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We investigate the formation, gravitational clustering and interactions of solitons in a self-
interacting, non-relativistic scalar field in an expanding universe. Rapid formation of large number
of solitons is driven by attractive self-interactions of the field, whereas the slower clustering of soli-
tons is driven by gravitational forces. Driven closer together by gravity, we see a rich plethora of
dynamics in the soliton “gas” including mergers, scatterings and formation of soliton binaries. The
numerical simulations are complemented by analytic calculations and estimates of (i) the relevant
instability length and time scales, (ii) individual soliton profiles and their stability, (iii) number den-
sity of produced solitons, and (iv) the two point correlation function of soliton positions as evidence
for gravitational clustering.

I. INTRODUCTION

Solitons are self-localized, persistent configurations in
nonlinear field theories which have been studied intensely
in a broad range of contexts including cosmology, high
energy physics, nonlinear optics and cold-atom physics,
condensed matter physics, fluid mechanics and mathe-
matics [1–6].

In cosmology, for example, solitons can emerge nat-
urally at the end of inflation and dominate the energy
density (e.g. [7]), or related configurations can form in
the axion field that might constitute the entirety or part
of the dark matter (e.g. [8]). Depending on the context,
they can act as new sources of gravitational waves [9–13],
potentially lead to the formation of primordial blackholes
[14–16], be involved in baryogenesis [17, 18], change the
approach to radiation domination in the early universe
[19–21], and they can provide novel insights into the small
scale problems in the cold dark matter paradigm [22–26].

To explore many of these implications, it is important
to consider their formation, and their interactions result-
ing from gravity and self-couplings of the field. In this
paper we explore the gravitational clustering and gravi-
tational as well as non-gravitational interactions of non-
relativistic solitons, starting with the formation of soli-
tons from cosmological initial conditions.1 See Fig. 1 for
a visual overview of soliton formation and clustering in
an expanding universe.

We focus on non-topological solitons in a non-
relativistic scalar field theory. We include strong self-
interactions in the theory, while gravity is included under
the assumption that it is weak. In our simulations, the
rate of expansion of space is determined by the average
energy density of the field.

∗ mustafa.a.amin@gmail.com
† philip.mocz@gmail.com; Einstein Fellow
1 Here, by cosmological initial conditions we mean an almost ho-

mogeneous field with small perturbations.

There is a large, and diverse literature on non-
topological solitons in real and complex scalar field theo-
ries in a cosmological context; this paragraph is a taste,
rather than a comprehensive review of the literature.
For work on individual solitons, see for example, [27–
37]. For the early universe, soliton formation in relativis-
tic fields in an expanding universe but ignoring gravi-
tational interactions has been considered in, for exam-
ple, [7, 38–40]. In the late universe context, gravita-
tional interactions are included in the non-relativistic
limit, but self-interactions are ignored or typically as-
sumed to be very weak (e.g. [25, 41, 42]). In this
non-relativistic, non-interacting limit, halos and solitons
within them have been shown to form. Binary soliton col-
lisions/interactions and their implications have also been
explored under controlled initial conditions (e.g. [11, 42–
44]). The fate of a “prepared” collection of relativistic
solitons (oscillons) with random velocities was considered
in two dimensions and without gravity in [45]. The merg-
ers of a small group of pre-existing non-relativistic soli-
tons, with gravity included but without self-interactions,
was explored in [41, 46].

What is new in our work is the following: We simulate
and analyze the case of soliton formation with strong
self-interactions, starting with cosmological initial con-
ditions. Thereafter, a “gas” of solitons emerges in a
self-consistently expanding universe, followed by gravi-
tational clustering of solitons and eventual, dynamically
rich, close encounters. We provide a quantitative under-
standing of the formation, gravitational clustering, indi-
vidual properties and interactions of solitons based on
simulations and analytic calculations in this paper. We
note that quite generally, we can use the results in the
present work to understand the formation and gravita-
tional clustering dynamics of the non-relativistic limits
of oscillons, Q-balls and Boson stars with strong self-
interactions.2

The present work is somewhat related to (but does

2 The emergent, approximate U(1) symmetry in the non-
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FIG. 1. Projected co-moving “densities” a3|ψ|2 (average along the line of sight) at several scale factors (a = 1 to a = 20) in
our 3+1 dimensional lattice simulations, with β ≡M/mpl = 0.03, and local gravitational interactions switched on (top panels)
and off (bottom panels). The early instability due to self-interactions gives rise to the formation of solitons from an almost
homogeneous initial state. A statistical analysis of the locations of solitons at late times shows evidence for clustering only in
the case where gravitational interactions are included. Note that inside solitons, |ψ|2 = const. that is, their core density does
not redshift, whereas the background |ψ̄|2 ∝ a−3. Moreover, solitons maintain a fixed physical size, hence the illusion of them
shrinking in size in a co-moving volume. The initial size of the box is the size of the horizon at the beginning of the simulation
L ' H−1

in . The solitons contain a dominant fraction of the mass in the simulation volume. On a technical aside, note that the
projected co-moving density even in the densest (lightest in color) appearing regions in the above plot will be smaller that the
density inside the cores because of the small volume occupied by the solitons.

not rely on) a recent exploration of gravitational per-
turbations from oscillons and transients [13]. In [13],
soliton formation in a relativistic Klein-Gordon equation
in an expanding background was investigated, however,
gravitational perturbations were calculated passively, i.e.
gravitational clustering was not present. Here, we focus
on non-relativistic fields, but clustering due to gravity is
included. While the models and context are not iden-
tical, a qualitative comparison between relativistic/non-
relativistic models and results is discussed in the Ap-
pendix.

The rest of the paper is organized as follows in short
sections. In Section II we discuss the model for a non-
relativistic, self-interacting field in an expanding universe
with weak field gravity. In Section III, we briefly dis-
cuss the lattice simulation and our numerical algorithm.
The initial conditions for the simulations are provided
in Section IV. We analyze linear instabilities from self-
interactions and gravitational interactions in Section V.
The numerically calculated power spectrum for the field
perturbations is provided in Section VI. In Section VII we
discuss the formation of solitons, followed by a discussion
of their individual profiles and stability in Section VIII.
The gravitational clustering of solitons is discussed in
Section IX, and resulting strong soliton interactions are

relativistic limit makes oscillons and Q-balls almost identical [32],
or at the very least obtainable from one another.

explored in Section X. Finally, we present our conclusions
and future directions in Section XI. In the Appendix we
discuss connections to a related relativistic system (at
the level of the equations, instabilities, solitons and ini-
tial conditions).

