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We report on measurements of the all-particle cosmic ray energy spectrum and composition in
the PeV to EeV energy range using three years of data from the IceCube Neutrino Observatory. The
IceTop detector measures cosmic ray induced air showers on the surface of the ice, from which the
energy spectrum of cosmic rays is determined by making additional assumptions about the mass
composition. A separate measurement is performed when IceTop data are analyzed in coincidence
with the high-energy muon energy loss information from the deep in-ice IceCube detector. In
this measurement, both the spectrum and the mass composition of the primary cosmic rays are
simultaneously reconstructed using a neural network trained on observables from both detectors.
The performance and relative advantages of these two distinct analyses are discussed, including
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the systematic uncertainties and the dependence on the hadronic interaction models, and both
all-particle spectra as well as individual spectra for elemental groups are presented.

Measurements of the cosmic ray energy spectrum and
mass composition in the PeV to EeV energy range pro-
vide key information about the origin and propagation of
cosmic rays in what is commonly considered to be a tran-
sition region from galactic to extragalactic cosmic rays.
In the present paper we report on composition and en-
ergy spectrum measurements using three years of data
from the IceCube Neutrino Observatory.

The IceCube Neutrino Observatory is a versatile par-
ticle detector located at the geographic South Pole, with
both surface and deeply-buried components. The latter,
or InIce, component (described in detail in [1]) consists of
5160 Digital Optical Modules (DOMs) [2] deployed with
17 m spacing on 86 strings in a 125 m triangular grid
formation, at depths from 1450 m to 2450 m below the
surface in transparent ice. Each DOM contains a 10 inch
Hamamatsu photomultiplier tube (PMT) and electronics
for signal processing and readout [3].

The surface component, IceTop (described in detail in
[4]), is an array of pairs of tanks filled with water that has
frozen and containing two DOMs each, operating at dif-
ferent PMT gains for increased dynamic range; the pairs
of tanks are called stations, and each station is located
above a string of the InIce detector (see Figure 1).

As Cherenkov detectors, both components are sensi-
tive to the charged particles in the extensive air show-
ers (EAS) produced by cosmic rays from the Southern
Hemisphere sky, and both are used to extract the cosmic
ray energy spectrum in different ways. In this paper, we
will discuss two methods for extracting this information:
the first uses IceTop only and will be referred to as the
IceTop-alone analysis, while the other uses both the Ice-
Top and InIce detectors in tandem, and will be referred
to as the coincident analysis. The coincident analysis
also provides a new measurement of the composition of
cosmic rays.

The IceTop detector can be used alone to measure the
core position, direction, and size of the air showers at the
surface. These observables are utilized to extract a cos-
mic ray energy spectrum: in particular the shower size,
discussed in Section ID, is strongly correlated with the
energy of the incident cosmic ray primary. It is important
to note that as the shower size depends slightly on the
mass of the cosmic ray primary, the composition must be
assumed in order to extract the energy spectrum when
using IceTop-alone. Since IceTop collects a large num-
ber of showers, rare high-energy events are collected in
sufficient numbers to extend the analysis into the EeV
range. This analysis was performed most recently in [5],
in which one year of 73-station data was used to measure
a spectrum from a few PeV to EeV.

∗ analysis@icecube.wisc.edu

The InIce detector measures the energy loss of the
high-energy muons in the deep ice, which is strongly de-
pendent upon the mass of the incident cosmic ray pri-
mary, as discussed in Section I E. Thus, with the IceTop
and InIce detectors working in tandem, the high-energy
muon component of the air showers are measured in coin-
cidence with the electromagnetic component; thus both
the energy spectrum and mass composition are measured
without making assumptions about one to determine the
other. However, this method requires coincident events
between the two components of IceCube: due to the long
lever arm between the two arrays, only zenith angles of
approximately 0-30◦ on the sky pass the coincident selec-
tion criteria, which then yield fewer events from the same
data sample as the IceTop-alone analysis. Thus, the coin-
cident analysis cannot reach as high an energy as IceTop-
alone. A coincident analysis like this was performed in
[6], in which one month of data from the half-completed
40-station, 40-string detector was used to measure a spec-
trum and average logarithmic mass (〈lnA〉) from 1 to
30 PeV; that analysis was extended with improved recon-
struction techniques in [7, 8] using one year of data from
the nearly complete 73-station, 79-string array, achieving
better resolution and reaching to 1 EeV.

In this paper, we will present for the first time the
coincident analysis in detail. In addition, the one-year
analyses of IceTop-alone [5] and coincident [7, 8] data are
extended to three years, and we report these improved
and updated results.

I. DATA, SIMULATION, AND
RECONSTRUCTION

A. The 3-year Data Set

The analyses described here use three years of data,
from June 1, 2010, through May 2, 2013. The IceTop-
alone and the coincident analyses use the same dataset,
and thus have both a total livetime of 977.6 days (with
a negligible uncertainty of less than half a percent). The
IceCube Neutrino Observatory was not running in its
complete configuration (81 stations, 86 strings) until May
14, 2011. Therefore, the first year of data included here
was taken in the incomplete 73-station, 79-string con-
figuration (IT-73/IC-79). The simulation used in these
analyses was also produced using the IT-73/IC-79 de-
tector configuration. Thus, in order to handle the two
following years of data in the same analysis, all informa-
tion from the final 7 deployed strings and 8 stations has
been removed from data processing. The configuration
used is shown in Figure 1.

mailto:analysis@icecube.wisc.edu
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FIG. 1. A top view of the IceTop surface array. Colors indi-
cate the construction periods for the strings and tanks. This
work will focus on IceTop-73 (IT-73) and IceCube-79 (IC-
79), which includes all detectors except those from the last
construction year colored orange. Strings 79 and 80 and sta-
tions 79, 80, and 81 are excluded from this work, even though
they lie inside the border of IT-73 shown in black. [8]

B. Simulation

Both of the analyses presented here use the same set of
Monte Carlo simulations of cosmic ray events to estab-
lish relationships between detector observables and cos-
mic ray energy and mass. (This simulated dataset was
also used in [5].) 30000 air showers of four primary types
(protons, helium, oxygen, and iron) were simulated us-
ing the CORSIKA air shower generator [9] with an E−1

spectrum between log10(E/GeV)=5.0 and 8.0. Addi-
tionally, thinned CORSIKA showers [10, 11] were gener-
ated at higher energies: 12000 showers of each type, again
with an E−1 spectrum between log10(E/GeV)=7.0 and
9.5. High-energy muons are not thinned in the algorithm.
The range of energy overlap between log10(E/GeV)=7.0
and 8.0 allows for verification of the un-thinning algo-
rithm [4].

Two hadronic interaction models were used: FLUKA
[12] below 80 GeV, and Sibyll 2.1 [13] above 80 GeV.
EGS4 [14] was used to model the electromagnetic inter-
actions. Other high energy hadronic interaction mod-
els are used for systematic studies, as discussed in Sec-
tion IVC. The zenith angle from the primary particles is
sampled from a cos(θ) sin(θ) distribution between 0◦ and
40◦, while the azimuth angle is drawn from a uniform dis-
tribution over the whole 2π azimuth range. To be able to
study atmospheric changes and apply corrections where
needed, a reference atmosphere was chosen based on the
MSIS-90-E parametrization [15] of the South Pole Atmo-
sphere on July 1, 1997, which has a ground pressure of

692.2 g/cm2 at the South Pole altitude (CORSIKA at-
mosphere 12, [10]). To make more efficient use of the
CORSIKA showers available, each shower is copied, or
resampled, 100 times, and thrown at random locations
within a circle of radius R centered on the center of the
IceTop array. The resampling radius is the largest possi-
ble for the shower to trigger the array [4].

Next, the particles generated by CORSIKA are prop-
agated into the detectors. The individual responses of
the IceTop tanks are simulated using a detailed Geant4
[16, 17] model which takes into account the individual
IceTop tank properties, including snow and air above the
tanks, and the detector electronics. The resulting signal
is converted into units of photoelectrons using constants
unique to each tank [4]. In this way the same calibration
procedure (described in Section IC) can be performed on
both simulated events and experimental data.

For the coincident analysis, the high-energy muons
in the CORSIKA air showers must also be propagated
through the Antarctic ice and through the deep InIce
detector. Muons with energy above 273 GeV1 are propa-
gated [18] through the Antarctic ice to the bottom of the
InIce array. Propagating the Cherenkov photons from
the muons through the South Pole ice to the DOMs by
directly tracking each one is computationally prohibitive.
Therefore, light profiles for GeV emitters (including both
pure Cherenkov emission and more diffuse emission from
cascade light sources) are tabulated in a software package
[19], which includes a model of the full structure of the ice
properties [20]. The expected number of photoelectrons
and their arrival times at each DOM are retrieved from
the tables for each muon and for electromagnetic and
hadronic cascades. Simulated noise hits are then added.
Finally, the simulated photoelectrons are fed into a sim-
ulation of the InIce readout electronics and the detector
trigger. The simulated DOM signals then follow the same
processing chain as the experimentally measured DOM
signals.

