that
over the small body’s worldline, its polar position oscil-
lates over the range given by Eq. (4.2) until the moment
that it crosses the larger black hole’s event horizon. In
Boyer-Lindquist coordinates, the small body freezes at
the angle θfin where it enters the event horizon.

As discussed at length in Paper I, two worldlines with
the same initial values of r and I can begin with dif-
ferent values of θ. Although these worldlines will fol-
low the same trajectories in (r, I) during inspiral and
plunge, their worldlines will follow different trajectories
in θ, eventually crossing the event horizon at different fi-
nal polar angles θfin. An example of this is shown in Fig.
5 of Paper I.

Given I, there are in fact two worldlines which termi-
nate at each value of θfin allowed by the range (4.2): one

with θ̇ > 0 during the final plunge, and one with θ̇ < 0
in these moments. This is illustrated in Fig. 3. Although
the final state in both cases is identical, how the system
reaches that final state is quite different. The QNM sig-
nature of these two situations accordingly differs as well.

We thus find that a waveform’s QNM content depends
on 4 parameters which characterize its final plunging be-
havior: the black hole spin a, the orbital inclination I,
the final polar angle θfin, and the sign of angular velocity
in the plunge’s final moments, sgn(θ̇fin). As we show in
Sec. V, these parameters completely describe the mode
amplitudes Ckmn and C′kmn:

Ckmn = Ckmn(a, I, θfin, sgn(θ̇fin)) ,

C′kmn = C′kmn(a, I, θfin, sgn(θ̇fin)) . (4.3)

B. Mode excitation symmetry characteristics

The properties of black hole spacetimes imply that
certain symmetries should exist in the mode excitation.

First consider two plunges that are on worldlines u
(1)
α ,

u
(2)
α with the same orbital inclination about a given black

hole (so that they share values of a and I). Imagine that
these plunges approach the horizon such that

θ
(2)
fin = π − θ(1)

fin , (4.4)

sgn(θ̇
(2)
fin ) = − sgn(θ̇

(2)
fin ) . (4.5)

The Kerr spacetime is reflection symmetric about the
equatorial plane (θ → π − θ), so these infalling bodies
have identical worldlines modulo a reflection which in-
verts in cos θ (and possibly modulo a rotation φ→ φ+δφ,
which is also a continuous symmetry of Kerr).

As the worldlines are related by a reflection, the radi-
ation they produce, which is decomposed onto the har-
monics Y−2 `m(θ, φ), should also be related by a reflection.
The spin-weighted spherical harmonics transform under
reflection by Eq. (3.9). This implies that the primed and



9

I

✓fin

S = a M

I

✓fin

S = a M

−2 −1 0 1 2
m

0
1
2
3 A2m0

−2 −1 0 1 2
m

0
1
2
3 A2m0

FIG. 3. Example of two plunge trajectories around a Kerr black hole (a = 0.5M) and some of the mode content in the
ringdown waves. Each trajectory shares the same inclination I = 20◦ and final polar angle θfin = 77.3◦. The left (blue)

worldline approaches the horizon with θ̇ < 0 and the right (red) wordline approaches with θ̇ > 0, which leads to different mode
excitation.

unprimed mode amplitudes of the two worldlines are re-
lated by the following reflection symmetry:

C′kmn(a, I, θfin, sgn(θ̇fin)) =

C∗kmn(a, I, π − θfin,− sgn(θ̇fin)) . (4.6)

For each QNM, it suffices to only specify either
Ckmn(a, I, θfin, sgn(θ̇fin)) or C′kmn(a, I, θfin, sgn(θ̇fin)). In
all of our calculations, we find that the mode amplitudes
we find are consistent with the symmetry (4.6). Figure 4
shows this explicitly for one example (which we discuss in
much greater depth in Sec. V). Moving forward, we will
generally only show one of Ckmn or C′kmn in our results.