II. THE MODEL

We use the following equations of motion (and con-
straint equations) to explore the dynamics of a non-
relativistic, self-interacting, self-gravitating scalar field in
an approximately homogeneous and isotropic universe:

[
i

(
∂t +

3

2
H

)
+

1

2a2
∇2 − U ′nl(|ψ|2)− Φ

]
ψ = 0 ,

∇2

a2
Φ =

β2

2

[
|ψ|2 +

1

2a2
|∇ψ|2 + Unl(|ψ|2)

]
− 3

2
H2 ,

H2 =
β2

3

[
|ψ|2 +

1

2a2
|∇ψ|2 + Unl(|ψ|2)

]
,

(1)

where [. . .] indicates a spatial average, a(t) is the scale-
factor, H(t) = ȧ(t)/a(t) is the Hubble rate, ψ(t,x) is
complex field amplitude, Φ(t,x) is the Newtonian po-
tential and Unl(|ψ|2) encodes the self-interactions of the
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field.3

All variables and parameters appearing in the above
equation are dimensionless. We have expressed time t in
units of τm = ~/mc2, lengths in units of λm = ~/mc,
the Newtonian gravitational potential Φ in units of c2

and |ψ|2 in units of m2M2c3/~3. Note that m2M2c3/~3
has dimensions of mass density. We assume that the
parameter

β ≡ M

mpl
� 1 . (2)

There are three relevant scales in the equations (not eas-
ily discernible in the non-dimensional version): m =
mass of particles of our field (without self-interactions),
M determines the strength of the self-interactions, and
mpl is the reduced Planck mass which determines the
strength of gravity. We work in a parameter regime
with: m � M � mpl. The fiducial value used in the
present paper are M = 0.03mpl (though we have also
varied M by a factor of few). This particular parameter
regime can be natural when identifying ψ as the non-
relativistic approximation to the inflaton field [21] (with
m ' 2 × 10−4M). The hierarchy m � M � mpl is also
natural for an axion-like field where M plays the role of
the decay constant f ; in this case m can be much smaller
(e.g. [47, 48]). We note that m is essentially setting
units of quantities in our equations, and the behavior we
explore will be qualitatively valid for any energetically
dominant, cosmological scalar field regardless of particu-
lar value of m (modulo initial conditions).

For the purpose of this paper, we chose Unl(|ψ|2) with
a saturated nonlinearity :

Unl(|ψ|2) = −|ψ|
2

2

|ψ|2
1 + |ψ|2 . (3)

The saturated nonlinearity refers to the fact that for
|ψ| � 1, U ′nl(|ψ|2) → const. which means that the non-
linearity appearing in the equation of motion for ψ is
bounded. This form is not strictly necessary, and differ-
ent powers of |ψ|2 in the denominator of Unl (for exam-
ple, (1 + |ψ|2)α or (1 + |ψ|2α) with α > 0), are also worth
exploring, but we do not consider these here.

Note that for |ψ|2 � 1, the above choice yields
U ′(|ψ|2) = −|ψ|2, which makes the first eq. in (1) analo-
gous to the usual nonlinear Schrödinger equation with at-
tractive interactions (ignoring gravity). Equation (1) also
match the equations of motion for axions, or symmetric
inflationary potentials in this non-relativistic, small am-
plitude limit.

While not necessary for our present purposes, we ex-
plore the connection of our non-relativistic equations to

3 We have checked that qualitatively similar results are obtained
even if we set Unl → 0 in the Poisson and Friedmann equations,
but keep U ′n(|ψ|2) ≡ ∂|ψ|2Un(|ψ|2) in the nonlinear Schrödinger
equation.

those obtained from a relativistic theory in the Appendix.
We also refer the reader to (for example) [49, 50] for more
detailed discussions of the non-relativistic limit of rela-
tivistic scalar field systems (typically in the weak inter-
action limit). At the leading order, the non-relativistic
limit of real or complex scalar field should yield equations
similar to ours.

III. LATTICE SIMULATIONS

We solve our Schrödinger-Poisson system in a self-
consistently expanding background (see eq. (1)) on a
N = 4003 lattice.4 The field evolution uses a second-
order in time (exponential convergence in space) ‘kick’-
‘drift’-‘kick’ spectral method of [51]. For our numerical
method, the total run time scales as O[N5], which limits
N from being too large. The initial box size is L ∼ H−1,
and we run our simulations from ai = 1 to af = 20 (with
corresponding tf − ti ' few × 103m−1). The box size
(L), resolution (∆x = L/N), and time duration of the
simulations are chosen so that (i) the relevant instability
scales (discussed below) are captured in the simulation,
(ii) our solitons are resolved (af∆x . O[1]), and (iii) we
have sufficient number (O[102]) of solitons in our simula-
tion volume to make statistically significant statements
about their properties, interactions and clustering.

We find our solitons in the numerical simulations by lo-
cating local maxima in the |ψ|2 field (by comparing each
pixel to its nearest neighbor in a 3×3×3 region), and tak-
ing all points with co-moving density about some thresh-
old. We look at the radial density profiles about these
points and verify that they fall on the central amplitude
– radius relation predicted for solitons shown in Fig. 4.
In practice, we found that we could distinguish solitons
from other local inhomogeneities (which are less dense),
with our threshold of a3|ψ|2 > 25. The results are invari-
ant to the particular choice of threshold over a range of
values: 10s–100s. A lower threshold would start includ-
ing extraneous linear fluctuations, and a higher threshold
would start excluding solitons.

IV. INITIAL CONDITIONS

We begin with an almost homogeneous field with small
spatial perturbations (mimicking zero point fluctuations)

4 Smaller lattices were also used to check for convergence, and
other numerical checks. For example, we halved the resolution,
and the locations of solitons did not change. In our highest
resolution simulations, solitons contain & 10 pixels per linear
dimension (O[103] pixels per soliton volume).
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of the form

ψ(tin,x) = ψ̄(tin) +
1√
L3

(m
M

)∑
k

δψke
ik·x ,

with ψ̄(tin) = 1 and 〈|δψk|2〉 ∼
1

2
.

(4)

where |δψk| are drawn from a Raleigh distribution, and
the phases for δψk are drawn from a uniform distribu-
tion.5 We assume that a(tin) = 1. The gravitational
perturbations and H are then obtained self-consistently
using eq. (1). We choose ψ̄(tin) = 1 because (as we will
see) for ψ̄(tin) . β−1, instabilities due to self-interactions
are ineffective. On the other hand, for ψ̄(tin) & β−1 we
are forced to introduce a time-scale H−1 via the Fried-
mann equation which is comparable to τm, thus poten-
tially entering a fast-time scale, relativistic regime.

To remain consistent with our non-relativistic approx-
imation, we introduce a cut-off in the initial spectrum

〈|δψk|2〉 = 0.5e−k
2

which removes relativistic (k � 1)
modes. We have checked that our results are qualita-
tively insensitive to order unity changes in amplitudes of
the initial perturbations as well as the cut-off.

V. LINEAR INSTABILITIES

As seen in Fig. 1, there is a rapid growth in
field/density perturbations on a characteristic length
scale, which results in the formation of solitons. We
calculate and compare this instability with gravitational
instability below.

