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We report on advances to interpret current and future gravitational-wave events in light of
astrophysical simulations. A machine-learning emulator is trained on numerical population-synthesis
predictions and inserted into a Bayesian hierarchical framework. In this case study, a modest but
state-of-the-art suite of simulations of isolated binary stars is interpolated across two event parameters
and one population parameter. The validation process of our pipelines highlights how omitting
some of the event parameters might cause errors in estimating selection effects, which propagates
as systematics to the final population inference. Using LIGO/Virgo data from O1 and O2 we infer
that black holes in binaries are most likely to receive natal kicks with one-dimensional velocity
dispersion o = 105f§g km/s. Our results showcase potential applications of machine-learning tools
in conjunction with population-synthesis simulations and gravitational-wave data.

I. INTRODUCTION

The observed catalog of gravitational-wave (GW) de-
tections is growing at a fast pace. Eleven [1] (or possibly
more [2]) events have been announced so far and hundreds
more are expected to be observed within a few years. This
opens a unique possibility of inferring properties of the
population of merging compact binaries in the Universe.

Current state-of-the-art analyses assume that the un-
derlying population of GW sources is described by some
phenomenological parametric expression (e.g. [3]). For
instance, one can assume that the mass distribution of
merging binary black holes (BHs) follows a power law,
and use GW data to infer its spectral index. As the
size of the GW catalog grows, increasingly complex pa-
rameterizations and non-parametric tests (e.g. [4]) will
allow us to capture finer and finerb details of the observed
population.

Astrophysical predictions of GW populations are typi-
cally computed using population-synthesis codes [5-10]
—collections of prescriptions that encode our understanding
and ignorance of how compact binaries form and evolve
from their stellar progenitors. The parameters needed to
initialize a population-synthesis simulation are directly
related to poorly understood astrophysical mechanisms
ruling the lives of massive stars. These include, for in-
stance, efficiency of the common-envelope phase (if any),
strength of the supernova kicks, fallback material, mass-
loss rates, stellar winds, etc.

A possible strategy to exploit future large GW catalogs
is to bypass phenomenological models and compare data
directly against population-synthesis simulations. A first
step in this direction consists of estimating mixing frac-
tions between two or more precomputed models [11-14].
More ambitiously, one could use GW data to infer the
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set of code input flags that best matches the observations.
This approach faces an immediate difficulty, namely that
a new, computationally expensive population-synthesis
simulation is required at each evaluation of the population
likelihood.

Progress to overcome this limitation was recently pre-
sented by Taylor and Gerosa [15]. By combining Gaussian
process regression (GPR), principal component analy-
sis (PCA), space-filling algorithms, and a hierarchical
Bayesian framework, they were able to efficiently interpo-
late a precomputed bank of population-synthesis simula-
tions and use the resulting emulator to infer the posterior
distributions of the population parameters. Their method,
however, was only applied to a few simple scenarios [15].

In this paper, we present a more realistic application:
we train a GPR interpolant on a small, but state-of-the-
art, set of population-synthesis predictions of BH binaries
formed in isolation [16]. The resulting emulator slots
into a hierarchical Bayesian analysis and is fed with BH
binary data from LIGO/Virgo first (O1) and second (O2)
observing runs. Under these astrophysical assumptions,
we measure the natal kicks that BHs receive at birth.

This case study sheds light on some of the challenges
one has to overcome to fully compare GW data and astro-
physical simulations. In particular, we show that omitting
a subset of the single-event parameters, either because
they are not modeled in the simulations or simply be-
cause they make the inference problem computationally
prohibitive, will cause a systematic bias on the final pop-
ulation inference.

