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There have been rapid developments in the direct calculation of the Bjorken-x dependence of par-
ton distribution functions (PDFs) using lattice QCD, and the technique shows promising results.
Among various new methods, large-momentum effective theory (LaMET), which calculates boosted
hadron matrix elements of multiple spatial displacements on the lattice, shows promising PDFs at
physical pion mass by both LP3 and ETMC collaborations. However, the finite-volume systematics
have not yet been studied, and it has been suggested that such systematics can be more signifi-
cant for LaMET-type operators than the traditional bilinear quark operators in charges and form
factors. In this work, we present the first study of the finite-volume systematic for both isovector
nucleon unpolarized and helicity matrix elements on three lattice volumes (2.88, 3.84, 4.8 fm) with
lattice spacing 0.12 fm and 220-MeV pion mass. We perform two-state simultaneous fits using mul-
tiple source-sink separations to remove excited-state contamination and obtain reliable ground-state
matrix elements. We then implement nonperturbative renormalization and Fourier transform the
matrix elements to momentum-space quasi-PDFs. Overall, we do not see significant finite-volume
systematics at the studied boost momenta of Pz = 1.3 and 2.6 GeV.

I. INTRODUCTION

Recently, there have been rapid developments in lattice-QCD calculations of proton structure, especially in the par-
ton distribution functions (PDFs). We overcame a longstanding obstacle and for the first time in lattice QCD are able
to directly calculate the Bjorken-x dependence of the quark, helicity and transversity distributions. The PDFs are ob-
tained using large-momentum effective theory (LaMET) [1], where the full Bjorken-x dependence of finite-momentum
PDFs, called “quasi-PDFs”, can be calculated on the lattice.1 Following a nonperturbative renormalization of the
parton quasi-distribution in a regularization-independent momentum-subtraction (RI/MOM) scheme [12, 13], we es-
tablish its matching to the MS PDFs and calculate the nonsinglet matching coefficient at next-to-leading order in
perturbation theory [14, 15].2 Parton distributions at physical pion mass have been calculated by multiple collab-
orations [21–26], showing very promising results in comparison with the global analysis of the parton distributions.
However, these calculations are still, at the current stage, done on a single ensemble; in the best scenarios, some
of the systematic uncertainties are estimated from more comprehensive studies of local operators [23, 24]. In this
work, we perform the first study of the systematic uncertainties arising from finite-volume (FV) effects for the quasi-
distributions.

Finite-volume effects are one of the main systematics in many lattice calculations, being significant for hadron
masses and decay constants. It is essential to demonstrate either that the finite-volume effects are not relevant on the
observable of interest at the volume used in the calculation, or that a reliable extrapolation to the infinite-volume limit
is possible. The size of the finite-volume systematic depends on the quantities of interest; in general heavier hadrons
have smaller systematics than lighter ones. Quantities such as the deuteron bound-state energy at the physical pion
mass may require very large volumes, more than 20 fm. On the other hand, nucleon matrix elements such as the
nucleon tensor charge gT have been found to have small finite-volume effects by many independent studies [23, 27–
30]. The operators used in LaMET calculations are usually bilocal operators connected by a spatial Wilson line,
ψ̄(z1)ΓU(z1, z2)ψ(z2), and their dependence on lattice volume has not yet been studied, aside from the special case
z1 = z2.

A recent work, Ref. [31], uses a toy model to demonstrate the effect of the spatial separation of two currents,
attempting to address the finite-volume dependence in LaMET calculations. Within the framework of an effective
scalar field theory, the authors work out a next-to-leading-order form for finite-volume effects on a spatially nonlocal
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1 In parallel, there have also been other proposals to calculate the PDFs in lattice QCD [2–11], which are subject to their own systematics.

