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We present a detailed analysis of a quantum model for Loop Quantum Cosmology based on strict
application of the Thiemann regularization algorithm for the Hamiltonian in Loop Quantum Gravity,
extending the results presented previously in our brief report. This construction leads to a qualitative
modification of the bounce paradigm. Quantum gravity effects still lead to a quantum bounce
connecting deterministically large classical Universes. However, the evolution features a large epoch
of de Sitter Universe, with emergent cosmological constant of Planckian order, smoothly transiting
into a spatially flat expanding Universe. Moreover, we present an effective Hamiltonian describing
the quantum evolution to high accuracy and for which the dynamics can be solved analytically.

I. INTRODUCTION

Modern experiments and precise cosmological obser-
vations constantly expand the frontiers of our knowledge
of the Universe and its evolution at largest scales. The
influx on high precision CMB measurements and the
birth of gravitational wave astronomy [1, 2] give hope
for making the models describing the very early Uni-
verse dynamics – where the quantum nature of gravity
is expected to play an important role – experimentally
testable. It is therefore particularly important to bring
the available models/theories of the interaction between
geometry and matter at highest energy scales to the level
where concrete physical predictions can be made in un-
ambiguous manner. One of the most popular initiatives
to bring relativity and quantum theory to a common foot-
ing is Loop Quantum Gravity (LQG) [3–5]. LQG exploits
the fact that general relativity (GR) in its background-
independent Hamiltonian formulation is equivalent to a
Yang-Mills gauge theory [6–8] and it is therefore possi-
ble to proceed with its quantization in a well-known and
mathematically rigorous manner. Despite LQG reaching
the level of maturity, where the physical Hilbert space
and the analog of the Schrödinger evolution equation
generating the dynamics could be constructed [9–12], at-
tempts of applying it in its full form to study the implica-
tions for cosmology have not been successful so far. Yet,
in the last two decades the subfield of Loop Quantum
Cosmology (LQC) emerged. Here, one imports regular-
ization techniques from LQG directly to symmetry re-
duced (usually cosmological) spacetimes [13–18]. Due to
this symmetry-reduction, the phase space of the theory
becomes coordinatized by quasi-global degrees of freedom
(in case of inhomogeneous spacetimes, for example, by
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Fourier modes of the inhomogeneities) becoming finite
dimensional for homogeneous cosmology models. This
allows to proceed by investigating effects of quantum
geometry in the Planck regime [19]. In particular, the
LQC model of a Friedman-Lemâıtre-Robertson-Walker
(FLRW) Universe led to the replacement of the big bang
initial singularity by a bounce, connecting two (semi-
)classical FLRW spacetimes [20–24]. This was achieved
by dynamically evolving semiclassical states (in the sense
of small relative uncertainties) starting from a chosen
moment of time corresponding to large expanding Uni-
verse. In most cases, for that purpose one selects Gaus-
sian states in the “energy” representation – the canonical
momentum of a matter field serving as the internal clock
that parametrizes the quantum evolution. Subsequently,
the studies of the full quantum dynamics of isotropic
spacetimes were generalized to nonisotropic ones [25–27],
including in particular the Kantowski-Sachs chart of the
interior of the Schwarzschild black hole [28, 29]. Inter-
estingly, the genuine quantum trajectories defined by the
time evolution of the expectation values of certain ob-
servables (volume, its momentum, energy density, Hub-
ble rate, etc.) for these states are reproduced to accuracy
well below quantum variances by the so-called effective

Hamiltonian, which is constructed by replacing a set of
“elementary” operators (volume and U(1) components of
holonomies) forming the Hamiltonian constraint opera-
tor with their expectation values [30].1

In its present form, however, the construction of the
framework of LQC used by the majority of the commu-

1 The validity of this heuristic procedure is supported by a series
of works where the attempt of evaluating the correct expectation
value of the Hamiltonian constraint was made. In particular the
effective Hamiltonian was confirmed to reproduce the latter in
the limit of low energy and low relative dispersion [31]. Also,
the modified Friedmann equation – one of the equations of mo-
tion generated by the Hamiltonian constraint – has been derived
explicitly on the genuine quantum level in context of isotropic
cosmology with dust field as the internal clock [32].
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nity (later referred to as the mainstream LQC or stan-
dard LQC ) involves making particular choices between
non-equivalent alternatives in certain key steps of the
construction. One of such steps is known as “regulariza-
tion process”, and consists of reexpressing the Hamil-
tonian constraint in terms of the extended operators
(i.e., holonomies and fluxes). In the pioneering works
[13, 14, 20–22] part of the gravitational Hamiltonian con-
straint involving the extrinsic curvature (the so-called
“Lorentzian part”) has been regularized by reexpressnig
it in terms of the spatial Ricci curvature. While it is
possible to implement it in full LQG [33–35], it differs
significantly from the regularization algorithm originally
proposed by Thiemann. Unlike in standard quantum me-
chanics, in LQG it is not known whether different reg-
ularization algorithms lead to similar dynamical predic-
tions. Indeed, the quasi-phenomenological analysis of the
full LQG scalar constraint in its isotropic sector[36–38]
– performed via evaluating the expectation values on co-
herent states peaked on isotropic cosmological spacetimes
– has revealed that, in the leading order in ~, the effec-
tive Hamiltonian generating the dynamics differs signifi-
cantly from the Hamiltonian of effective LQC. An alter-
native approach – known as the Quantum Reduced Loop
Gravity (QRLG) and based on the quantization of those
spacetimes which, upon a suitable gauge-fixing, take di-
agonal form – is claimed to yield yet different corrections
[39]. On the other hand, if one implements in the con-
text of studies of [36] the construction of the Lorentzian
part of the Hamiltonian constraint proposed in [35], one
is left with the mainstream LQC effective constraint as
the leading order approximation. In order to track down
the nature of this discrepancy, it is then important to
reexamine the implementation of the original Thiemann
algorithm in full (that is, including the Lorentzian part
of the Hamiltonian constraint) in the LQC framework.
The LQC reduction to this regularization algorithm has
already been considered in the literature [40], however in
those works the analysis was not developed to the level al-
lowing for verification of the dynamical predictions. Our
work [41] and the detailed analysis presented in this ar-
ticle close this gap.

With the ever extending reach of LQC, the dynami-
cal consequences of different regularizations must be un-
derstood before further studies can be conducted. These
studies include the several extensions beyond flat FLRW,
like positive and negative curvature [42–45], inclusion of
a cosmological constant [23, 46, 47] or extension to non-
isotropic cosmologies [48–50]. Also, it is critical to extend
the new construction to the context of perturbative LQC
by studies similar to those of[19, 51, 52] or in context
of nonperturbative inhomogeneous LQC like the stud-
ies of Gowdy cosmologies [53–55]. In the former case,
some results have already been obtained [56]. To pave
the way for all these constructions, we will present here a
detailed analysis of the quantum model as well as its ef-
fective dynamics for the Thiemann regularization in the
LQC framework.

In section II we present how the Thiemann regulariza-
tion (denoted by ‘TR’) can be implemented as an oper-
ator on the physical Hilbert space of LQC. For this pur-
pose, we will work in the µ̄-scheme, also called improved

dynamics. Since the Euclidean term can be treated as
in mainstream LQC, we pay special attention to the
Lorentzian part due to which non-trivial modifications
arise. When coupled to a massless scalar field, the scalar
constraint can be promoted to an evolution operator. In
section III we investigate certain properties of this evo-
lution operator and its self-adjoint extensions. In section
IV we discuss how the implementation of the scalar con-
straint leads to the physical Hilbert space with a suitable
set of physical observables. All of this is in analogy to
mainstream LQC and the numerical investigations can
therefore be executed in the same way as in [20–22]. In
section V the effective dynamics of this model is carefully
investigated, and the solution to the equations of motion
is found analytically. The simulations of the quantum dy-
namics are presented in section VI and are shown to be
well approximated by the effective dynamics. This jus-
tifies the terminology. In section VII we summarise our
results and finish with a prospect on further research.

II. FLAT FRW WITH SCALAR FIELD

In this section we recall the framework behind isotropic
LQC. For more details we refer to appendix A or the sev-
eral reviews in the literature (see e.g. [15–17]). We pay
special attention to different regularizations of the Hamil-
tonian operator and derive in detail the regularization
from [40], which is inspired by the Thiemann regulariza-
tion of the Lorentzian part.

A. Review of LQC kinematics

The starting point of LQC is the Hamiltonian formu-
lation of GR in terms of Ashtekar-Barbero variables [57–
61]. The phase space of GR is coordinatized by the
Ashtekar connection Ai

a(x) and the inverse densitized
triad Eb

i (x) which, for isotropic flat FLRW spacetime,
read (a, b, ... = 1, 2, 3 are spatial indices and i, j, .. =
, 1, 2, 4 are internal SU(2) indices)

Ai
a(x) = V −1/3

o cδia, Ea
i (x) = V −2/3

o pδia (1)

where V0 is the coordinate volume of a chosen spatial cell.
Upon reducing to the symmetric sector, their Poisson
bracket on the reduced phase space becomes

{Ai
a(x), Eb

j (y)} = 8πGγδijδ
b
aδ

(3)(x, y)

⇒ {c, p} =
8πGγ

3
(2)

where G is the gravitational coupling constant and γ ∈
R − {0} is a free choice and called the Barbero-Immirzi
parameter [62]. Mimicking the quantization procedure
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in the full theory, one wants to regularize the classical
constraints via holonomies of the connection.

As outlined in the appendix A, we will work through-
out this article with a different choice of variables. These
are a rescaled connection and the physical volume of the
chosen cell:

b := cµ̄, V := p3/2, {b, V } =
2α

~
(3)

with α = 2πG~γ
√

∆ and µ̄ the regularization parame-
ter, used in what is known as the µ̄-scheme or improved

dynamics [22]

µ̄ :=

√
∆√
|p|
, ∆ := 2π

√
3γG~ ≈ 2.61ℓ2Pl (4)

where ℓPl is the Planck length and ∆ is the smallest non-
vanishing area eigenvalue from the full theory.

The volume is promoted to a multiplication operator
V̂ on the kinematical Hilbert space Hgr, which is the sub-
space of symmetric states of L2(R̄, dµBohr(v)). And the
exponential N := eib/2 is represented by a shift operator:

V̂ |v〉 = α|v| |v〉, N̂ |v〉 = |v + 1〉 (5)

where volume-eigenstates |v〉 are normalized with respect
to the Kronecker delta

〈v|v′〉 = δvv′ (6)

This finishes the kinematical set up of LQC. Now, one
has to turn towards quantization of the scalar constraint,
which in terms of Ashtekar-Barbero variables reads

C = CE + CL (7)

where Euclidean and Lorentzian parts are respectively
(details in the appendix A)

CE =
1

16πG

ǫijkE
a
jE

b
k√

det(q)
F i
ab, (8a)

CL = −(1 + γ2)
1

16πG

ǫijkE
a
jE

b
k√

det(q)
ǫimnK

m
a K

n
b (8b)

This will be focus of the next subsection.

B. Scalar constraint with the new (Thiemann)
regularization

The regularization of the Euclidean part CE is ex-
plained in the appendix A, and its quantization reads

Ĉµ̄
E [N ]|v〉 =

3Nα

4(16πG)∆

(
F (v + 2)N̂ 4+

−F0(v)id + F (v − 2)N̂−4
)
|v〉

(9)

where the functions F0 and F are given in (A35). The
regularization of CL used in mainstream LQC is based
on relations which are only true in cosmology:

γKi
a|cos = Ai

a|cos , 2γ2Ki
[aK

j
b]|cos = ǫijkF

k
ab|cos (10)

Using these relations, one finds that in classical
cosmology the Lorentzian part is proportional to the
Euclidean part. It can therefore be regularized in the
same way. Hence, we can say that the philosophy of
mainstream LQC is “first reduce, then regularize”. On
the other hand, one can propose a new regularization
scheme for CL, which follows the opposite philosophy:
“first regularize, then reduce”. In other words, we first
consider a regularization of CL which is valid in full GR
– incidentally, the one due to Thiemann [11, 12] and
currently used in LQG – and where the Lorentzian part
is not proportional to the Euclidean part. Afterwards,
we reduce to the sector of flat cosmology and promote
the resulting expression to a quantum operator in LQC.2

Let us start by pointing out the second Thiemann
identity, which is true in full GR, and can be regularized
using a regularization parameter ǫ > 0 independent of
the phase space variables:

τjK
j
a =

1

8πGγ3
{τjAj

a, {CE [1], V }}

= − 1

8πGγ3ǫ
ha{h†a, {Cǫ

E [1], V }} + O(ǫ)

(11)

where ha is the holonomy of a path oriented along coordi-
nate direction a and of coordinate length ǫ. τj := −iσj/2
are the generators of the Lie algebra su(2), with σj be-
ing the Pauli matrices. However, one has to be careful
in passing from ǫ to µ̄, which is phase space dependent.
Indeed, Thiemann identity (11) is only correct if ǫ is in-
dependent of the phase space point. Thus, instead of
performing the replacement ǫ → µ̄ in (11), we make use
of the following observation from [40], which is true only

in cosmology:

τjK
j
a = −4ha{h†a, {Cµ̄

E [1], V }}
3µ̄(16πG)γ3

+ O(∆) (12)

where µ̄ is given in (4). With this identity one finds (see
appendix A)

Cµ̄
L[N ] = − (1 + γ2)N

γ7(4πG)4
ǫabc

9∆3/2
Tr
(
ha{h†a, {Cµ̄

E[1], V }}◦
√
V hb{h†b, V }

√
V hc{h†c, {Cµ̄

E [1], V }}
)

(13)

2 The philosophy behind this procedure is the same which led to
the quantum operators for the Euclidean part, which was based
on cosmological expressions after implementing the regulariza-
tion (A30).
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The quantization of (13) on the Hilbert space of LQC
can now be done in the standard way: promoting h and

V to operators and recalling that {̂., .} = [., .]/(i~), we
find

Ĉµ̄
L[N ] =

(1 + γ2)N

γ7(4πG)4
i ǫabc

9∆3/2~5
Tr
(
ĥa[ĥ†a, [Ĉ

ǫ
E [1], V̂ ]]◦

√
V̂ ĥb[ĥ

†
b, V̂ ]

√
V̂ ĥc[ĥ

†
c, [Ĉ

ǫ
E [1], V̂ ]]

)

(14)

Its action on |v〉 reads (details in appendix A)

Ĉµ̄
L[N ]|v〉 =

3Nα

16πG∆210
1 + γ2

4γ2

(
G(v − 4)N̂−8+

−G0(v)I +G(v + 4)N̂ 8
)
|v〉

(15)

where the functions G(v) and G0(v) are given in (A50).
This is the new quantum operator for the Lorentzian

part of the scalar constraint. The sum of the Euclidean
part (A34) and this Lorentzian part (15) completes the
alternative quantization of the scalar constraint for flat
cosmology:

Ĉµ̄[N ] := Ĉµ̄
E [N ] + Ĉµ̄

L[N ] (16)

So far we discussed the gravitation degrees of freedom.
In this work, we consider the matter content to be a
massless, free scalar field φ that is minimally coupled to
gravity. The field serves as a physical clock with respect
to which we deparametrize the system. The action of
matter is:

Sφ = −1

2

∫

M
d4x

√−ggµν(∂µφ)(∂νφ) (17)

Upon a Legendre transformation and in the presence of
an isotropic, spatially flat metric, the above equation
leads to the total scalar constraint:

Ctot[N ] = CE [N ] + CL[N ] + Cφ[N ], (18a)

Cφ[N ] = N |p|− 3
2 p2φ/2 (18b)

where pφ is the canonical conjugate momentum to φ. We
follow the strategy of [63], where the lapse function is
chosen to be N = 2V . This convenient choice makes
Cφ[2V ] independent of the geometric variables. Then,
using Schröndinger representation for φ, the matter part
of the constraint can be promoted to an operator

Ĉφ = IHgr ⊗ (i~∂φ)2 (19)

on the direct product Hilbert space Hkin = Hgr ⊗ Hφ,
with Hφ = L2(R, dφ).

To express the full quantum constraint equation in
Hkin one chooses a symmetric ordering for gravitational
part of the scalar constraint with respect to the volume
operator in the lapse function, i.e.

−~
2∂2φ = −2

√
V̂ (Ĉµ̄

E [1] + Ĉµ̄
L[1])

√
V̂ =: ~2ΘTR (20)

For the physical time evolution, one has to take the
square root of (20) and hence we will investigate

√
|ΘTR|

in the next chapter.
For the remainder of this paper we will proceed in a “large
v approximation”, where the operator shall be defined
only in the region v > 8 such that the absolute values in
the functions F and G may be dropped. In this case the
expressions simplify to

Ĉµ̄
E [N ]|v〉 = − 3Nα

2(16πG)∆
×

(
(v + 2)N̂ 4 − 2v I + (v − 2)N̂−4

)
|v〉

(21a)

Ĉµ̄
L[N ]|v〉 =

3Nα

2(16πG)∆

1 + γ2

4γ2
×

(
(v + 4)N̂ 8 − 2v I + (v − 4)N̂−8

)
|v〉

(21b)

Plugging this into (20) we find finally:

ΘTR =
3

(16πG)~2∆

√
V̂
(
−sN̂ 4V̂ N̂ 4+

+ N̂ 2V̂ N̂ 2 + 2(s− 1)V̂+

N̂−2V̂ N̂−2 − sN̂−4V̂ N̂−4
)√

V̂

(22)

where s := (1 + γ2)/(4γ2).
Unlike the standard LQC, where the evolution operator
is a difference operator of the 2nd order, in this case ΘTR

is a difference operator of the 4th order.