This paper is organized as follows. In Section II we
briefly review the procedure of Ref. [15] and present the
current application. In Section IIT we show inference
results using both mock datasets and real observations.
Finally, in Section IV we discuss some astrophysical impli-
cation of our findings and highlight future developments
of this approach.
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II. METHODS
A. Hierarchical Bayesian inference

For each GW event, data d are routinely analyzed using
Bayesian inference [1]. The chosen priors encode one’s
physical intuition of the underlying population and play
an important role when interpreting the results [17]. A
hierarchical analysis aims at parameterizing the choice
of prior and using data to infer the resulting “hyperpa-
rameters”’. For clarity, in the following we will denote
parameters describing single events (e.g. masses, red-
shifts) as “event parameters”, and the hyper-parameters
describing the entire sample as “population parameters”
(e.g. the strength of supernova kicks). Let us assume that
a set of population parameters A\ predicts a distribution
of event parameters 6

d

@T(A) =7(A) Ppop(0|A) , (1)

where [ poop(f|A)d0 = 1 and the total rate 7(A) is typ-
ically measured in yr—!. This function encodes our as-
trophysical assumptions on the underlying populations.
It can be estimated using a parameterized model, a
population-synthesis simulation, or, in our case, by evalu-
ating a machine-learning emulator. The predicted number
of events is N(A) = () x Tops where Tops is the duration
of the observing run(s).

We wish to analyze a GW catalog containing Ny
entries. For simplicity, we assume that all the events
present in the catalog are of astrophysical origin. A
more complete analysis including triggers with larger
false-alarm probabilities is left to future work (e.g. [18]).
Single-event posterior p(6|d) are computed using some
default prior 7(6) which is chosen by issuers of the catalog.
In practice, both prior and posterior are usually provided
under the form of Monte Carlo samples [1].

Detector selection effect are encoded in a function 0 <
pdet(0) < 1, indicating the likelihood that an event with
parameters 6 appears in the catalog. This is used to define
the observable distribution

d

@Tdet ()\) =

7(A) ppop(0|/\) Ddet (0) (2)

and the expected number of observations Nget(\) =
Tdet(A) X Topbs. Here we follow a common approach
and approximate pget(6) using the single-detector semi-
analytic approximation of Refs. [19, 20]) as implemented
in Ref. [21] with a signal-to-noise ratio threshold equal
to 8 and the waveform model of Ref. [22]. This was
shown to be in good agreement with large-scale injection
campaigns [3, 23].

All these ingredients enter the population likelihood,
which has the standard expression of an inhomogeneous
Poisson process (c.f. Refs. [15, 24-26] for detailed deriva-

tions). In particular, the population posterior reads

Nobs

p(Ald) ocm(A) e_NdCt(/\)N Ppop(0]A)d6

Nobs H pz
3)

where 7(A) is some assumed population prior. If one
wishes exclude rate information from the inference, a
marginalization over N (A) with prior oc 1/N () yields [27]

Ry 9\d Ppop (0]
p(Ald) ocr( do. (4
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B. Training simulations

In this paper we consider GW sources formed in isola-
tion via a common-envelope phase —a leading formation
channel for binary BHs (e.g. [28]). We use the set of pre-
dictions presented in Ref. [16, 29] (see references therein).
The simulations are performed with the STARTRACK [8]
and PRECESSION [30] codes (see also [31]). In particular,
these runs employ the same set of assumptions used in
model M10 of Ref. [32], except that BH natal kicks are not
suppressed compared to neutron stars. Kicks are drawn
from a Maxwellian distribution with one-dimensional ve-
locity dispersion 0. We consider seven simulations with
o =0, 25, 50, 70, 130, 200, and 265 km/s, the latter being
the value inferred from pulsar proper motions [33].

Each event in our synthetic catalogs is described by
masses, spins, redshift, as well as its contribution to the
total merger rate dr/df [34]. In this paper, we restrict
the event parameters used in our statistical inference to
masses, redshifts, and rates (see below). Even though BH
spins are not directly considered, assumptions on their
distribution enter the waveform, hence the detection rates.
Using the various spin models developed by Ref. [16], we
verified that this indirect spin effect has a negligible impact
on our final results. For concreteness, in the following
we use the “time-uniform” model [16]. All binaries are
assumed to reach the LIGO/Virgo band in quasi-circular
orbits.