These approaches can be complementary to each other as well as to the LaMET approach.
2 There has been some debate regarding whether the moments obtained from these nonlocal operators could be divergent [16, 17] without

proper nonperturbative subtraction. Refs. [18, 19] explain that the only power divergence in the nonlocal-operator approach comes from
the self-energy of the Wilson lines and can be properly treated such that it does to pose a problem for extraction of the PDFs. Ref. [20]
used the Ioffe-time PDF approach [4], also involving nonlocal operators, and numerically demonstrated its consistency with the moment
approach.
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Ensemble ID L3 × Lt Mval
π L tsep/a α k Pz Ncfg Nmeas

a12m220S 243 × 64 3.3 {6, 7, 8, 9} 3.5 {2,3} {3, 6} 2π
L

958 {22922, 45984, 45984, 61312}
a12m220M 323 × 64 4.4 {6, 7, 8, 9} 3 {2.5} {4} 2π

L
725 {11600, 23200, 23200, 46400}

a12m220L 403 × 64 5.5 {6, 7, 8, 9} 3.5 {3,4} {5, 10} 2π
L

840 {13440, 26800, 26800, 53760}

TABLE I. Ensemble information and parameters used in this calculation. We use Gaussian momentum smearing [41] for the
quark field ψ(x) + α

∑
j Uj(x)eikêjψ(x + êj), where k is the input momentum-smearing parameter, Uj(x) are the gauge links

in the j direction, and α is a tunable parameter as in traditional Gaussian smearing.

current

δFV = 〈P |J(z, 0)J(0, 0)|P 〉L−∞ = A(z, L)× exp(−M(L− z)) +B(z, L)× exp(−mπL) (1)

where L is the spatial lattice size, z is the spatial separation of the nonlocal current J , M is the mass of the state
studied, and the forms of A(z, L) and B(z, L), which could be polynomial in L− z, are interaction-dependent. This
indicates that the finite-volume corrections of the nonlocal matrix element could be enhanced relative to their local
counterparts, implying that a large lattice box is needed. Although this study may not directly apply to LaMET
operators, a careful study of finite-volume systematics is needed to ensure that the LaMET PDF results do not suffer
similar issues or worse.

In the case considered by Ref. [31], z ≈ L/4 and a lattice size as large as MπL = 4, the finite-volume discrepancy is
roughly 10% of the final result. On the other hand, this effective theory has a region of validity Mz ≥ 1. Reference [31]
also claims a reconstruction of nonlocal lattice operators in a finite volume would be nontrivial and subject to Wilson-
line renormalization. Whatever the case, an empirical study of FV effects across a range of lattice sizes should
demonstrate whether they exhibit similar behavior to the above in the range of z of interest for nucleon structure.

In this work we study the finite-volume effects on the nucleon quasi-PDF matrix elements for both the unpolarized
and helicity PDFs by calculating them on three different lattice spatial volumes. Our lattice setup and the detailed
parameters can be found in Sec. II, the main numerical results and discussions in Sec. III, followed by conclusions in
Sec. IV.

II. LATTICE PARAMETERS AND SETUP

This work is carried out with clover valence fermions on three ensembles with a = 0.12 fm, pion massMπ ≈ 220 MeV,
and Nf = 2 + 1 + 1 (degenerate up/down, strange and charm) flavors of highly improved staggered dynamical quarks
(HISQ) [32], generated by MILC Collaboration [33]. These three ensembles have three different spatial sizes L ≈ 2.88,
3.84, 4.8 fm, which correspond to Mval

π L ≈ 3.3, 4.4 and 5.5, respectively. One-step hypercubic (HYP)-smeared gauge
links [34] suppress discretization effects. The clover parameters are tuned to recover the lowest pion mass of the
staggered quarks [29, 35–37]. The multigrid algorithm [38, 39] in Chroma software package [40] is used to speed
up the clover fermion inversion of the quark propagators. We use Gaussian momentum smearing [41] for the quark
field to improve our signal of the boosted-momentum proton state. Table I summarizes the momenta, source-sink
separations, and statistics used in this work.

On the lattice, we calculate the following operators used in LaMET:

OΓ(z) = ψ̄(z)ΓU(z, 0)ψ(0), (2)

where the spacelike Wilson line

U(z, 0) = P exp

(
−ig

∫ z

0

dz′Az(z′)

)
. (3)

Γ = γt (γzγ5) for unpolarized (longitudinally polarized, also called “helicity”) PDFs[12, 42–44]. The hadron matrix
element ofOΓ(z) can be directly obtained from lattice QCD, and its Fourier transformation is known as the quasi-PDF:

q̃(x, Pz, µ̃) =

∫ ∞
−∞

dz

2π
eixPzz

〈
P
∣∣OΓ(z)