C. Pulse cleaning and Calibration

Only events which pass the cosmic ray filters [4] and
which contain at least 6 hard local coincidence (HLC2)
DOMs within 6 µs are processed further. In a first signal
cleaning of selected events, signals from all DOMs which
were determined to be unreliable at the time of data tak-
ing are removed. The remaining signals are calibrated
using the procedure described in [1], which returns the
number of photoelectrons. At this point the IceTop and
InIce data are split.

1 273 GeV is the energy at which 0.1% of the muons are expected to
reach the top of the InIce detector and could create a detectable
amount of Cherenkov light within the array [8]

2 HLC hits occur when both tanks in one station are hit within
1 µs
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The IceTop data is cleaned and calibrated as described
in detail in [4]. At this stage, only HLC hits are pre-
served. All signals within one large trigger window are
then split into clusters of hits that are likely related to
one air shower. Next, an additional noise cleaning proce-
dure is applied to the calibrated HLC signals. This pro-
cedure begins with a cluster of 3 hit stations and adds
more tanks to the event using a simple distance-per-time
requirement [8]. This extra cleaning procedure improves
the removal of noise hits, of tanks with time-fluctuations,
and of muon-like signals at large lateral distances from
the shower core. These, in turn, improve the IceTop
reconstruction procedures described in Section ID. The
specific tank response is then taken into account using
a calibration procedure which transforms the signal into
that expected from vertical (equivalent) muons (VEMs).

For the coincident analysis, the InIce hits causally con-
nected to the event seen in IceTop are selected based on
an allowed time difference window between IceTop and
InIce hits. Therefore, before the IceTop and InIce events
can be connected, InIce noise hits that affect the trig-
ger time must first be removed in a procedure based on
distance-per-time requirements (similar to that in Ice-
Top). Then, InIce triggers matching the IceTop triggers
and pulses are selected, and the pulses not connected to
the selected trigger are removed. A final noise removal
procedure in the InIce detector uses the reconstruction of
the track by IceTop whereby only hits connected in time
to the track, and in a cylinder around it, are preserved.
These steps effectively remove random coincidences be-
tween the two detectors, and events that are very close
in time.

Finally, after the above event cleaning and calibration
procedure, events are required to have hits in at least 5
IceTop (IT-73) stations and, in the coincident analysis,
hits in at least 8 InIce (IC-79) DOMs.

D. IceTop Reconstruction

Cleaned data from IceTop tanks are processed by a re-
construction software package called Laputop, which has
been described in detail in [4]. For each event, Laputop
finds the best-fit shower core position (xc, yc, zc) and
direction (θ, φ), as well as two parameters describing
the shape of the lateral distribution function (LDF) of
deposited charge (S125, β). The functional form of the
charge LDF is a double logarithmic parabola:

S = S125 ·
( r

125m

)−β−κ log10( r
125m )

,

where β is a measure of the steepness of the LDF and
S125 is the signal expectation at a perpendicular reference
distance of 125 meters from the shower axis [21]. S125 will
be referred to throughout this paper as the shower size.
κ scales with the curvature of the parabola which is ap-
proximately constant for all hadronic showers; thus κ is

presently set as a default to 0.303, while the other two pa-
rameters are allowed to vary event by event. The best-fit
parameters are found using a 3-step maximum-likelihood
technique, which compares the timing and charge of the
hits to both the expected charge LDF and an expected
timing LDF. Both saturation of the tanks, as well as sta-
tions which are not hit, are taken into account in the
likelihood.

The Laputop reconstruction also takes the actual snow
depths on top of the tanks into account. The frozen wa-
ter tanks of IceTop were deployed flush with the surface
of the snow at the site. However, wind-blown snow con-
tinuously drifts over the array and covers the tanks with
an overburden that increases over time and varies from
tank to tank. Figure 2 shows the depths of snow covering
the array’s tanks in each of the three years analyzed in
this work: 2010, 2011 and 2012. The site accumulates
about 20 cm of snow per year on average.

The total signal S observed by the two DOMs in the
IceTop tank consists of snow attenuated electromagnetic
(e±/γ) particles and unattenuated muons. If the attenu-
ation of the snow is not taken into account, the reduction
in total signal amplitude will make an event look less
energetic, or “smaller”, than it really is. To take snow
attenuation into account, a simple exponential reduction
Sred is applied to the expected S:

Sred = S · e
−d

λ cos θ , (1)

which only depends on the slant depth of snow overbur-
den for the tank (d/ cos θ), and an effective attenuation
length λ, which takes into account absorption/generation
in the shower and particle-type specific absorption behav-
ior. The same attenuation length λ is applied through-
out the array, in the same way for all showers of any
size. However, because of the increasing snow load from
year-to-year, the optimal λ also changes from year-to-
year. Thus each of the three years of data was optimized
separately to find the λ which best creates agreement
in the S125 spectrum across different regions in the ar-
ray (deeply-buried, and sparsely-buried). These best-fit
values of λ are: 2.1 meters for 2010/11, 2.25 meters for
2011/12, and 2.25 meters for 2012/13. Furthermore, the
snow depth, d, has two sources of uncertainty [22]. First,
sastrugi3 cause variations in the snow depth across a sin-
gle tank. Sastrugi heights measured in-situ were observed
to follow a Gaussian distribution with a standard devi-
ation of 4 cm. Second, the depth at each IceTop tank
is measured twice per year, in February and in Novem-
ber, with an occasional third measurement in January;
for all other times, a linear interpolation between these
measurements is used to estimate the daily snow depth.
Finer measurements of accumulation at the South Pole
(made monthly by the Antarctic Meteorological Research

3 Sastrugi are irregular waves formed on the surface of the snow
by wind erosion.
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FIG. 2. Depths of snow covering the IceTop tanks, measured during each of the three years studied in this work. The pink
dots indicate the positions of buildings at the site. The z-axis of these plots represents the snow depth, measured in meters.

Center at a site near IceTop) exhibit variations around
a smooth interpolation with a σ of 27% of the differ-
ence between the November and February measurements
(∆Hsnow, in centimeters). The two sources of uncer-
tainty are combined and the snow depth d in Eqn. 1 (the
signal reduction due to the snow) is smeared by a Gaus-
sian with a sigma of

√
(4 cm)2 + (0.27 ·∆Hsnow)2 [22].

E. InIce Reconstruction

The IceCube detector observes the Cherenkov light
pattern from the high-energy muon bundles that prop-
agate through the Antarctic ice as well as their ac-
companying energy losses (which create Cherenkov-light-
emitting cascades).

These measured observables provide a handle on the
primary composition: iron-induced showers are more
muon-rich than proton-induced showers of the same en-
ergy, due to the superposition model of nucleons (de-
tailed in e.g. [23]). Therefore, iron-induced showers
are more muon-rich than proton-induced showers of the
same energy, therefore iron-induced showers will result
in a greater overall deposit of Cherenkov light in Ice-
Cube than proton-induced showers of the same primary
energy. Furthermore, proton-induced showers are more
likely than iron-induced showers to have extremely high-
energy muons in the bundle, which can create larger
local energy depositions from Bremsstrahlung. Conse-
quently, proton-induced showers are expected to create
fewer but higher-energy stochastic losses in the detec-
tor than iron-induced showers (of the same primary en-
ergy). On the other hand, since iron-induced showers
have more total muons than those induced by protons
(of the same primary energy), an iron-induced shower is
likely to undergo more lower-energy stochastic losses in
the detector than a proton-induced shower (of the same
primary energy). Therefore, counting these stochastic

fluctuations (henceforth “stochastics”) gives us additional
composition-sensitive information.

In order to measure these composition-sensitive param-
eters for coincident events, the track position and direc-
tion as reconstructed by IceTop (with Laputop) is used,
and an energy loss reconstruction algorithm (Millipede)
uses the timing and charge information of the observed
Cherenkov light in the ice to create a profile of energy
losses along the track as a function of slant depth, with
20-meter segmentation (as discussed in detail in [24]).

Figure 3 shows an example energy loss profile from
a cosmic ray event. Note that sections of the energy
loss profile corresponding to IceCube’s dust layer4 (where
there are consequently few photons) and near the bound-
aries of IceCube’s volume (where reported energy losses
can be irregular) are removed (as shown in gray in the
figure). The gaps seen in the energy loss profile are not
segments on the muon bundle track where no energy was
lost, but rather are pieces of the track that are not well-
sampled by the detector.

