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We investigate the bounds on the sum of neutrino masses in a cosmic-acceleration scenario where
the equation of state w(z) of dark energy (DE) is constructed in a model-independent way, using
a basis of principal components (PCs) that are allowed to cross the phantom barrier w(z) = −1.
We find that the additional freedom provided to w(z) means the DE can undo changes in the
background expansion induced by massive neutrinos at low redshifts. This has two significant
consequences: (1) it leads to a substantial increase in the upper bound for the sum of the neutrino
masses (Mν < 0.33 − 0.55 eV at the 95% C.L. depending on the data sets and number of PCs
included) compared to studies that choose a specific parametrization for w(z); and (2) it causes
∼ 1σ deviations from ΛCDM in the luminosity distance and the Hubble expansion rate at higher
redshifts (z & 2), where the contribution of DE is subdominant and there is little constraining
data. The second point consequently means that there are also observable deviations in the shear
power spectrum and in the matter power spectrum at low redshift, since the clustering of matter
throughout cosmic time depends on the expansion rate. This provides a compelling case to pursue
high-z BAO and SN measurements as a way of disentangling the effects of neutrinos and dark energy.
Finally, we find that the additional freedom given to the dark energy component has the effect of
lowering S8 with respect to ΛCDM.

I. INTRODUCTION

The source of the observed accelerated expansion of
the universe (dark energy from now on) has remained an
elusive component since its discovery, two decades ago
[1, 2]. The standard paradigm in cosmology, the ΛCDM
model, assumes that the cosmological constant Λ is the
source of acceleration, and its six free parameters are
constrained to exquisite precision by current Cosmic Mi-
crowave Background (CMB; e.g. [3]), Baryon Acoustic
Oscillations (BAO; e.g. [4]) and weak lensing (WL) mea-
surements (e.g. [5]). Despite the success of the ΛCDM
model in providing a solid statistical fit to these various
probes, no satisfying theoretical model elucidates the mi-
crophysical origin of the cosmological constant.

Cosmological probes have become precise enough that
they can be used to look for physics beyond the Standard
Model of particle physics; for example, to study neutrino
properties. In the early universe, neutrinos are relativis-
tic, while at late times they become non-relativistic, with
their mass constituting a non-negligible fraction of the to-
tal dark matter component. The conversion of radiation
to hot dark matter affects the Hubble expansion, and the
residual streaming velocities are still significant enough
at low redshifts to slow down the growth of structure.
This means that neutrinos affect cosmology at both the
background and perturbation level.
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Direct detection experiments on Earth have measured
the three mixing angles and the two mass-squared split-
tings of the three neutrino mass eigenstates with high
precision [6]. However, so far cosmology appears to be
the most sensitive probe to the absolute mass scale of
neutrinos. To date, the most stringent upper limit of the
sum of neutrino masses (Mν ≡

∑
mν < 0.12 eV) is given

by the combination of CMB TT,TE,EE power spectra
and lensing from Planck, together with BAO data, as-
suming the standard ΛCDM scenario [3].

When probing the presence of additional light particles
(such as neutrinos) with cosmological data sets, dark en-
ergy acts as a source of systematic uncertainty that needs
to be marginalized over. Extensions to the base ΛCDM
model in terms of dark energy are generally implemented
by allowing the equation of state w to be a function
of redshift z. The most common parametrization for
w(z) is known as the Chevallier-Polarski-Linder (CPL)
parametrization, given by w(z) = w0 + waz/(1 + z), i.e.
it has two free parameters {w0, wa}. However, the fact
that there is no firm theoretical backbone to support any
particular parametrization for w(z) motivates the study
of the effects of dark energy using non-parametric meth-
ods, such as Principal Components Analysis (PCA).