III. PROPERTIES OF THE EVOLUTION
OPERATOR

Unlike the full LQG, the models of LQC (including the
one investigated here) are usually sufficiently simple to al-
low determining explicitly the spectrum of the quantum
Hamiltonian constraint and its components, as well as
evaluating explicitly the physical Hilbert space basis ele-
ments defined by the spectral decomposition of these op-
erators. Having that at one’s disposal, it is then relatively
straightforward to solve the Hamiltonian constraint us-
ing group averaging methods [64–67]. These techniques
(standard for LQC, [21]) will be employed here directly.
A central step in this application is the systematic spec-
tral analysis of the evolution operator ΘTR.
The operator itself is well defined on the domain of finite
sums of the volume eigenstates |v〉 being dense in Hgr.
However, the problem is that Hgr itself is nonseparable.
Fortunately, the method of splitting Hgr into superselec-
tion sectors, used in mainstream LQC [21, 68], can still
be applied here: the sets (the ’lattices’) Lǫ = ǫ + 4Z,
ǫ ∈ (0, 4] are preserved by action of ΘTR and the set of
observables used to describe the dynamics (which is the
case here, as in the mainstream LQC). Hence, one can
divide Hgr into separable subspaces of square summable
functions supported on a given lattice. The structure of
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this division allows to select just one superselection sector
and work with it without loss of generality of the results.
We then focus our attention on the sector corresponding
to ǫ = 4.3

Furthermore, we use the fact that the matter field
present in the model is parity-invariant (that is, it is in-
variant with respect to the change of sign of v encoding
the triad orientation), to conclude that the parity reflec-
tion is a large gauge transformation. In such situation
we can further divide the Hilbert space into the supers-
election sectors of symmetric and antisymmetric states,
of which we choose the former.4 As a consequence, we
end up with the sector of square summable functions sup-
ported on the semi-lattice 4Z+.
Having selected the separable superselection sector, we
can now probe the spectrum of (the self-adjoint exten-
sions of) ΘTR and construct the basis of the physical
Hilbert space composed of the “energy” eigenvectors. For
that we need to analyze the generalized eigenvalue prob-
lem for this operator.

A. The eigenvalue problem and representations

Given the choice of superselection sectors discussed
above, we restrict the domain of definiteness of ΘTR to
the space D of finite sums

D := {|ψ〉 ∈ Hgr : |ψ〉 =

N∑

n=1

cn|4n〉, cn ∈ C, N ∈ N}.

(23)
Consider now the generalized eigenvalue problem

(Ψλ|Θ†
TR − λ⋆I|ψ〉 = 0, ∀|ψ〉 ∈ D . (24)

The direct inspection of the form of ΘTR (22) shows that
the above equation can be solved recursively as follows:

• The value of Ψλ(v) := (Ψλ|v〉⋆ at v = 12 is deter-
mined by the pair Ψλ(v = 4),Ψλ(v = 8) (v = 0
decouples, while for v = −4 we use the symmetry
of Ψ).

• The value of Ψλ(v) := (Ψλ|v〉⋆ at v = 16 is deter-
mined by the triple Ψλ(v = 12),Ψλ(v = 8),Ψλ(v =
4) (v = 0 again decouples).

• For each n ∈ Z+, the value Ψλ(v = 4(n+ 4)) is de-
termined by a quadruple Ψλ(v = 4(n+ 3)),Ψλ(v =
4(n+ 2)),Ψλ(v = 4(n+ 1)),Ψλ(v = 4n).

3 The sector of states |v = 0〉 decouples from the rest of the lattice,
thus evolves independently.

4 Choosing the antisymmetric sector in LQC models without
fermions affects only the details of the discrete spectra, thus does
not produce significant differences in the dynamical predictions.
See for example [24].

In consequence the whole eigenvector is uniquely deter-
mined by the first two values Ψλ(v = 4),Ψλ(v = 8), thus
the space of solutions has dimension 2.
A particularly interesting subset of solutions are the
eigenvectors corresponding to λ ∈ R as all the physical
Hilbert space elements will necessarily belong to this sub-
set. Under this restriction the real and imaginary part
of Ψλ(v) decouple due to reality of operator ΘTR. Thus,
without loss of generality one can assume the reality of
Ψλ(v).
Unfortunately, even with this simplification the eigen-
value problem can only be solved numerically (see fig. 1).
What we can infer from the numerical solutions is the
qualitative behavior of the eigenfunctions. Since the dy-
namics is generated by the operator

√
|ΘTR| we are inter-

ested in positive eigenvalues λ = ω2. For a given eigen-
function Ψλ=ω2 , we observe two ω-dependent regions for
v ∈ 4Z+: the exponential suppression region (for small
v) and the (quasi)-oscillatory region for v above a certain
critical (ω-dependent) value. This picture is quite charac-
teristic to the cosmic bounce, however the oscillatory pat-
tern is much more complicated than in the mainstream
LQC, indicating much richer large volume (or more pre-
cisely low energy) structure. To determine it, we employ
the analytic studies of the eigenvector asymptotics, using
the technique originally specified in [47]. In order to not
break the reasoning flow, the details of the derivation are
presented in Appendix B. Here we just present the result:

Ψλ=ω2(v) =
1√
v
NF (ω) cos(k ln(v) + σF (ω))

+
1

|v|NS(ω) cos(ΩSv + κ(ω)/v + σS(ω)) +O(v−2),

(25)

where NF , NS are normalization constants, k, ΩS and κ
are related in the following way

ω =
√

12πGk, cos(4ΩS) =
1 − 2s

2s
, (26)

κ(ω) =
2s− 3

2
√

4s− 1
+

4sk2√
4s− 1

,

and σF , σS are phase shifts.
The comparison with the asymptotic form of evolu-

tion operator eigenfunctions in mainstream LQC [21, 23]
shows that, for large v, the eigenfunctions Ψλ=ω2 con-
verge to a linear combination of two terms: one coincides
with the eigenfunction obtained in mainstream LQC; the
other agrees with the eigenfunction of mainstream LQC
with positive cosmological constant. Comparing the ex-
pressions for ΩS and κ (the latter up to an additive con-
stant) with their analogs in mainstream LQC listed in
eq. (4.2) of [69] allows to cast the new model as main-
stream LQC with a cosmological constant given by

Λ =
8πGρLQC,Λ=0

c

1 + γ2
(27)
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Figure 1. An example of the eigenfunction Ψλ to the evolution
operator ΘTR corresponding to the eigenvalue λ = 12πGk2

(where k = 10). One can observe: (i) the reflected wave pat-
tern and (ii) the asymptotic approach to a combination of two
asymptotic waveforms given by eq. (25). For better visual-
ization of the behavior an envelope (green line) compensating
for rapid oscillations due to Ωs > π has been added.

where ρLQC,Λ=0
c = 3/(8πGγ2∆) is the critical energy

density of matter as obtained in mainstream LQC with-
out cosmological constant. In the following, we will de-
note this quantity simply by ρc.
As is well known [46], mainstream LQC admits a classi-
cal limit in which the cosmological constant is renormal-
ized. The effective cosmological constant is related to the
“bare” one, Λ, by

Λeff = Λ

(
1 − Λ

8πGρc

)
(28)

which, given (27), in the new model reads

Λeff =
3

∆(1 + γ2)2
. (29)

Given the similarity between the new model and main-
stream LQC with cosmological constant, it is convenient
to use the methods already applied in the literature [23].

The crucial first step is the transformation to the mo-
mentum b

ψ̃(b) = [Fψ](b) =
∑

v∈L4

|v|−1/2ψ(v)e(i/2)vb, (30)

where for the selected superselection sector, the domain
of b is a circle of radius 1/2 and the parity reflection
symmetry transforms into the symmetry

ψ̃(b) = ψ̃(π − b). (31)

In this coordinate the evolution operator takes the form

ΘTR = 12πGγ2
[
(sin(b)∂b)

2 − s(sin(2b)∂b)
2
]
. (32)

Plugging it into the Klein-Gordon form (20) of the Hamil-
tonian constraint, we observe that in the coordinates
(φ, b) it becomes a partial differential equation of mixed
signature with the boundary defined by

cos(bo) = 1/
√

4s. (33)

For b such that | cos(b)| < cos(bo) the constraint is hyper-
bolic, whereas for | cos(b)| > cos(bo) it becomes elliptic,
which indicates that the latter is a classically forbidden
region. It is then sensible to introduce a coordinate x(b)
such that

ΘTR = −12πG sgn(|x| − xo)∂2x, xo = −x(bo) (34)

Unlike in [23] the relation x ↔ b can be expressed ana-
lytically and is given by

x(b) =





1
2 ln

[
1 − 2

√
1−(1+γ2) sin2(b)

cos(b)+
√

1−(1+γ2) sin2(b)

]
− π

2 , b ∈ (0, bo),

− arctan

(
cos(b)√

(1+γ2) sin2(b)−1

)
, b ∈ (bo, π − bo),

1
2 ln

[
1 − 2

√
1−(1+γ2) sin2(b)

cos(b)+
√

1−(1+γ2) sin2(b)

]
+ π

2 , b ∈ (π − bo, π).

(35)

The new coordinate spans the entire real line, with

lim
b→0

x(b) = −∞, x(bo) = −π/2, x(π/2) = 0,

x(π − bo) = π/2, lim
b→π

x(b) = +∞, (36)

and is globally continuous, but not differentiable at the
points x = ±π/2. The parity reflection symmetry trans-
forms into the symmetry with respect to the reflection
about x = 0, namely ψ(x) = ψ(−x) (this follows from
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the fact that ψ(v) = ψ(−v) implies ψ̃(b) = ψ̃(π − b) and
that, by direct observation of (35), x(π − b) = −x(b)).
Due to the non-differentiability at ±π/2, an application
of the form (34) to the eigenvalue problem (24) will gen-
erate nontrivial boundary terms at x = ±π/2. The
derivation, being a straightforward application of the so-
lution from Sec. IIIA of [23], is briefly outlined in the
Appendix D. Its result is that at x = ±π/2 the eigen-

function Ψλ(x) := Ψ̃λ(b) corresponding to an arbitrary
complex eigenvalue λ needs to be continuous but not nec-
essarily differentiable, thus satisfying

Ψλ(x) = ζ





cos(
√
λ/(12πG) |x| + ϕ), |x| > π/2,

cos(
√
λ/(12πG)(π/2) + ϕ)

cosh(
√
λ/(12πG)(π/2))

×

cosh(
√
λ/(12πG)x),

|x| ≤ π/2,

(37)
where ζ is a free complex constant and ϕ is a free phase
shift. The non-differentiability at ±π/2 will be a crucial
determinant of the structure of self-adjoint extensions of
ΘTR.

B. Self-adjointness, extensions

A crucial initial step in probing the unitary time evo-
lution of physical states generated by ΘTR (more pre-

cisely
√
|ΘTR|) is determining whether it admits any self-

adjoint extension and whether such extension is unique.
Within the mainstream LQC framework the evolution
operator of the the model of flat isotropic universe
with scalar field admits a unique self-adjoint extension,
whereas the analogous operator in presence of positive
cosmological constant admits an entire family. Since the
large v asymptotics of eigenvectors features the proper-
ties of the eigenvectors of both these models (see subsec-
tion III A), the answer to the above question is nontriv-
ial. To answer it, we again employ the techniques from
[47, 69].

The direct inspection of (22) shows that it is symmet-
ric. Also, the elements ψ of the domain D satisfy (due
to smoothness in b, as they are the finite sums defined in
(23) transformed via (30)) the conditions

lim
x→±∞

∂xψ(x) = lim
x→±∞

(∂xb)∂bψ(x(b)) = 0,

[∂xψ](±π/2) = 0. (38)

due to ∂xb being zero at those points.

In order to determine the structure of self-adjoint ex-
tensions of ΘTR we need to investigate its deficiency
spaces [70]. They can be defined as the spaces of nor-
malizable solutions to the eigenvalue problem (24) for

the eigenvalues ±24πGi5

K± = {ψ ∈ Hgr : ∀χ ∈ Hgr 〈ψ|Θ†
TR ∓ 24πGiI|χ〉 = 0}.

(39)
The form of all Ψ± ∈ K± can be determined by solv-
ing the eigenvalue equation of ΘTR (as given in (34)) for
λ± = ±24πGi. Neglecting the non-decaying solutions,
demanding continuity at x = ±π/2, and using the sym-
metry x→ −x, we find

Ψ±(x) = ζ

{
(eπ − 1)e(±i−1)|x|, |x| > π/2,

e(1±i)x + e−(1±i)x, |x| ≤ π/2,
(40)

where the phase ϕ has been absorbed in the free com-
plex constant ζ. Therefore, both deficiency spaces are of
dimension 1. In such case, the operator admits a family
of self-adjoint extensions, each associated with a unitary
transformation Uσ : K+ → K−. For dim(K±) = 1 all the
unitary transformations are just phase rotations, that is,
for chosen normalized deficiency functions Ψ±

o , Uσ acts
as

UσΨ+
o = eiσΨ−

o . (41)

The extensions of the domain are by Theorem X.2 of [70]
of the form

Dσ = {ψ + c(Ψ+
o + UσΨ+

o ), ψ ∈ D,Ψ+
o ∈ K+, c ∈ C}.

(42)
A convenient property of the extension elements is that
the ratios of their left and right derivatives at the bound-
ary x = ±π/2 depends on the extension only. Indeed, the
elements of D do not contribute to the derivatives, which
leaves only the relatively easy to evaluate contribution of
the deficiency functions: for all ψσ ∈ Dσ one has

limx→+π/2 ∂xψσ

limx→−π/2 ∂xψσ
=

limx→−−π/2 ∂xψσ

limx→+−π/2 ∂xψσ

=
limx→+π/2 ∂x(e−iσ/2Ψ+

o + eiσ/2Ψ−
o )

limx→−π/2 ∂x(e−iσ/2Ψ+
o + eiσ/2Ψ−

o )

= tanh(π/2)
cos(σ/2) + sin(σ/2)

cos(σ/2) − sin(σ/2)
=: − tan(β)

(43)

where in the second step we used (38).
By direct inspection one can check, that the relation be-
tween β ∈ [0, π) and Uσ is bijective, thus β can replace
σ as the extension label. This in turn allows to associate
to a choice of a self-adjoint extension a physical mean-
ing: each extension corresponds to particular boundary
conditions at x = ±π/2.

Each extension (now denoted as Dβ) of the origi-
nal domain D is dense in Hgr. Furthermore, by self-
adjointness, the spectrum of each extension Θβ of ΘTR

5 Precisely, the deficiency functions are defined as normalizable
solutions to the eigenvalue problem for λ = ±i, however one can
safely rescale the eigenvalues by any real factor.
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is real. Since in the considered physical system only the
positive part of ΘTR is relevant (due to the solution of the
constraint (20)), its spectral decomposition will distin-
guish a proper6 subspace Hβ of Hgr. Each subspace Hβ is
spanned by a basis composed of normalized eigenvectors
(37) corresponding to eigenvalues λ > 0 and satisfying
the condition (43) (reducing the originally 2-dimensional
eigenspace to a 1-dimensional one)

Ψβ,k(x) = ζ

{
cos(k|x| + ϕ(β,k)), |x| > π/2,
cos(kπ/2+ϕ(β,k))

cosh(kπ/2) cosh(kx), |x| ≤ π/2

(44)
where λ = ω2 = 12πGk2 and ϕ(β, k) is fixed by (43) to

tan(kπ/2 + ϕ(β,k)) = tan(β) tanh(kπ/2). (45)

Thus, the eigenspaces are non-degenerate.
Recalling the asymptotic behavior of eigenfunctions for

large v (25), we observe that the considered eigenfunc-
tions are Dirac delta normalizable (i.e. their norm is
proportional to δ(0)), thus the spectrum of |Θβ| is con-
tinuous (due to non-degeneracy). Furthermore, the con-
vergence (modulo the shift in v) of the eigenfunctions
Ψβ,k to the analogous eigenfunctions of the mainstream
LQC evolution operator7 allows to conclude that:

(i) the spectrum of |Θβ| is the entire positive real line,
Sp(|Θβ |) = R+

(ii) following the reasoning of Appendix D, we find the
normalization constant

ζ =
4√
|k|

(46)

From now on, we will denote the normalized eigenfunc-
tions by eβ,k.

To summarize: throughout this section we have es-
tablished the existence of self-adjoint extensions of the
evolution operator ΘTR; we characterized the family of
these extensions and explicitly constructed an orthonor-
mal (in the sense of distributions) basis of a subspace
Hβ ⊂ Hgr relevant for the physical model considered.
Hβ is spanned by the eigenstates of the corresponding
extension |Θβ | of |ΘTR|. These structures will be used in
the next section to construct the physical Hilbert space
and probe the dynamical behavior of the model.