The energy loss profile is then fit to extract two
composition-sensitive parameters: a) the average energy
loss behavior, which is indicated as the red line in Fig-
ure 3, and b) the size and quantity of deviations from
that average behavior (the stochastics). The energy loss
observable (dEµ/dX) is defined as the value of the fit to
the energy loss profile at a fixed slant depth of X=1500 m,
which corresponds roughly to the top of the IceCube de-
tector (marked on the left side of Figure 3).

Two methods of selecting a number of high-energy
stochastics from a energy loss profile are used in this
work: a standard selection (marked as the red dashed
line in Figure 3 and a strong selection requiring higher

4 The “dust layer” is a distinctive thick layer of dust deposited sev-
eral millennia ago and currently located ∼1950-2050 m beneath
the surface of the ice [20].
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FIG. 3. Example of the energy loss reconstruction of a
large event, where the solid red line demonstrates the average
energy loss fit, the dashed red line represents the standard
stochastics selection, and the dotted red line indicates the
strong stochastics selection, as noted in the legend. Note
that when successive bins exceed the selection criteria they
are counted individually. (For example, around slant depth
of 2350 m two bins exceed the standard selection. These are
therefore counted as two high energy stochastics.) The gray
band is the approximate location of the dust layer for the
slant depth of this particular event. [8, 22]

stochastic energy loss (marked as the red dotted line in
Figure 3 [8, 22]. The selection criterion for the stochastics
is given by:

dEµ
dX

(X) > a ·
(

dEµ
dX

(X)

)b
reco

,

where a = 5 and b = 0.8 for the standard selection,
and a = 7 and b = 0.9 for the strong selection (with
appropriate dimensions for a and b).

Figure 4 demonstrates the composition-sensitivity of
the InIce observables reconstructed by Millipede. The
energy loss parameter is directly comparable to the num-
ber of high-energy muons in the air shower and is there-
fore the primary composition-sensitive observable, as
shown in Figure 4, left. The stochastics provide ad-
ditional composition-sensitivity, as shown in Figure 4,
center and right: Iron bundles have a larger number of
stochastic losses since they have more muons, but the
energy losses from proton bundles can be more extreme
since the same total energy is transferred to fewer muons.
The number of stochastics with the standard selection
can separate masses best at low muon multiplicities, be-
low 100 PeV. From about 30 PeV and above, for bundles
containing at least 100 muons, the stronger selection per-
forms better. In both cases there are more high energy
cascades selected for iron bundles than for proton.

The muon multiplicity in air showers detected by Ice-
Cube shows a seasonal variation, which is due to the

semi-annual alternation between the polar day and night,
and the accompanying temperature changes in the at-
mosphere. The measured variation of log10(dEµ/dX) is
found to be 10-15% of the proton-iron difference. Since
simulations are only performed with one atmosphere, the
July,1997 atmosphere, all other months of data need to
be corrected with respect to July. This correction corre-
lates the changing temperature profile of the entire atmo-
sphere, weighted with the muon production depth profile,
with the measured variation of log10(dEµ/dX). This en-
ergy dependent correlation factor is used as a correction.
A small but symmetric variation of ±3% in the proton
iron-space remains, which smears the data slightly. For
more details, see [25].

F. Quality Cuts

Quality cuts are used to ensure a sample of events
which will be well reconstructed. The cuts for the IceTop-
alone analysis are described in [5] while the cuts for the
coincident analysis are detailed here.
IceTop Selections: Many of the IceTop selections re-

volve around the success of the Laputop reconstruction
algorithm, which does an excellent job of reconstructing
contained events (those with a shower core inside the area
of the array) but its performance suffers for uncontained
events.

• The number of stations after cleaning is required
to be ≥ 5.
• The largest snow-corrected charge measured in any
tank is required to be at least 6 VEM.
• The station with the highest deposited charge is
not allowed to be at the edge of the detector.
• The neighboring tank in the same station as the
tank with the largest signal must have at least
4 VEM.
• The fraction of hit stations within a circle centered
on the center of gravity of the shower with outer
radius at the furthest hit station must be greater
than 0.2.
• The reconstruction algorithm Laputop is required
to converge.
• The LDF slope parameter β is required to be be-
tween 1.4 and 9.5.
• The core location of the air shower must be recon-
structed within a scaled factor of 0.96 of the area
of the array.

InIce Selections: The InIce reconstruction begins with
a fixed track position and direction from Laputop. There-
fore the InIce quality selections focus on ensuring an ac-
curate reconstruction of the energy loss from Millipede.

• The track position and direction calculated by La-
putop is required to pass within the In-Ice instru-
mented volume.



8

FIG. 4. Composition sensitivity in MC simulations (Sibyll2.1) of three InIce variables: energy loss dE/dX (left), the number
of high energy stochastics standard selection (middle), and the number of high energy stochastics strong selection (right) as
discussed in Section I E. Error bars represent RMS spread of the distribution. As the standard stochastics count begins to lose
sensitivity at 100 PeV, the strong stochastics count begins to be sensitive [8]. It is clear that the energy loss is the primary
composition-sensitive parameter.

• A minimum of 8 InIce DOMs are required to be hit.

• The Millipede energy loss reconstruction must
succeed with log10(rlogl) < 2.0 and the total charge
predicted (QTOT) must be at least 90% of that
measured ( log10(

QTOTpredicted
QTOTmeasured

) > −0.03 ) .

• At least 3 reconstructed cascades remain after all
previous selections and after removal of cascades in
the dust layer and at the edge of the detector (as
discussed above).

A note about the zenith angle: As in [5], the IceTop-
alone analysis presented here is divided into four bins of
zenith angle, the steepest of which is limited to cos(θ) ≥
0.80. No explicit cut in zenith angle is applied for the
coincident analysis, since the solid angle acceptance of
the two detectors together limits the zenith angle range
to cos(θ) ∼ 0.85.

G. Performance

The reconstruction procedure and quality cuts de-
scribed above yield a set of events with a core position
resolution of 6-20 meters, and a track direction resolu-
tion of 0.3-1.0 degrees. These values depend on energy:
Figure 5 shows the position and angular resolutions as
a function of energy, for the coincident sample and the
IceTop-alone sample (divided into high-zenith and low-
zenith angles). Note that the detector reaches 100% ef-
ficiency for all particle types at ∼3 PeV ([8]). As the
size of the air showers approach and exceed the size of
the IceTop array and the tanks become saturated, the
reconstruction becomes less precise.

Figure 6 shows the reconstructed energy loss from Ice-
Cube compared to the reconstructed S125 parameter
from IceTop: in this parameter space there is clearly a
strong separation between proton and iron primaries.
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II. THE ICETOP-ALONE ANALYSIS

The IceTop-alone analysis is sensitive to the energy
spectrum of cosmic rays up to the EeV energy range.
The reconstructed shower size parameter (S125) in par-
ticular is highly correlated to the energy of the primary
air shower. Figure 7 shows the relationship between
log10(S125) to log10(E/GeV). In [5], a function relating
log10(S125) to log10(E/GeV) was derived using Monte
Carlo simulations divided into four ranges of zenith an-
gles. For a given zenith range, the distributions of true
energy for each slice of 0.05 in log10(S125) were weighted
using the H4a model from [26] as a composition assump-
tion, and fitted with a Gaussian. (Since neither silicon
nor magnesium were simulated, but both are included in
the H4a model, simulated oxygen was weighted by the
sum of CNO and MgSi model components.) The fitted
mean of the Gaussian was then used as the energy esti-
mate for that slice in log10(S125). The functional form of
the conversion is:

log10(E/GeV) = p0 + p1log10(S125/VEM). (2)

Using updated simulation and reconstruction algo-
rithms, the mapping of log10(S125) to log10(E/GeV) from
[5] has been re-optimized and applied to the 3-year data
set. The updated fit parameters for Eqn. 2 are in the
following table:

Zenith range p0 p1
0.95 < cos(θ) ≤ 1.0 6.011 0.933
0.90 < cos(θ) ≤ 0.95 6.055 0.924
0.85 < cos(θ) ≤ 0.90 6.110 0.915
0.80 < cos(θ) ≤ 0.85 6.177 0.907

TABLE I. Fit parameters for converting IceTop shower size
S125to energy in Eqn. 2, using the “H4a” composition assump-
tion. Errors are on the order of 0.006 for p0, and 0.0035 for
p1.