Second, consider the Schwarzschild limit, a = 0. Be-
cause of this spacetime’s spherical symmetry, there is no
unique notion of an “equatorial plane,” so any two world-

lines u
(1)
α and u

(2)
α that begin from circular orbits can be

related to each other by a rotation. Consider the rotation
generated by the quaternion R which relates the spatial
components of the worldlines u(1) and u(2) as

u(1) = R−1u(2)R . (4.7)

Now, decompose the radiation resulting from u
(i)
α onto

the spin-weighted spherical harmonics,

h(i) =
∑
`,m

h
(i)
`m Y−2 `m(θi, φi) (i = 1, 2) , (4.8)

where (θi, φi) are the coordinates in which the angular
components of u(i) are expressed. Then the radiation

multipoles h
(1)
`m and h

(2)
`m can be related to each other by

the basis transformation formula,

h
(1)
`m =

∑
m′

D`
m′m(R)h

(2)
`m′ , (4.9)

where D`
m′m(R) is the Wigner rotation matrix, which

takes on a simple form in terms of R [45]. Using Eq. (4.9)
and the fact that Saσ−2 kmn = Y−2 km for a = 0, we can
relate the mode amplitudes between any two worldlines
as

C(1)
kmn =

∑
m′

Dk
m′m(R)C(2)

km′n, (4.10)

provided that their trajectories satisfy Eq. (4.7).
We use Eq. (4.10) to test our mode extraction algo-

rithm as follows. Let u
(1)
α be the worldline of a small

body on an equatorial trajectory (I(1) = 0), and let u
(2)
α

be the worldline of a small body on an inclined trajec-
tory (I(2) > 0). By Eq. (4.10), the mode amplitudes

calculated from the u
(2)
α plunge should transform to am-

plitudes computed from the equatorial u
(2)
α plunge.

Figure 5 shows our results for I(2) = 20◦ and I(2) = 60◦

using several different values of θ
(2)
fin . The black circle at

(θfin,A220) = (90◦, 2.3) shows the mode amplitude we

find for the equatorial worldline u
(1)
α . The blue and red

dots show the amplitudes A220 we find for the various

inclined worldlines u
(2)
α we consider. The black dashes

show the amplitude that we find by applying Eq. (4.10) to
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FIG. 4. Example of reflection symmetry in mode excitation.
Top panels show the mode amplitudes A220 and A′220; bot-
tom ones show the phases φ220 and φ′220. All data are for a
plunging small body with I = 60◦ into a black hole with spin
a = 0.5M . Each point corresponds to the mode excitation
resulting from a worldline that terminates at a final polar an-
gle θfin; red (blue) points indicate θ̇fin > 0 (θ̇fin < 0). In all
cases, we find mode amplitudes that are consistent with the
symmetry given in Eq. (4.6).

rotate the inclined case into the equatorial plane. At high
inclination (I(2) = 60◦), the rotated mode amplitudes
agree with the equatorial amplitude to within 8.5%. As
we’ll discuss in Secs. V A and C, numerical noise appears
to limit our accuracy for high orbit inclination. At lower
inclination (I(2) = 20◦) the numerical error is reduced,
and we find that all rotated mode amplitudes agree with
the equatorial amplitudes to within 2.0%. In Appendix
C, we further discuss the impact of numerical errors on
our results. Code for computing the Wigner rotation
matrix elements in terms of quaternions is provided by
M. Boyle [46].

C. Comparison with past equatorial results

As a final check, we compare our results for equato-
rial inspiral and plunge (I = 0◦ and I = 180◦) with
those given by Taracchini et al., Ref. [33]. We do not
expect these two analyses to agree perfectly. This is in
part due to differences in the trajectory and waveform
calculations. Also, the method used in Ref. [33] to ex-
tract QNMs from late waveforms is quite different from
that which we developed. In particular, the number of
spheroidal modes that are included in the fit in Ref. [33]
is typically fewer than the number of modes that we use
here. Since mode mixing is strongest at large spin, we ex-
pect the largest systematic differences at large a. Given
these considerations, we limit our comparison by ana-
lyzing the same waveform data from Ref. [33], which was

provided by the authors (two of whom are authors of this
paper). We also only model the modes which were con-
sidered in Ref. [33]. To properly compare with Ref. [33],
we also have to adjust our notation slightly by relating
the amplitudes defined here [appearing in Eq. (3.3)] to
those defined in Ref. [33] [cf. their Eq. (5)]. For prograde
orbits a ≥ 0 (I = 0◦),∣∣∣∣A`−m0