A. Self-Interaction Instability

Let us consider small spatial perturbations around a
homogeneous solution ψ̄(t):

ψ(t,x) = ψ̄(t)

[
1 + ε

δψk(t)

ψ̄(t)
eik·x

]
, (5)

where ε = (m/M)L−3/2. Sufficiently long wavelength
perturbations of the field are unstable due to self-
interactions of the field U ′(|ψ|2). To see this, let us first
ignore expansion and gravitational interactions (that is,

5 Note that δψk is in units of m1/2 (with ~ = c = 1). Recall
that ψ is measured in units of mM and L in units of m−1

which together lead to the appearance of the m/M � 1 co-
efficient. To arrive at the above initial conditions, we found it
easiest to start from the relativistic case with the relativisitic
field φ = (

√
2/m)<[ψe−imt] (see the Appendix for details). For

the initial conditions, we ignore self-interactions, as well as fast
time variations and assume k . m. Refinements are possible

(such as |δψk|2 ∼ (1/2)
√
k2 +m2

eff), but are not expected to

change the results qualitatively.

a = 1, H = 0, Φ = 0), and substitute eq. (5) into eq. (1).
At the background level, we find ψ̄(t) = ψ̄(0)e−iνt with
ν = U ′(|ψ̄|2) < 0. At linear order in the perturbation,
we find6(

∂2t +
k2

4

[
k2 + 4|ψ̄|2U ′′nl(|ψ̄|2)

]) δψk

ψ̄
= 0 . (6)

Note that U ′′nl(|ψ̄|2) < 0 for our case. Thus, we have
unstable, exponentially growing perturbations |δψk/ψ̄| ∝
eµkt for

k2 < −4|ψ̄|2U ′′nl(|ψ̄|2) ,

with µk =

∣∣∣∣∣ik2
√
k2 + 4|ψ̄|2U ′′nl(|ψ̄|2)

∣∣∣∣∣ . (7)

For a given |ψ̄|, the mode that grows the fastest has a
wavenumber

k? =
√
−2|ψ̄|2U ′′nl(|ψ̄|2)

with µk? = −ψ̄2U ′′nl(|ψ̄|2) =
k2?
2
.

(8)

The corresponding (approximate) expressions in an ex-
panding universe, are obtained via k → k/a. Moreover,
in an expanding universe ψ̄ ∝ a−3/2 and H ∼ βa−3/2.

In an expanding universe, this growth rate should be
compared to H to ascertain whether the growth of per-
turbations can compete with expansion related dilution.
Using our expressions for Unl(|ψ|2) in eq. (7) and H2 from
the Friedman equation (1), we need

µk
H
∼ 1

β

1

a3/2
� 1 for rapid growth. (9)

In the above expression we have assumed that |ψ̄| . 1.

B. Gravitational Instability

Spatial perturbations of the field also grow due to grav-
itational interactions (we ignore self-interactions for the
moment). Again, ignoring expansion, usual linear insta-
bility analysis of eq. (1) reveals that the unstable pertur-
bations grow exponentially |δψk/ψ̄| ∼ eµkt when [22]

k < kJ ≈
√√

2β|ψ̄| with µk =

√
1

2
β2|ψ̄|2 − k4

4
.

(10)

6 To obtain this equation, we found it useful to first derive the first
order equations for the real and imaginary parts of the perturba-
tion eik·xδψk/ψ and then combine them to get the second order
in time equations for each part. The real and imaginary parts
satisfy the same second order linear equation, thus we arrive at
eq. (6).
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FIG. 2. Power spectrum of the field ψ (scaled by |ψ̄|2 ∝ a3).
The initial conditions are consistent with vacuum fluctu-
ations, with a cutoff removing relativistic scales. A self-
interaction driven instability on the wavenumber k/a ≈√
−2|ψ̄|2U ′′nl(|ψ̄|2) drives the initial growth of the perturba-

tions. These perturbations backreact on the homogeneous
condensate around anl ' 2.1 on the physical scale knl/a '
0.35 first. After this time, solitons soon begin to form, sep-
arated by a co-moving distance of ∼ 2π/knl. Note that in
this figure, since we have divided the power spectrum |ψ̄|2,
tje back-reaction takes place when the spectrum is roughly of
order unity.

Heuristically, including expansion means that |ψ̄| and k
redshift, and k above should be interpreted as a physical
wavenumber k/a.7

We end this section by noting that there are two insta-
bility scales associated with self-interactions and grav-
ity respectively (see eqs. (7) and (10)). Assuming
|ψ̄| ∼ a−3/2 . 1, the instabilities are active on physi-
cal wave-numbers

k

a
.

{
a−3/2 self-interactions ,√
βa−3/4 gravity .

(11)

The unstable modes having characteristic “growth
rates”:

µk
H
∼
{

β−1a−3/2 self-interactions ,

1 gravity .
(12)

This simple scaling analysis reveals that for β � 1, the
self-interaction instability will dominate at early times.

7 We recognize that including expansion more carefully, the gravi-
tational instability is power-law rather than exponential and the
fractional over-density must grow as ∼ a for k < kJ , however our
argument is sufficient to capture the slowness of gravitational in-
stability compared to the self-interaction one [52].

VI. POWER SPECTRUM

The power spectrum of the field perturbations is shown
in Fig. 2. The initial spectrum (black) is based on our
initial conditions (see eq. (4), including an exponential
cutoff which removes k � 1 modes at this time).

The dashed blue line is the expected power spectrum
at a = 1.5 based on our instability analysis in Section V.
This calculated power spectrum is consistent with the
numerically evaluated spectrum at the same time which
was obtained using the full lattice simulation, with both
local gravitational interaction included (solid line) and
turned off (dotted line).8

Soon after this time, the perturbations start becoming
nonlinear, and back-reaction of the perturbations on the
homogeneous evolution of the field becomes significant.
The scale-factor when the perturbations become nonlin-
ear can be obtained from the following heuristic criterion
which compares the amplitude of field perturbations to
the background homogeneous field:

m

M
k3/2〈|δψk|2〉1/2 ∼ ψ̄ , (13)

where the left hand side is an estimate of the variance
of fluctuations on a scale l ∼ k−1. The above criterion
is satisfied by a combination (anl, knl) such that the field
perturbations on the co-moving scale knl become nonlin-
ear first. For β = 0.03, we analytically estimate anl ' 2.1
and knl ' 0.7. Note this scale knl/a ' 0.35 in the spec-
trum in Fig 2 (see the blue curves). A characteristic
scale is also visible in the second column (a = 2) of the
snapshots of the field evolution shown in Fig. 1.

VII. SOLITON FORMATION

Once the perturbations become nonlinear, the attrac-
tive self-interactions lead to the formation of localized,
roughly spherical energy density configurations (our soli-
tons) at the peaks of the density perturbations. The
co-moving number density of such peaks (and hence of
solitons) is crudely given by:

a3nsol ∼ (knl/2π)3 , (14)

at the time of formation (see [53, 54]). Using knl ' 0.7,
we get a3nsol ∼ 10−3 consistent with our simulations (see
Fig. 3 ).