The energy bias and resolution of this technique are
shown in Figure 8. The reduced precision beyond 8.0
(100 PeV) is related to the reduced angular and posi-
tion resolution shown in Figure 5, which creates an extra
smearing effect in S125.

Figure 9 shows the result of the IceTop-alone 3-year
analysis for each year individually and combined, mul-
tiplied by a factor of E3 to highlight the details. The
gray band represents the total systematic uncertaintity
of the IceTop detector, as described in [5]. These results
are consistent between the three years and are also con-
sistent with those previously published from one year of
data [5].

III. THE COINCIDENT ANALYSIS

When the surface observables from IceTop are com-
bined with the additional observables from the InIce de-
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tector, the high-energy muon component of the shower is
measured in coincidence with the electromagnetic com-
ponent of the EAS. Using this coincident configuration, a
mass-independent primary energy spectrum and individ-
ual elemental spectra are measured. This technique was
developed for the measurement of the cosmic ray com-
position of one month of IT-40/IC-40 data in the energy
range between 1 PeV to 30 PeV [6, 27] using two input
variables. Building on this experience, the technique was
extended to five input variables over a wider primary
energy range, optimized over a larger scan of different
network types, and trained on more Monte Carlo simu-
lated events. This updated technique was applied to a
single year of data from the nearly complete IT-73/IC-79
detector in [7, 8]. Here, the one year analysis is improved
and further expanded to include three years of data.
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FIG. 9. All-particle energy spectrum from the IceTop-alone
analysis from each of the three years, and the three years
together.

A. Neural Network Mapping Technique

This analysis includes five variables which depend on
primary energy and primary mass in a non-linear fash-
ion: the shower size in IceTop (S125), the zenith angle
(cos(θ)), the muon energy loss in the ice (dE/dX), and
the number of high-energy stochastics under two selec-
tions (standard and strong). There is no theoretical ana-
lytical expression that relates our input variables to pri-
mary mass and primary energy; thus, an artificial neural
network (NN)5 is trained on simulation to determine the
relationships between the five inputs and the two out-
puts. The network is strongly dependent on the two pri-
mary parameters, S125 and dE/dX, but the three other
parameters do contribute to the energy and mass recon-
struction.

The final high-quality sample of simulated Monte Carlo
data is split into three parts. Half of the sample is used to
generate the neural network (the network sample). The
other half (the verification sample) is used for compar-
isons of data and simulation in the final analysis steps.
The network sample is again split in two: 74357 events
are used to train the network (the training sample), the
remaining 67399 events (the test sample) serve to test
the network and to select the network architecture and
optimal activation function based on the network per-
formance. Networks were trained on unweighted events;
however, every Monte Carlo sample mentioned above is
chosen in such a way that it contains an equal mixture
of each of the four primary types (p, He, O and Fe) and

5 In particular, a feed-forward multilayer-perceptron (MLP) neural
network is used from the TMVA [28] machine learning package.

covers the full energy range.
During the first 5000 of 10000 minimizer iterations

(also called cycles or epochs), only a random selection
of 60% of the training data is utilized. After the training
converged on this random selection, the training contin-
ues on the full training set.

B. Optimizing the Neural Network

Many different neural network architectures were eval-
uated for performance before analyzing any data, as dis-
cussed in [8]. In addition to networks with 5 inputs
as described above, alternative networks with the 2 pri-
mary inputs (log10(S125) and log10(dE/dX) only), 3 in-
puts (adding cos(θ)) and 4 inputs (adding the standard
selection of high energy stochastics only) were tested.
Three groups of network structures were explored: with
one, two, and three hidden layers, and the number of neu-
rons was varied within the hidden layers. Two activation
functions (a sigmoid, and a tanh) were explored. In to-
tal, 207 networks for each of the two activation functions
and for each number of inputs (1656 networks in total)
were trained on the simulations.

The performance of each network was assessed accord-
ing to how well it reconstructed primary energy and pri-
mary mass. The assessment process was optimized to
find the network with the smallest and most consistent
RMS spread and bias over all energies, and which had
mass groups that were best-separated and most distinc-
tive (i.e. “peaky”). The final optimized network has 5 in-
puts, 7 neurons in a first hidden layer, 4 neurons in a sec-
ond hidden layer, and 2 outputs, with a tanh activation
function connecting the neurons and a linear mapping
from the last layer to the output neurons. A schematic
of this network is shown in Figure 10.

FIG. 10. The neural network architecture of the best per-
forming neural network. This network maps five input vari-
ables onto two output variables using two hidden layers with
respectively seven and four neurons using a tanh activation
function. It is therefore called a 5-7-4-2 network.
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FIG. 11. Energy reconstruction bias (upper) and resolution
(lower) as a function of the reconstructed energy for the dif-
ferent primary types and for an equal mixture of each type.

It is important to note that this neural network has
two target outputs which are very different in nature:
the first output is a continuous energy distribution, the
second target output is instead is composed of four dis-
crete numbers corresponding to four elemental masses
simulated. Therefore, the neural network energy out-
put (E0,reco) is also a continuous distribution which is
expected to reproduce the true primary energy (within
some bias and resolution) for each event, as discussed be-
low in Sec. III C. On the other hand, the neural network
mass output results in smeared distributions around the
four discrete mass numbers, which require further anal-
ysis in order to decompose the primary mass. The mass
is therefore not reconstructed on an event-by-event basis
but is determined statistically for the entire data set, as
discussed below in Sec. IIID.

C. Neural Network Primary Energy
Reconstruction

The energy dependence of the primary energy bias and
resolution as reconstructed by the NN are shown in Fig-
ure 11. The energy resolution (Figure 11, lower) ranges
from 9% (for iron showers at around 30 PeV) and 18%
with the worst resolutions below the energy threshold of
∼3 PeV and at the highest energies due to the worsening
core position and angular resolution (as discussed in Sec-
tion IG). Heavier primaries can be reconstructed more
precisely because of their lower intrinsic shower fluctua-
tions. As mentioned in Section II, the overall decrease
in precision beyond ∼100 PeV is partially caused by the
decrease in precision in angular and position resolution
shown in Figure 5, which creates an extra smearing effect
in S125.

In this analysis, events are divided into energy bins
of width 0.1 in log10(E/GeV) , which is larger than
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FIG. 12. All-particle energy spectrum from the coincident
analysis from each of the three years analyzed individually
compared to the combined result. The gray band represents
the total detector uncertainty from both the IceTop and InIce
arrays, as discussed in Section IVB.

both the energy bias and the energy resolution as shown
in Figure 11. However, due to the decrease in accu-
racy, precision, and available statistics at high energies
(log10(E/GeV)>8.0), bins of width 0.2 are used in this
region. Above 1 EeV the energy bias dependence on the
primary type becomes too large and limits the energy
range over which this analysis is optimal.

Figure 12 shows the all-particle energy spectrum re-
sults for the coincident analysis for the three years indi-
vidually and combined, multiplied by a factor of E3 to
highlight the details: the results are consistent between
the years. The gray band represents the combined sys-
tematic uncertainties of the IceTop and InIce detectors
for the coincident analysis, as discussed in Section IVB.
These results are included in Table IV in Appendix 1.

D. Composition Reconstruction using kernel
density estimation to fit neural network templates

Figure 13 shows histograms for each simulated element
(proton, helium, oxygen and iron) in the natural loga-
rithm of the neural network mass output for one slice in
reconstructed energy. (The four simulated types (proton,
helium, oxygen and iron) are equidistant in 〈lnA〉, but
not in A. Thus, the histograms are expected to be more
distinct in logarithmic space.) In every slice in energy,
the histogram for each primary element is converted into
a template probability density function (p.d.f.) using an
adaptive kernel density estimation (KDE) method [29].
The template p.d.f.’s are shown as the solid lines in Fig-
ure 13. The template p.d.f.’s for all energy slices used in
this analysis are given in Appendix 2 in Figure 26. The
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four primary types exhibit four very distinctive shapes
in each slice in energy over the whole energy range. At
log10(E/GeV)=8.0, the template p.d.f.’s begin to ex-
hibit greater overlap due to the limited statistics in the
Monte Carlo sets, reducing the composition sensitivity
of the analysis. Beyond log10(E/GeV)=9.0 (1 EeV), the
analysis becomes unreliable due to the overlap and re-
duction in data statistics.