A`m0

∣∣∣∣ =

∣∣∣∣µ−m``0A′`−m0

µm``0A`m0

∣∣∣∣ ,∣∣∣∣A`′m0

A`m0

∣∣∣∣ =

∣∣∣∣µm``′0A`′m0

µm``0A`m0

∣∣∣∣ . (4.11)

For retrograde orbits, the waveform multipoles in Ref.
[33] (which we refer to as hN

`m) were computed in a co-
ordinate system where Lz is positive. Although this is
opposite of our convention, the computed modes in this
study can be related to those modes computed in Ref.
[33] by a 180◦ coordinate rotation [see Eq. (4.10)]. Thus
for a < 0, ∣∣∣∣A`−m0

A`m0

∣∣∣∣ =

∣∣∣∣ µm``0A′`m0

µ−m``0A`−m0

∣∣∣∣ ,∣∣∣∣A`′m0

A`m0

∣∣∣∣ =

∣∣∣∣µ−m``′0A`′−m0

µ−m``0A`−m0

∣∣∣∣ . (4.12)

We also adapt the conventions used in Ref. [33] for choos-
ing t0.

Table I shows the result of this comparison. We in-
deed find decent agreement with their mode amplitudes,
at least for a ≤ 0.5M . The lack of perfect agreement,
and disagreement at a = 0.9M , is to be expected given
the rather different methods of calculating the mode ex-
citation. For instance, our analysis suggests that the
(k,m, n) = (3, 1, 0) QNM is excited, but this mode is
not modeled in Ref. [33]. This leads to larger system-
atic differences between the two methods at high spin,
a = 0.9M .

V. RESULTS

We now present detailed results describing the mode
excitation we find for inclined plunges of rotating black
holes. Figure 6 shows the range of cases that we examine.
Each point in this figure represents a particular choice of
a and I that we study. For each non-equatorial case
(I 6= 0◦ and I 6= 180◦), we examine 36 different values of

θfin, 18 for each sign of θ̇fin. For the equatorial cases, we
always have θfin = 90◦, and θ̇fin = 0.

A. A mode excitation catalog

We begin by presenting a catalog of spheroidal modes
with k = 2 for a range of black hole spins, a ∈
(0.1M, 0.5M, 0.9M), and for four values of orbital incli-
nation, I ∈ (20◦, 60◦, 120◦, 160◦). The inclinations 20◦
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FIG. 5. QNM excitation of a Schwarzschild black hole. Red and blue points plot mode amplitudes calculated from inclined
trajectories (I = 20◦ on the left panel, I = 60◦ on the right panel). The black circles show the mode amplitude calculated from
an equatorial trajectory. Mode excitations from each inclined trajectory are rotated into a new basis [cf. Eq. (4.10)] where
the mode amplitudes equal those of the equatorial trajectory. We find outstanding agreement for the shallow inclination case,
I = 20◦. The relative error is larger (several percent) for I = 60◦ due to numerical errors from the small body rapidly crossing
many angular grid zones at this inclination.

a/M |A2−10/A210| |A220/A320| |A3−20/A320|
This paper Ref. [33] This paper Ref. [33] This paper Ref. [33]

0.9 0.0066 0.0025 2.40 2.11 0.044
0.5 0.011 0.010 0.34 0.34 0.0044
0.0 0.071 0.069 0.000 0.010 0.010
−0.5 0.20 0.21 0.10 0.13 0.096 0.093
−0.9 0.32 0.32 0.18 — 0.29 —

TABLE I. Mode amplitudes that we find compared with those presented by Taracchini et al. (Ref. [33]) for equatorial inspiral
and plunge [cf. their Table II and Eq. (5)]. We calculate the mode amplitudes as described in Sec. III C using waveform data
provided by the authors of Ref. [33]. In this table, we use the notation of Ref. [33], so that positive a denotes prograde (I = 0◦),
negative a denotes retrograde (I = 180◦). Dash entries indicate that the mode, while present, could not be reliably fitted (using
the method described in Ref. [33]). Blank entries indicate that the mode is not significantly excited and thus excluded from
the model. At least for modest spins (|a| ≤ 0.5M), we find fairly good agreement. Because of systematic differences in the
mode extraction algorithm, we do not expect perfect agreement; and, we expect the differences to be particularly marked for
a large. See text for details of how we convert notation to relate the amplitudes we compute to those given in [33].

and 60◦ represent low and high prograde values (i.e., in-
clinations for which Lz is positive); the inclinations 160◦

and 120◦ represent low and high retrograde values (with
Lz < 0).