IV. THE DYNAMICAL SECTOR

In order to complete the Dirac quantization program
we need to:

6 By choosing for example a smooth function supported on a
compact interval within |x| < π/2, one can show explicitly that
ΘTR is not positive definite.

7 This follows directly from the observation that both families of
eigenfunctions share the same leading order asymptotics (modulo
phase shifts), see (25).

1. construct the physical Hilbert space

2. construct a sufficiently large family of observables
encoding physically relevant properties of the sys-
tem

3. probe the dynamical behavior of a class of semi-
classical states sufficiently rich to provide robust
insights

These steps will be performed in the next two subsec-
tions, following the methods already introduced in [21–
23].

A. Physical Hilbert space

While the construction of a physical Hilbert space
for constrained systems is a nontrivial task, systematic
methods exist. One of the most convenient is the so-
called “group averaging” [64] (which has been applied to
mainstream LQC in [21]). Its main component is the
construction of a rigging map which “averages” the kine-
matical states over a group of transformations generated
by constraints. In the case at hand this map takes the
form (Dkin := D ⊗ S(R) ⊂ Hkin)

η : Dkin → D⋆
kin, η(ψ) =

(∫

R

dNeiNCβψ

)†

Cβ = −(I⊗ ∂2φ + Θβ ⊗ I) . (47)

The physical Hilbert space is then defined as Hphy :=

Im[η], with an induced physical inner product (cf. [64])

(η(ψ)|η(ψ′))phy := [η(ψ)](ψ′) =

∫

R

dN(ψ|e−iNCβψ′)kin

(48)
The space of physical states is a union of the positive and
negative frequency superselection sectors (corresponding,
respectively, to the positive and negative part of the spec-
trum of i∂φ). The restriction to the positive frequency
sector (per analogy with Klein-Gordon equation) can be
safely performed by just replacing Cβ in the expressions

above with C+
β := I⊗i∂φ+

√
|Θβ |⊗I. To characterize the

physical states, let us start by expanding ψ(x, φ) ∈ Dkin

on the basis (eβ,k⊗ϕσ)(x, φ) = eβ,k(x)eiσφ of eigenstates

of
√
|Θβ | ⊗ I and I⊗ i∂φ:

ψ(x, φ) =

∫
dkdσ c(k, σ)eβ,k(x)eiσφ (49)

Using this, one finds for the physical state

[η(ψ)](x, φ) =

[∫
dkdσc(k, σ)

∫

R

dNeiN(ω(k)−σ)eβ,k(x)eiσφ
]⋆

= 2π

[∫
dkdσ c(k, σ)δ(ω(k) − σ)eβ,k(x)eiσφ

]⋆

= 2π

∫
dk c⋆(k, ω(k))e⋆β,k(x)e−iω(k)φ (50)
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where in the first step we observed that eβ,k(x)eiσφ

is eigenstate of C+
β with eigenvalue ω(k) − σ, and in

the second we performed the integral over N to ob-
tain 2πδ(ω(k) − σ). Equation (50) makes it apparent
that we can identify a physical state with a 1-parameter
family Ψφ of elements of the gravitational Hilbert space
Hβ : their components on the basis eβ,k being fφ(k) :=

2πc(k, ω(k))eiω(k)φ, so we have

η(ψ) → Ψφ(x) := 2π

∫
dk c(k, ω(k))eβ,k(x)eiω(k)φ,

(51)

with c(k, ω(k)) :=
(
eβ,k⊗ϕω(k)|ψ

)
kin

. This identification
Hphy → Hβ preserves the scalar product. Indeed,

(η(ψ)|η(ψ′))phy = [η(ψ)](ψ′)

=

∫
dxdφdN ψ⋆(x, φ)×

∫
dk′dσ′c′(k′, σ′)e−iN(ω(k′)−σ′)eβ,k′(x)eiσ

′φ

= 2π

∫
dkdk′dσdσ′ c⋆(k, σ)c′(k′, σ′)δ(ω(k′) − σ′)×

∫
dφ eiφ(σ

′−σ)

∫
dxe⋆β,k(x)eβ,k′(x)

= 2π

∫
dkdk′dσdφ c⋆(k, σ)c′(k′, ω(k′))eiφ(ω(k′)−σ)δ(k − k′)

= (2π)2
∫

dkdσ c⋆(k, σ)c′(k, ω(k))δ(ω(k) − σ)

= (2π)2
∫

dk c⋆(k, ω(k))c′(k, ω(k)) (52)

which coincides with (Ψφ|Ψ′
φ)β =

∫
dxΨ⋆

φ(x)Ψ′
φ(x) =∑

v∈L4
Ψ⋆

φ(v)Ψ′
φ(v).

Relation (51) allows to interpret the structure re-
sulting from group averaging as the deparametrization
“on the quantum level” of the system with respect to
the scalar field, now attaining the role of an internal
clock (or a matter time). Under this interpretation,
the system is the vacuum one, i.e., only gravitational
degrees of freedom are physical: hence, the role of
the physical Hilbert space is played by the subspace
Hβ ⊂ Hgr, and time evolution (in terms of the scalar

field) is generated by a true Hamiltonian
√
|Θβ |. The

unitary time-evolution operators are then

Uβ,φ,φ′ : Hβ → Hβ, Uβ,φ,φ′ := ei
√

|Θβ |(φ′−φ)

Ψφ′(x) = Uβ,φ,φ′Ψφ(x). (53)

This interpretation will be used in the next subsection
to provide an intuitive construction of physically useful
observables.

B. Observables

The last component needed to describe the dynamical
sector of the theory is a sufficiently rich set of physical ob-
servables. Mathematically, these should be Dirac observ-
ables, that is, operators Ô on Dkin such that [Ô, C+

β ] = 0.
Indeed, if we are given such an operator, its action can be
lifted to the physical Hilbert space Hphy by the formula

Ôη(ψ) := η(Ô†ψ) (54)

Then, calling ψ′ := Ô†ψ, we can find the corresponding
Ψ′

φ(x) according to equation (51), and therefore obtain

the action of Dirac observable Ô on Hβ .

The simplest example of such an operator is the
scalar field momentum P̂φ := I ⊗ p̂φ : Dkin → Dkin

which, as we will now see, plays the role of energy and
is a constant of motion. Clearly, it commutes with the
constraint, so it is a Dirac observable. Then, its action
on physical state η(ψ) passes to the action on ψ, and so
we find

ψ′(x, φ) = (P̂ †
φψ)(x, φ) (55)

=

∫
dkdσc(k, σ)eβ,k(x)i~∂φe

iσφ

=

∫
dkdσ[−~σc(k, σ)]eβ,k(x)eiσφ

Comparing this with the form (49), we read off c′(k, σ) =
−~σc(k, σ). Hence, following (51), we conclude that the

physical state P̂φη(ψ) is represent on Hβ by

Ψ′
φ(x) = −2π~

∫
dk ω(k)c(k, ω(k))eβ,k(x)eiω(k)φ (56)

In other words, the action of Dirac observable P̂φ is de-
fined on Hβ as

P̂φΨφ = −~

√
|Θβ |Ψφ (57)

Since, in light of the discussion above,
√
|Θβ| can be

thought of as the true Hamiltonian of the system, we
see that P̂φ is in fact the energy operator. Moreover,

in the k-representation of Hβ , the operator P̂φ acts by
multiplication. This in particular means that, for the
energy Gaussians cGauss(k, ω(k)) that we will consider
for explicit computations later (see equation (112)), the

expectation value and variance of P̂φ equal

〈P̂φ〉 = ~ω⋆, ∆Pφ = ~σ/
√

2 (58)

The scalar field momentum P̂φ is not the only Dirac
observable. In fact, given any self-adjoint operator
L̂ : Hgr → Hgr, the rigging map (47) defines a 1-

parameter family of Dirac observables L̂φ′ : Dkin → Dkin.
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These are known as partial observables [71–74], and are
given as follows (see for example [75]):

L̂φ′ =

∫

R

dNe−iNC+
β [L̂⊗ δ̂φ′ ]eiNC+

β (59)

where (δ̂φ′g)(φ) = δ(φ − φ′)g(φ) in the scalar field rep-

resentation. Again, the action of operator L̂φ′ lifts to
the physical Hilbert space by (54), and hence it can be
defined on Hβ by the same procedure. First, we identify
the kinematical state ψ′ that results from the action of
L̂φ′ on ψ:

ψ′(x, φ) = (L̂†
φ′ψ)(x, φ)

=

∫
dN
(
e−iNC+

β [L̂⊗ δ̂φ′ ]eiNC+
β ψ
)
(x, φ)

=

∫
dN

∫
dkdσ[e−iNC+

β eβ,k ⊗ ϕσ](x, φ)×
(
eβ,k ⊗ ϕσ|[L̂⊗ δ̂φ′ ]eiNC+

β ψ
)
kin

=

∫
dN

∫
dkdσ

∫
dk′dσ′c(k′, σ′)e−iN(ω(k)−σ−ω(k′)+σ′)×

eβ,k(x)eiσφ
(
eβ,k, L̂eβ,k′

)
gr

(
ϕσ|δ̂φ′ϕσ′

)
φ

= 2π

∫
dkdσ

∫
dk′c(k′, ω(k′) + σ − ω(k))eβ,k(x)×

eiσφ
(
eβ,k, L̂eβ,k′

)
β
eiφ

′(ω(k′)−ω(k)) (60)

where in the third step we introduced a resolution of
identity in terms of eβ,k ⊗ ϕσ; in the fourth step we ex-
panded ψ on the same basis, and evaluated the opera-

tors eiNC+
β using the fact that eβ,k ⊗ ϕσ is eigenstate

of C+
β with eigenvalue ω(k) − σ; in the fifth step we

observed that
(
ϕσ|δ̂φ′ϕσ′

)
φ

=
∫

dφϕ⋆
σ(φ)[δ̂φ′ϕσ′ ](φ) =∫

dφδ(φ − φ′)eiφ(σ
′−σ) = eiφ

′(σ′−σ) and then performed
the integral over N obtaining δ(ω(k) − σ − ω(k′) + σ′),
which we used to consume the integral over σ′. Compar-
ing this form of ψ′ with (49), we read off

c′(k, σ) =

∫
dk′c(k′, ω(k′) + σ − ω(k))

(
eβ,k, L̂eβ,k′

)
β
eiφ

′(ω(k′)−ω(k)) (61)

Thus, the action of L̂φ′ is defined on Hβ :

[L̂φ′Ψφ](x) = 2π

∫
dkc′(k, ω(k))eβ,k(x)eiω(k)φ

= 2π

∫
dkdk′c(k′, ω(k′))

(
eβ,k, L̂eβ,k′

)
β

eiφ
′ω(k′)ei(φ−φ′)ω(k)eβ,k(x)

=

∫
dk
(
eβ,k, L̂Ψφ′

)
β
ei(φ−φ′)ω(k)eβ,k(x)

=

∫
dk
(
e−i(φ−φ′)

√
|Θβ |eβ,k, L̂Ψφ′

)
β
eβ,k(x)

= [ei(φ−φ′)
√

|Θβ |L̂Ψφ′ ](x) (62)

Taking the scalar product with a different state Ψ′
φ, we

find the matrix elements of L̂φ′ on Hβ :

(
Ψ′

φ|L̂φ′Ψφ

)
β

=
(
e−i(φ−φ′)

√
|Θβ |Ψ′

φ|L̂Ψφ′

)
β

=
(
Ψ′

φ′ |L̂Ψφ′

)
β

=

∫
dxΨ′⋆

φ′(x)[L̂Ψφ′ ](x) (63)

These matrix elements coincide with the matrix element
of L̂φ′ on physical Hphy:

(
η(ψ′)|L̂φ′η(ψ)

)
phy

=
(
η(ψ′)|η(L̂†

φ′ψ)
)
phy

=

∫

R

dN
(
ψ′|e−iNC+

β L̂†
φ′ψ
)
kin

=

∫
dNdM

(
ψ′|e−i(N−M)C+

β [L̂⊗ δ̂φ′ ]e−iMC+
β |ψ

)
kin

=

∫
dNdM

∫
dkdσ

∫
dk′dσ′c′⋆(k, σ)c(k′, σ′)

∫
dxdφδ(φ − φ′)

[
ei(N−M)C+

β eβ,k(x)eiσφ
]⋆

[L̂⊗ I]e−iMC+
β eβ,k′(x)eiσ

′φ

=

∫
dNdM

∫
dkdσ

∫
dk′dσ′c′⋆(k, σ)c(k′, σ′)e−i(N−M)(ω(k)−σ)e−iM(ω(k′)−σ′)e−i(σ−σ′)φ′

∫
dxe⋆β,k(x)L̂eβ,k′(x)

= (2π)2
∫

dk

∫
dk′c′⋆(k, ω(k))e−iω(k)φ′

c(k′, ω(k′))eiω(k′)φ′

∫
dxe⋆β,k(x)[L̂eβ,k′ ](x)

=

∫
dxΨ′⋆

φ′(x)[L̂Ψφ′ ](x) (64)

In the fourth step we represented the kinematical scalar product in (x, φ)-variables and expanded ψ(x, φ) and



11

ψ′(x, φ) on the basis eβ,k(x)eiσφ; in the fifth step we used
the fact that eβ,k(x)eiσφ is eigenstate of C+

β with eigen-

value ω(k) − σ, and we consumed the integral over φ; in
the sixth step we observed that the integrals over N and
M produce 2πδ(ω(k)−σ) and 2πδ(ω(k)−σ−ω(k′)+σ′)
respectively, and we used them to consume the integrals
over σ and σ′; finally, in the last step, we resummed the
integeals over k and k′, noting that the resulting object
is the matrix element of Ô on wavefunctions of the form
(51).

The particular (1-parameter families of) operators
we are interested in will be constructed out of the
following gravitational kinematical observables:

(i) The compactified volume

θ̂K := arctan(V̂ /(αK)), (65)

where K is a positive real dimensionless constant
chosen arbitrarily. The compactification is neces-
sary, since the partial observables constructed out of
V̂ would lead outside of the physical Hilbert space,
as it happens in the LQC model with positive cos-
mological constant [23].

(ii) The matter energy density (which, by the con-
straint, is equal to the gravitational energy density):

ρ̂φ =
1

2
V̂ −1ΘβV̂

−1. (66)

(iii) The Hubble rate

Ĥr =
i

6
[V̂ , V̂ −1ΘβV̂

−1]. (67)

These observables together form a sufficiently large set
to verify the correctness of the low energy limit of the
model, as well as to identify novel properties character-
istic of the chosen regularization scheme. The quantum
evolution of these observables is analysed in the semi-
classical regime and the results are presented and dis-
cussed in section VI. However, before moving to that, we
expose the construction and analysis of an effective de-
scription of the quantum model, as it is quite useful to
evaluate the phenomenological aspects of the quantum
theory through an effective model. Indeed, a very in-
teresting feature of the mainstream LQC is that, for all
the models whose genuine quantum dynamics was tested,
the evolution of the universe was very accurately mim-
icked by certain classical effective models known under
the name of classical effective LQC. Since a lot of inter-
esting results of LQC came from classical effective models
(as the extrapolation of genuine quantum approach), it
would be extremely useful to recover such effective ap-
proach for the regularization scheme investigated in this
paper. This is the subject of the next section, while the
comparison between the quantum and effective models is
featured in section VI.

V. EFFECTIVE DYNAMICS

As we have seen, the asymptotic analysis of the eigen-
states of the evolution operator leads to the conclusion
that contributions appear that are due to the dynam-
ics driven by an effective cosmological constant. This is
quite surprising (since the “bare” theory we started from
does not have any cosmological constant), and in stark
contrast with standard LQC – where, if one studies flat
FLRW universe without “bare” cosmological constant,
no “emergent” cosmological constant appears.

In this section we shall construct a function Heff on
the phase space of cosmology which plays the role of “ef-
fective Hamiltonian” for the regularization presented in
this paper. The name is justified since, as we will see in
section VI, the dynamics it generates well-approximates
the quantum evolution of semiclassical states.

Given this function, it is easy to derive the Hamil-
ton’s equations of motion which, surprisingly, can be in-
tegrated analytically. Once the full solution is known, we
will study the asymptotic limit of vanishing energy den-
sity of matter, and find that, in the far past (with respect
to cosmic time), the universe is essentially a contracting
de Sitter solution with emergent cosmological constant
(whose value agrees with (29)). Moreover, higher order
corrections amount to a rescaling of Newton constant.

At this point, we would like to bring to the readers’ at-
tention that, already after publication of the letter [41],
summarizing our results, the effective dynamics of the
system studied here (and its extension by inclusion of the
massive inflaton scalar field) has been investigated inde-
pendently in [76]. In particular its authors have found the
Friedmann and Raychaudhuri equations, whose solutions
were analyzed numerically, and studied their asymptotic
low matter energy density regimes, identifying the clas-
sical limit near the conformal infinity transition point
as corresponding to a classical de Sitter spacetime with
an emergent cosmological constant as well as a rescaled
Newton constant.

Before delving in this analysis, however, it is instruc-
tive to consider the case of standard LQC. In this case, if
we do not include a bare cosmological constant from the
start, then the universe in the far past is a contracting
solution of classical Friedmann equations without cosmo-
logical constant. The situation changes if a cosmological
constant is present from the start.