Using the Roofit package [30], the set of four template
p.d.f.’s were then weighted to find the fractions (which
were constrained to add to unity) which best fit the NN
mass output for the experimental data in the same slice
in reconstructed energy6. The result of this method ap-
plied to the experimental data for the same energy bin
as in Figure 13 is shown in Figure 14 (upper). Addition-
ally, the correlation between the fitted weights is shown
in the form of uncertainty elipses in Figure 14 (lower).
(The fit plots for all energy bins are given in Figure 27
in Appendix 2 and the corresponding correlation coef-
ficients are shown in Table VII in Appendix 2.) The

6 This serves a similar purpose to the chi-squared minimization
approach described in [6, 27]; however, the new unbinned ex-
tended likelihood technique improves on the previous method by
correctly taking into account the Poisson fluctuations of the bin
contents in both the data and the templates, which is particularly
relevant in bins with few events.
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FIG. 14. upper: Example data distribution fit of the natural
logarithm of the neural network mass output in the energy
range between 7.4 and 7.5 in log10(E0,reco/GeV) and lower:
corresponding contour plot with the best fit values. Data dis-
tributions, contour plots, and complete correlation coefficient
matrices for all energy bins are included in Appendix 2.

resulting fractions of neighboring elements (i.e. protons
and helium) are anti-correlated, while those from distant
elements (i.e. protons and iron) are virtually uncorre-
lated: this means a proton primary is more likely to be
confused for a helium primary than for an iron primary,
which is expected.

The KDE template-fitting procedure yields a measure-
ment of the fractions of each of the four nuclear mass
groups (represented by H, He, O, and Fe), for each bin
in energy. The fractions are shown in Figure 15. Each
of these four individual fractions is then translated into
an individual spectrum for the corresponding elemental
group, as shown in Figure 16 (colors) compared to the
all-particle spectrum (black). Recent model predictions
are also included in Figures 15 and 16, which will be dis-
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FIG. 15. Fractions for the four mass groups (protons in red,
helium in yellow, oxygen in green, and iron in blue) including
the total detector systematic compared with various cosmic
ray models (H3a and H4a [26]) and phenomenological exper-
imental fits (GST [31] and GSF [32]). Sibyll 2.1 was used for
the hadronic interaction model in the simulated dataset.

cussed in Section V. In both figures, the gray band repre-
sents the total coincident detector uncertainty from both
the IceTop and InIce arrays, which will be discussed in
Section IVB. These results are included in Tables V-VI
in Appendix 1.

Intermediate elements, not part of the four groups
listed above, are expected to produce neural network out-
puts in between the adjacent groups, so will partially con-
tribute to the flux of the groups that bracket it. In order
to test this, a small sample of silicon was passed through
the NN + KDE chain and treated as “data”. The nat-
ural log of the mass of silicon is approximately midway
between that of oxygen and that of iron; therefore, as ex-
pected (due to the regression-style neural network mass
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FIG. 16. Individual spectra for the four mass groups (pro-
tons in red, helium in yellow, oxygen in green, and iron in
blue) including total detector systematic compared with var-
ious cosmic ray models (H3a and H4a [26]) and phenomeno-
logical experimental fits (GST [31] and GSF [32]). Sibyll 2.1
was used for the hadronic interaction model in the simulated
dataset.

output), the silicon is reconstructed as a nearly 50/50
mixture of oxygen and iron across all energies.

Figure 17 shows the mean log mass, which is derived
from the individual fractions shown in Figure 15. Again,
the gray band represents the total coincident detector
uncertainty from both the IceTop and InIce arrays, which
will be discussed in Section IVB. Each of the three years
of data are again shown both separately and combined
and agree very well within the statistical and systematic
uncertainties.
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FIG. 17. Mean log mass (〈lnA〉) for the three individual
years, and the three years combined. The gray band rep-
resents the combined systematic uncertainties of the IceTop
and InIce detectors for the coincident analysis, as discussed in
Section IVB. Sibyll 2.1 was used for the hadronic interaction
model in the simulated dataset.

IV. SYSTEMATIC UNCERTAINTIES

The uncertainties in the coincident analysis reported
here can be grouped into three categories: analysis
method, detector effects, and the hadronic interaction
model.

A. Analysis Method

As described above, the shape of the Monte Carlo tem-
plates is derived from an adaptive KDE method, which
determines the optimal width of the Gaussian kernel
function. To check the robustness of the composition fit-
ting results, the optimal kernel width is artificially modi-
fied by a factor of±90%, resulting in either very jagged or
very smooth templates. These artificially modified tem-
plates are then used in place of the optimal templates for
the remainder of the analysis in order to measure the ef-
fect of the vastly different templates on the results. The
variation in the final results due to the modified template
shapes is so small that it is not visible in a figure; how-
ever, the values for uncertainty are included in the tables
in Appendix 2.

B. Detector Uncertainties

Three main detector effects contribute to the uncer-
tainty in the composition results: the snow correction,
the absolute energy scale of IceTop, and the light yield
in the ice.
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FIG. 18. Total detector uncertainty (gray) on all-particle en-
ergy spectrum from the combination of light yield (magenta),
snow correction (cyan) and energy scale uncertainty (orange).
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FIG. 19. Total detector uncertainty (gray) on 〈lnA〉 from the
combination of light yield (magenta), snow correction (cyan)
and energy scale uncertainty (orange).

1. Snow correction

Although the method for snow correction described in
Section ID works well on average over the entire energy
and zenith angle region, it is not perfect. This is pre-
dominantly due to its inability to distinguish between the
electromagnetic and muonic component of the air shower.
A systematic uncertainty of ±0.2 m was assigned to λ,
which covers the variations due to the unknown compo-
sition, energy and zenith angle dependence, as discussed
in the Appendix of [5].
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FIG. 20. Total detector uncertainty (gray) on elementary
energy spectra from the combination of light yield (magenta),
snow correction (cyan) and energy scale uncertainty (orange).

2. Absolute energy scale

To obtain a reliable energy scale, the simulated re-
sponse of each IceTop tank is calibrated using the signal
from atmospheric muons [4]. This procedure has proven
to be very reliable, but due to the unknown composition,
atmospheric conditions, etc, a final 3% uncertainty on
the charge calibration, and thus on the absolute energy
scale, needs to be taken into account[33]. This translates
directly to a 3% shift in S125.

3. Light Yield

The uncertainty on the photon detection efficiency by
the DOM (referred to as the DOM efficiency) is ±3%,

which implies a ±3% possible variation of the total light
yield observed. The uncertainty caused by the photon
propagation in the ice includes scattering and absorp-
tion coefficients in the bulk ice and an effective scattering
length of the hole ice, the ice in the drill hole around the
DOM [34]. For the bulk ice scattering and absorption co-
efficient, 3 points are taken on the 1 σ error ellipse around
the nominal values, shown in [35]: a +10% scattering
coefficient, a +10% absorption coefficient and a -7.1%
scattering and absorption coefficient. Alternate effective
scattering lengths of 30 cm and 100 cm were used for the
hole ice model. For all these individual systematic uncer-
tainties, simulations were produced and their effect was
studied. It was found that the main combined effect is to
influence the light yield in the DOM, and that this effect
is rather independent of the initial light yield and zenith
angle of the muon bundle. This means that all those
systematic uncertainties can be combined and modeled
as a shift on the observed light yield. Furthermore, the
systematic uncertainties are (nearly) uncorrelated; thus
the various errors and shift on light yield are added in
quadrature, which gives a total light yield uncertainty of
+9.6% and -12.5%. The individual contribution to the
observed light yield shifts, as well as the total light yield
uncertainty are given in Table II.

TABLE II. Sytematic light yield shift

Effect Light yield shift
+10% scattering +3.6%
+10% absorption −11.8%

−7.1% scattering and absorption +7%
30 cm hole ice scattering +4.5%
100 cm hole ice scattering −2.9%

DOM efficiency ±3%
Total Light Yield Effect +9.6%,−12.5%

4. Total Detector Uncertainties

The three detector uncertainties discussed above (snow
correction, absolute energy scale, and light yield) are
added together in quadrature into a total detector uncer-
tainty. Figures 18, 19, and 20 show individual and com-
bined contributions to the uncertainty in the all-particle
energy spectra, mean log mass, and the individual ele-
mental spectra. In all figures, the gray bands are the to-
tal combined detector uncertainty which match the gray
bands shown in Figures 12, 17, and 16, respectively, and
are included in the tables in Appendix 1.