Figures 7 – 10 show the magnitude of the fundamental
mode excitations A2m0 that we find in these 12 different
cases. In each plot, the top row shows results for a =
0.1M , the middle for a = 0.5M , and the bottom row for
a = 0.9M . Going from left to right, the columns present
data for m = −2 through m = 2. Each point in the
panels shows A2m0 for a different value of θfin; red dots
are for θ̇fin > 0, blue are for θ̇fin < 0. Additional plots,
presenting phases and additional values of k, are shown
in Appendix A.

Several modes for the high inclination cases we exam-
ine (I = 60◦ and I = 120◦) appear to be affected by nu-
merical noise. We believe this is because in these cases
the plunging body rapidly crosses multiple angular grid
zones; the same effect led to the relatively large errors
we find for the I = 60◦ Schwarzschild rotation test de-

scribed in Sec. IV. The shallow inclination cases (I = 20◦

and 160◦) are substantially less affected by noise. In Ap-
pendix C, we estimate this numerical error by comparing
results with a set of higher resolution waveforms — calcu-
lated with a higher resolution integration of Teukolsky’s
equation. The comparison in Fig. 17 reveals that nu-
merical errors are small for low inclination results, and
large for high inclination results. The least reliable mode
extractions appear to be Ak20,A′k−20 for I = 60◦ and
I = 120◦. Code enhancements to improve this behavior
are under study right now.

The key result we wish to illustrate is that each
spheroidal fundamental mode (k,m, 0) is excited in a way
that depends uniquely and predictably on the param-
eters [a, I, θfin, sgn(θ̇fin)] characterizing its final plunge.
Figure 11 shows another view of this, illustrating how
mode excitation varies as a function of the angles (I, θfin)
at a = 0.5M . This figure illustrates how the spectral
content of ringdown modes varies, in some cases signif-
icantly, as a function of orbit inclination: some modes,



12

0 20 60 12
0

16
0

18
0I(◦)

0

0.1

0.5

0.9

0.99

a
(M

)

FIG. 6. Spins and inclinations investigated in this study.
Each point (a, I) shown here represents an orbital configura-
tion that we have studied in detail. For each non-equatorial
case (I 6= 0◦ and I 6= 180◦), we examine 36 different tra-
jectories, each corresponding to a different polar angle θfin

at which the trajectory terminates (18 with θ̇fin positive, 18
with it negative). Only one example suffices for the equato-
rial configurations. The results for spin a = 0 are primarily
used to check that our results respect Schwarzschild symmetry
properties, and are discussed in Sec. IV B; the results for spin
a = 0.99M are used to investigate whether we can ascertain
the presence of overtone modes (n ≥ 1), and are discussed in
Sec. V C.

such as (k,m) = (2, 0) are absent or weak at small incli-
nation, but are very strong for I large; others, such as
(k,m) = (2, 1) are present at all inclinations, but show
large changes in how they depend on θfin as I increases.

At least in principle, the clean mapping between source
geometry and mode excitation suggests that the inverse
problem may be feasible: inferring the properties of the
source geometry given knowledge of the excitation of mul-
tiple QNMs. We discuss this further in our Conclusions.

B. Universal mode excitation for shallow
inclination?

In assembling this catalog, we have found intriguing
trends in how certain modes are excited. A particularly
interesting one occurs at low inclination: for I = 20◦, we
find that modes with the same k−m are excited in largely
the same manner, showing a nearly universal functional
dependence on θfin; the same behavior is seen for I =
160◦ for modes with the same k + m. This behavior is
only weakly dependent on spin in the range that we have
investigated.