The formation of solitons following the initial linear
instability is clearly visible in the snapshots shown in
Fig. 1. While we do not show the a = 3 snapshot, the

8 We note that there is some power on k/a & 1 in the power
spectrum; part of this is from initial conditions where we were
not aggressive in removing all k/a & 1 modes, and part from
re-scattering due to nonlinear evolution. However at late times,
most of the power is on k/a . 1.
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FIG. 3. The figure shows the co-moving number density
of solitons a3nsol in our simulations with (solid) and with-
out (dotted) gravitational interactions. Proper solitons begin
to form around a ≈ 4, with O[103] solitons per Hubble vol-
ume H−3 at this time. At late times, the number density of
solitons is lower in the case when gravity is included due to
mergers/disruptions made possible by gravitational cluster-
ing. The curves are obtained by averaging over 6 runs.

formation of solitons is complete by this time. The a = 4
snapshot shows well formed, and separated solitons with
typical overdensity in inside solitons of O[10].

In more detail, Fig. 3 shows the co-moving number
density of solitons as a function of time in our simu-
lations. The initial number density established by the
formation of the solitons is independent of self-gravity.
However, gravity is strong enough to lead to subsequent
mergers/disruptions which leads to a small drop in num-
ber density of solitons at late times. In addition, we
also cannot rule out that gravity is causing some individ-
ual solitons to become unstable. The drop in co-moving
number density is evident in the difference between the
dashed (ignores gravitational interactions) and solid lines
(. 10% per Hubble time).

We find that a large fraction (∼ 70%) of the energy in a
co-moving volume of the universe is locked up in solitons.
We only count regions with over-densities & 4 as part of
solitons for this estimate. This result is consistent with
related earlier simulations using the relativistic nonlinear
Klein-Gordon equation in an expanding universe (but ig-
noring gravitational clustering), see for example [7, 54]).

VIII. INDIVIDUAL SOLITONS

The first two equations in eq. (1) (ignoring expansion)
admit spatially localized, spherically symmetric, solitonic
solutions of the form

ψ(t, r) = e−iνtΨ(r) . (15)

We substitute this ansatz into (1), to obtain equations
for the profile Ψ(r) and gravitational potential Φ(r):

[
ν +

1

2r2
∂r(r

2∂r)− U ′nl(Ψ2)− Φ

]
Ψ = 0 ,

1

r2
∂r(r

2∂r)Φ =
β2

2

[
Ψ2 +

1

2
(∂rΨ)2 + Unl(Ψ

2)

]
.

(16)

Note that ν can be absorbed into the definition Φ̃ = Φ−ν.
We then find smooth, localized, node-free solutions for
Ψ(r) for each Ψ(0), by appropriately adjusting Φ̃(0).9

We note that by going to the large r limit of the profile
equations, Ψ(r) decays in an exponential fashion at large
radii (see [55]). This will be relevant when discussing
soliton interactions.

In Fig. 4 we plot the 1/e width of these soliton pro-
files as a function of the central amplitude (solid black
curve) using the profiles obtained from the above proce-
dure. Note that the width is non-monotonic in the cen-
tral amplitude. The data points in this plot correspond
to solitons extracted from our simulations, and are in
excellent agreement with the calculated analytic expec-
tation. Note that for early times (a = 2), not all high
density regions are solitons yet, hence they do not lie on
the analytic curve initially.

While we have done the above calculation including
gravity, the gravitational potential remains small for
most of the solitons: |Φ(0)| = O[10−3] for β = O[10−2],
and gravity does not significantly affect profiles for cen-
tral amplitudes Ψ(0) . few. The same is true in our
simulations. We also show the gravitational potential at
the center of these solitons Fig. 4 (top axis).

The mass (or energy) per soliton is10

E =

∫
d3r

[
Ψ2 +

1

2
(∂rΨ)2 + Unl(Ψ

2)

]
,

= O[102]×
(
M

m

)2
m,

(17)

for the range of central amplitudes shown in Fig. 4 and
seen in simulations. Note that with m � M , E � m.
We find that the energy is a non-monotonic function of
Ψ(0), with a minimum near Ψ(0) ' 1.

9 If needed, we can recover ν = Φ− Φ̃ by insisting that Φ(r)→ 0
for r → ∞. In practice, recovering accurate values of ν is not
easy since Φ̃ falls off as a power law.

10 Note that ignoring the gradient and potential terms only changes
the answer by a factor of few. We briefly restore units with
~ = c = 1 to clarify that each soliton contains a large number of
m particles.
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FIG. 4. The relationship between the central amplitude,
and 1/e width of the solitons is shown in the figure. The
points are extracted from our simulations, whereas the curve
is calculated semi-analytically. Note that at late times, only
solitons that are stable according to the Vakhitov-Kolokolov
stability criterion (on right of the gray line) remain. For our
parameters, gravity remains weak and does not significantly
alter individual soliton profiles. The gravitational potential
at the center of the solitons is plotted on the top axis.

Stability

From our calculated profiles, we find that for −ν &
0.05 (correspondingly Ψ(0) & 0.9):

dN
d(−ν)

> 0 where N ≡
∫
d3rΨ2(r) , (18)

whereas it is smaller than zero at smaller amplitudes.
This Vakhitov-Kolokolov stability criterion [56] guaran-
tees stability for solitons with Ψ(0) & 0.9 against long-
wavelength perturbations.

The stability criterion elegantly explains the dearth
of solitons with central amplitudes below Ψ(0) . 1 in
Fig. 4(see also [50], where this criterion is argued to hold
even including gravity in the non-relativisitic limit).11 A

11 A long-wavelength stability analysis for relativistic solitons (os-
cillons) was carried out in [31, 54] (albeit in a different self-
interaction potential, and without gravity), which also showed
that the above stability criterion correctly predicted the survival
of large amplitude oscillons in simulations. We further note that
three dimensional oscillons in Sine-Gordon potentials (for axions,
but without gravity) are not stable and have a relatively short
lifetime, compared to flattened potentials [7, 57]. Oscillons in
flattened potentials can last longer than 107m−1[57], whereas
the duration of our simulations tf − ti ∼ few× 103m−1. See the
Appendix for further references on lifetimes in the relativistic
case.

more detailed stability analysis including gravity for our
saturated potentials would be useful.12

IX. GRAVITATIONAL CLUSTERING

For β � 1, gravitational clustering is expected to be-
come important at late times (significantly after the soli-
tons have formed, see eq. (12)). At these late times,
this universe essentially behaves as a matter dominated
universe (a(t) ∝ t2/3), with solitons becoming our new
non-relativistic dust particles on scales much larger than
their size. As a result, our zeroth order expectation is
that the gravitational clustering of these solitons should
proceed in a manner similar to dust in an expanding uni-
verse. Moreover, we can ignore non-gravitational forces
between the solitons at separations much larger than 2re
because we expect them to be Yukawa-like, with the force
falling away exponentially with separation.13

We construct the two point correlation function of soli-
ton locations obtained from our simulations to quantita-
tively investigate the effects of gravitational clustering.
In Fig. 5, we show the two-point correlation function of
the solitons, calculated with the Landy-Szalay estimator
[61, 62]:

ξLS(r) =
DD

RR
− 2
N − 1

N
DR

RR
+ 1 , (19)

where there are N solitons (the data D), and N uniform
randomly chosen points R, and DD is the number of
soliton pairs in a given co-moving radial separation bin,
RR is the mean count for the random points over several
realization R, and DR is the cross-correlation statistic.