C. Hadronic Interaction Model

The influence of the hadronic interaction model on the
measurement of the cosmic ray composition arises mainly
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from variations between the models in the predicted num-
ber of high-energy muons. Sibyll 2.1 was used as the
hadronic interaction model for the baseline simulation
datasets, while the three post-LHC models–QGSJET II-
04[36], Sibyll 2.3[37] and EPOS-LHC[38]–are used as al-
ternate models. The variation between the models in the
high-energy (> 300 GeV) muon number is smaller than
for the surface (GeV) muons, but is still of order 15% at
maximum (between QGSJet II-04 and EPOS-LHC). 7

It is important to note that the main Sibyll 2.1 dataset
included full samples across all energies for each particle
type (proton, helium, oxygen, and iron); however, due
to the computational time involved in generating a full
simulated data set (∼60000 CPU years), the alternate
models include 1/10th the number of events, in proton
and iron only. As a result of the limited size of the alter-
nate simulated data sets, a full analysis is not repeated
using those datasets for the simulated templates. Rather,
the difference in the number of high-energy muons and in
S125 in the alternative sample with respect to Sibyll 2.1
is calculated for each particle type and applied to the
experimental data, which is then passed through the full
analysis chain. (Neither the stochastics nor the zenith
angle are taken into account in this estimate due to their
low impact on the results.) The results of this process
are then weighted using the reconstructed elemental frac-
tions for each particle type from the baseline Sibyll 2.1
analysis in order to obtain an estimate of what the final
result would have been had the alternative interaction
model been used as the nominal Monte Carlo simulation
instead of Sibyll 2.1. It is probable that the alternate
results reported here differ slightly from the actual frac-
tions that would be reconstructed with a full alternative
simulated dataset.

The estimated uncertainty due to each alternative

7 Here it is important to emphasize that the muon energy loss,
dEµ/dX, as measured in IceCube is a proxy for the number of
high energy muons in the muon bundle. These are muons in
excess of 300 GeV which are created near the first interaction
of the cosmic ray primary with the atmosphere. Recently, a
number of studies (summarized here: [39]) show a discrepancy
between the experimentally measured number of muons (from
many experiments), and the simulated number of muons from
latest post-LHC hadronic interaction models. This discrepancy is
in the number of lower energy muons, which are produced late in
shower development, after many interactions. This discrepancy
presently seems to be due to the accumulation of small discrep-
ancies at each interaction; thus, the impact is large for the muons
produced after many interactions, and is small/non-existent for
those muons produced near the first interaction ([40]). Further-
more, this discrepancy has only been measured at cosmic ray
primary energies above 1 EeV and it seems to increase with pri-
mary cosmic ray energy. ALICE (the only other experiment
which has measured the high energy muons in the range be-
tween PeV and EeV) reports relatively good agreement between
the number of muons in the bundles produced by PeV to EeV
cosmic rays and QGSJET II-04 ([41]), although the number of
events is small. Thus, we presently expect little impact on the
results here. However, this “muon puzzle”, is still under intense
investigation by the community.

model is shown in Figures 21, 22, and 23, which depict
the effect of the choice of hadronic interaction model in
the all-particle energy spectra, mean log mass, and the
individual elemental spectra. Although the uncertain-
ties due to the hadronic interaction models is large, the
shapes of the distributions with respect to energy do not
change significantly between the models.
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FIG. 21. Hadronic interaction model uncertainty range on all-
particle energy spectrum based on EposLHC (blue), Sibyll2.3
(red) and QGSJetII-04 (green).
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FIG. 22. Hadronic interaction model uncertainty range
on 〈lnA〉 based on EposLHC (blue), Sibyll2.3 (red) and
QGSJetII-04 (green).
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FIG. 23. Hadronic interaction model uncertainty range on el-
ementary energy spectra based on EposLHC (blue), Sibyll2.3
(red) and QGSJetII-04 (green).

V. RESULTS, DISCUSSION AND OUTLOOK

A. Energy Spectra

Figure 24 compares the energy spectra resulting from
the IceTop-alone analysis and the coincident analysis as
described herein. The analyses are consistent with each
other within the statistical and systematic uncertainties
(only the smaller IceTop-alone systematic uncertainties
are shown, for clarity). This good agreement indicates
that the dependence of the IceTop-alone analysis on com-
position model has been effectively mitigated through
the analysis technique, since the IceTop/InIce coincident
analysis doesn’t require prior knowledge of the composi-
tion.
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FIG. 24. A comparison of the combined three-year spectra
from the two analyses in this paper: the IceTop-alone analy-
sis, and the coincident analysis. The gray band represents the
total systematic uncertaintity of the IceTop detector, as de-
scribed in [5]. Sibyll 2.1 was used for the hadronic interaction
model in the simulated dataset.

B. Mass composition

The elemental spectra results, shown in Figure 16,
agree well with the recent H3a and H4a phenomenological
models of the transition region between galactic and ex-
tragalactic cosmic rays ([26]), in which heavier elements
retain a harder spectral index to higher energies. Within
the statistical and systematical uncertainties the elemen-
tal spectra are also compatible with the phenomenolog-
ical data fits, Gaisser-Stanev-Tilav (GST) [31] fit and
Global Spline Fit (GSF) [32]. These elemental spec-
tra correlate with an increase in the mean-log-mass as
a function of energy until about 100–200 PeV, as shown
in Figure 17 (which is also derived from the individual
fractions). Beyond this energy, given the statistical and
systematic uncertainties the data are consistent with a
composition that is either unchanging or decreasing. In
Figure 25, our results are compared with those from other
recent experiments: the results reported here indicate a
higher flux in the iron group at high energies. As shown
in Section IVC, the absolute scale of the composition is
strongly dependent on which hadronic interaction model
is used for the simulations. In fact, the uncertainty due
to the choice of hadronic interaction model is the biggest
limitation on our analysis.

C. Outlook

The all-particle energy spectrum results presented here
are consistent with each other and with previously pub-
lished IceCube results [5]. The limiting systematic ef-
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FIG. 25. Comparison of the all-particle and composition spectra of the four elemental groups H, He, O and Fe from this analysis
using Sibyll 2.1 (black) with other experiments. The data set for the all-particle spectra are taken from Tibet [42], Tunka [43],
Yakutsk [44], Tale [45], Hires [46] and Telescope Array [47]. The Kascade [48] results are using a 5 component fit of H, He,
CNO, MgSi and Fe groups using Sibyll 2.1. Therefore only the H and He spectra are compared directly as the other groups are
strongly correlated. Kascade-Grande [49] results are using a 3 component fit of H, HeCNO and Heavy groups using Sibyll 2.3.
Therefore only the H and Heavy spectra are compared, as the HeCNO group cannot be deconvoluted into a He and CNO
part. The Tunka [50] results are using a 4 component fit of H, He, N and Fe groups using QGSJET II-04. The Pierre Auger
Observatory [51] results are calculated by using their published elementary group fraction for H, He, N and Fe using Sibyll 2.3
convoluted with their most recent energy spectrum. Note that differences in how different experiments handle intermediate
elements (not one of the four groups used here) may lead to some small systematic differences in flux measurements between
different experiments.

fect is the uncertainty of the snow coverage over the
tanks. The composition analysis results presented here
are significantly improved from previously published re-
sults, which included only one month of data taken with
a partly completed array [6, 27]; however, the present re-
sults are still limited by the amount of data on hand, the
systematic uncertainty due to detector effects (particu-
larly the light yield in the ice), and the dependence on the
choice of hadronic interaction model used for the simula-
tions. For future analyses, we plan to include more years

of experimental data, to simulate more intermediate el-
ements, to investigate new composition-sensitive param-
eters currently under development, and to incorporate
results from new internal studies to reduce the detector
systematic uncertainties. These updates will improve the
precision of both analyses, and enable the extension of
the analyses to higher and lower energies. Furthermore,
the analyses presented here are well-suited to capitalize
on future extensions to the IceCube Neutrino Observa-
tory [52].
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TABLE III. Total flux IceTop-only analysis.