This is illustrated in Fig. 12. Here, we overlay normal-
ized mode amplitudes for several different values of k,
grouping mode amplitudes with the same k−m and the
same black hole spin. Amplitudes with given (a, I, k,m)
are normalized by averaging over cos θfin:

〈Akmn〉θfin ≡(
1

cos θmax − cos θmin

)∫ cos θmax

cos θmin

Akmn(cos θfin) d(cos θfin) .

(5.1)

The range θmax/min is given by Eq. (4.2); for I = 20◦,
θmax = 110◦ and θmin = 70◦. The integral in Eq. (5.1)
is numerically evaluated by interpolating between mode
amplitudes calculated at various θfin.

As Fig. 12 shows, for each value of spin and each value
of k −m or k + m, a nearly universal functional depen-
dence emerges: In each panel, the normalized amplitude
traces out a figure that is nearly the same at that spin
for all spheroidal mode indices that have a given value
of k − m (for I = 20◦) or k + m for (I = 160◦). It is
noteworthy that the dependence on spin is quite weak:
the results at a = 0.1M and a = 0.5M are nearly iden-
tical, and are not dramatically different from the results
at a = 0.9M .

These trends break down at higher inclinations I =
60◦, 120◦; presumably there is some maximum angle at
which this nearly universal excitation form holds (al-
though it should be noted that the highly inclined results
are significantly more polluted by numerical noise). As
we discuss in the Conclusions, further work may show
that it will be possible to exploit this behavior to better
understand mode excitation for misaligned plunges.

C. Overtones

Another intriguing feature which we noticed in assem-
bling our catalog of mode excitation is, possibly, the pres-
ence of overtone modes (i.e., modes with n ≥ 1) excited
by the final plunge and merger. Here we briefly inves-
tigate this idea, and present evidence that we may be
finding the first overtone in some cases.

Since the overtones are short-lived, amplitudes calcu-
lated using the algorithm described in Sec. III C do not
stabilize to constant values as in the example in Fig. 2.
Therefore we conduct a non-linear least squares over
some time interval. We expect this fit to work best for
rapidly rotating black holes as excited overtones will de-
cay more slowly. To test this, we examined an equatorial
I = 0◦ inspiral and plunge for a = 0.99M and modeled
the early ringdown waves with a single complex frequency
σ221 and amplitude C221. While t0 is still defined as the
time at which the small body crosses the light ring, we
still need to choose a time window over which to fit the
model. To choose this the window we examine the fol-
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lowing notion of relative fit error:

〈ε221〉 =
|∑i h

RD1
22 (ti)− δhN

22(ti)|
|∑i δh

N
22(ti)|

, (5.2)

where ti is sampled from tmin < ti < t0 +70M . A similar
equation defines the relative fit error 〈ε331〉.

The right panel of Fig. 13 shows the relative fit er-
ror 〈ε221〉 for the I = 0◦, a = 0.99M test case. Not
surprisingly, the error is large for tmin − t0 near zero,
since at these times the radiation is not yet fully de-
scribed by QNMs. The error decreases to a minimum
when tmin − t0 & 30M ; concomitant to this, the fitted
amplitudeA221 settles down to a constant. The left panel
of Fig. 13 shows the resulting waveform fits, where the
top left panel shows the spherical (2, 2) mode waveform,
along with the fundamental ringdown model constructed
with the algorithm discussed in Sec. III C. The bottom
left panel of this figure shows the overtone model.

Encouraged by this test case, we applied this method
to the cases in our ringdown catalog. For I = 20◦, we
construct the overtone model hRD1

22 with two frequencies

σ221, σ321 and amplitudes C221, C321. The most promising
results are for n = 1 overtones at low inclination and high
spin, (a, I) = (0.9M, 20◦). In this case, we find that the
residuals δhN

22 are well fit by a superposition of one or
two overtones. Interestingly, the n = 1 amplitudes we
find are similar in form to the n = 0 mode excitation. In
particular, the modes A221 and A331 depend on cos θfin

in a manner that is reminiscent of the universal form we
discussed in Sec. V B.