A. Effective dynamics of LQC with cosmological
constant

The (genuine quantum dynamics) of the flat FRW uni-
verse with a positive cosmological constant Λ and a mass-
less scalar field φ has been investigated in detail in [23].
It appears that the quantum dynamics of this model is
with high accuracy mimicked by the phase space dynam-
ics generated by the effective Hamiltonian constraint of
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the form

CLQC,Λ
eff = Cφ,eff + CLQC,Λ

gr,eff

=
p2φ
2V

− 3

8πG∆γ2
V sin2(b) +

Λ

8πG
V (68)

where pφ is the momentum conjugated to φ. Evaluating

V̇ via Hamilton equation and eliminating the functions

of b via the constraint CLQC,Λ
eff = 0, one arrives at the

modified Friedmann equation

H2
r :=

(
ȧ

a

)2

(69)

=
8πG

3

[
Λ

8πG

(
1 − Λ

8πGρc

)
+ ρφ

(
1 − Λ

4πGρc

)
−
ρ2φ
ρc

]

where ρφ := p2φ/(2V
2) is the energy density of the scalar

field and we recall that ρc = 3/(8πG∆γ2) is the criti-
cal energy density in mainstream LQC when Λ = 0. In
the limit of low energy density of matter, we can neglect
the quadratic term in ρφ, thus arriving at the effective
“classical” Friedman equation

H2
r =

8πḠ

3
ρφ +

Λ̄

3
(70)

with the effective cosmological constant Λ̄ and gravita-
tional constant Ḡ given by

Λ̄ = Λ

(
1 − Λ

8πGρc

)
, Ḡ = G

(
1 − Λ

4πGρc

)
. (71)

In other words, we can say that the asymptotic behavior
of the spacetime obeys the classical Friedmann equations
provided that we replace the “bare” Newton constant
and the cosmological constant with “dressed” ones. Note
that, in particular, if the bare Λ is zero, then Ḡ = G.
More generally, solving Λ for Λ̄ and using the fact that
the observed cosmological constant (i.e., Λ̄) is extremely
small, we find two possibilities:

Λ1 ≈ Λ̄ or Λ2 ≈ 3

∆γ2
− Λ̄ (72)

Plugging these in the second equation, we find respec-
tively

Ḡ1 =

(
1 − 2

∆γ2

3
Λ̄

)
G ≈ G

or (73)

Ḡ2 = −
(

1 − 2
∆γ2

3
Λ̄

)
G ≈ −G

We thus conclude that, while in the first case the bare
quantities differ from the measured ones by a negligible
quantity, in the second case this is not true, and in partic-
ular the bare Newton’s constant has opposite sign than
the measured one!

B. Effective dynamics of the new model (without
cosmological constant)

Let us now go back to the new model, and consider
the effective dynamics associated with it. Recall that
the Hamiltonian constraint operator reads (from (18) and
(20))

Ĉtot :=Ĉφ + Ĉµ̄
E [1] + Ĉµ̄

L[1]

=
1

2
p̂2φV̂

−1 − ~2

2
V̂ − 1

2 ΘTRV̂
− 1

2

=
1

2
p̂2φV̂

−1 − 3

32πG∆

(
−sN̂ 4V̂ N̂ 4 + N̂ 2V̂ N̂ 2

+2(s− 1)V̂ + N̂−2V̂ N̂−2 − sN̂−4V̂ N̂−4
)

(74)

Given this quantum Hamiltonian, it is possible to extract
an effective one CTR

eff , such that Ĉtot → CTR
eff , by the

replacements of p̂φ → pφ, N̂ → N = eib/2 and V̂ → V .
Using the fact that the classical quantities commute, we
find

CTR
eff =

p2φ
2V

+
3

16πG∆
V [s cos(4b) − cos(2b) − (s− 1)]

=
p2φ
2V

+
3

8πG∆
V sin2(b)(1 − 4s)

[
1 +

4s

1 − 4s
sin2(b)

]

(75)

Now, recalling that s = (1+γ2)/(4γ2), we obtain 1−4s =
−1/γ2, and so

CTR
eff = Cφ,eff + CTR

gr,eff (76)

= Cφ,eff + CLQC,Λ=0
gr,eff

[
1 − (1 + γ2) sin2(b)

]

where Cφ,eff = p2φ/(2V ) and CLQC,Λ=0
gr,eff is given by

CLQC,Λ=0
gr,eff = − 3

8πG∆γ2
V sin2(b) (77)

The new regularization of the Lorentzian part – more in
line with the full theory – has produced a correction with
respect to standard LQC) in the gravitational part of the

effective constraint proportional to CLQC,Λ=0
gr,eff sin2(b). It

is worth noting that the same function, CTR
gr,eff , can be

obtained as the expectation value of LQG Hamiltonian
on complexifier coherent states peaked on cosmological
data. For details, see [36, 37].

1. Energy density of matter

Recall that the energy density of the scalar field is ρφ =
p2φ/(2V ). So we can write

CTR
eff = V ρφ + CTR

gr,eff (78)

= V ρφ − 3

8πG∆γ2
V sin2(b)

[
1 − (1 + γ2) sin2(b)

]
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Now, solving the constraint CTR
eff = 0 for the energy den-

sity ρφ, we get

ρφ =
3

8πG∆γ2
sin2(b)

[
1 − (1 + γ2) sin2(b)

]
(79)

This shows that ρφ is bounded. To find the maximum
value, let us use the notation x := sin(b)2. Then ρφ is a
polynomial quadratic in x, whose maximum is obtained
for x = 1/(2(1 + γ2)). The corresponding value is the
critical energy density of the new model:

ρTR
c =

3

32πG∆γ2(1 + γ2)
(80)

The boundedness of ρφ is an indication that the Big Bang
singularity is resolved.8 Also, we observe that the critical
energy density of this model is different than the one of
standard LQC. Indeed, it is

ρTR
c =

1

4(1 + γ2)
ρc (81)

which is smaller than ρc.

2. Equations of motion

The equations of motion of the model can be derived
by Hamilton’s equation of the effective constraint, which
in terms of phase space conjugated variables (V, b) and
(φ, pφ) reads

CTR
eff =

p2φ
2V

− 3

8πG∆γ2
V sin2(b)

[
1 − (1 + γ2) sin2(b)

]

(82)

From {φ, pφ} = 1 we find (denoting by dot the derivative
with respect to cosmic time t)

φ̇ = {φ,CTR
eff } =

pφ
V
, ṗφ = {pφ, CTR

eff } = 0 (83)

The second equation, in particular, shows that pφ is a

constant of motion. Similarly, from {b, V } = 4πGγ
√

∆
we find

V̇ = {V,CTR
eff } =

3

2γ
√

∆
V sin(2b)[1 − 2(1 + γ2) sin2(b)]

(84)

and

ḃ = {b, CTR
eff } (85)

= −2πGγ
√

∆
p2φ
V 2

− 3

2γ
√

∆
sin2(b)

[
1 − (1 + γ2) sin2(b)

]

8 While we are here working with a massless scalar field, we no-
tice that (78) is true for any other form of perfect fluid, so the
boundedness result is general.

Recall that the maximum of ρφ corresponds to sin(b)2 =

1/(2(1 + γ2)). Replacing this in (84), we see that V̇ = 0.
This condition identifies a bounce, for which we thus have

bB = ± arcsin

(
1√

2(1 + γ2)

)
, ρφ,B = ρTR

c (86)

The first relation can be used to fix b at the bounce (up to
a sign), while the second – recalling that ρφ = p2φ/(2V

2)
and that pφ is a constant of motion – fixes V :

VB =
|pφ|√
2ρTR

c

= |pφ|
√

16πG∆γ2(1 + γ2)

3
(87)

These values can be used as initial conditions (at the
bounce) and so Hamilton’s equations (84) and (85) can be
numerically integrated. The only free parameters (that
label the specific solution) are pφ and the sign of bB.
Remark on physical time Here we expressed every-

thing with respect to cosmic time t. However, the natural
choice of physical time in this model is φ. Indeed, from
(83) it follows that φ̇ has definite sign. For example, if

we choose the constant pφ positive, then φ̇ > 0, and so
φ grows monotonically in t. It is therefore a good clock
for the whole evolution.9 The equations of motion with
respect to φ are

dV

dφ
=

3V 2 sin(b)

pφγ
√

∆

√
1 − sin2(b)[1 − 2(1 + γ2) sin2(b)]

(88)

db

dφ
= −2πGγ

√
∆
pφ
V

− 3V sin2(b)

2pφγ
√

∆

[
1 − (1 + γ2) sin2(b)

]

3. Exact solution of the effective dynamics

While, as said above, we now have everything we need
to solve numerically the dynamics, it is actually possible
to find the general solution of this model analytically.
For this, using the definition

x := sin2(b) (89)

in equation (79), we write

ρφ =
3

8πG∆γ2
x
[
1 − (1 + γ2)x

]
(90)

This can be inverted, to find

x =
1 + s

√
1 − ρφ/ρTR

c

2(1 + γ2)
(91)

9 At the technical level, once V = V (t) is computed, equation
φ̇ = pφ/V is immediately integrated, giving φ = φ(t) up to
initial condition which corresponds to the value φB . Due to
monotonicity, this equation can be inverted, so we have t = t(φ).
The functions V (t) and b(t) can now be expressed in terms of φ.
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with s an unspecified sign. We are now going to derive
a differential equation for x.

Consider f(x) := (x′)2, where prime denotes derivative
with respect to φ. From (89) it follows that

f(x) = [2 sin(b) cos(b)b′]2 = 4x(1 − x)b′2 (92)

where, from (88), we have

b′ = −2πGγ
√

∆
√

2ρφ − 3

2
√

2ρφγ
√

∆
x
[
1 − (1 + γ2)x

]

= −
√

12πGx[1 − (1 + γ2)x] (93)

having used (90) in the second step. Hence, we find the
equation

x′2 = 48πGx2(1 − x)[1 − (1 + γ2)x] (94)

This equation admits a unique10 solution of the form

xTR(φ) =
1

1 + γ2 cosh2(
√

12πG(φ− φo)
, (95)

where the free constant φo reflects the invariance of the
equations of motion with respect to the shift in the (mat-
ter) time (the freedom of choice of the point of origin of
time measurement). Once xTR(φ) is known, all other in-
teresting quantities can be easily computed: ρφ by (90)
reads

ρφ(φ) =
3

8πG∆

[
sinh(

√
12πG(φ−φo))

1 + γ2 cosh2(
√

12πG(φ−φo))

]2
(96)

so the volume is

V (φ) =
|pφ|√
2ρφ

=

√
4πG∆p2φ

3

1 + γ2 cosh2(
√

12πG(φ−φo))

| sinh(
√

12πG(φ−φo))|
(97)

from which we also find the Hubble rate

Hr =
V̇

3V
= pφ

V ′

3V 2
= − ρ′

3
√

2ρφ

=
1 + γ2[1 − sinh2(

√
12πG(φ− φo))]√

∆[1 + γ2 cosh2(
√

12πG(φ−φo))]2
cosh(

√
12πG(φ−φo))

(98)

10 To check that this solution is unique, we observe that equation
(94) can be written as a second order differential equation: if the
solution is non-trivial (x = const), we can divide by x′, obtaining

x′′ = 24πGx[2− 3x(2 + γ2) + 4x2(1 + γ2)]

Now, this equation can be written as a first order differential

equation for vector X :=

(

x
x′

)

:

X′ =

(

x′

x′′

)

=

(

X2

24πGX1[2− 3X1(2 + γ2) + 4X2
1 (1 + γ2)]

)

The vector on the rhs of this equation admits continuous par-
tial derivatives in X1 and X2, so the equation satisfies Lipschitz
criterion, which in turn means that it admits unique solution.

The derivatives ρ′ and H ′
r can also be computed ana-

lytically (though their explicit form is rather involved,
and will therefore be omitted), and we can also compute
dHr/dt by using the fact that, for any function F , we

have Ḟ = F ′φ̇ = F ′√2ρφ.

4. Discussion: coordinate vs physical time

All our analysis until now was based on the physical
time given by the scalar field φ. For completeness, we
discuss here the cosmic time t. From the equation of
motion φ̇ = pφ/V , and using the explicit form (97), we
can integrate this equation. Due to the singularity at φ =
φo the integration has to be performed independently on
two domains φ > φo and φ < φo. The result yields

t(φ) =to +
γ2sgn(pφ(φ− φo))√

12πG

[
cosh

(√
12πG(φ−φo)

)

−(1 + γ2) log
∣∣∣coth

(√
3πG(φ−φo)

)∣∣∣
]

(99)

This function is plotted in 2, where we can see that t(φ)
is not invertible. On each of the two domains (φ > φo
and φ < φo) separated by the singularity of the equation
at φ = φo the image of t(φ) covers the whole real line.
As a consequence, the cosmic time chart can cover
only one of two domains indicated above (later referred
to as aeons). Due to time reflection symmetry of the
equations of motion, we can focus our attention on the
aeon φ > φo (our observations translate to φ < φo via
time reflection t → −t). In this chart, from the point
of view of a comoving observer (whose proper time is
t), the infinite past corresponds to φ →+ φo, while the
infinite future to φ → ∞. So, for such observer, the far
past consists of a quantum region in which the universe
is undergoing a de Sitter contracting phase dominated
by emergent cosmological constant, while the far future
consists of a classically expanding phase dominated
by the matter (scalar field). Unfortunately, expression
(99) cannot be inverted analytically, so we do not have
an explicit form for the quantities of interest (such as
volume) as functions of cosmic time t. Nevertheless,
these can still be plotted numerically. As an example, in
figure 3 we plot the curvature R = 2[V̈ /V − V̇ 2/(3V 2)]
and the volume, comparing them with the results of
standard LQC. Note, in particular, that in the far past
the curvature of the current model reaches a non-zero
constant: since this value is still Planckian, it justifies
why in the far past the quantum gravity effects are still
important (despite the energy density of matter being
negligible), and it explains the existence of an emergent
cosmological constant.

Finally, as mentioned, earlier the above results translate
to the aeon φ < φo via time reversal transformation. In
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Figure 2. Cosmic time t as a function of φ in the new model
(blue) and GR (red). The red dashed line corresponds to
the classical solution obtained by time reversal (φ → −φ),
whereas the blue dashed one represents t(φ) for φ < φo (with
φo set to 0 for the convenience of the presentation). In the new
model, t only covers half the φ-chart. This means that, when
parametrizing the dynamics with t, there exist two solutions
(aeons): one covering the φ > φo region, the other covering
the φ < φo region.

there, the far past (φ → −∞) consists of a classically
contracting universe, while the far future (φ →− φo)
consists of a quantum region in which the universe is
undergoing a de Sitter expanding phase dominated by
emergent cosmological constant. It is interesting to note
that, while with respect to φ these two solutions are
bridged in a finite time (passing through a region of
infinite volume at φ = φo), with respect to the cosmic
time they are distinct, physically disconnected regions.
It is only the use of a matter clock which brings these
two aeons together.

VI. COMPARATIVE ANALYSIS OF THE
EFFECTIVE AND QUANTUM MODELS

In this section we present the details of the method-
ology and the results of the analysis of the evolution in
the models described in the previous sections. Since the
genuine quantum analysis (based on numerical methods)
could be performed only for a finite population of ex-
amples, whereas the simplicity of the effective dynam-
ics allows for a systematic probing of the space of solu-
tions, the results regarding quantum trajectories them-
selves are discussed using the effective dynamics, with
the (purely quantum) numerical studies serving as the
verification of the accuracy of the effective results. The
genuine quantum analysis, however, has to be used for
probing the higher order quantum properties, i.e., the
behavior of variances. For that reason, we first present
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t

20

40

60

80

100

120

140

R

(a)

-3 -2 -1 1 2 3
t

10

20

30

40

50

V

(b)

Figure 3. The evolution of the curvature R and the volume
V during the aeon φ ≥ φo (as functions of cosmological time
t) for the studied model (blue) is compared against that of
mainstream LQC (green). The bounce occurs at t = 0. Notice
that in the new model R reaches 0 in the future classical
FLRW phase, but a finite non vanishing value in the past de
Sitter phase (a), consistent with the non symmetric bounce
shown in (b).

the results coming from the effective dynamics in both
standard LQC and in the model we derived with the
new Lorentzian term in the Hamiltonian. The results
of the analysis are compared together with classical GR
from the perspective of the observables of interest in the
context of FLRW cosmology, namely the volume, the
matter energy density and the Hubble rate. The gen-
uine quantum analysis of the evolution in the new model
(characterized by the new ΘTR operator defined in (22)
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and whose properties were discussed in section III) is dis-
cussed in the second subsection. We then conclude with a
comparison between the semi-classical evolution obtained
in the quantum model of the considered observables, and
the effective evolution of their classical counterparts in
the aforementioned effective models.