As seen in Fig. 5, the measured two point correlation
function is the same for the case with and without gravi-
tational interactions at early times soon after soliton for-
mation (a . 4). The distribution is close to Poissonian
on large scales: ξLS(r & 10) ≈ 0. However, the co-moving
scale rnl ∼ k−1nl which is the typical separation of solitons
when they first form manifests itself in a negative corre-
lation function on small scales (we find very few solitons
with separations less than k−1nl ).

If we allow for gravitational interactions, solitons begin
to cluster. This clustering can be quantified in our simu-
lations at late times as excess power in ξLS (for a & 10).
Consistent with clustering of point particles in a matter
dominated universe starting with uncorrelated positions
[63], we find

ξLS(r) ∝ 1

r2
, (20)

12 For a related analysis in case of axions, see [58, 59].
13 This is also reminiscent of the force between solitons as analyzed

by [60].
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FIG. 5. The two point correlation function of soliton loca-
tions with and without the inclusion of gravitational interac-
tions. At early times, the correlation function with and with-
out gravity agree with each other. However, at late times
gravitational clustering ξLS(r) ∝ r−2 is clearly visible for the
a = 16 and a = 20 cases in the above figure.

where r is a co-moving separation.14. Fitting the model
ξLS ∝ aαrβ for our 6 simulations in the range of a = 10 to
a = 20, we find: α = 1.7± 0.3, β = −2.1± 0.2. It would
be interesting to explore this clustering further in detail,
since it might reveal differences from the point particle
case at late times.

X. STRONG SOLITON INTERACTIONS

Self-gravity plays the important role of bringing soli-
tons together at late times (i.e., significantly after their
formation), and allows them to interact.15 Fig. 6 shows
three different types of interactions that are achieved
from our cosmological initial conditions.

1. Solitons “repel/bounce off” each other when the
relative phase of the interacting solitons |θ1−θ2| ≈
π where ψa(t,x) = Ψa(x)e−i(νat+θa) with a = 1, 2.
We have verified this phase structure in our simu-
lations during such a repulsive interaction.

2. A few solitons merge to form more massive solitons
(typically when the relative phase is ∼ 0), resulting

14 We checked that if we replace the solitons by point particles after
a = 4, the correlation function evolves in a qualitatively similar
manner

15 There are interactions at early times when gravity is ignored as
well, but not so at late times in our simulations. We find that
the some solitons have a significant velocity at early times with
and without gravity, which wil be investigated quantitatively in
the future.

in a change in number density of solitons. Such in-
teractions are typically accompanied by generation
of a burst of scalar waves as the solitons settle into
new configurations.

3. A small fraction of solitons form orbiting binaries,
and we even see an occasional three-body interac-
tion.

4. Only few − 10% of the number of solitons in our
simulations undergo strong encounters per Hubble
time.16 This is consistent with the rate of change
in the co-moving number density of solitons

d ln(a3nsol)

d ln a
' 0.1 , (21)

as seen from Fig. 3.

We re-iterate that bouncing, binary formation and
merging of solitons is self-consistently obtained from our
cosmological initial conditions. Evidently, the dynamics
of these strong interactions are quite rich, and deviate
from the expectations of treating these solitons as just
point particles. The relative phase of the solitons plays
an important role in these close encounters.

We note that at late times (af ' 20), we have about
10 pixels per linear dimension of the soliton (∼ 103 pix-
els per volume of the soliton). As a result, the detailed
dynamics (such as post interaction kicks at late times)
of individual strong interactions should be interpreted
with some care. While it is not easy to improve the res-
olution significantly for the entire simulation, zoom-in,
higher resolution simulations focusing on soliton interac-
tions using initial conditions from our simulations would
be useful. A more detailed investigation of the rich dy-
namics of close encounters with higher resolution simu-
lations is left for future work. For an early, and detailed
investigation of Q-ball interactions (relativistic complex
field valued analogs of our solitons), but without gravity,
see [64, 65].

The repulsive and attractive behavior of such solitons
as a function of relative phase can be heuristically un-
derstood as follows. Consider a probe soliton moving
past another stationary soliton (in absence of gravity).
The nonlinearity in the Schrödinger equation (∝ |ψ|2 for
|ψ|2 � 1) can be thought of as a nonlinear refractive in-
dex.17 If the two solitons are in phase, we expect this
term to be larger in the region between the solitons than
the case when the stationary soliton is absent. It also in-
creases towards the stationary soliton. As a result, this

16 We inspected 6 numerical runs with different initial conditions
to get this number.

17 This is more than an analogy since nonlinear Schrödinger equa-
tions are used to model light pulse propagation in nonlinear me-
dia [66], we learned of the above heuristic explanation from the
same paper. For soliton formation and interactions in yet an-
other context (Bose-Einstein Condensates), see for example [67].
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FIG. 6. Gravitational clustering facilitates close encounters at late times between solitons. Such close encounters lead to
mergers, strong scattering and formation of soliton binaries. Non-gravitational interactions can play a dominant role in the
close-encounters, with the phase of the scalar field also playing an important role. This richness in the close-encounter dynamics
makes the soliton gas distinct from a gravitationally interacting gas of particles. Shown in this figure are projected densities
in zoom-ins (boxsize L/4), around 3 interactions (bounce, merge and orbit), at 5 times, each separated by time interval
corresponding to ∆ log(a) = 1.16.

larger refractive index, and its gradient, will cause the
core of the probe soliton to bend towards the stationary
one, i.e. there will be attraction between the solitons. On
the other hand, when our two solitons are out of phase,
the |ψ|2 between the two solitons will be smaller, and
have to go to zero in the middle (from symmetry), caus-
ing the probe soliton to move away from the stationary
one (hence “repulsion”). A more detailed, effective po-
tential based analysis at large separations is provided by
[43, 68].

XI. CONCLUSIONS & FUTURE DIRECTIONS

We investigated the dynamics of non-relativistic
scalar fields in an expanding background. By includ-
ing self-interactions and gravitational interactions, we
demonstrated the formation of solitons driven by self-
interactions from cosmologically relevant initial condi-
tions, followed by gravitational clustering of solitons. We
showed that this clustering leads to dynamically rich in-
teractions between solitons including scattering, merg-
ing and binary formation at late times (which is absent
in the case when gravity is not included). The highly
nonlinear dynamics were explored by numerically solving
the Schrödinger-Poisson system of equations with self-
interactions and weak field gravity in a self-consistently
expanding universe.