Selection effects pyet(6) are computed using sensitivity
curves for both LIGO in its design configuration and LIGO
during O1/02. In particular, we use the “Design Sensi-
tivity” and the “Early High Sensitivity” from Ref. [35],
respectively (cf. [3]).

C. Gaussian processing

Astrophysical simulations are used to train a Gaussian
process interpolator to quickly evaluate the rates dr(\)/d6.
In particular, our problem has a single population param-
eter A = {o}. Our implementation closely follows that
of Ref. [15]. We first assume a common binning scheme
across all simulations and convert the distribution using



PCA.! The resulting features are then interpolated across
the hyper-parameter space with GPR.

The choice of event parameters used in the inference
needs to be addressed with care. A trade-off is present
between the size of the vector # and the resulting GPR
accuracy. A larger number of event parameters would
increase the amount of astrophysical information captured
by the analysis. However, this requires larger training
banks to keep the interpolation error under control. This
means, not surprisingly, that if we want to increase the
amount of information used in the hyper-parameters in-
ference, we also need to feed in more training data to
ensure the same accuracy.

We found that our set of 7 simulations allows us to
accurately interpolate across source-frame chirp mass
and redshift, i.e. 8 = {M,,z}. For this (admittedly
modest) training bank, inserting additional parameters,
like mass ratio or effective spin, significantly degrades
the performance of the interpolator. In particular, we
use 40 equispaced bins in M. € [5,45] and z € [0,1].
GPR is implemented using SCIKIT-LEARN [36] with a
squared exponential kernel as in Ref. [15]. The population
posterior of Eq. (3) is sampled using EMCEE [37].

We validate our pipeline using a standard out-of-sample
test. We train our regression machine using 6 simulations
and validate results against the one that was left out.
Figure 1 shows the predicted distributions of chirp mass
M., redshift z, and rates r. Other than some small-scale
differences, the interpolator accurately captures all the
main features of the training set. For instance, we found
a fractional difference in the intrinsic rate as small as
Ar/r ~ 6%

Reducing the number of event parameters implies that
the quantities used in the inference differ from those
needed to compute selection effects via pget(6). Assump-
tions on other parameters beyond chirp mass and redshift
such as mass ratio and spins will inevitably be necessary
to compute waveforms. For this reason, one cannot sim-
ply interpolate dr(\)/d6 across 8 = {M,, z} and compute
Nyet (M) at each likelihood evaluation. We bypass the issue
by computing the detectable rates from the training sim-
ulations (where mass ratios and spins are provided) and
running a second GPR/PCA interpolation on drqet(\)/d8
(cf. Fig. 1). This approach is tested in the next section.

III. RESULTS
A. Mock data

We first apply our statistical pipeline to mock data.
We assume that a population of BH binaries with true

1 PCA naturally allows reducing the size of the computational
problem by filtering out unnecessary features [15]. In this case,
we are only using 7 training simulations and are able to process
the entire distributions without any compression.

4000
£ 2000

1.0
0.8

0.6
N

0.4 V4
o = 50km/s

0.2 // — GPR

=" — Validation
0.0

5 10 15 20 25 30 35 40
Mc [MQ]

500 1500
r ]

10° . .
— Intrinsic — Design — 01/02

10*

0 50 100 150 200 250
o [km/s]

FIG. 1. Out-of-sample test of our machine-learning interpola-
tor. The simulation with o = 50 km/s is excluded from the
training dataset and used to validate results. The top panel
shows the intrinsic distributions of chirp mass and redshift
dr/df. Blue curves show the interpolated result, while or-
ange curves show the control set. Contours mark 30%, 50%,
70% and 90% confidence intervals; side histograms show the
marginalized distributions. The bottom panel shows detection
rates across the hyper-parameter space. In particular, the
blue line shows intrinsic rates r, while orange and green lines
show observable rates r4et for LIGO at design sensitivity and
during O1/02, respectively. Circles mark the simulations used
to train the interpolator; crosses mark the validating dataset.