A. Asymptotic analysis of the effective models

Given any quantum theory/model built on the non-
perturbative level, the first question one needs to ask
is whether in an appropriate regime it reproduces the
observationally confirmed classical theory (in our case
the cosmological sector of GR) in the low energy limit.
Provided that the quantum trajectories can be predicted
with sufficient level of accuracy by the effective classical
dynamics, which is indeed the case here as we show in
sec. VI B, one can address this question by studying the
behavior of the solutions to the equations of motion ana-
lyzed in section V B 3 in the limit ρφ ≪ ρTR

c , which is the
condition we would expect to determine the semiclassical
region.

From (96), we see that the above condition will be sat-

isfied in two regimes: either (i) cosh(
√

12πG(φ−φo)) →
±∞, or (ii) sinh(

√
12πG(φ−φo)) → 0. These situations

translate respectively into the following conditions on φ:

• φ→ ±∞, corresponding to

xTR(φ) ∼ 4

γ2
e∓2

√
12πG(φ−φo) (100)

• φ→± φo, corresponding to

xTR(φ) ∼ 1

1 + γ2

[
1 − γ2

1 + γ2
6πG(φ−φo)2

]
(101)

Interestingly, (100) is the same asymptotic behavior
found in classical GR. Indeed, in classical cosmology the
exact solution for b is11

bclass(φ) = boe
∓
√
12πG(φ−φo) (102)

which implies

xclass(φ) = sin2(bclass(φ)) (103)

= sin2
(
boe

∓
√
12πG(φ−φo)

)
φ→±∞−→ b2oe

∓2
√
12πG(φ−φo)

So, we conclude that:

• In the limit φ→ +∞, the TR-model coincides with
a classically expanding universe (with integration
constant bo such that b2o = 4/γ2).

11 The negative (resp. positive) sign corresponds to a classically
expanding (resp. contracting) universe.

• In the limit φ→ −∞, the TR-model coincides with
a classically contracting universe (with integration
constant bo such that b2o = 4/γ2).

We can repeat the same procedure (done for the new
model) in the context of standard LQC, the only differ-
ence being the relation between x and ρφ, as well as the
form of b′: in LQC we have

x =
8πGγ2∆

3
ρφ, b′ = −

√
12πGx (104)

Hence, after analogus manipulations, we find the equa-
tion

x′2 = 48πGx2(1 − x) (105)

whose solutions with initial conditions xLQC(0) = xo
are12

xLQC(φ) = 1 − tanh2[arctanh(
√

1 − xo) ∓
√

12πG(φ−φo)]
(106)

Again, it is easy to check that the asymptotic behavior of
xLQC(φ) in the limit φ→ ±∞ coincides with the classical
one, and can be made exact by appropriately choosing
the integration constant xo:

xLQC(φ) = 1 − tanh2[
√

12πG(φ−φo) + ln(γ)] (107)

This confirms that the three models – the TR-model,
standard LQC and classical GR – coincide in the limit
φ→ ±∞. But, contrary to LQC, the TR-model presents
another “semiclassical limit”, namely the case φ→± φo.
In this limit, xTR presents the behavior (101), which can
be seen to coincide with the asymptotic behavior of clas-
sical GR in presence of a cosmological constant Λ and a
modified Newton constant Ḡ. Indeed, in this case Fried-
mann equations are





H2
r =

8πḠ

3
(ρ+ ρΛ)

ä

a
= −16πḠ

3

(
ρ− ρΛ

2

) with ρΛ :=
Λ

8πḠ
(108)

whose exact solution for the volume V = a3 is

VdS(φ) =

√
4πḠp2φ

Λ

1

| sinh(
√

12πḠ(φ−φo))|
(109)

12 This can be rewritten as xLQC(φ) = 1− tanh2[
√
12πG(φ−φo)∓

arctanh(
√
1− xo)], so it is clear that the sign of φ is not impor-

tant: both positive and negative signs correspond to the same
one, but shifted by a constant. In particular, if we set xo = 1,
we see that both solutions coincide.
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This can be seen to coincide with (97) in the φ → φo
limit under the identification13

Ḡ =
1 − 5γ2

1 + γ2
G, Λ = 8πḠρΛ =

3

∆(1 + γ2)2
(110)

and so

ρΛ =
3

8πḠ∆(1 + γ2)2
(111)

The above models are compared in figure 4, where we
plot the volume V and energy density ρ for the respective
solutions, and in figure 5 where we display the Ḣr(Hr)
portrait.

B. Numerical analysis of the quantum evolution

In order to investigate the evolution in the new quan-
tum model with the ΘTR operator defined in (22), we
use the families of partial observables defined in the
subsection IV B which allow us to provide a notion of
(parametrized by φ) quantum trajectories, defined as the
expectation values of the observables (as functions of φ)
in suitable states. The steps to obtain these trajectories
are detailed in the following.

First we observe that the physical states in the
new quantum model have a very simple form in x-
representation, however in v-representation the form of
the wave function can be found only numerically. Thus,
in probing the dynamics we are forced to focus on par-
ticular classes of states, which can be probed in a robust
way by a finite set of examples. Among those, the ones of
particular interest are the states semiclassical in the low
energy sector – the ones reproducing (in some epoch) the
semiclassical universe following the predictions of GR. In
mainstream LQC this requirement was satisfied in partic-
ular by the (sufficiently sharply peaked) energy14 Gaus-
sians, which were the class of states used for majority
of numerical studies there. Following the previous works
we too pick for the investigation the states of spectral
profiles (see (51))

c(k, ω(k)) =
1√
2πσ

e−
(ω(k)−ω⋆)2

2σ2 e−iω(k)φo =: cgauss(k, ω(k)),

(112)
where σ ≪ ω⋆ are positive constants and have unit G1/2

and φo has unit G−1/2.
Second, since (i) ΘTR has a relatively simple form in

b-representation, (32), and (ii) thanks to (35) the phys-
ical states (44) can be expressed in b-representation as
integrals, one can be tempted to evaluate quantum tra-
jectories analytically. The problem is, however, that the

operator V̂ ∝ |v̂| cannot be expressed in this representa-
tion easily. While it takes a simple form in the auxiliary
spaces defined in Appendix D (thus one could in prin-
ciple try to perform the calculations following those of
[63]) one then needs to (i) represent the action of op-
erators directly in the k-representation and (ii) perform
the projections of the physical states onto those auxiliary
spaces. For that reason we decided to evaluate the needed
expectation values directly in v-representation by numer-
ical means, especially because the methods involved are
a straightforward adaptation of those already built for
the model of FLRW universe with positive cosmological
constant in LQC [23].

Now, the actual evaluations were performed as follows:

1. The form of the wave function in v-representation
has been evaluated by performing the inverse of the
transform (30)

ψgauss(v, φ) =
1

π
|v|1/2

∫ π

0

db Ψgauss
φ (x(b))e−(i/2)vb,

(113)
where x(b) is given by (35) and

Ψgauss
φ (x) = 2π

∫
dk cgauss(k, ω(k))eβ,k(x)eiω(k)φ (114)

with eβ,k(x) the normalized versions of (44).
The integral has been evaluated via an adaptive
Romberg method, of which error tolerances have
been set in actual simulations to 10−6. The do-
main of b has been probed in the uniform grid of
219 ≈ 5 · 105 intervals.

2. The expectation values and dispersions (variances)
of the observables defined in subsection IV B are
evaluated directly by (63), where we use a standard
definition for dispersion

∆2Ô = 〈Ô2〉 − 〈Ô〉2. (115)

The actions of θ̂K , ρ̂, Ĥr are given by (65),
(66) and (67) respectively, thus straightforward to
evaluate. Whereas for p̂φ = i~∂φ, the needed
derivative ∂φψgauss(v, φ) is evaluated analogously
to ψgauss(v, φ) through the transform (113):

[∂φΨgauss](x(b), φ) = 2πi

∫
dk ω(k)cgauss(k, ω(k))×

eβ,k(x(b))eiω(k)φ. (116)

In the actual simulations the quantum trajectories
have been evaluated for ω⋆ ranging from 500

√
G to

5000
√
G with relative dispersion in pφ ranging from 0.02

to 0.1.

13 For certain values of γ, Ḡ becomes negative, so in light of the first
equation of (108) it would seems that such values are forbidden.
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Figure 4. Volume and energy density in the new model (blue), LQC (green), GR (red) and GR with effective Ḡ and Λ (black).
For presentation convenience φo is set to 0. The dashed lines correspond to the solutions obtained by time reversal (φ → −φ).

The results of these numerical simulations are dis-
played in figure 6, and are compared with the results in
mainstream LQC, and the new effective model discussed
earlier. The asymptotic behavior obtained in the new ef-
fective model confirms the results found in the quantum
theory, namely that in the far past the universe is essen-
tially a contracting de Sitter with an effective cosmologi-
cal constant, and the effective trajectories mimic to high
accuracy the evolution trajectories obtained in the quan-
tum theory. The emerging picture that we observe, in
backward evolution, is the following: first an expanding
phase following the predictions of GR, beginning with a
bounce (resolving the classical singularity) and the tran-
sition to a contracting de Sitter phase. This phase is
followed by a transition through past scri at φ = 0 to an
expanding de Sitter phase, which is connected, through
another bounce, to a contracting phase approaching the
classical solution in the far past. What is remarkable
is that the semi-classical states remain sharply peaked
throughout the entire evolution. The asymptotic anal-
ysis of the eigenstates of the evolution operator leads
to the conclusion that in the period between the two
bounces the dynamics is driven by an effective cosmo-
logical constant. The presence of a cosmological con-
stant is unexpected and quite surprising, since the “bare”
theory we started from does not have any cosmological
constant. This is in stark contrast with standard LQC,
where if one studies flat FLRW universe without cosmo-
logical constant, there is a single symmetric bounce and

This is however not true, since that equation only holds for ρ ≪
ρTR
c , which means that ρΛ dominates; but ρΛ also contains Ḡ,

so the overall sign of the right-hand-side of the first equation in
(108) remains positive even if Ḡ is not.

14 The name follows from the interpretation of
√

|Θβ | as vacuum
Hamiltonian of the deparametrized system.

no effective cosmological constant. Note that the effec-
tive cosmological constant we obtain (110) is of quantum
gravity origin. It might be surprising that quantum grav-
ity effects are present for large volume and low energy
density, however the analysis of the effective dynamics
shows that the Ricci scalar curvature remains constant
in the region t→ −∞ (figure 3), therefore justifying the
presence of quantum corrections.

Finally, an interesting aspect of our results in the quan-
tum theory is the existence of a transition from expand-
ing to contracting de Sitter epoch, which in fig. 6 happens
at φ = 0. This issue has already been discussed in [47].
On one hand, since the de Sitter expanding/contracting
Universe with a scalar field is future/past complete, the
two sectors φ < 0 and φ > 0 are geodesically complete,
thus from the classical spacetime perspective they consti-
tute separate Universes. On the other hand, the trajecto-
ries of locally observable quantities (for example matter
energy density) as functions of φ have a unique analytic
extension through that point. Therefore, from the quan-
tum theory perspective (where the time problem forced
us to use the matter as a clock) the extension of space-
time past the transition point is natural.

VII. CONCLUSIONS AND OUTLOOK

In this article we studied the physical effects of an al-
ternative to the standard regularization of the Hamilto-
nian constraint in the framework of Loop Quantum Cos-
mology. We did so on the example of a flat isotropic
FRLW universe with massless scalar field as the matter
content, focusing the attention on the original proposal of
Thiemann introduced for full LQG. The difference with
respect to the one used originally [13, 14, 20–22] man-
ifests itself in the so called Lorentzian part of the con-
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Figure 5. 2D and 3D plots of Hr and Ḣr in the new model (blue) and in comparison with LQC (green) and GR (classical (red)
and with effective Ḡ and Λ (black)). The dashed lines correspond to the solutions obtained by time reversal (φ → −φ). The

far past (φ → −∞) corresponds to the point (Hr, Ḣr) = (0, 0), where both the new model and LQC match the far past of the

classical contracting solution. Then, as φ increases, Hr < 0 and Ḣr < 0, which denotes a decelerating contraction; here, all
model depart, and while the classical universe continues to the big crunch (at negative infinity), the new model and LQC cross

the Ḣr = 0 line and enter a phase where gravity becomes “repulsive” (Ḣr > 0). This phase ends at Hr = 0, where the bounce

occurs. After that, the repulsivity of gravity drives a phase of accelerated expansion (Hr > 0), which continues until the Ḣr = 0
line is crossed again. At this point, the behavior of LQC and the new model are very different: the former approaches again
(0, 0), which now corresponds to the far future of the classically expanding solution; the latter approaches Ḣr →− 0 at a finite
value of Hr, which corresponds to the far future of a de Sitter expanding solution. As the 3D plot shows, this super-expansion
phase is reached at finite values of φ. In fact, at φ = 0 a discontinuity takes place, the trajectory being mapped to Hr → −Hr.
In other words, the universe follows now a de Sitter contracting solution. This solution is soon departed, and a symmetric
behaviour takes place, ending at (0, 0), where the classically expanding solution is reached.

straint (depending on the extrinsic curvature) and leads
to a modified evolution operator ΘTR taking the form as
expressed in (22). Unlike standard LQC, where in the
volume representation the evolution operator is a differ-
ence operator of the 2nd order, in our case ΘTR is a
difference operator of the 4th order. Nonetheless, in the
representation of the volume canonical momentum (de-
noted as b and classically related to the Hubble rate),

both operators are of 2nd order. Also, the structure of
the superselection sectors on the (kinematical) Hilbert
space induced by the new operator is the same as in the
mainstream LQC: (i) division of the wave function sup-
ports onto the set of discrete uniform lattices, and (ii)
a symmetry with respect to triad orientation change al-
lowing to work with either symmetric or antisymmetric
states. In consequence the superselected spaces are sep-
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Figure 6. The map of the physical state (a) on a v−φ plane [where the volume V ≈ 2.41|v|ℓ3Pl ], and quantum trajectories of the
observables: compactified volume θK=5·103 (b), matter energy density ρφ (c) and Hubble rate Hr (d) of the Gaussian state peaked

on pφ = 5.05 · 103G1/2 with relative spread in ∆pφ of about 0.05. The genuine quantum trajectories of the investigated model
(purple error bars) are compared against the predictions of the effective dynamics generated by Hamiltonian (76) (blue lines)
and against the classical GR (green lines) and mainstream LQC effective trajectories (yellow lines), to which the quantum
one converges in the asymptotic past/future. While both mainstream LQC trajectories feature a single bounce (each) at

(respectively) φ ≈ ±0.25G−1/2, for the trajectories obtained with the Hamiltonian we investigate (22) we observe two bounces

at φ ≈ ±0.35G−1/2 separated by a a transition point from future to past conformal infinity at φ = 0, where the matter energy
density reaches zero and the volume V reaches infinity. The Planck units ρPl and ℓPl are defined respectively as (G2

~)−1 and

(G~)1/2. The departure from mainstream LQC lasts only about 1.2G−1/2 in relational time φ, but from each bounce it takes
infinite cosmic time to reach the transition at φ = 0.

arable despite the full kinematical Hilbert space being
non-separable.

Unlike the old form of the operator, which was es-
sentially self-adjoint, ΘTR admits an entire family of
self-adjoint extensions parametrized by U(1) group el-
ements, a structure which is very similar to the one fea-
tured by model of isotropic universe with massless scalar
field and positive cosmological constant in standard LQC.
As in there, while the choice of each of the extensions
leads to inequivalent unitary evolutions, all of them lead
to very similar dynamical predictions. The decompo-
sition of unity for each extension (that is, the eigen-
bases of extensions of ΘTR) were evaluated numerically

in v-representation (while having in b-representation rel-
atively simple analytic form) and their large v asymptotic
behavior was determined analytically (25).

The construction of the physical Hilbert space for the
new model was achieved systematically using the group
averaging method as in standard LQC in [64]. The
precise identification of the space and the extended do-
mains of ΘTR allowed in turn to determine the quantum
trajectories corresponding to the physical states defined
through expectation values of families of Dirac observ-
ables parametrized by the value of the scalar field (which
plays the role of the internal clock, as in standard LQC).
These observables are: the compactified volume (65), the
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matter energy density (66) and the Hubble rate (67).
For technical reasons, these quantum trajectories could
be evaluated only numerically, thus forcing us to focus
on specific classes of states. In particular, in order to
compare the predicted dynamics with standard classical
cosmology and predictions of mainstream LQC, we have
chosen for our studies the states which were semiclassi-
cal at some point in (scalar field) time, that is, sharply
peaked in the selected observables and corresponded to
a large expanding universe. The calculation of the quan-
tum trajectories consisted then in evolving such states
backwards in time. We focused our attention on the
“energy Gaussian” states of spectral profiles specified in
(112). A population of such states, peaked about differ-
ent values of the scalar field momentum and with various
variances, have been probed this way.

In addition to the fully quantum analysis, we con-
structed an effective description of the model by intro-
ducing an effective Hamiltonian (82) (as function of clas-
sical phase space variables), which generates a dynamics
approximating very well the genuine quantum evolution.
This effective Hamiltonian was constructed in a heuristic
way (standard for LQC), i.e., by replacing its compo-
nent elementary operators by their expectation values.
Its form was simple enough that the equations of motion
it generates could be solved analytically. It is worth not-
ing that this effective Hamiltonian is in agreement with
the one obtained by taking the expectation value of the
full LQG Hamiltonian on coherent states peaked about
isotropic cosmological spacetimes [36, 37].