This iterative procedure of calculating overtone am-
plitudes relies on the assumption that the initial
(fundamentals-only) model hRD0

`m is not biased by con-
taminating overtones. As a check on this assumption, in
Appendix D, we calculate the systematic error incurred
when a single overtone is present using toy waveform
data. The small systematic errors in the recovered n = 0
and n = 1 amplitudes provide further evidence of present
overtones plotted in Fig. 14.
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VI. CONCLUSION

We have calculated the black hole QNM excitation
resulting from a plunging small body whose trajectory
is calculated using a generalized Ori-Thorne algorithm.
Our method to extract the n = 0 mode amplitudes does
not involve choosing a fitting region, but instead deter-
mines when the ringdown model is self-consistent. We
find that the mode amplitudes are cleanly parameterized
in terms of the black hole spin a, the orbital inclination
I, the small body’s final polar angle θfin and its final
angular direction sgn(θ̇fin). We have tabulated the re-
sults of our analysis and will provide a Mathematica
notebook that can be used to plot mode amplitudes as a

function of different combinations of (a, I, θfin, sgn(θ̇fin)).
Importantly, we find that this parameterization removes
the influence of the final plunge on ad hoc characteristics
of the inspiral and plunge model; this is discussed in de-
tail in Appendix B. As long as we use the parameter set
(a, I, θfin, sgn(θ̇fin)) to characterize the data, our conclu-
sions about mode excitation appear to be robust. At least
in the large mass ratio limit, our results indicate that
there is a clean map between ringdown mode excitation
and the properties of the merging binary at plunge. This
supports our motivating idea that, by measuring multiple
ringdown modes, it may be possible to learn about a bi-
nary’s characteristics. By measuring a set of mode ampli-
tudes, a ringdown measurement may provide useful infor-
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FIG. 13. A high spin (a = 0.99M) test case for extracting overtones. The top left panel shows the fundemantal model hRD0
22

used to describe the late ringdown. The bottom left panel shows the residual of the fundamental model, δhN22. We find that
the residual can be fit with a single frequency σ221 and amplitude A221 = 1.28. The right panel shows the relative fit error in
modeling the early ringdown for various choices of tmin. When tmin & 30M , the relative fit error 〈ε221〉 and extracted overtone
amplitude A221 stabilize to constant values of 〈ε221〉 = 0.03 and A221 = 1.28.

mation about the orbit inclination I, similar to how Refs.
[47, 48] demonstrated that ringdown preserves the mem-
ory of a binary’s mass ratio and aligned spin. For large-
mass systems (which radiate relatively few inspiral cycles
in band), and especially as the high- and mid-frequency
sensitivity of ground-based detectors is improved, this
could significantly increase what gravitational-wave ob-
servations can learn about spin-orbit alignment, a prop-
erty that is particularly important for constraining the
formation history of binary black holes. We refer to the
reader to Ref. [15] for overview discussion, [16] and ref-
erences therein for discussion of these observables and
source astrophysics, and [17] for recent discussion.

Much work must be done to see whether these measure-
ments can be done in practice. First, we must determine
to what extent inferences based on black hole perturba-
tion theory can be trusted. In the large mass-ratio limit,
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FIG. 14. Mode amplitude for inferred n = 1 overtones when
a = 0.9M as functions of cos θfin. As with other figures, red
(blue) points show data with θ̇fin > 0 (θ̇fin < 0).

−0.6 0.0 0.6
cos(θfin)

0

2

4

A
22

0

FIG. 15. Effect of the choice of Lf on the mode amplitudes.
We calculate the mode amplitudes for a series of trajectories
for a = 0.5M and I = 60◦ that share identical prescriptions
for generating the inspiral and transition, but differ in transi-
tion end times Lf . Filled in circles plot the (k,m) = (2, 2) fun-
damental mode amplitude as excited from trajectories with
Lf = 2.5; hollowed squares, triangles, and diamonds plot am-
plitudes with Lf = 2.5, 2.59, 2.83, and 3.07, respectively. Red

points indicate θ̇fin > 0 and blue points indicate θ̇fin < 0.
Even though the small body freezes onto the horizon at dif-
ferent polar positions θfin, the functional dependence of the
mode amplitude on θfin is the same.

the background spacetime has a well-defined spin which
remains constant during the entire coalescence. When
the mass ratio is not so large, the spin of the merged
remnant is dominated by the binary’s orbital angular mo-
mentum at plunge, and information about the members’
spins will be washed away. In addition, studies must be
done to determine how accurately detectors can measure
the amplitude of ringdown modes. Although there has
been much work studying how well the modes’ frequen-
cies and damping times can be measured, less attention
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has been paid to date on the modes’ amplitudes (though
see Ref. [13]). We hope this work will motivate more
research in this vein.