∣∣P〉 . (4)

To make sure that we single out only the finite-volume effect rather the boost-momentum dependence of the quasi-
PDFs, we calibrate two sets of momenta for this study. They are Pz ≈ 1.3 and 2.6 GeV, which correspond to {3, 4, 5}
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for “S”, “M” and “L”, and {6, 10} for “S” and “L” ensembles, respectively, in units of lattice momentum with spatial

periodic boundary conditions. At each nucleon boost momentum, h̃(z, Pz, a) is measured with multiple source-sink
separations tsep as listed in Table I. We investigate the excited-state contamination by performing “two-simRR”
fits [37] using all tsep:

C3pt
Γ (Pz, t, tsep) = |A0|2〈0|OΓ|0〉e−E0tsep

+ |A1||A0|〈1|OΓ|0〉e−E1(tsep−t)e−E0t

+ |A0||A1|〈0|OΓ|1〉e−E0(tsep−t)e−E1t

+ |A1|2〈1|OΓ|1〉e−E1tsep + . . . (5)

where E0 (E1) is the ground- (excited-) state nucleon energy and A0 (A1) are the overlapping and kinematic factors
for the ground- (excited-) state nucleon, extracted from the two point correlators by fitting them to the form:

C2pt(Pz, t) = |A0|2e−E0t + |A1|2e−E1t + . . . (6)

A few example fit plots from a subset of data on all three volumes with Pz ≈ 1.3 and 2.6 GeV are shown in Figs. 1 and
2. One can clearly see that the simultaneous fits well describe data from all tsep, and the errors in the ground-state
matrix-element extraction are not overconstrained by the smallest tsep data. To check the consistency of the fits
across source-sink separations, we show in Fig. 3 “two-simRR” fits to Eq. 5 using all, the largest 3, and the largest
2 source-sink separations from the a12m220L ensemble. As expected, the extracted ground-state matrix elements
get noisier as we reduce the input data. We also compare the “two-sim” fit by dropping the last term in Eq. 5,
the resulting matrix elements are consistent with the “two-simRR” fits using all tsep and the statistical error size is
similar. Therefore, we will use the ground-state matrix elements from “two-simRR” fits using all tsep.
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FIG. 1. Example three-point ratio plots C3pt(t)/C2pt(tsep) as functions of insertion time from the real unpolarized isovector
nucleaon matrix elements with z = 3. The red, green, blue and purple bands are the reconstructed ratios from the fits to
each source-sink separation tsep = {6, 7, 8, 9}, respectively, and the gray band shows the ground-state matrix elements from
“two-simRR” fits in Eq. 5. The top two panels show the matrix elements from a12m220S, a12m220M and a12m220L (from
left to right) for Pz ≈ 1.3 GeV and the lower two plots show the the matrix elements from a12m220S and a12m220L for
Pz = 2.6 GeV.

III. RESULTS AND DISCUSSION

Figures 4 and 5 summarize the final fitted bare isovector nucleon matrix elements for a range of positive z on all
three ensembles for Pz ≈ 1.3 and 2.6 GeV, respectively. These matrix elements are normalized by the real part of
the z = 0 matrix elements for the unpolarized or polarized operator of each ensemble to improve the signal-to-noise
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FIG. 2. Example three-point ratio plots C3pt(t)/C2pt(tsep) as functions of insertion time from the real polarized isovector
nucleon nucleaon matrix elements with z = 3. The red, green, blue and purple bands are the reconstructed ratios from the
fits to each source-sink separation tsep = {6, 7, 8, 9}, respectively, and the gray band shows the ground-state matrix elements
from “two-simRR” fits in Eq. 5. The top two panels show the matrix elements from a12m220S, a12m220M and a12m220L
(from left to right) for Pz ≈ 1.3 GeV and the lower two plots show the the matrix elements from a12m220S and a12m220L for
Pz = 2.6 GeV.

ratios of the data, as the same ratios are done in Refs. [15, 21–24]. We scale the matrix elements shown in Figs. 4
and 5 by a z-dependent function, e0.15z, to boost the visibility of the smaller matrix elements at large z.) At small
boost momentum Pz ≈ 1.3 GeV, we found that for both unpolarized and polarized matrix elements, the central value
of the real matrix elements are similar for all three volumes, while the central value of the imaginary matrix elements
have more noticeable fluctuations as the volume increases. However, there is no clear trend of volume dependence.
At large boost momentum Pz ≈ 2.6 GeV, the bare matrix elements approach zero faster as the displacement z
increases, which is expected; however, again, the small- and large-volume matrix elements are consistent within the
statistical errors. Further, we noted that at this boost momentum (which is comparable to the boost momentum used
in Refs. [15, 22–24]), the central values for the polarized matrix elements are closer between these two volumes than
for the unpolarized ones.