It is worth mentioning that the studies of the effect-
tive dynamics of this model have been independently
performed in [76]. The main difference of (the effec-
tive dynamics part of) our approach with respect to that
work is that, instead of using the standard Raychaudhuri
and Friedmann equations, we reformulated the system of
equations of motion generated by the effective Hamil-
tonian (using locally measurable quantities and matter
time) so that it became nonsingular. This allowed us
to find global unique dynamical trajectories analytically.
We then examined the asymptotics of these analytic so-
lutions, recovering the behavior reported in [76]. Further
analysis of the effective model, with emphasis on stabil-
ity as well as inflationary scenarios, was carried out in
[77–79].

Both these approaches gave a consistent dynamical pic-
ture of the evolution of a Universe which is semiclassical
at late time. That evolution starts with a large contract-
ing Universe following the predictions of GR, until en-
ergy density of the matter content reaches the Planckian
order. Then, as in standard LQC, the (loop) quantum
geometry effects generate an effective repulsive gravity
force which modifies the dynamics, leading to a bounce
at roughly 1/4 of LQC critical energy density. After the
bounce the Universe quickly expands, although now (un-
like in the old LQC picture), instead of following the clas-
sical trajectory, it follows one corresponding to a classical
Universe with large (meaning of Planckian order) positive

cosmological constant and a modified Newton constant.15

In this phase, the volume (as measured by the compacti-
fied volume observable) reaches infinity for finite value of
the (scalar) clock field. At that point, we observe a tran-
sition of de Sitter conformal future to conformal past into
a contracting de Sitter Universe, similar to that observed
in LQC models of the universe with positive cosmolog-
ical constant. The fine details of the transition depend
on the choice of superselection sector. Thus, in order to
have a fully deterministic evolution, a specific extension
(or, equivalently, the boundary data at conformal infin-
ity) has to be chosen. However, all the extensions provide
the same (up to numerically undetectable discrepancies)
quantum trajectory. The now contracting Universe fol-
lows an effective trajectory again well agreeing with that
of the de Sitter Universe with the same effective Λ and
G as in the expanding epoch. Once the Universe con-
tracts sufficiently and the matter energy density reaches
again Planckian order, we observe the second bounce,
after which the Universe enters a classical trajectory de-
scribing a large expanding Universe.

Despite the observed consistency with each other, the
fully quantum (numerical) approach and the effective ap-
proach are not sufficient to establish the complete ro-
bustness of the results presented above. This happens
because, due to limitations of the numerics (finite compu-
tational time), we were able to investigate only a popula-
tion with a finite number of examples of quantum states.
The results provided by the effective dynamics (having
analytic form) are general, however the method itself re-
lies on the heuristic construction of the effective Hamil-
tonian and its accuracy has been verified just for a finite
number of examples. Fortunately, the key features of the
dynamics discussed above can be verified by asymptotic
analysis of the physical Hilbert space bases correspond-
ing to each extension. All of them share the following
properties:

(i) all the asymptotic waveforms have a form of a re-
flected/standing wave. This implies symmetry of
the qualitative picture of the state evolution. In
other words, to each contracting phase there is an
expanding counterpart, with possibly different de-
tails in the features of the Universe. Also, an im-
mediate consequence of this fact is the presence of
at least one bounce.

(ii) The asymptotic waveforms are combinations of
two types of waveforms: the ones appearing in
the geometrodynamical quantum description of an
isotropic Universe with massless scalar field (see for
example [22]) and the ones of the isotropic Universe
with massless scalar field and positive cosmologi-
cal constant (see [69]). This implies the presence of

15 The values of modified cosmological and Newton constants for
this model has been found independently in [76].
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(both expanding and contracting) phases of classical
evolution as well as the effective de Sitter epochs.

The properties listed above are features of all the “en-
ergy” (momentum conjugate to the scalar field used as
clock) eigenstates, thus any physical state of sufficiently
good semiclassical nature must feature the properties in-
dicated above. It is worth mentioning that the form of
the asymptotics allows to identify the value of the effec-
tive cosmological constant (although not of the modified
Newton constant, for which we would need to determine
higher order corrections) in the de Sitter phase, see (29).

In the determination of the global evolution picture
above, an essential role was played by the choice of
parametrization of the evolution by the matter field. It
is worth noting that the expanding and contracting de
Sitter epochs featured in this picture are, respectively,
future and past geodesically complete, which means that
the transition point at conformal infinity corresponds to
the infinite future/past in standard cosmic time. There-
fore, from the point of view of time parametrization nat-
ural in classical theory (GR), the epochs before and af-
ter the transition can be considered as “independent”,
i.e., separate distinct Universes each of which is geodesi-
cally complete. Following this perspective, one could re-
strict the attention to the evolution of the after-transition
branch, and treat the transition point as the “true” origin
of the Universe, lying in the infinite past. This particu-
lar observation is relevant for present and future attempts
to study perturbations in this model and its extensions:
indeed, in the proper (cosmic) time chart (the one con-
taining the “present” large classical expanding Universe
epoch), the point of origin of the Universe is a contracting
de Sitter region, which allows to select a unique initial
state for matter and geometry quantum perturbations
(inhomogeneities) known as a Bunch-Davies vacuum [56].

While the use of proper time is more natural from the
perspective of classical GR, we have to remember, that
in the quantum description no such notion of time is
present. This was the feature that forced us to select the
matter clock as the evolution parameter. Thus, from the
perspective of the quantum theory, the whole evolution
picture where the two geodesically complete “Universes”
are just epochs of evolution of the same Universe (known
as “aeons”) connected by the de Sitter transition point
is the correct one. In this sense, the global evolution
resembles the proposal of Cyclic Conformal Cosmology
(CCC) [80]. In comparison to that proposal, however,
the picture emerging here differs in a key point: instead
of gluing the conformal future infinity of one aeon to the
Big Bang singularity of the next one, here we end up
with gluing16 the future conformal infinity of one aeon
with the past conformal infinity of the other aeon. Such

16 In the new model the data are not actually glued, but they evolve
through the transition point in a deterministic manner, once a
particular self-adjoint extension is selected.

transition allows for much better understanding of trans-
fer of information from one aeon to the next, since the
mathematical results used in CCC were originally devel-
opped for future infinity to past infinity transition [81].
Therefore, the model studied here comes equipped with
interesting features of CCC, while not being weighted
down by the restrictions imposed by conformal infinity
to singularity transition needed there.

It is worth mentioning, that the transition between the
expanding and contracting de Sitter epochs ocurring at
the finite (matter) time is not just a result of choosing
massless scalar field as the internal clock. This feature
would be present also if other non-exotic forms of matter
(with the exception of dust) – for example the radiation
[82] – were used as a clock. Such “universality” becomes
important once we start trying to answer the question,
which choice of time (proper versus matter) – and in con-
sequence which evolution picture – we should adopt. This
question, while appearing to border on philosophy, can be
approached in an operational way: what we perceive as
the passage of time are dynamical changes of the config-
urations of matter fields (the clock’s pointer, the electro-
chemical potentials in neurons); given that, as well as the
necessity to use matter clocks in the quantum description
of the geometry, suggests that the bigger picture contain-
ing both proper time charts might be the more natural
one. Such choice will have nontrivial consequences once
the inhomogeneities (i.e., perturbations) are included in
the model, as now the previously initial perturbations
will be generated by the (possibly very rich) history of
the Universe before the transition. In principle, this may
lead to possible imprints of the existence of the previous
aeon, for example through the gravitational wave emis-
sions of black hole mergers as it is hoped for the model
of CCC [83].

The results and techniques presented here were pro-
vided in the context of the particular model – flat FRLW
universe with massless scalar field – the simplest one com-
monly used for testing new ideas in LQC. The inclusion of
the studied regularization can however also be performed
for more advanced models: with more complicated mat-
ter content and extended to the homogeneous anisotropic
cosmology with use of more recently available techniques.
However, investigating the possible physical significance
of all these models would require inclusion of the inho-
mogeneities, either in terms of perturbations or at the
nonperturbative level. For that, the existing techniques
need to be better understood and possibly improved. For
example the issue of instabilities for some treatments of
inhomogeneities, and the discrepancies of predictions be-
tween different treatments (see for example [84]) need to
be addressed.

From a more fundamental point of view, an important
consequence of our result is that in LQC different reg-
ularizations lead to different physical predictions. Since
in the standard quantization schemes the choice of regu-
larization is considered a minor technical detail and the
results are often required to not depend on it, our result
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poses a challenge for the predictive power of the theory.
The dependence found here leads to the major task to
find a way to single out a physically preferred regulariza-
tion. This could be achieved by introducing new consis-
tency criteria into the theory: a possible example comes
in the form of demanding cylindrical consistency, which
has been studied in various contexts for applications to
LQG [85–87].
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Appendix A: Review of LQC

In this appendix we review the derivation of the evolu-
tion operator in standard LQC, with focus on the regular-
ization choice. We also introduce the new regularization
used in this article which is more in line with full LQG.

a. Hamiltonian formulation of cosmology

Let us start by recalling the Hamiltonian formulation
of GR in terms of the Ashtekar-Barbero variables. In this
context, one recasts GR as a gauge theory with internal
group SU(2), and identifies the phase space of GR as the
one coordinatized by the Ashtekar connection Ai

a and
the inverse densitized triad Eb

j (i, j = 1, 2, 3 are SU(2)
algebra indices, while a, b = 1, 2, 3 are spatial ones). Ex-
plicitly, these are given by

Ai
a = Γi

a + γKi
a, Ea

i =
√

det q eai (A1)

where γ ∈ R − {0} is a free quantity called the Im-

mirzi parameter, eai is the (inverse) triad of the met-
ric, and Γi

a and Ki
a are related respectively to the spin-

connection Γi
ja and the extrinsic curvature Kab by (we

employ the summation convention on repeated indices,
and raise/lower i, j, ... with the Euclidean metric)

Γi
a = −1

2
ǫijkΓj

ka = −1

2
ǫijkebk(2∂[be

j
a] + ecje

m
a ∂be

m
c ),

(A2)

Ki
a = Kabe

b
i (A3)

With (A,E) being canonical coordinates, the symplectic
form reads

Ω =
1

8πGγ

∫

σM

d3x dAi
a(x) ∧ dEa

i (x) (A4)

where σM is some compact cell. Ω defines the Poisson
bracket

{Ai
a(x), Eb

j (x′)} = 8πGγδijδ
b
aδ

(3)(x, x′) (A5)

Due to the symmetries of the theory, one finds that not
all the dof’s in (A,E) are physical. This fact is encoded
in the following constraints:

• the Gauss constraint, that generates internal SU(2)
transformations:

Gi =
1

16πGγ

[
∂aE

a
i + ǫijkA

j
aE

a
k

]
(A6)

• the Vector constraint, that generates spatial diffeo-
morphisms:

Ca =
1

8πGγ
F i
abE

b
i (A7)

• the Scalar constraint, that generates time-like dif-
feomorphisms:

C = CE + CL (A8)

where

CE =
1

16πG

ǫijkE
a
jE

b
k√

det q
F i
ab, (A9)

CL = −(1 + γ2)
1

16πG

ǫijkE
a
jE

b
k√

det q
ǫimnK

m
a K

n
b

In these equations, F i
ab is the gauge curvature of connec-

tion Ai
a, explicitly given by

F i
ab = ∂aA

i
b − ∂bA

i
a + ǫijkA

j
aA

k
b (A10)

We now apply this framework to the case of flat isotropic
cosmology, i.e., the symmetry-reduced metric

g = −dt2 + q, q = a2(t)η (A11)

where a(t) is the scale factor and η is the Euclidean 3-
metric.
It is immediate to compute the triads: imposing qab =
eiae

j
bδij , we find eia = aδia, from which it follows that

Ea
i = a2δai . On the other hand, since the metric is inde-

pendent of spatial coordinates, we have Γi
ja = 0, and so

Ai
a = γKi

a. Finally, using the fact that the extrinsic cur-
vature reduces to Kab = q̇ab/(2N) = δabaȧ/N , we find
Ai

a = δai γȧ/N . We can therefore summarize this by say-
ing that, for flat isotropic cosmology, Ashtekar variables
are

Ai
a = cδia, Ea

i = pδai (A12)

with c = γȧ/N and p = a2. We can think of (c, p) as co-
ordinatizing the subspace of GR phase space representing
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flat isotropic cosmology. Plugging (A12) in (A4), we find
the reduced symplectic structure:

Ω =
3

8πGγ
dc ∧ dp

∫

σM

d3x =
3Vo

8πGγ
dc ∧ dp, (A13)

Vo :=

∫

σM

d3x

from which it follows that the Poisson bracket on the
reduced phase space is

{c, p} =
8πGγ

3Vo
(A14)

Finally, plugging (A12) in the expression for the gauge
curvature, we find F i

ab = c2ǫiab. Using this in the con-
straints, one sees that the Gauss constraint and the vec-
tor constraint vanish identically, while the scalar con-
straint reduces to

C = − 3

8πGγ2
√
pc2 (A15)

This concludes the review of the Hamiltonian formulation
of classical cosmology.

b. Kinematical Hilbert space of LQC

We will only give a brief overview of how the kine-
matical Hilbert space is defined. For further details, we
refer to [15–17].

The canonical quantization of full general relativity
in terms of its Ashtekar connection leads to the ap-
proach called Loop Quantum Gravity (LQG) [5]. As it
transpires in LQG, constructing an operator correspond-
ing to the connection Ai

a(x) does not lead to a successful
quantization. Instead, the fundamental algebra which
will be promoted to quantum operators is the classical
holonomy-flux algebra. The holonomies of the connection
Ai

a are constructed as the path-ordered exponentials
of Ai

a smeared with respect to some piecewise analytic
curves, whose real analytic segments are called edges, e:

h(e) := P exp

(∫

e

A

)
, A = Ai

adx
aτi (A16)

where τi are the generators of the algebra su(2), and are
chosen to be related to the Pauli matrices by τi = −iσi/2,
such that [τi, τj ] = ǫijkτk. While in LQG one quantizes
the holonomies on every edge, for the purposes of LQC
it suffices to restrict to certain special edges. The form
Ai

a = cδia naturally suggest to choose edges oriented along
the three axes of coordinates of the fiducial metric ηab.
Since their global position does not matter, we only con-
sider three families of edges parametrized by their coor-
dinate length ǫ > 0 and whose tangent are respectively

ė±x,ǫ = ±x̂, ė±y,ǫ = ±ŷ and ė±z,ǫ = ±ẑ. Hence the
holonomies take the explicit form

h(e±x,ǫ) = e±cǫτ1, h(e±y,ǫ) = e±cǫτ2, h(e±z,ǫ) = e±cǫτ3

(A17)

In LQC, we restrict the algebra further, and only consider
edges of one finite length ǫ = µ. The choice of µ is a cru-
cial part of the construction in LQC. Currently, the most
widely accepted choice is the so-called µ̄-scheme (also
known as improved dynamics [22]), which prescribes to
keep µ finite (as opposed to sending it to 0, as one would
do in lattice QFT). The reasoning behind this choice is
based on the regularization of gauge curvature F i

ab: as
we will later see, F i

ab can be approximated in terms of
holonomies along a small closed curve; in this case, µ2

can be thought of as the coordinate area of the surface
enclosed by the loop; however, in LQG the area is an
operator with discrete spectrum [88], and so one fixes
µ (which in this scheme is denoted by µ̄) so that the
physical area pµ̄2 of the loop coincides with the smallest
non-vanishing area eigenvalue, ∆. In other words, we set

µ̄ :=

√
∆√
|p|
, ∆ := 2π

√
3γG~ ≈ 2.61ℓ2Pl

(A18)

with ℓPl the Planck length.

With µ̄ being a small quantity which we want to
use as regularization parameter for the physical quanti-
ties of interest, it is useful to rescale the connection c by
µ̄. Its canonical momentum is nothing but the spatial
volume:

b := cµ̄, V := p3/2 (A19)

The Poisson algebra between the two reads

{b, V } =
2α

~
, with α = 2πG~γ

√
∆ (A20)

The gravitational Hilbert space Hgr is constructed us-
ing the canonical pair V, b. Being a real observable, we
implement the volume as a multiplication operator on
L2(R̄, dµBohr(v)), which is the space of square integrable
functions on the Bohr compactification of the real line
[21, 89]:

V̂ |v〉 = α|v| |v〉, 〈v|v′〉 = δv,v′ (A21)

where |v〉 form an orthonormal basis of eigenstates on

L2(R̄, dµBohr(v)). Given that V̂ acts by multiplication,
(A20) would suggest to implement b as a derivative with
respect to v. However, mimicking LQG – in which the
connection Ai

a is not promoted to operator, but h is –
we do not promote b to operator, but rather its exponen-
tiated version, N := eib/2. The corresponding quantum
operator is therefore acting as a shift:

N̂ |v〉 = |v + 1〉 (A22)
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Note that L2(R̄, dµBohr(v)) includes square integrable
functions with negative v. We thus define as kinemat-
ical Hilbert space the subspace of symmetric states,

Hgr := {ψ(v) ∈ L2(R̄, dµBohr(v)) : ψ(v) = ψ(−v)}
(A23)

by which we encode the fact that v → −v is a large
gauge transformation which does not change the physics
of the model [21].