Our work has also uncovered interesting properties of
mode excitation for misaligned coalescence. An intrigu-
ing behavior we discussed in Sec. V B is that, at least
for shallow inclination angle, the excitation of modes has
a nearly universal form: the dependence of the funda-
mental mode excitation Akm0 on cos θfin and sgn(θ̇fin)
is nearly identical across k and m for fixed k − m (for
prograde orbits) or k + m (for retrograde orbits), for a
wide range of spin a. It may be possible to exploit this
relation to make a “quick and dirty” assessment of mode
excitation across a wide range of mode values and black
hole spins. If this universality includes the Schwarzschild
limit, one might even be able to use Eq. (4.10) in concert
with a catalog of Schwarzschild equatorial mode excita-
tions to rapidly estimate QNM strength for a wide range
of physical relevant parameters.

Finally, we see indications that it may be possible to
extract information about overtone modes, at least when
the black hole spin is large and the plunge inclination is
shallow. This is a somewhat delicate operation, so we are

cautious about claims in this regime. However, if it can
be shown that there is a regime in which the overtones
can be reliably understood, this may make possible ad-
ditional consistency tests and ways of testing the nature
of the Kerr metric using ringdown gravitational waves.
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Appendix A: Further mode excitation catalog entries

Here we present additional catalog entries describing QNM excitation. In Fig. 16 we show the mode excitation phase
φ2m0 for the spins a = 0.1M , 0.5M , and 0.9M for I = 60◦. In Figs. 21–24 and we show the amplitude magnitude
Akm0 for k = 3.
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numerical noise.
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Appendix B: Robustness of mode excitation to the
plunge worldline prescription

As we strongly emphasized in Paper I and re-
emphasized in Sec. II A, the generalized Ori-Thorne algo-
rithm we use to construct the worldline followed by our
inspiraling and plunging small body requires us to make
three ad hoc choices. Two of these (a time parameter Li
which defines when we end “inspiral” and begin “transi-
tion,” plus the model we use to smooth the behavior of
orbital constants during the transition) turn out to have
very small or even negligible impact on the worldline.
The impact on the worldline of the third choice, the time
Lf at which “transition” ends and begin “plunge” begins,
is not negligible. Worldlines which start with the same
initial conditions but use different choices for Lf will end
with different values of the final polar angle variable θfin.

Figure 15 illustrates that the impact of this ad hoc
choice on QNM excitation is nugatory. Although chang-
ing the parameter Lf for fixed initial conditions changes
θfin, it does not affect the manner in which QNM excita-
tion depends on Lf . In Fig. 15, we show mode excitation
for (a, I) = (0.5M, 60◦) as a function of cos θfin for the
(k,m, n) = (2, 2, 0) spheroidal mode. Data represented
by round dots were computed using Lf = 2.5; squares
represent Lf = 2.59; triangles are for Lf = 2.83; and
diamonds are for Lf = 3.07. Notice that all the various
data points lay along the same trend; the mode excita-
tion shows no dependence on Lf , only on the value θfin

at which the plunge terminates.
We find the same effect for all other modes that we

have examined. Changing Lf changes the relation be-
tween a worldline’s initial conditions and θfin, but does
not affect the fundamental manner in which mode excita-
tion depends on a plunge’s final geometry. Although, as
we have emphasized elsewhere, it would extremely useful
to eliminate the need for the ad hoc parameters intro-
duced by the generalized Ori-Thorne model, we nonethe-
less can make robust assessments of how mode excitation
behaves as a function of parameters which characterize
the final geometry of a coalescing binary.