We provided analytic results and estimates for: (i) the
time and length scales associated with soliton formation,
(ii) the spatial distribution of solitons, (iii) and number

density of solitons, (iv) the individual properties of our
three-dimensional solitons, including their stability, and
(v) the two point function related to the gravitational
clustering of solitons.

We showed agreement between our analytic calcula-
tions and numerical simulations. The estimates and an-
alytic results also provided an understanding of how the
results depend on essential physical parameters in our
problem, allowing for broader applicability beyond that
of the fiducial models considered in this paper. In the
Appendix we discuss the connection of our work to the
case where the fields satisfy a relativistic Klein-Gordon
equation in an expanding universe (in particular [13]).
A more careful comparison with relativistic simulations,
and many subtleties and caveats associated with it, is left
for future work.

Our work points towards a number of new avenues
of exploration: (1) What is the end state of a gravi-
tationally and non-gravitationally interacting “soliton
gas”? What is the velocity and angular momentum dis-
tribution? This investigation is not purely gravitational
because of the close encounters of the solitons in an
expanding universe, where the phase plays a dominant
role (see [46] for the non-interacting case). (2) For
our initial conditions, individual solitons seem to be
far from forming blackholes. However rare, accidental
over-densities or over-densities driven by gravitational
clustering and mergers might make it more favorable
to form black holes. Numerically intensive, general
relativistic simulations of soliton formation from cos-
mological initial conditions and strong self-interactions
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have not yet been done [69, 70]. (3) The close encounters
could be a source of stochastic gravitational waves from
solitons in the early universe, in addition to those from
formation of the solitons in the early universe. (4) It is
possible to consider a different expansion history of the
background (for example, radiation domination), and
an axion-like potential as well as inhomogeneous initial
conditions, which would make parts of our analysis
relevant for the formation of quasi-stable axitons [8],
and axion miniclusters [71] in the early universe.18
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XII. APPENDIX

A. Connection to a Relativistic Model

In the main body of the paper we did not include a detailed analysis of the non-relativistic limit of strongly
self-interacting relativistic theories (if it exists). We took certain non-relativistic field equations with strong self-
interactions as given, and explored the solutions. As we discuss below, the equations we use can be justified as being
obtained by integrating out the fast time variation in the weakly interacting limit. While we believe that some aspects
of the relativistic – non-relativistic connection persists at large self-interactions as well, a rigorous mapping is beyond
the scope of the present work. We note that even with strong self interactions, the spatio-temporal variations of the
solutions of the system under consideration remain non-relativistic, and the gravitational potential remains small,
making the exploration in the main body of the paper self-consistent in this respect.

To derive our equations of motion (1) from a relativistic scalar field theory (in a particular limit discussed below),
consider a real scalar field φ within general relativity. Consider a real scalar field minimally coupled to gravity with
the action,

S =

∫
d4x

~c2
√−g

[
R

16πG
− 1

2
gµν∂νφ∂µφ− V (φ)

]
, (22)

where φ has dimensions of energy. R is the Ricci scalar, gµν is the metric, g is the determinant of the metric, and
d4x = (cdt)d3x. We are interested in potentials of the form

V (φ) =
m2c2

2~2
φ2 + Vnl(φ) , (23)

where Vnl(φ) contains the non-quadratic part of the potential, whose shape is controlled by a scale M . As a concrete
example, we can consider the potential V (φ) = (m2M2/2) tanh2(φ/M) [72, 73], although the precise form is not
necessary for most of the discussion that follows.

1. The weak field approximation – non expanding spacetime

In the weak field limit (ie. for Φ/c2 � 1 where Φ is the Newtonian gravitational potential) and in the absence of
expansion, the metric is determined by the line element of the form

ds2 =

(
1 + 2

Φ

c2

)
(cdt)2 −

(
1− 2

Φ

c2

)
dx2 . (24)

Note that we are ignoring anisotropic stress, as well as vector and tensor perturbations. In the linear regime,
anisotropic stress is absent, and will be absent away from solitons at the very least. In a time averaged sense,
the anisotropic stress will be small inside the solitons.

The equation of motion (nonlinear Klein-Gordon equation in curved spacetime) satisfied by the field φ is

1√−g ∂µ
(√−g gµν∂νφ)+ ∂φV (φ) = 0 , (25)

which, to leading order in Φ/c2, yields

∂2φ

∂(ct)2
−
(

1 + 4
Φ

c2

)
∇2φ− 4

c2
∂Φ

∂(ct)

∂φ

∂(ct)
+

(
1 + 2

Φ

c2

)
∂φV = 0 . (26)

In turn, the Einstein equations reduce to the Poisson equation

∇2Φ =
4πG

c2
T 0

0 , (27)

with

T 0
0 =

1

2

(
1− 2

Φ

c2

)(
∂φ

∂(ct)

)2

+
1

2

(
1 + 2

Φ

c2

)
(∇φ)2 + V (φ) . (28)
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2. The non-relativistic limit

In order to consider the “non-relativistic” limit, it is convenient to redefine the real scalar φ in terms of a complex
field ψ, factoring out the rest energy contribution

φ =
~√
2m

(
ψe−imc

2t/~ + h.c.
)

=
√

2
~
m
<[ψe−imc

2t/~] , (29)

where the normalization constant is chosen so that (27) reduces to the usual non-relativistic Poisson form. Straight-
forward substitution into (26) and (28) yields[

i~
∂ψ

∂t
− ~2

2mc2
∂2ψ

∂t2
+

~2

2m

(
1 + 4

Φ

c2

)
∇2ψ +

2~2

mc4
∂Φ

∂t

(
∂ψ

∂t
− imc2

~
ψ

)
+

1

2
mc2ψ

]
e−imc

2t/~ + (h.c.)

−
(

1 + 2
Φ

c2

)[
mc2

2
(ψe−imc

2t/~ + .h.c) +
~√
2
∂φVnl(φ)

]
= 0 ,

(30)

and

T 0
0 =

~2

4m2c2

(
1− 2

Φ

c2

)[(
∂ψ

∂t
− imc2

~
ψ

)
e−imc

2t/~ + h.c.

]2
(31)

+
~2

4m2

(
1 + 2

Φ

c2

)[
(∇ψ) e−imc

2t/~ + h.c.
]2

+
c2

4
(ψe−imc

2t/~ + h.c.)2 + Vnl.