We will now proceed by promoting all classical
quantities of interest to operators on Hgr. Let us start
with holonomies (A17): using a known property of
SU(2) matrices, we can write

ha := h(ea,µ̄) = exp(bτa)

= cos(b/2)I + 2 sin(b/2)τa

=

(
I

2
− iτa

)
eib/2 +

(
I

2
+ iτa

)
e−ib/2

=

(
I

2
− iτa

)
N +

(
I

2
+ iτa

)
N−1 (A24)

where I is the 2×2 identity matrix. Hence, the quantum
version is simply

ĥa =

(
I

2
− iτa

)
N̂ +

(
I

2
+ iτa

)
N̂−1 (A25)

To extract the physical sector of the Hilbert space, one
follows the Dirac program, which consists in promot-
ing the constraints to operators, and then imposing that
physical states lie in their kernel. As said, in homoge-
neous isotropic cosmology the only non-trivial constraint
is the scalar one. The matter part of it needs to be
treated separately (as it requires quantization of the mat-
ter degrees of freedom); now we focus on the geometric
part.

c. Scalar constraint in LQC

The implementation of the scalar constraint C as an
operator requires a regularization. As already discussed,
the need for regularization in full LQG originates from
the fact that no quantum operator for the connection
Ai

a(x) exists, while its corresponding holonomies nat-
urally lead to the representation theory of the group
SU(2). But as the classical scalar constraint C is given
in terms of Ai

a(x), it must be rewritten in terms of
holonomies before this quantization procedure can be ap-
plied. However, it is not possible to express C exactly as
a function of holonomies of finite length. Hence, one must
necessarily construct a regularization Cǫ of C such that,
in the limit ǫ→ 0, the continuum result is restored. The
same holds true in the context of cosmology, where C is
classically a function of b and v:

C = − 3

8πGγ2∆
V b2 (A26)

Since there is no operator in LQC corresponding to b, we
must consider a regularization of C in terms of N and
v. Here, we will recall the regularization commonly used
in LQC, and then compare it with a new proposal which
is closer to the regularization of the scalar constraint in
full LQG.

Let us start by regularizing the Euclidean part of
the scalar constraint (CE in (A9)). Consider first the
gauge curvature F i

ab, equation (A10). We define

(F ǫ)iab(x) := − 1

4ǫ2

∑

sa,sb=±1

sasbTr
[
τ i
(
h(�ǫ

saa,sbb
)

−h(�ǫ
saa,sbb)

†)]

(A27)

where �ǫ
±a,±b is a small plaquette starting at point x with

tangent ±xa and ending at the same point with tangent
±xb. It is not hard to show that

lim
ǫ→0

(F ǫ)iab = F i
ab (A28)

Now, using the fact that h(�ǫ
saa,sbb

) = hsaahsbbh
†
saah

†
sbb

and the explicit expressions (A17), one computes
(F ǫ)iab(x) = ǫiab sin(cǫ)2/ǫ2, which clearly reduces to the
classical cosmological F i

ab in the limit ǫ→ 0. As already
discussed, in LQC one makes the choice ǫ = µ̄, from
which one finds

ǫabc(F
µ̄)iab = 2δic

sin(b)2

µ̄2
(A29)

which can be easily written in terms of N and hence
promoted to an operator in LQC. The other term ap-
pearing in CE besides F i

ab is the non-polynomial expres-

sion sgn(det(e))Eb
kE

c
l /
√
| det(E)|. This can be regular-

ized via the first Thiemann identity [11]

sgn(det(e))
ǫjklǫabcE

b
kE

c
l√

| det(E)|
=

1

πGγµ̄
Tr
(
τ jha{h†a, V [σM ]}

)

+ O(µ̄)

(A30)

It is immediate to promote the right hand side to an op-
erator in LQC: its action on volume eigenvalue |v〉 reads

Tr
(
τ j ĥa[ĥ†a, V̂ ]

)
|v〉 = − iα

2
δja(|v − 1| − |v + 1|)|v〉

(A31)
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Using (A29) and (A30) in CE , one finds

CE [N ] =
N

16πG

ǫijkE
a
j E

b
k√

| det(E)|
F i
ab

=
N

16πG

ǫijkE
c
jE

d
k√

| det(E)|

(
δac δ

b
d − δbcδ

a
d

2

)
F i
ab

(A32)

=
N

16πG

ǫcdfǫijkE
c
jE

d
k√

| det(E)|
ǫabfF i

ab

2

⇒ Cµ̄
E [N ] =

24N

(16πG)2γ∆3/2
sin(b)

√
V×

(∑

a

Tr(τaha{h†a, V })

)
√
V sin(b) (A33)

where we considered a symmetric ordering on Hgr. The
action of the corresponding quantum operator is there-
fore

ĈE [N ]|v〉 =
3 × 2Nα2

(16πG)2~γ∆3/2
(N̂ 2 − N̂−2)((|v + 1| − |v + 3|)|v + 2|N̂ 2 − (|v − 3| − |v − 1|)|v − 2|N̂−2)|v〉

=
3Nα

4(16πG)∆

(
F (v + 2)N̂ 4 − F0(v)id + F (v − 2)N̂−4

)
|v〉 (A34)

where the lapse function has been chosen to be indepen-
dent of b and V and

F0(v) := F (v + 2) + F (v − 2),

F (v) := −|v|(|v + 1| − |v − 1|) (A35)

This is the LQC quantization of the Euclidean part of
the scalar constraint.

Let us now turn to the Lorentzian part, CL in
(A9). The standard procedure in LQC is based on the
observation that, on the flat cosmological sector, the
following relations hold:

γKi
a|cos = Ai

a|cos, 2γ2Ki
[aK

j
b]|cos = ǫijkF

k
ab|cos (A36)

Using these relations, one finds that in classical cosmol-
ogy the Lorentzian part is proportional to the Euclidean
part, CL|cos = −CE |cos(1 + γ2)/γ2. It can therefore be
regularized in the same way. Following this route, one
ends up with

Ĉ[N ]LQC|v〉 =
−3Nα

4γ2(16πG)∆

(
F (v + 2)N̂ 4 − F0(v)id

+F (v − 2))N̂−4
)
|v〉

(A37)

which is the quantum operator describing the dynamics
in standard LQC [20–23].

d. Scalar constraint with the new (Thiemann)
regularization

As explained in the main text, we now follow the
philosophy “first regularize, then reduce”. This leads us
to a regularization which is more in contact with the full
theory, where the Lorentzian part is not proportional to
the Euclidean part.

We recall the second Thiemann identity, which is
true in full GR if the regularization parameter ǫ > 0 is
independent of the phase space:

τjK
j
a =

1

8πGγ3
{τjAj

a, {CE [1], V }} (A38)

= − 1

8πGγ3ǫ
h(ea,ǫ){h†(ea,ǫ), {Cǫ

E [1], V }} + O(ǫ)

This allows to find the new regularization of the
Lorentzian part of the scalar constraint:

CL[N ] = −(1 + γ2)
N

16πG

ǫijkE
a
jE

b
k√

| detE|
ǫimnK

m
a K

n
b (A39)

= 4(1 + γ2)
N

16πG

ǫijkE
a
jE

b
k√

| detE|
Tr (τiτmτn)Km

a K
n
b

⇒Cǫ
L[N ] = − 1 + γ2

γ7(16πG)4
43N

ǫ3
ǫabc× (A40)

Tr
(
ha{h†a, {Cǫ

E[1], V }}hb{h†b, {Cǫ
E [1], V }}hc{h†c, V }

)
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where in (A41) we used (A38) and

τjǫ
jkl Eb

kE
c
l√

| det(E)|
= − 1

4πGγǫ
ǫabcha{h†a, V [σM ]} + O(ǫ)

(A41)

which is related to (A30).
The expression in (A41) can be evaluated on the cos-

mological sector by first reducing each argument of the
Poisson brackets to the cosmological sector, and then us-
ing the Poisson bracket between c and p. This yields (we
set V0 = 1 to ease the notation)

Cǫ
L[N ]|cos =

1 + γ2

γ7(16πG)4
43N

ǫ2

(
6

16πGǫ2

)2

ǫabc×

Tr
(
eǫcτa{e−ǫcτa,

√
p{sin(cǫ)2, p3/2}}eǫcτb

{e−ǫcτb,
√
p{sin(cǫ)2, p3/2}}√pτc

16πGγ

4

)

=
1 + γ2

γ216πG

N

ǫ2
ǫabc Tr (τaτbτc) sin(2cǫ)2

√
p

= − 6N

16πG

1 + γ2

γ2
√
p

sin(2ǫc)2

4ǫ2

(A42)

which agrees with the continuum expression for CL|cos
in the continuum limit ǫ → 0, yet is not proportional
to Cǫ

E ! This realization motivates us to consider a new
quantization for the Lorentzian part of the scalar con-
straint in LQC, based on (A41). However, before contin-
uing, one has to take care of how one passes from ǫ to
µ̄, which is phase space dependent. Indeed, Thiemann
identity (A38) is only correct for ǫ independent of the
phase space point. Thus, instead of performing the re-
placement ǫ → µ̄ in (A41), we make use of the following
observation from [40], which is true only in cosmology:

τjK
j
a = − 4

3µ̄(16πG)γ3
ha{h†a, {Cµ̄

E [1], V }} + O(∆)

(A43)

With this identity, following the same steps as in (A41)
one finds

Cµ̄
L[N ] = − 1 + γ2

γ7(4πG)4
Nǫabc

9∆3/2
Tr
(
ha{h†a, {Cǫ

E [1], V }}
√
V hb{h†b, V }

√
V hc{h†c, {Cǫ

E [1], V }}
)

(A44)

where, as for Cµ̄
E . Reducing this expression to the cos-

mological case (as we did in (A42)), one finds

Cµ̄
L[N ]|cos = − 3N

8πG

1 + γ2

γ2
V

sin(2b)2

4∆
(A45)

which correctly coincides with (A42) under the replace-
ment ǫ → µ̄. This confirms that (A44) is the correct

regularization to use if we want to implement Thiemann
identity in the µ̄-scheme.

The quantization of (A44) on the Hilbert space of LQC
can now be done in the standard way: putting the hats

and recalling that {̂., .} = [., .]/(i~), we find

Ĉµ̄
L[N ] = − (1 + γ2)N

γ7(4πG)4
ǫabc

9∆3/2

1

(i~)5
Tr
(
ĥa[ĥ†a, [Ĉ

ǫ
E [1], V̂ ]]

√
V̂ ĥb[ĥ

†
b, V̂ ]

√
V̂ ĥc[ĥ

†
c, [Ĉ

ǫ
E [1], V̂ ]]

)

(A46)

To write its action on |v〉 explicitly, recall the form of ĥa
in terms of N̂ : using (A34), we get (no sum over a)

Tr
(
τbĥa[ĥ†a[ĈE [1], V̂ ]]

)
|v〉

= −i δab
2

(
N̂ [ĈE [1], V̂ ]N̂−1 − N̂−1[ĈE [1], V̂ ]N̂

)
|v〉

= i
3α2

8(16πG)∆
δab

[
−(g(v + 1) − g(v + 3))N̂ 4

+(g(v − 3) − g(v − 1))N̂−4
]
|v〉

(A47)

with g(v) := F (v)(|v − 2| − |v + 2|). It follows

ĥa[ĥ†a[ĈE [1], V̂ ]]|v〉 =
−i3α2

4(16πG)∆
τa [−(g(v + 1)

−g(v + 3))N̂ 4 + (g(v − 3) − g(v − 1))N̂−4
]
|v〉

(A48)

From this and (A31), after some manipulations, we find

Ĉµ̄
L[N ]|v〉 =

3Nα

16πG∆210
1 + γ2

4γ2

(
G(v − 4)N̂−8 −G0(v)id

+G(v + 4)N̂ 8
)
|v〉

(A49)

where

G(v) := − F (v)(g(v − 3) − g(v − 1))(g(v + 1) − g(v + 3))

G0(v) := − F (v − 4)(g(v − 3) − g(v − 1))2

− F (v + 4)(g(v + 1) − g(v + 3))2

(A50)

Appendix B: Asymptotic analysis

In order to study the semi-classical limit of the model
at hand, we need to establish the asymptotic limit of
the eigenfunctions of the ΘTR operator. The eigenvalue
equation is

ΘTRΨ(v) = ω2Ψ(v) , (B1)
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where ω2 are the corresponding eigenvalues. The 4th-
order system (B1) can be expressed in a 1st-order form
as follows. First one introduces the vector(s)

~Ψ(v) :=




Ψ(v + 4)
Ψ(v)
Ψ(v − 4)
Ψ(v − 8)


 , (B2)

so that equation (B1) takes the form

~Ψ(v + 4) = A(v)~Ψ(v) , (B3)

where the matrix A is defined as

A(v) =




f4(v)
sf8(v)

2(s−1)f0(v)− 4
3πGγ2 ω2

sf8(v)
f−4(v)
sf8(v)

− f−8(v)
f8(v)

1 0 0 0
0 1 0 0
0 0 1 0




(B4)

where fa(v) :=
√
|v(v + a)||v + a/2|.

The next step is to express the functions Ψ as linear com-
binations of appropriately selected asymptotic functions.

We denote these functions by ψ̃±
i , where i ≡ F stands

for the FLRW phase and i ≡ S stands for the de Sit-
ter phase. We then rewrite (B3) as an equation for the
coefficients in the linear combination.

Using the results of the asymptotic analysis of LQC
with a scalar field [63, 90] and LQC with a cosmological

constant [47, 69], we select the asymptotic functions ψ̃±
i

as follows

ψ̃±
F (v) :=

exp
(
± ik log(v)

)
√
v

, (B5)

ψ̃±
S (v) :=

exp
(
± i(ΩSv + κ/v)

)

v
.

where k, ΩS and κ are functions of the parameter s and
the eigenvalues ω, to be determined. The vector ~χ± of
coefficients in the linear combination for ψ± can be de-
fined as

~Ψ(v) =: B(v − 4)~χ(v) , (B6)

where the matrix B is

B(v) :=




ψ̃+
S (v + 8) ψ̃−

S (v + 8) ψ̃+
F (v + 8) ψ̃−

F (v + 8)

ψ̃+
S (v + 4) ψ̃−

S (v + 4) ψ̃+
F (v + 4) ψ̃−

F (v + 4)

ψ̃+
S (v) ψ̃−

S (v) ψ̃+
F (v) ψ̃−

F (v)

ψ̃+
S (v − 4) ψ̃−

S (v − 4) ψ̃+
F (v − 4) ψ̃−

F (v − 4)




.

(B7)

At this point, equation (B3) becomes

~χ(v + 4) = B
−1(v)A(v)B(v − 4)~χ(v) =: M(v)~χ(v) .

(B8)

The matrix M can be computed explicitly. In order to
guarantee the existence of the limit limv→∞ ~χ(v) =: ~χ∞
(such that ~χ(v) = ~χ∞ + ~O(v−1)), the matrix M must
asymptotically satisfy

M(v) = 1 + O(v−2) , (B9)

where O(v−2) denotes a matrix whose coefficients asymp-
totically behave as O(v−2).

The asymptotic condition (B9) determines the expres-
sion of the functions k, ΩS and κ:

k =
ω√

12πG
, ΩS =

1

4
arccos

(
1 − 2s

2s

)
, (B10)

κ =
4sk2√
4s− 1

+
2s− 3

2
√

4s− 1
,

In consequence, we can write

Ψ(v) =
(
ψ̃+
S (v), ψ̃−

S (v), ψ̃+
F (v), ψ̃−

F (v)
)
· ~χ∞ +O(v−2) .

(B11)

Plugging in the explicit expression (B5), we can rewrite
the result as

Ψ(v) =
1√
v
NF (ω) cos(k ln(v) + σF (ω)) (B12)

+
1

v
NS(ω) cos(ΩSv + κ(ω)/v + σS(ω)) +O(v−2),

where Ni and σi are for the moment unknown quantities.

Appendix C: The Wheeler-DeWitt analog

The polymer quantization is of course not the only ac-
cessible technique of realizing the program of quantiza-
tion of geometry. The much older program of geometro-
dynamics employs in particular the standard Schrödinger
quantum representation. The application of this program
to the cosmological models is known as the Wheeler-
DeWitt quantization (see for example [91]). For the
model considered here the comparison of the traditional
LQC quantization with its WDW analog has been per-
formed already in [22]. The structure of this analog is
critically important for the LQC models themselves as
for example the normalization of the Hilbert space ba-
sis relies on it extensively. In specific contexts, one can
even consider the LQC dynamics as the process of scat-
tering of geometrodynamical (WDW) quantum universe
[92]. This analog is also a necessary component for defin-
ing the Hilbert space structures also in our studies. For
that reason we briefly outline its main properties.