value =100 km/s is observed by LIGO at design sensi-
tivity. This is a location in parameter space where we
have not performed a population-synthesis simulation.
The observing time Ty is chosen such that the predited
number of observation is Nget(a) = {10,100, 1000}. We
assume the number of entries N, in our mock catalogs is
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FIG. 2. Injection-recovery test. The left panel considers LIGO at design sensitivity, where selection effects are included through
Ddet- In this case, both dr/d and drget/d6 are interpolated from population-synthesis simulations. The right panel shows a test
run where we assume a fictitious LIGO detector described by paet (see the description in the text), which allows us to only
interpolate dr/df. The injected value = 100 km/s is marked by vertical dashed lines. Solid curves show posterior distributions
of the strength of supernova kicks o assuming the predicted number of observable sources is Nge¢ () =10 (blue), 100 (orange),
and 1000 (green). A few realizations are reported for each of these cases.

Poisson-distributed with mean Nge (). Injections events
0 = {M,,z} are generated from the drge;/df emulator.
For simplicity, we assume posterior p;(6|d) are bivariate
Gaussians centered on those extracted values with stan-
dard deviations equal to 10%. We sample the posterior
of Eq. (3) assuming a flat priors on M., z and o.

Our injection-recovery results are shown in left panel
of Fig. 2 for several catalog realizations. The injected
value & = 100 km/s is well within the predicted posterior
only for the case with Ngey = 10. As the number of
detections grows, a systematic bias becomes more and
more evident. For Ngo = 1000, the posteriors peak at
~105 km/s and the true values lies well outside the 90%
confidence interval.

This bias is somewhat expected because we are neglect-
ing some of the event parameters and only considering
0 = {M., z}. This forces us to interpolate dr(\)/df and
drqet(N\)/d0 separately. In normal circumstance these two
distributions are related by a single detectability function,
ie. drget(A)/dO = paet(8)dr(X)/df. Our pipeline, how-
ever, violates this condition because the two interpolants
have different interpolation errors occurring in each bin.

We test this interpretation by considering a fictitious
detector where selection effects pget depends only on M,
and z. This is constructed by assuming the same LIGO
sensitivity curve which, however, responds to all binary
BHs as if it they were equal mass and non-spinning, i.e.
ﬁdet(Mcv Z) = pdet(Mcu z,q =1, X1 = 0, X2 = 0) In this
case, we can interpolate only dr/df using population syn-
thesis data. Injections are constructed extracting couples
{M,, z} from dr/df and accepting/rejecting each draw
according to paet(6). The factor e~ Naet(N) in Eq. (3) is es-

timated by integrating pqet(6) x dr/df at each likelihood
evaluation. Results are shown in the right panel of Fig. 2.
We recover a largely unbiased estimates of the population
parameter.

As discussed above, the number of parameters we can
confidently interpolate is limited by size of the train-
ing dataset. A larger set of simulations would allow us
to model more event parameters, consequently reduc-
ing systematic uncertainties on the resulting inference.
Fig. 2 shows, however, that the present simulation set is
appropriate for @(10) events, as in this case statistical
uncertainties largely dominates over systematics. We thus
proceed by analyzing the 10 BH binary events detected
during O1 and O2.

B. Events from LIGO/Virgo O1 and 02

After removing data segments contaminated by sig-
nificant noise sources, LIGO/Virgo O1 and O2 resulted
in Typs = 48.6 and 118 days of coincident data, respec-
tively [1, 38]. We make use of posterior and prior samples
of 10 binary BH coalescences publicly released by the
LIGO and Virgo collaborations [39]. In particular, they
provide luminosity distance and detector-frame masses,
which we convert to redshift and source-frame masses.
A Gaussian kernel-density estimation is then employed
to obtain 7(6) at the locations of the posterior samples,
which allows approximating the integrals in Egs. (3-4) as
Monte Carlo sums.