We renormalize the nucleon matrix elements using a similar procedure as detailed in Refs. [15, 22, 23]. The
nonperturbative renormalization (NPR) factor Z(z, pRz , µR, a) is calculated using the off-shell quark matrix element of

Ô(z, a) in Landau gauge and requiring that all the loop corrections are canceled by Z(z, pRz , µR, a) at given pRz and µR,
which are the Euclidean quark momentum in the z-direction and the off-shell quark momentum, respectively [12, 13].
The nonperturbative renormalization factor Z(z, pRz , µR, a) in the RI/MOM scheme is defined by imposing a condition
on the quasi-PDF evaluated with off-shell quark states of momentum p with p2 6= 0, so that it matches the tree-level
result at the given momentum.

Z(z, pRz , µR, a)−1〈S(z)γtUz(z, 0)S(0)〉
∣∣
p2=−µ2

R

pz=pRz

= 〈S(z)γtWz(z, 0)S(0)〉
∣∣
tree

= e−izpzS(p)γtS(p)
∣∣
pz=pRz

, (7)

where the quark propagator S(p) uses momentum source, and NPR vertices S(z)γtUz(z, 0)S(0) are computed on all
three lattice ensembles individually. The NPR factors are then obtained from

Z(z, pRz , µR, a) =
eizpz

12
Tr
[
〈S(p)〉−1〈S(z)γtWz(z, 0)S(0)〉〈S(p)〉γt

]∣∣∣∣p2=−µ2
R

pz=pRz

. (8)

For convenience, we choose h̃R(z, Pz, p
R
z , µR) at µR = 2.4 GeV and pRz = 0 GeV for this quasi-distribution comparison.

Fig. 6 shows the scaled renormalization factors for the unpolarized and polarized nucleon matrix elements for all three
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FIG. 3. Example multistate-fitting real (left column) and imaginary (right column) matrix-element comparison from the
a12m220L ensemble with Pz = 1.3 (first and third rows) and 2.6 GeV (second and fourth rows) data as a function of Wilson-
line displacement for unpolarized (top-2 rows) and polarized (bottom-2 rows) matrix elements. The data points from left to
right indicates “two-simRR” fits (i.e. using all three terms in Eq. 5) using source-sink seperation tsep ∈ [6, 9], [7, 9], [8, 9]
respectively and “two-sim” fit (i.e. by not using the last term in Eq. 5) to tsep ∈ [8, 9], showing consistent fits across different
input of source-sink separation data.
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FIG. 4. The normalized Pz ≈ 1.3 GeV (top) and Pz ≈ 2.6 GeV (bottom) bare isovector nucleon matrix elements for unpolarized
PDFs as functions of z at the three volumes (MπL = 3.3, 4.4 and 5.5 indicated by red, green and blue, respectively).

volumes. The volume-dependence of the renormalization factors is milder than that of the matrix elements themselves.

The renormalized matrix element h̃R(z, Pz, p
R
z , µR) = Z̃−1(z, pRz , µR, a)h̃(z, Pz, a) inherits the dependence on pRz and

µR, which is supposed to be canceled after the later matching step to recover for lightcone distribution. However, in
this work, we are only interested in the finite-volume effects and thus will skip the one-loop matching.

Next, we need to Fourier transform the h̃R(z, Pz, p
R
z , µR) into x-space to obtain the quasi-distribution δq̃(x, Pz, p

R
z , µR).