Let τm = ~/mc2 and λm = ~/mc. Now let us assume that |τm∂tψ| � |ψ|; similarly |τm∂tΦ| � |Φ|. We now average
T 0
0 over a period 2πτm assuming that Φ and ψ do not change appreciably over this period.19 This yields

〈T 0
0 〉 =

c2

2

(
1− 2

Φ

c2

) ∣∣∣∣τm ∂ψ∂t − iψ
∣∣∣∣2 +

1

2

(
1 + 2

Φ

c2

)
c2λ2m |∇ψ|2 +

c2

2
|ψ|2 + 〈Vnl〉 . (32)

It is convenient to define

〈Vnl〉 ≡ Unl(|ψ|2) . (33)

Assuming |Φ/c2| � 1, and |τm∂tψ| � |ψ|, the above expression simplifies to

〈T 0
0〉 = c2|ψ|2 +

1

2
c2λ2m |∇ψ|2 + Unl +O[Φ/c2, τm∂t] . (34)

To get the Schrödinger-like equation, we multiply eq. (30) by eit/τm and average over a period 2πτm, again assuming
that Φ and ψ do not change appreciably over this period. This temporal averaging will get rid of the h.c part in (30).
Moreover, we divide the resulting eq. by mc2, to get[

iτm
∂ψ

∂t
− 1

2
τ2m

∂2ψ

∂t2
+

(
1 + 4

Φ

c2

)
1

2
λ2m∇2ψ + 2τm

∂(Φ/c2)

∂t

(
τm

∂ψ

∂t
− iψ

)
+

1

2
mc2ψ

]

−
(

1 + 2
Φ

c2

)
τm√

2
〈eit/τm∂φV 〉 = 0 .

(35)

We will show in the next subsection that τm√
2
〈eit/τm∂φV 〉 = ψ∂|ψ|2Unl(|ψ|)2 = ψU ′nl(|ψ|2).

Treating Φ/c2 and τm∂t as separate small parameters, and keeping leading order terms in each (but ignoring
Φ/c2 × τm∂t), we have

iτm
∂ψ

∂t
+

(
1 + 4

Φ

c2

)
1

2
λ2m∇2ψ − Φ

c2
ψ −

(
1 + 2

Φ

c2

)
ψU ′nl(|ψ|2) = 0 . (36)

19 This part is not entirely rigorous, and deserves to be handled with care.
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After some re-arranging

iτm
∂ψ

∂t
+

1

2
λ2m∇2ψ − ψU ′nl(|ψ|2)− Φ

c2
(
ψ − 2λ2m∇2ψ + 2ψU ′nl(|ψ|2)

)
= 0 . (37)

On the one hand it is clear that ∇2ψ � (Φ/c2)∇2ψ. However, for large amplitude solitons λ2m∇2ψ ∼ ψ, hence it is
not clear that we can drop this term compared to the ψ in the term with the Φ co-efficient (also see [49]). Similar
argument holds for 〈. . .〉 terms. For the discussion that follows, we will use ∇2ψ � (Φ/c2)∇2ψ, to arrive at

iτm
∂ψ

∂t
+

1

2
λ2m∇2ψ − ψU ′nl(|ψ|2)− Φ

c2
ψ = 0 . (38)

Using our result for 〈T 0
0 〉, we also have the Poisson equation at the lowest order in Φ/c2

∇2Φ = 4πG

[
|ψ|2 +

1

2
λ2m |∇ψ|2 + c−2Unl(|ψ|2)

]
. (39)

These are our master equations used for time evolution of the field and for determining the metric potential (see
eq. (1)). In arriving at eq. (1) in this limit (ignoring expansion for the moment), we assumed weak field gravity,
restricted ourselves to scalar metric perturbations without anisotropic stress.

Since we were not interested in reproducing the limit of a particular relativistic theory in the main body of the
text, we simplicity took Unl to be an effective potential for our theory. Nevertheless, by using (33) we can link Unl to
Vnl at least for small amplitudes. We turn to this task next.

The time averaging procedure in eq. (33) is mathematically well-defined for any potential which admits a Taylor
expansion and has a quadratic minimum.

V (φ) = m2M2
∞∑
n=1

an

(
φ

M

)2n

, where a1 = 1/2 . (40)

The non-quadratic (nonlinear part) of this potential is

Vnl = V (φ)− 1

2
m2φ2 . (41)

Using φ =
√

2<[ψe−it/τm ] and taking a time average of this nonlinear part over a period 2πτm, we have

Unl(|ψ|2) ≡ 〈Vnl〉 = m2M2
∞∑
n=2

bn

( |ψ|2
m2M2

)n
where bn =

(2n)!

2n(n!)2
an . (42)

We also need the time average of ∂φVnl for the equations of motion:

ψU ′nl(|ψ|2) =
τm√

2
〈eit/τm∂φVnl〉 = ψ

∞∑
n=2

cnψ

( |ψ|2
m2M2

)n−1
where cn =

(2n− 1)!

2n−1(n− 1!)2
an =

bn
n

(43)

It is beneficial to have a fitting function for 〈Vnl〉. For a potential of the form

V (φ) =
m2M2

2
tanh2

(
φ

M

)
, (44)

we can find than for |ψ| ≤ π/(2
√

2), an excellent approximation to Unl(|ψ|2) is provided by

Unl(|ψ|2) = −|ψ|
2

2

|ψ|2
m2M2

1 +
|ψ|2
m2M2

, and correspondingly U ′nl(|ψ|2) = − |ψ|
2

m2M2

1 +
|ψ|2

2m2M2(
1 +

|ψ|2
m2M2

)2 . (45)

Rescaling our field by mM we recover the potential used in the main body of the text. We caution, that the form
beyond |ψ| > π/(2

√
2) need not be simply connected to the relativistic potential. Moreover, at these large amplitudes,

we might benefit by time-averaging over amplitude-dependent frequencies.
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µk <[µ̃k]

FIG. 7. Left: The colors in the left panel in the above figure shows the growth rate µk as a function of k and ψ̄. The
dark red regions are stable. The color bar indicates the magnitude of the µk and µ̃k. The dotted lined indicate the flow of
k and ψ̄ as the universe expands. To compare this plot with the corresponding Floquet chart (right) from the relativistic
case, we set ψ̄ = φ̄/

√
2. The factor of

√
2 can be seen from φ =

√
2<[ψe−it]. The magnitude of the growth rate of the

instability, and the boundary of the non-relativistic instability band (solid black line) deviates from the relativistic one at large
amplitudes. Same is true (to a larger extent) for the magnitude of the Floquet exponent. Also notice that the higher order
instability bands are absent in the non-relativistic treatment. We have used Vnl(φ) = (1/2)m2M2 tanh2(φ/M) − (1/2)m2φ2

and Unl(|ψ|2) = 〈Vnl(φ)〉 ≈ −|ψ|4/2(1 + |ψ|2) for φ/M < π/2, and the comparison at large φ, ψ is not justified.