The resulting inference is illustrated in Fig. 3, where
we show the posterior distribution of the population pa-
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FIG. 3. Constraints on the strength of BH natal kicks o using
10 BH binary data from LIGO/Virgo O1 and O2. The blue
curve shows our posterior distribution. Vertical blue lines
show the corresponding median (solid) and 90% confidence
interval (dashed). We assume a flat prior (horizontal black
line).

rameter o. This is our GW measurement of the kicks
imparted to BHs at formation. Quoting median and 90%
confidence interval, we find o = 105135 km/s. The infor-
mation gain between prior and posterior, as quantified by
the Kullback-Leibler divergence [40], is Dy, = 1.54.

The posterior is skewed toward high values of o. This
is because the event rate r changes more (less) rapidly at
low (high) values of o (cf. Fig. 1). Consequently, data
can more (less) easily accommodate kicks that are larger
(smaller) than the inferred posterior maximum.

Our inference is largely driven by the integrated event
rate r(\). For this set of simulations, the current GW
catalog does not contain enough discriminating power
to perform an informative analysis restricted to ppop.
Repeating our study using the marginalized likelihood of
Eq. (4) returns a much lower information gain Dgj, =
0.24.

IV. DISCUSSION

By applying the statistical framework of Ref. [15], we
analyzed current GW data using population-synthesis
simulations of binary BHs formed in isolation. Simulations
enter the training process of a machine-learning algorithm,
in this case GPR. The resulting emulator is then used
to evaluate the likelihood in the context of a standard
hierarchical Bayesian analysis. The present case study
puts this idea into practice using a modest set of 7 training
simulations, allowing us to showcase both prospects and
pitfalls of this approach. Overall, the pipeline returns
posterior distributions of the input flags one needs to
initialize and run population-synthesis simulations. These

are related to poorly understood mechanisms in the lives
of massive stars, like BH natal kicks, which are here
measured directly from GW data.

We first tested our approach on mock catalogs and
show the presence of a systematic bias that exceeds sta-
tistical uncertainties when the number of observations is
2 100. The omission of some event parameters causes
errors when modeling detector selection effects which in
turn, propagate to the population inference. The test
reported in Sec. IIT A suggests that this issue can be al-
leviated with a larger set of training simulations, which
will allow using a larger set of event parameters while
keeping the interpolation error under control. The case
where some parameters need to be omitted reflects a com-
mon situation. In this study, information on mass ratio
and spins are available but limited number of simulations
prevented us from carrying out a more complete analysis.
A more damaging scenario occurs when some variables
affecting the GW signal are not modeled at all in the
astrophysical simulations. Our results show the impor-
tance of developing astrophysical models where all the
observables (BH spins, eccentricity, etc) are taken into
account.

We also applied our procedure to BH binary data from
LIGO/Virgo O1 and O2. Our results suggest that bi-
nary BHs were imparted moderate kicks at formation
(o0 2 70km/s). This is in tentative agreement with posi-
tion and proper-motion measurements in X-ray binaries
[41-43], as well as GW measurements of BH-binary spin
misalignment [44, 45]. Our findings are, however, in con-
trast with current supernova models which predict that
BH natal kicks should be highly suppressed due to fall-
back material in the late stage of the explosion (e.g. [46]).
The simulations used in this paper do not have a dedi-
cated flag to tune the amount of fallback, which is instead
controlled directly by the value of o.

We stress that our result is model dependent. This is
intentional: we are interpreting GW events in light of a
specific set of astrophysical assumptions. Consequently,
only those assumptions are put to test. Among the set of
predictions explored here, current GW data prefer models
where moderately large natal kicks are imparted onto
BHs. It is natural to expect that a more complete set of
training simulations might change this result qualitatively.
Even assuming the same population-synthesis setup, a
larger set of training simulations will allow (i) captur-
ing degeneracies between different population parameters
and (ii) efficiently interpolating across additional event
parameters.

Prior assumptions are inevitably part of any statistical
analysis. Instead of relying on parametrized distributions,
our approach makes use of state-of-the-art simulations in
a data-driven fashion. We believe our approach presents
promising avenues to infer astrophysical formation and
evolutionary processes of GW sources, thus making a step
forward towards the goal of GW astronomy.
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