As originally pointed out in Ref. [21] in 2017 and demonstrated using CT14 NNLO [45] at 2 GeV, a naive Fourier trans-
form from momentum-space x to coordinate space z and then back suffers an inverse problem. This means that since
the lattice calculation has finite displacement z in the nonlocal operator and cannot actually use infinitely boosted
momentum, a straightforward Fourier transform produces truncation effects, resulting in unphysical oscillatory be-
havior, as observed in earlier works [12, 46]. The antiquark and small-x regions suffer the maximum deformation. In
Ref. [21], two ideas (“filter” and “derivative” methods) were proposed to remove this biggest systematic uncertainty
in the LaMET approach to studying x-dependent hadron structure: Fourier-transformation truncation. When not
assuming a parametrization form, this determines the shape of the PDF. The first lattice PDF at physical pion mass
was used to demonstrate how the proposed methods improve real-world lattice calculations. A third method was
proposed in late 2017, modifying the Fourier transformation in LaMET using a single-parameter Gaussian weight [47].
As this manuscript was completed, another three methods were proposed in Ref. [48]. Following the recent work in
Refs. [22–24], we adopt the simple but effective “derivative” method:

Q̃(x, Pz, p
R
z , µR) = i

∫ +zmax

−zmax

dz eixPzzh̃′R(z, Pz, p
R
z , µR)/x, (9)

where Q̃ is quasi-PDF (q(x), ∆q(x) and δq(x) respectively), and h̃′R is the derivative of the renormalized matrix
elements for the corresponding operator.

For the purpose of this finite-volume study, we pick zmax = 12 in the Fourier transformation. The isovector nucleon
quasi-PDF distribution results are shown in Fig. 7. The errors shown here are statistical only. In the Pz ≈ 2.6 GeV
case, we see a more noticeable difference in volume dependence, most likely due to statistical fluctuation. The



7

24
3

32
3

40
3

0 2 4 6 8 10 12 14 16

0

0.2

0.4

0.6

0.8

1.0

z

R
e
M

E
zq


24
3

32
3

40
3

0 2 4 6 8 10 12 14 16

-0.3

-0.2

-0.1

0

z

I
m
M

E
zq


24
3

40
3

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1.0

z

R
e
M

E
zq


24
3

40
3

0 2 4 6 8 10 12

-0.5

-0.4

-0.3

-0.2

-0.1

0

z

I
m
M

E
zq


FIG. 5. The normalized Pz ≈ 1.3 GeV (top) and Pz ≈ 2.6 GeV (bottom) bare isovector nucleon matrix elements for polarized
PDFs as functions of z at the three volumes (MπL = 3.3, 4.4 and 5.5 indicated by red, green and blue, respectively). Given
the apparently quite small size of the finite-volume effects, it is certainly difficult to discern them on the figure.
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FIG. 6. The normalized unpolarized (left) and polarized (right) NPR factors as a function of the Wilson line length for lattice
spaial size 24 (red), 32 (green) and 40 (blue). For pRz = 0, the imaginary parts vanish so are not shown. The renormalization
constants are scaled by an exponential factor exp(0.1z) so that the large-z points can be seen more clearly.

distribution for both volumes are aligned well for most of the positive-x region, while in the negative-x region there is
a more noticeable difference in the central values of the quasi-distribution. Nonetheless, they are consistent within the
statistical errors. These differences in central values become less important when systematics from scale dependence
of NPR renormalization, zmax dependence in Fourier transformation and one-loop matching, are included, as done in
Refs. [22–24].
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FIG. 7. The quasi-distribution of nucleon isovector unpolarized (left) and polarized PDFs (right) with data from Pz ≈ 1.3
(top) and 2.6 (bottom) GeV. Only the statistical errors are shown in the figures. The finite-volume effects are small for both
distributions.

IV. SUMMARY

To summarize, we have calculated the isovector nucleon matrix elements with spatially displaced nonlocal operators
using three lattice volumes (2.88, 3.84, 4.8 fm) at a fixed single pion mass of 220 MeV and lattice spacing 0.12 fm.
This is the first finite-volume study of these new operators used in lattice-QCD calculations. After carefully extracting
the bare matrix elements for unpolarized and polarized distribution, we do not observe noticeable volume dependence
in these ensembles. We further checked the quasi-PDF distribution after applying NPR, and the quasi-distribution
remain consistent within statistical errors. We conclude that finite-volume dependence does not play a significant role
for the boosted nucleon matrix elements used for quasi-distributions within the range of Mval

π L ∈ {3.3, 5.5}.
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