Energy Bin Width Flux ± Stat. + Det.Syst. −
(log10(Ereco /GeV)) GeV−1 m−2 s−1 sr−1 GeV−1 m−2 s−1 sr−1 GeV−1 m−2 s−1 sr−1

6.450 0.10 1.730 0.001 0.131 0.151 ×10−13

6.525 0.05 1.063 0.001 0.085 0.097 ×10−13

6.575 0.05 7.667 0.006 0.612 0.734 ×10−14

6.625 0.05 5.508 0.005 0.448 0.512 ×10−14

6.675 0.05 3.927 0.004 0.330 0.380 ×10−14

6.725 0.05 2.787 0.003 0.235 0.264 ×10−14

6.775 0.05 1.967 0.002 0.168 0.190 ×10−14

6.825 0.05 1.390 0.002 0.120 0.139 ×10−14

6.875 0.05 9.742 0.015 0.859 0.943 ×10−15

6.925 0.05 6.797 0.012 0.614 0.694 ×10−15

6.975 0.05 4.745 0.009 0.433 0.455 ×10−15

7.025 0.05 3.288 0.007 0.305 0.338 ×10−15

7.075 0.05 2.289 0.006 0.212 0.225 ×10−15

7.125 0.05 1.604 0.004 0.142 0.158 ×10−15

7.175 0.05 1.122 0.004 0.104 0.108 ×10−15

7.225 0.05 7.893 0.028 0.709 0.709 ×10−16

7.275 0.05 5.591 0.022 0.488 0.547 ×10−16

7.325 0.05 3.960 0.018 0.368 0.385 ×10−16

7.375 0.05 2.828 0.014 0.244 0.248 ×10−16

7.425 0.05 2.011 0.011 0.188 0.192 ×10−16

7.475 0.05 1.430 0.009 0.128 0.132 ×10−16

7.525 0.05 1.031 0.007 0.093 0.091 ×10−16

7.575 0.05 7.431 0.057 0.599 0.631 ×10−17

7.625 0.05 5.350 0.045 0.507 0.486 ×10−17

7.675 0.05 3.754 0.036 0.317 0.423 ×10−17

7.725 0.05 2.640 0.028 0.258 0.245 ×10−17

7.775 0.05 1.943 0.023 0.168 0.141 ×10−17

7.825 0.05 1.369 0.018 0.109 0.140 ×10−17

7.875 0.05 1.008 0.015 0.121 0.086 ×10−17

7.925 0.05 6.912 0.115 0.529 0.704 ×10−18

7.975 0.05 4.948 0.092 0.441 0.393 ×10−18

8.050 0.10 2.934 0.046 0.291 0.273 ×10−18

8.150 0.10 1.468 0.029 0.142 0.179 ×10−18

8.250 0.10 6.991 0.178 0.725 0.551 ×10−19

8.350 0.10 3.146 0.106 0.282 0.324 ×10−19

8.450 0.10 1.602 0.068 0.144 0.155 ×10−19

8.550 0.10 6.468 0.382 0.637 0.798 ×10−20

8.650 0.10 3.169 0.239 0.390 0.280 ×10−20

8.750 0.10 1.350 0.139 0.443 0.355 ×10−20

8.850 0.10 6.091 0.837 0.612 0.842 ×10−21

8.950 0.10 2.492 0.480 0.514 0.440 ×10−21

9.050 0.10 8.199 2.472 4.278 2.228 ×10−22
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TABLE IV. Total flux coincidence analysis.

Energy Bin Width Flux ± Stat. − Det.Syst. +
(log10(Ereco /GeV)) GeV−1 m−2 s−1 sr−1 GeV−1 m−2 s−1 sr−1 GeV−1 m−2 s−1 sr−1

6.55 0.1 9.005 0.008 0.587 0.668 ×10−14

6.65 0.1 4.612 0.005 0.317 0.377 ×10−14

6.75 0.1 2.323 0.003 0.168 0.203 ×10−14

6.85 0.1 1.158 0.002 0.087 0.103 ×10−14

6.95 0.1 5.635 0.014 0.446 0.524 ×10−15

7.05 0.1 2.698 0.008 0.220 0.254 ×10−15

7.15 0.1 1.308 0.005 0.094 0.117 ×10−15

7.25 0.1 6.473 0.032 0.473 0.592 ×10−16

7.35 0.1 3.250 0.020 0.235 0.266 ×10−16

7.45 0.1 1.657 0.013 0.116 0.133 ×10−16

7.55 0.1 8.600 0.083 0.596 0.685 ×10−17

7.65 0.1 4.399 0.053 0.377 0.430 ×10−17

7.75 0.1 2.194 0.033 0.137 0.219 ×10−17

7.85 0.1 1.132 0.021 0.098 0.086 ×10−17

7.95 0.1 5.532 0.133 0.483 0.574 ×10−18

8.10 0.2 2.062 0.048 0.148 0.205 ×10−18

8.30 0.2 4.619 0.181 0.429 0.549 ×10−19

8.50 0.2 9.966 0.666 1.019 1.495 ×10−20

8.70 0.2 2.237 0.250 0.124 0.206 ×10−20

8.90 0.2 5.283 0.964 0.720 1.021 ×10−21
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TABLE V. Proton and helium group flux.

Energy Bin Width Flux − Stat. + − Det.Syst. +
(log10(Ereco /GeV)) GeV−1 m−2 s−1 sr−1 GeV−1 m−2 s−1 sr−1 GeV−1 m−2 s−1 sr−1

Proton
6.55 0.1 2.791 0.448 0.471 1.253 1.289 ×10−14

6.65 0.1 1.350 0.170 0.173 0.637 0.629 ×10−14

6.75 0.1 7.838 1.055 1.092 3.834 3.790 ×10−15

6.85 0.1 3.456 0.542 0.563 2.013 2.045 ×10−15

6.95 0.1 1.393 0.201 0.207 0.785 0.816 ×10−15

7.05 0.1 6.684 1.462 1.550 4.106 4.335 ×10−16

7.15 0.1 2.656 0.601 0.635 1.771 1.943 ×10−16

7.25 0.1 1.040 0.230 0.231 0.643 0.727 ×10−16

7.35 0.1 5.291 1.556 1.671 3.677 4.417 ×10−17

7.45 0.1 3.172 0.807 0.851 2.218 2.168 ×10−17

7.55 0.1 1.294 0.405 0.412 1.082 1.037 ×10−17

7.65 0.1 8.205 1.609 1.022 4.838 4.461 ×10−18

7.75 0.1 2.536 0.646 0.691 1.167 1.866 ×10−18

7.85 0.1 1.194 0.379 0.431 0.796 1.246 ×10−18

7.95 0.1 8.318 2.957 2.574 6.256 2.819 ×10−19

8.10 0.2 2.422 1.118 0.703 1.441 1.101 ×10−19

8.30 0.2 5.257 1.781 1.589 3.663 1.860 ×10−20

8.50 0.2 1.340 0.437 0.406 0.631 0.845 ×10−20

8.70 0.2 3.562 2.825 3.316 2.908 5.462 ×10−21

8.90 0.2 0.016 0.016 2.319 0.000 2.115 ×10−21

Helium
6.55 0.1 2.232 0.981 0.974 0.761 0.514 ×10−14

6.65 0.1 1.520 0.401 0.412 0.373 0.367 ×10−14

6.75 0.1 4.798 2.109 2.168 2.146 1.984 ×10−15

6.85 0.1 2.801 1.166 1.161 1.360 1.174 ×10−15

6.95 0.1 1.682 0.406 0.412 0.301 0.219 ×10−15

7.05 0.1 6.067 3.120 3.049 2.295 1.549 ×10−16

7.15 0.1 4.146 1.407 1.399 0.804 0.592 ×10−16

7.25 0.1 2.241 0.649 0.674 0.290 0.108 ×10−16

7.35 0.1 7.893 3.603 3.526 2.571 1.885 ×10−17

7.45 0.1 2.194 1.693 1.668 0.738 1.121 ×10−17

7.55 0.1 1.482 0.708 0.720 0.521 0.718 ×10−17

7.65 0.1 0.118 0.118 3.143 0.118 2.046 ×10−18

7.75 0.1 2.316 1.380 1.379 0.948 0.449 ×10−18

7.85 0.1 1.402 0.922 0.858 1.067 0.110 ×10−18

7.95 0.1 3.182 3.182 6.307 0.000 8.377 ×10−19

8.10 0.2 0.081 0.081 2.774 0.081 2.159 ×10−19

8.30 0.2 0.000 0.000 3.264 0.000 7.476 ×10−20

8.50 0.2 0.001 0.001 7.633 0.001 0.070 ×10−21

8.70 0.2 4.096 4.096 4.094 4.096 2.171 ×10−21

8.90 0.2 2.785 2.785 1.181 2.785 0.165 ×10−21
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TABLE VI. Oxygen and iron group fluxes.