To include the effect of background expansion we consider a metric of the form

ds2 = (1 + 2Φ)(cdt2)− a2(t)(1− 2Φ)dx2 . (46)

where a(t) is the scale factor. Our complete set of equations then become (under the assumption that H−1 � τm and
c/H � λm),

[
i

(
∂t +

3

2
H

)
+

1

2a2
∇2 − U ′nl(|ψ|2)− Φ

]
ψ = 0 ,

∇2

a2
Φ =

β2

2

[
|ψ|2 +

1

2a2
|∇ψ|2 + Unl(|ψ|2)

]
− 3

2
H2 ,

H2 =
β2

3

[
|ψ|2 +

1

2a2
|∇ψ|2 + Unl(|ψ|2)

]
,

(47)

where [. . .] indicates a spatial average. The third equation is obtained from the Einstein equations for a homogeneous
and isotropic universe (the Friedmann equation). This completes our derivation, with caveats, of the Master Equations
(1) that are used in the main body of the paper.

For recent derivations and discussions of the non-relativistic limit, as well as decay rates for solitons with and
without weak-field gravity (but in a non-expanding universe) see [49, 50].
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B. Details on Initial Conditons

In this appendix, we derive the vacuum initial conditions for a free non-relativistic field from the appropriate
relativistic free field vacuum perturbations. Starting with the definition of the Fourier transform:

1√
V

∑
k

e−ik·xφk(t) = φ(t,x) ,

=
1√
2m

[
ψ(t,x)e−imt + c.c

]
,

=
1√
2m

[
{ψR(t,x) + iψI(t,x)}e−imt + c.c

]
,

=

√
2

m

[
ψR(t,x) cos(mt) + ψI(t,x) sin(mt)

]
,

=
1√
V

∑
k

√
2

m
e−ik·x

[
ψRk (t) cos(mt) + ψIk(t) sin(mt)

]
,

(48)

where ψR,Ik (t) are the Fourier transforms of ψR,I(t,x). Hence we have

ψRk (t) cos(mt) + ψIk(t) sin(mt) =
m√

2
φk(t) . (49)

Similarly we have

−ψRk (t) sin(mt) + ψIk(t) cos(mt) ≈ 1√
2
φ̇k(t) , (50)

where we have assumed |ψ̇R,Ik (t)|/m� |ψI,Rk (t)|. At an initial time t = 0, we have

ψRk (0) =
m√

2
φk(0) , and ψIk(0) ≈ 1√

2
φ̇k(0) . (51)

Now, following the implementation in Defrost [74], we can write φk(0) = bk/
√

2ωk and φ̇k(0) = ck
√
ωk/2 where

〈bkb∗q〉 = δkq and 〈ckc∗q〉 = δkq with bk and ck are independent complex numbers (4 Identically Distributed Independent
Variables). The real and imaginary parts of each are drawn from a zero mean gaussian distribution, with a variance
of 1/2. Then, we have

ψRk (0) =
m

2
√
ωk
bk ≈

√
m

2
bk , and ψIk(0) ≈

√
ωk
2

ck ≈
√
m

2
ck , (52)

where in the second equality we assumed k � m, so that we have ωk =
√
k2 +m2 ≈ m.

We are interested in ψk(t) which is the Fourier transform of ψ(t,x). It can be written as

ψk(0) = ψRk (0) + iψIk(0) ≈
√
m

2
{(<[bk]−=[ck]) + i(=[bk] + <[ck])} . (53)

Hence,

〈|ψk(0)|2〉 ≈ m

2
. (54)

with amplitude drawn from a Raleigh distribution and the phase drawn from a uniform distribution. This is consistent
with the result in the main body of the paper.

C. Comparison of Linear Instability Relativistic and non-Relativistic Systems

The instability analysis discussed in the main text is connected to Floquet analysis in the corresponding relativistic
theory (see for example, [21]). However, the instability bands as well as the Floquet exponents can differ from the
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relativistic case at large amplitudes and relativistic wave-numbers. For the relativistic version (with a = 1, H = 0),
the perturbation to the homogeneous field satisfies:

∂2t δφk +
[
k2 + 1 + V ′′nl(φ̄)

]
δφk = 0 , (55)

where the field φ is measured in units of M and spacetime in units of m−1. The periodic term in V ′′nl(φ̄) leads to

growth of perturbations of the form δφk ∼ Pk(t)e<[µ̃k]t where µ̃k are the Floquet exponents and Pk(t) are periodic
functions. We find that µk ≈ <[µ̃k] for φ̄, ψ̄ � 1 and k . 1. The boundary of the non-relativistic band yields a good
approximation to the relativistic case for ψ̄ . 1.

D. Non-relativistic Solitons and Oscillons

It is worth making a comparison of our non-relativistic solitons discussed in Section X to the relativistic ones
(oscillons). Recall that φ =

√
2<[ψe−it]. For small amplitude solitons (oscillons), we expect φ(t, r) ≈ φ(r) cos(ωt)+ . . .

(with ω < 1). The solitons in the nonlinear Schrödinger equation have the form ψ(t, r) = Ψ(r)e−iνt. Hence

φ(r) cos[ωt] ≈
√

2Ψ(r) cos[(1 + ν)t] =⇒ Ψ(r) ≈ 1√
2
φ(r) ν ≈ ω − 1 , (56)

where ν < 0. We caution the reader that this small amplitude analysis should merely be taken as a guide. The actual
relativistic solitons can include multiple frequencies, including breathing modes at large amplitudes. We compared
the profiles of relativistic solitons obtained from the simulations in [13], and found good qualitative agreement with
Fig. 4, albeit with more scatter around the curve (after appropriate scaling of the parameters).

A numerical study of the lifetime and stability of large amplitude relativistic oscillons (but without gravitational
interactions) in flattened potentials like the one we use here has been discussed in [57]. A more detailed connection
between non-relativistic solitons and oscillons, as well as analysis of stability of relativistic cases (typically for small
amplitude) can be seen in [58, 75–77].

E. Probability Density Functions of the Density and Gravitational Potential

FIG. 8. Probability density function of density of the field (left panel) and the gravitational potential (right panel). The Pdf of
the density is shown for the case with and without gravitational interactions included. In the Pdf for the gravitational potential,
at each time-slice the spatial average of the gravitational potential is zero in the simulation volume. Note that the gravitational
potential remains small throughout our simulation. The behavior of the density Pdf here can be compared to simulations which
evolve the relativistic Klein-Gordon equation in an expanding universe, but with “passively” calculated gravitational potential
(Fig. 3 of [13]).

The Pdf of the energy density and the gravitational potential in our simulation is show in Fig. XII E. Note that
the gravitational potential in the simulation volume remains small |Φ| � 1. Moreover the formation of the “shelf” in
the density Pdf (a & 4) is characteristic of the systems in which soliton formation takes place; the same qualitative
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behavior was seen when simulating relativistic systems with a related self-interaction potential [13] (see Fig 3. in
that paper, however, note that the β ≈ 8× 10−3 in that figure). Note that β � 1 is required for the instability that
generates solitons to be effective in a self-consistently expanding universe. This same β also controls the strengths of
the gravitational potential. This competition makes it difficult to generate individual solitons with large gravitational
potentials via the self interaction instability.
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