1. The structure of the model

Our point of departure is the classical models of FRW
isotropic universe with massless scalar field already spec-
ified in sec. II. Its Wheeler-deWitt quantization is dis-
cussed in detail (with use of slightly different variables)
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in [21] and [22]. With the family of holonomies ha being
continuous, there is no need for Thiemann regularization
and one can start with the original connection and triad
variables. The gravitational part of the Hamiltonian con-
straint reduces then to just a function of the coefficients
v := V/α and b as defined in (3) and the whole constraint,
weighted by lapse N = 2V , takes the form

Ctot[N ] = p2φ − 3πG~2v2b2. (C1)

The standard Schrödinger quantization while ignoring
the constraints (the kinematical level) yields the Hilbert
space

Hkin = Hgr ⊗Hφ = L2(R, dv) ⊗ L2(R, dφ) (C2)

and the standard set of canonical operators (v̂, b̂), (φ̂, p̂φ)
such that

[b̂, v̂] = 2i, [φ̂, p̂φ] = i~, (C3)

defined on the domains of Schwartz spaces within Hgr

and Hφ respectively.
Performing the second stage of the Dirac program is

straightforward and gives the (essentially self-adjoint)
quantum constraint taking (in convenient symmetric fac-
tor ordering) the form

Ĉtot[N ] = IHgr
⊗ p2φ − 3πG~2(

√
|v̂|b̂
√
|v̂|)2 ⊗ IHφ

(C4)

In the v representation the constraint has the Klein-
Gordon form

~
−2N̂Ctot = −IHgr

⊗ ∂2φ + 12πG(
√
|v̂|∂v

√
|v̂|)2 ⊗ IHφ

(C5)
A restriction to the positive frequency solutions of the

constraint, in addition to the symmetry reduction with
respect to the parity symmetry v 7→ −v, then the ap-
plication of the group averaging procedure via a rigging
map defined analogously to (47), gives us the physical
Hilbert space

Hphy ∋ |Ψ〉 : Ψφ(v) =

∫

R

dkΨ̃(k)ek(v)eiω(k)φ, (C6)

where ω(k) =
√

12πG|k| and the functions ek are the
Dirac delta normalized eigenfunctions of the WDW evo-
lution operator

Θ := −12πG(
√
|v̂|∂v

√
|v̂|)2, (C7)

known to be positive definite and essentially self-adjoint.
Its entire spectrum is continuous and consists of positive
real line (Sp(Θ) = R+). The eigenfunctions ek are of the
form

ek(v) =
1√

2π|v|
eik ln |v|, [Θek](v) = ω(k)2ek(v),

(ek|ek′) = δ(k − k′), (C8)

and they form an orthonormal basis of Hgr.

2. Physical states in b representation

Per analogy with (30), we can introduce for the ele-
ments of Hgr the transform between the v and b coordi-
nates

ψ(b) = [Fψ](b) =
1

2
√
π

∫

R

dv√
|v|
ψ(v)e

ivb
2 , (C9a)

ψ(v) = [F−1ψ](v) =

√
|v|

2
√
π

∫

R

db ψ(b)e−
ivb
2 , (C9b)

which maps between the real symmetric functions in v
and the real symmetric functions in b. Applying this
transformation to the expression of the scalar product
on Hgr allows to express it as

〈ψ|χ〉 =
1

4π

∫

R

|v|dv
∫ π

0

db db′ψ⋆(b)χ(b′)ei
v
2 (b−b′).

(C10)
Unfortunately, due to presence of absolute value, the in-
ner product cannot be converted to a local form, that is
a single integral over b. We sidestep this problem follow-
ing the analogous treatment in [23] (and in part earlier
in [63]) by introducing the transformations to auxiliary
Hilbert space H± defined by the projections P±

P± : Hgr → Hgr, [P±(ψ)](v) = ψ(v)θ(±v),

H± := Im(P±), (C11)

where θ is the Heaviside step function17. The projection
induces scalar products on H± given by the restriction of
the scalar product on Hgr to positive/negative v respec-
tively. In turn, upon transformation to the b coordinate,
these induced scalar products can be written similarly to
(C10), but now they have a local form

〈ψ|χ〉± =
1

4π

∫

R±

(±v)dv

∫

R

dbdb′ψ⋆(b)χ(b′)ei
v
2 (b−b′)

= ∓2i

∫

R

dbψ⋆(b)∂bχ(b).

(C12)

Since the spaces H± are orthogonal, the scalar product
of Hgr can be rewritten as

〈ψ|χ〉 = 〈P+ψ|P+χ〉+ + 〈P−ψ|P−χ〉−, (C13)

thus it becomes quite simple to evaluate, provided that
the projections of the arguments are known. Un-
fortunately the form of the operators P± in the b-
representation is not simple. In order to properly control
the inner product we need to find the explicit form of
F(P±ek). In the integral form it is a simple restriction
of (C9a)

F(P±ek)(b) =
1

2π

∫

R±

dv

|v|e
ik ln |v|e

ivb
2 . (C14)

17 Here we apply the convention where θ(0) = 0.
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By extending the integrand function to the complex plane
and choosing the integration contours as in fig. 7, these
integrals can be converted to (well defined) ones over
imaginary semi-axes, which in turn can be expressed in
terms of the Gamma special functions

F(P±ek)(b) = ± 1

2π
e±sgn(b)πk

2 Γ(ik)e−ik ln |b/2|. (C15)

This in turn allows to write the full transform of ek as

F(ek)(b) =
1

π
Γ(ik) sinh(sgn(b)

πk

2
)e−ik ln |b/2|, (C16)

Using the asymptotic relation |Γ(ik)| sinh(πk/2)
√
|k| =√

π/2 + O(e−k), we can further approximate the above
transform for large k as

F(ek)(b) =
1√

2π|k|
e−i(k ln |b|+σ) +O(e−|k|). (C17)

where σ is a k-dependent phase shift.

I
+

I -

C
+

C-

✄

✄
R

v

b > 0

b < 0

✁

Figure 7. Integration contours for the transform (C14).

This evaluation will be used in the next subsection to
determine the explicit normalization of the Hilbert space
basis elements in LQC framework in b-representation.

Appendix D: Gravitational Hilbert space in
b-representation

The b-representation is particularly convenient in iden-
tifying the spectrum of the evolution operator ΘTR and
the resolution of identity in terms of its eigenstates. How-
ever, certain ingredients of the Hilbert space structure are
not straightforwardly obtained. An example is the scalar
product of Hgr. This appendix is dedicated to studying
the mathematical properties of Hgr and of ΘTR, which
are necessary for the construction of a basis of the phys-
ical Hilbert space. We will focus on the eigenvalue prob-
lem for ΘTR and the normalization of its eigenstates.

Let us start with the scalar product of Hgr.

1. The scalar product

Expressing the scalar product of Hgr in the b-
representation can be achieved by the inverse of trans-
formation of (30)

ψ(v) =

√
|v|
π

∫ π

0

db ψ̃(b)e−
i
2vb (D1)

This leads to the formula

〈ψ|χ〉 =
1

π2

∑

L4

|v|
∫ π

o

dbdb′ψ⋆(b)χ(b′)ei
v
2 (b−b′). (D2)

Like in WDW, due to the presence of the absolute value,
the scalar product cannot be converted to a local form,
that is a single integral over b. We introduce the projec-
tions P± on Hgr analogously to (C11)

P± : Hgr → Hgr, [P±(ψ)](v) = ψ(v)θ(±v),

H± := Im(P±), (D3)

As in appendix C, the scalar products on H± can be
written in a form similar to (D2):

〈ψ|χ〉± =
1

π2

∑

L4

±v
∫ π

o

dbdb′ψ⋆(b)χ(b′)ei
v
2 (b−b′)

= ∓4i

π

∫ π

0

dbψ⋆(b)∂bχ(b).

Since the spaces H± are orthogonal, the scalar product
of Hgr can be rewritten as

〈ψ|χ〉 = 〈P+ψ|P+χ〉+ + 〈P−ψ|P−χ〉−, (D4)

thus it becomes quite simple to evaluate, provided that
the projections of the arguments are known. Unfortu-
nately, the form of operators P± in b-representation is
not simple, thus evaluating the scalar product this way
is not convenient. On the other hand the relations (D4),
(D4) are useful in probing various properties of elements
of the physical Hilbert space (being a subspace of Hgr).
In particular we will apply them to analyze the weak
solutions to the eigenvalue problem (24).

We conclude this section by expressing the auxiliary
scalar products in terms of the coordinate x:

〈ψ|χ〉± = ∓4i

π

∫

R

dxψ⋆(x)∂xχ(x) (D5)

2. The eigenvalue problem for the evolution
operator

For given ψ ∈ Hgr we will denote its components with
respect to the projections defined above as ψ± := P±(ψ).
Furthermore, in order to express the weak eigenvalue
problem, we switch to the coordinate x defined in (35).
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Noting that the action of ΘTR preserves the sub-spaces
H±,18 we can rewrite the eigenvalue equation (for the
eigenvector Ψλ with corresponding eigenvalue λ) as

∀χ ∈ D, 0 = (Ψλ|Θ†
TR − λ⋆I|χ〉

= (Ψ+
λ |Θ

†
TR − λ⋆I|χ+〉+ + (Ψ−

λ |Θ
†
TR − λ⋆I|χ−〉−

(D6)

(where D is the domain already defined in (23), of
which elements are necessarily smooth in b). This equa-

tion requires that both the components on the right
hand side vanish independently (since it must hold for
all χ, it holds in particular for χ such that χ− =
0). For each of these components we split the do-
main of x into three intervals where x(b) is regular:
Ii ∈ {(−∞,−π/2), (−π/2, π/2), (π/2,∞)}, so that ΘTR

can be easily expressed in terms of x: for all χ ∈ D∩H±,
we have

(Ψ±
λ |Θ

†
TR − λ⋆I|χ±〉± = ∓4i

π

[∫ −π/2

−∞
dx +

∫ π/2

−π/2

dx+

∫ ∞

π/2

dx

]
[Ψ±

λ ]⋆(x)∂x

[
(Θ†

TR − λ⋆I)χ±
]

(x) (D7)

= ∓ 4i

π

∫ −π/2

−∞
dx [Ψ±

λ ]⋆(x)(−12πG∂2x − λ⋆I)∂xχ
±(x) ∓ 4i

π

∫ π/2

−π/2

dx [Ψ±
λ ]⋆(x)(12πG∂2x − λ⋆I)∂xχ

±(x)

∓ 4i

π

∫ ∞

π/2

dx [Ψ±
λ ]⋆(x)(−12πG∂2x − λ⋆I)∂xχ

±(x)

= ∓ 4i

π

∫ −π/2

−∞
(−12πG[Ψ±

λ ]′′⋆ − λ⋆[Ψ±
λ ]⋆)[χ±]′ ± 48iG lim

x→−−π/2

[
[Ψ±

λ ]⋆[χ±]′′ − [Ψ±
λ ]′⋆[χ±]′

]
(x)

∓ 4i

π

∫ π/2

−π/2

(12πG[Ψ±
λ ]′′⋆ − λ⋆[Ψ±

λ ]⋆)[χ±]′ ± 48iG

(
lim

x→+−π/2
− lim

x→−π/2

)[
[Ψ±

λ ]⋆[χ±]′′ − [Ψ±
λ ]′⋆[χ±]′

]
(x)

∓ 4i

π

∫ ∞

π/2

(−12πG[Ψ±
λ ]′′⋆ − λ⋆[Ψ±

λ ]⋆)[χ±]′ ∓ 48iG lim
x→+π/2

[
[Ψ±

λ ]⋆[χ±]′′ − [Ψ±
λ ]′⋆[χ±]′

]
(x)

= ∓ 4i

π

∫ ∞

−∞
dx
(
[ΘTRΨ±

λ ]⋆(x) − λ⋆[Ψ±
λ ]⋆(x)

)
∂xχ

±(x)

∓ 48iG

[
lim

x→+π/2
+ lim

x→−π/2
− lim

x→+−π/2
− lim

x→−−π/2

]
[Ψ±

λ ]⋆(x)[χ±]′′(x)

= ∓ 4i

π

∫ ∞

−∞
dx
(
[ΘTRΨ±

λ ](x) − λ[Ψ±
λ ](x)

)⋆
∂xχ

±(x) ± 4i

π

[
lim

x→+π/2
− lim

x→−π/2
+ lim

x→+−π/2
− lim

x→−−π/2

]
[Ψ±

λ ]⋆(x)[ΘTRχ
±](x)

where in the third step we integrated by part twice using
fg′′ = f ′′g + (fg′ − f ′g)′ and disregarded the boundary
contributions at infinity, while in the fourth step we ob-
served that ∂xχ

±(±π/2) = 0 (due to smoothness of χ± in
b, since ∂xχ

± = (∂b/∂x)∂bχ
± and (∂b/∂x)x=±π/2 = 0).

From this equation, we see that (Ψ±
λ |Θ

†
TR−λ⋆I|χ±〉± = 0

for every χ ∈ D ∩H± if and only if Ψ±
λ satisfies

ΘTRΨ±
λ = −12πGsgn(|x| − π/2)∂2xΨ±

λ = λΨ±
λ (D8)

and it is continuous (but not necessarily differentiable) at

18 While ΘTR involves shifts both in the positive and negative di-
rections, by explicit computation one can check that shifts across
v = 0 are multiplied by 0. Hence, a function with support on the
positive sub-lattice will remain on the positive sub-lattice upon
repeated action of ΘTR.

x = ±π/2. It is then easy to see (recalling that Ψλ(−x) =
Ψλ(x)) that the general solution is given by

Ψβ,k(x) = ζ





cos(k|x| + ϕ(β,k)), |x| > π/2,

cos(kπ/2+ϕ(β,k))
cosh(kπ/2) cosh(kx), |x| ≤ π/2,

(D9)
where ζ and ϕ are free constants.

Having this form at our disposal, we can systematically
find the eigenstates of ΘTR relevant for the construction
of physical states. This has been done in Sec. III B of
the paper. What remains is fixing the normalization
constant |ζ|. The asymptotic form of the eigenfunctions
(25) implies that they are not explicitly normalizable,
thus |ζ| cannot be determined in a straightforward way
or by purely numerical means. We will focus on this
problem in the next subsection.
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3. Normalization of the eigenstates

Consider the set of generalized eigenstates Ψk of ΘTR

corresponding to the eigenvalue ω2 = 12πGk2. Applying
the asymptotic decomposition (25) to these states, we
can write the inner product between two such states as
a distribution

(Ψk,Ψk′) =
∑

v∈L4

NF (k)NF (k′)
[
|v|−1 cos(k ln |v|

+σF (k)) cos(k′ ln |v| + σF (k′)) + Ō(|v|−3/2)
]
,

(D10)

where Ō(·) denotes the bounded remnant of the rate of
decay specified in the argument. The trigonometric com-
ponents are combinations of the basis elements of the
Wheeler-DeWitt analog of the model under study (see
App. C) and define the so called Wheeler-DeWitt limit
of LQC (see [22] and [92] for details). Introducing an
auxiliary variable η := ln |v|, we can further approximate
the above sum by an integral. Indeed, as the consec-
utive steps lengths in η between points of the summa-
tion decay exponentially, and due to the boundedness of
cos(kη+ σF (k)) and its derivatives, we have an estimate

(Ψk,Ψk′) =
1

2
NF (k)NF (k′)

∫ ∞

0

dη cos(kη + σF (k))

cos(k′η + σF (k′)) + Ō(η−2).
(D11)

By expressing the cosines in terms of exponentials, using
the identity

∫ ∞

0

dxeikx = πδ(k) +
i

k
, (D12)

and taking into account that k, k′ > 0, we arrive at the
following form of the scalar product

(Ψk,Ψk′) = NF (k)NF (k′)
π

8
δ(k − k′) + f(k, k′), (D13)

where f is possibly singular at k = k′. This function,
however, must vanish due to the orthogonality of the

eigenspaces for k 6= k′; thus, the orthonormality condi-
tion allows us to determine the asymptotic normalization
constant NF (k) as19

NF =
4√
2π
. (D14)

In order to determine the constant |ζ| in the expres-
sion of the eigenstates Ψk given in (D9), we employ the
following observations:

1. In the limit b→ 0, π, the function x(b) approaches
(up to a constant) the logarithmic function, that is

lim
b→0+

[x(b) − ln |b|] = ln

(
1 + γ2

2

)
− π

2
,

lim
b→π−

[x(b) + ln |π − b|] = − ln

(
1 + γ2

2

)
+
π

2
.

(D15)

The function ln |b| is in Wheeler-DeWitt model the
analog of x(b) in the model we are studying.

2. As a weak solution to the eigenvalue problem, for
|x| > π/2 each of the projections F(P±ek) need to
be linear combinations of e±ikx(b).

These two observations allow to relate |ζ| to the norms
of the WDW limits specified in (D10) and expressed in
the b-representation using (C16) as follows. Defining the
quantity

f
k

:= NF |v|−1/2 cos(k ln |v| + σF (k)), (D16)

we have

[F(f
k
)](b) = [F(P+f

k
+ P−f

k
)](b) (D17)

=
8i√
2π

sgn(b)|Γ(ik)| sinh(
π

2
k) sin(k ln |b| + σ̃(k)),

where σ̃ is some k-dependent phase shift. Having the
convergence of F(Ψk) to F(f

k
) in the limit b → 0 we

can determine the absolute value of the multiplicative
constant ζ in (D9). Thus we have

|ζ| =
4
√

2√
π
|Γ(ik)| sinh(

π

2
k) =

4√
|k|

+O(e−|k|) (D18)
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