Energy Bin Width Flux − Stat. + − Det.Syst. +
(log10(Ereco /GeV)) GeV−1 m−2 s−1 sr−1 GeV−1 m−2 s−1 sr−1 GeV−1 m−2 s−1 sr−1

Oxygen
6.55 0.1 1.975 0.972 0.942 0.857 0.479 ×10−14

6.65 0.1 6.714 5.305 5.097 5.909 2.597 ×10−15

6.75 0.1 5.803 2.068 1.978 2.040 1.016 ×10−15

6.85 0.1 2.766 1.115 1.108 1.137 0.690 ×10−15

6.95 0.1 1.206 0.395 0.386 0.355 0.112 ×10−15

7.05 0.1 8.757 3.037 3.055 2.852 1.583 ×10−16

7.15 0.1 2.831 1.354 1.352 1.531 0.594 ×10−16

7.25 0.1 9.002 7.871 7.627 9.002 6.196 ×10−17

7.35 0.1 9.934 3.663 3.712 6.989 3.545 ×10−17

7.45 0.1 6.723 1.528 1.538 3.490 1.441 ×10−17

7.55 0.1 2.647 0.625 0.614 2.095 1.069 ×10−17

7.65 0.1 2.200 0.311 0.203 1.149 0.340 ×10−17

7.75 0.1 9.188 1.493 1.517 4.586 3.184 ×10−18

7.85 0.1 3.866 0.849 0.889 2.925 2.045 ×10−18

7.95 0.1 1.792 0.601 0.522 1.792 0.719 ×10−18

8.10 0.2 7.187 2.751 1.536 7.187 4.681 ×10−19

8.30 0.2 2.101 0.452 0.396 1.786 0.731 ×10−19

8.50 0.2 1.055 1.055 1.058 1.055 3.217 ×10−20

8.70 0.2 0.001 0.001 3.993 0.001 0.000 ×10−21

8.90 0.2 0.001 0.001 1.561 0.001 2.915 ×10−21

Iron
6.55 0.1 2.008 0.436 0.460 0.897 1.733 ×10−14

6.65 0.1 1.071 0.257 0.274 0.475 0.945 ×10−14

6.75 0.1 4.795 0.894 0.949 2.073 4.133 ×10−15

6.85 0.1 2.561 0.477 0.489 1.107 2.061 ×10−15

6.95 0.1 1.354 0.165 0.176 0.496 0.989 ×10−15

7.05 0.1 5.468 1.395 1.428 2.907 5.366 ×10−16

7.15 0.1 3.450 0.548 0.567 1.447 2.791 ×10−16

7.25 0.1 2.292 0.332 0.352 0.953 1.529 ×10−16

7.35 0.1 9.378 1.726 1.759 5.213 9.010 ×10−17

7.45 0.1 4.482 0.679 0.703 2.183 4.418 ×10−17

7.55 0.1 3.177 0.328 0.353 1.539 2.486 ×10−17

7.65 0.1 1.367 0.145 0.162 0.630 1.353 ×10−17

7.75 0.1 7.904 0.842 0.853 4.190 6.535 ×10−18

7.85 0.1 4.862 0.441 0.445 2.142 3.552 ×10−18

7.95 0.1 2.590 0.293 0.299 1.135 1.809 ×10−18

8.10 0.2 1.093 0.121 0.135 0.480 0.683 ×10−18

8.30 0.2 1.993 0.334 0.354 0.815 1.818 ×10−19

8.50 0.2 7.570 1.043 1.092 3.116 2.111 ×10−20

8.70 0.2 1.471 0.251 0.286 0.133 0.419 ×10−20

8.90 0.2 2.481 1.036 1.266 1.043 1.693 ×10−21
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2. K.D.E. templates and fit results

As discussed in Section IIID, the individual templates
for each energy bin are shown in Figure 26, while the fit
to the data for each energy bin is then shown in Figure
27. Correlation matrices for the fit results for all energy
bins are shown in Table VII.
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FIG. 26. Distributions of the natural logarithm of the neural network mass output for each slice in energy used in the coincident
analysis. Energy ranges are labeled in log10(E0,reco/GeV) in the titles of each figure. The y-axis represents the the number
of simulated events for proton (red), helium (orange), oxygen (green) and iron (blue). The solid line represents the template
probability density functions found by the adaptive KDE fitting method.
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FIG. 27. Best fit of the experimental data histograms by the KDE templates (derived from simulation and shown independently
in Figure 26) for the coincident analysis. Energy ranges are labeled in log10(E0,reco/GeV) in the titles of each figure. The y-axis
represents the the number of data events and the solid lines represent the weighted KDE templates for proton (red), helium
(orange), oxygen (green) and iron (blue). The solid black line represents best fit distribution.
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TABLE VII. Correlation coefficients from KDE fits.

log(E/GeV) = 6.5− 6.6 log(E/GeV) = 6.6− 6.7

cor =


1.000 −0.889 0.660 −0.428
−0.889 1.000 −0.874 0.625
0.660 −0.874 1.000 −0.878
−0.428 0.625 −0.878 1.000

 cor =


1.000 −0.786 0.544 −0.428
−0.786 1.000 −0.888 0.755
0.544 −0.888 1.000 −0.938
−0.428 0.755 −0.938 1.000


log(E/GeV) = 6.7− 6.8 log(E/GeV) = 6.8− 6.9

cor =


1.000 −0.866 0.616 −0.401
−0.866 1.000 −0.865 0.619
0.616 −0.865 1.000 −0.862
−0.401 0.619 −0.862 1.000

 cor =


1.000 −0.877 0.656 −0.455
−0.877 1.000 −0.887 0.670
0.656 −0.887 1.000 −0.878
−0.455 0.670 −0.878 1.000


log(E/GeV) = 6.9− 7.0 log(E/GeV) = 7.0− 7.1

cor =


1.000 −0.778 0.466 −0.254
−0.778 1.000 −0.833 0.527
0.466 −0.833 1.000 −0.784
−0.254 0.527 −0.784 1.000

 cor =


1.000 −0.883 0.669 −0.505
−0.883 1.000 −0.883 0.699
0.669 −0.883 1.000 −0.891
−0.505 0.699 −0.891 1.000


log(E/GeV) = 7.1− 7.2 log(E/GeV) = 7.2− 7.3

cor =


1.000 −0.829 0.598 −0.378
−0.829 1.000 −0.884 0.613
0.598 −0.884 1.000 −0.819
−0.378 0.613 −0.819 1.000

 cor =


1.000 −0.773 0.586 −0.427
−0.773 1.000 −0.913 0.717
0.586 −0.913 1.000 −0.874
−0.427 0.717 −0.874 1.000


log(E/GeV) = 7.3− 7.4 log(E/GeV) = 7.4− 7.5

cor =


1.000 −0.873 0.653 −0.464
−0.873 1.000 −0.881 0.669
0.653 −0.881 1.000 −0.870
−0.464 0.669 −0.870 1.000

 cor =


1.000 −0.889 0.660 −0.416
−0.889 1.000 −0.866 0.587
0.660 −0.866 1.000 −0.803
−0.416 0.587 −0.803 1.000


log(E/GeV) = 7.5− 7.6 log(E/GeV) = 7.6− 7.7

cor =


1.000 −0.885 0.556 −0.283
−0.885 1.000 −0.782 0.440
0.556 −0.782 1.000 −0.748
−0.283 0.440 −0.748 1.000

 cor =


1.000 −0.688 0.166 −0.014
−0.688 1.000 −0.647 0.279
0.166 −0.647 1.000 −0.679
−0.014 0.279 −0.679 1.000


log(E/GeV) = 7.7− 7.8 log(E/GeV) = 7.8− 7.9

cor =


1.000 −0.789 0.438 −0.189
−0.789 1.000 −0.769 0.401
0.438 −0.769 1.000 −0.717
−0.189 0.401 −0.717 1.000

 cor =


1.000 −0.856 0.596 −0.296
−0.856 1.000 −0.840 0.461
0.596 −0.840 1.000 −0.712
−0.296 0.461 −0.712 1.000


log(E/GeV) = 7.9− 8.0 log(E/GeV) = 8.0− 8.2

cor =


1.000 −0.895 0.657 −0.386
−0.895 1.000 −0.866 0.555
0.657 −0.866 1.000 −0.784
−0.386 0.555 −0.784 1.000

 cor =


1.000 −0.716 0.289 −0.035
−0.716 1.000 −0.764 0.318
0.289 −0.764 1.000 −0.649
−0.035 0.318 −0.649 1.000


log(E/GeV) = 8.2− 8.4 log(E/GeV) = 8.4− 8.6

cor =


1.000 −0.013 −0.419 0.186
−0.013 1.000 −0.012 0.005
−0.419 −0.012 1.000 −0.727
0.186 0.005 −0.727 1.000

 cor =


1.000 −0.029 −0.406 0.188
−0.029 1.000 −0.023 0.009
−0.406 −0.023 1.000 −0.790
0.188 0.009 −0.790 1.000


log(E/GeV) = 8.6− 8.8 log(E/GeV) = 8.8− 9.0

cor =


1.000 −0.835 0.007 0.254
−0.835 1.000 −0.027 −0.469
0.007 −0.027 1.000 −0.013
0.254 −0.469 −0.013 1.000

 cor =


1.000 −0.659 0.005 0.188
−0.659 1.000 −0.031 −0.570
0.005 −0.031 1.000 −0.024
0.188 −0.570 −0.024 1.000


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