Appendix C: Resolution effects on mode amplitudes

As discussed in Secs. IV B and V A, numerical errors
dominate the accuracy of our mode extraction at high
orbital inclination. Resolution effects are apparent when,
for example, plotting the mode amplitudes and phases
as a function of the plunge angle, cos(θfin). In Figs. 23
(I = 60◦) and 24 (I = 120◦), there are small jumps
in the m = 2 mode amplitudes. In contrast, the mode
amplitudes for low orbital inclination (Figs. 21 and 22)
do not exhibit such jumps.

To further quantify our numerical error, we calculated
the mode amplitudes from a set of higher resolution wave-
forms (Fig. 17). With increased resolution, the low incli-
nation results do not change much, indicating near con-

vergence. However, the high inclination results are af-
fected, indicating larger numerical errors.

Appendix D: Estimating systematic errors from a
toy model with overtones

At high spin, a = 0.9M, 0.99M , when overtones may
be resolved, we employ an iterative process to extract the
overtone amplitudes from the numerical data. Initially,
we construct a ringdown model with only fundamental
modes, hRD0

`m , as described in Sec. III C. Next, we model
any remaining contributions to the ringdown with over-
tones (see Sec. III D). However, this iterative process re-
lies on the assumption that the overtones will not bias the
initial fundamentals-only model. If this assumption does
not hold, then hRD0

`m may be biased, which can lead to
systematic errors in extracting the overtone amplitudes.

To estimate the magnitude of such systematic errors,
we analyzed toy waveform data — consisting of only
QNMs — with known (injected) mode amplitudes. Since
we would like the toy waveform data to resemble our
real waveform data, we fix the injected n = 0 mode am-
plitudes to some representative values. Here we have
adopted the n = 0 mode amplitudes for a = 0.9M ,
I = 0◦, which were calculated using the fundamentals-
only model. Before n = 1 overtones are added, the
leading order spherical mode hN

22 comprises QNM contri-
butions with magnitude |am2k0(t) Ck20| (for QNMs with
m ≥ 0) and |a′−22k0(t) C′k−20| (for QNMs with m ≤ 0).
We then add the (k,m, n) = (2, 2, 1) overtone, and gen-
erate a 11 different waveforms each with various overtone
amplitudes in the range 10−2 ≤ A221/A220 ≤ 102, while
fixing A220 to 2.35 (Fig. 18).

Our results indicate that the calculated n = 0 mode
amplitudes are not significantly biased, and can be recov-
ered well within 0.01 even when the overtone amplitude
is large (Fig. 19). The n = 1 mode amplitude is also
faithfully recovered with the iterative procedure, incur-
ring either a relative error under 1% (for a loud over-
tone) or an absolute error under 0.01 (for a weak over-
tone) (Fig. 20). This is primarily because the algorithm
extracts the amplitudes at times when the fundamentals-
only model is most self consistent with the data; as the
injected overtone amplitude increases, the mode extrac-
tion algorithm compensates by adjusting the fitting inter-
val to later times in the ringdown (see Fig. 18 caption).
Bias is also minimized by the averaging procedure (i.e.
associating C̄km0 and C̄′km0 with the mode amplitudes),
even when overtone contribution |a2221(t) C221| is exceeds
than that of sub-dominant higher order modes.
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`2(t) with
magnitude fkmn = |am2kn(t) Ckmn| for m ≥ 0 and fkmn =
|a′−m2kn(t) C′k−mn| for m ≤ 0 (Eq. 3.10). We constructed 11
toy waveforms with the same injected n = 0 mode amplitudes
(show in green, red, and violet) but with varying (2, 2, 1) mode
amplitudes in the range 10−2 ≤ A221

A220
≤ 102, where we fix

A220 = 2.35. We plot the A221
A220

= 10−2 magnitude in solid
blue; the mode extraction algorithm extracts the modes over
the range 12.9M ≤ t− t0 ≤ 52.9M , chosen as the interval of
least variance at fixed ∆t = 40M (see Fig. 2). We also plot
the A221

A220
= 102 magnitude in dashed blue; since the overtone

contamination is larger, the modes are extracted at later times
during 76.1M ≤ t− t0 ≤ 116.1M .
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