We consider a dark energy scenario known as the
Smooth Dark Energy Paradigm [7], which makes a set
of assumptions about the microphysical nature of dark
energy. It assumes that the source of dark energy: (1)
does not cluster inside the horizon, (2) interacts only
gravitationally with dark matter and baryons, and that
(3) gravity is set by General Relativity. An analysis of
such a scenario has been performed in the past, includ-
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ing cross-checks between the background expansion of the
universe and the growth of linear perturbations [8], as a
smoking gun to falsify models where dark energy follows
these assumptions [9]. In fact this paper partially gener-
alizes Ref. [9] with the inclusion of the sum of neutrino
masses, except that in that work 20 principal components
(PCs) were used, and here we restrict ourselves to consid-
ering 1, 3 or 5 PCs. Ref. [9] required a complete basis of
PCs, and the authors determined empirically that 20 PCs
were sufficient to satisfy this requirement. Here, however,
we do not require completeness but rather modes with
a non-negligible signal-to-noise, and we seek to contrast
our results to specific parametrizations of w(z), which
generally have 1-2 parameters.

There are two distinct regimes when studying exten-
sions to ΛCDM concerning the dark energy equation
of state. In the first, and most commonly considered
regime, the equation of state has a lower bound set by
the value of the cosmological constant, i.e. w(z) ≥ −1.
Alternatively, models that do not satisfy this criterion are
in the “phantom dark energy” regime. Ref. [10] showed
that the bound on the sum of the neutrino masses is more
stringent with a CPL non-phantom dark energy source
than in a standard ΛCDM cosmology. Indeed, the ex-
pansion rate is faster for non-phantom dynamical dark
energy than for ΛCDM. The sum of neutrino masses is
consequently pushed downwards to keep the angular di-
ameter distance to the surface of the last scattering fixed.
Conversely, in phantom dark energy scenarios the oppo-
site is true and thus the bounds on Mν degrade. Similar
results have been found by other extensions to ΛCDM
that include CPL-based dark energy [11, 12]. Note that
the general argument is independent of the chosen CPL
parametrization for the dark energy equation of state.

In this work, we aim to generalize these findings by
studying constraints on the sum of neutrino masses in a
cosmology with a model-independent, time-varying dark
energy component, without forbidding the cross into the
phantom regime. In Section II we introduce our method-
ology and the data sets used. In Section III we present
our main results, and in Section IV we discuss the impli-
cations of our findings.

II. DATA AND METHODS

The data sets considered in this work include: BAO
data from BOSS DR12 [13], 6dF Galaxy Survey (6dF)
[14] and SDSS DR7 Main Galaxy Sample (MGS) [15]);
the full 2015 lensed Planck CMB temperature and po-
larization data [16] and lensing reconstruction [17]; Dark
Energy Survey (DES) four-bin tomographic weak lensing
data [18, 19], shown in Figure 2; and the Pantheon su-
pernovae (SN) sample [20]. The latter covers a redshift
range 0.01 < z < 2.3, and the BAO measurements lie
within this range. To account for the non-linear scales in
the matter power spectrum we adopt the HALOFIT fit
[21], and a mapping between arbitrary w(z) and a con-

stant dark energy equation of state is implemented as in
Ref. [22].

We perform a Markov Chain Monte Carlo (MCMC)
likelihood analysis with a modified version of the Cos-
moMC code [23–26]. We ran two different sets of chains.
The first of these, which we will refer to as the All chains,
includes all the aforementioned data sets. The second
one, which we refer to as the Reduced chains, does not
include the DES weak lensing. The data sets used for
each of these chains are summarized in Table I. Note
that there is a known (2.4σ) tension between the value of
S8 from Planck (0.848+0.024

−0.024) and DES (0.782+0.027
−0.027) [27],

and we will discuss this in Sections III and IV. Neverthe-
less, note that CMB lensing reconstruction (included in
both data sets) favors a lower S8 that than inferred from
the CMB temperature and polarization under the ΛCDM
model [28], and thus more in accordance with the value
of S8 measured with WL.

TABLE I: Data sets

All Reduced

CMB Full Planck 2015 Full Planck 2015

BAO BOSS DR12 + 6dF + MGS BOSS DR12 + 6dF + MGS

SN Pantheon Pantheon

WL DES -

Data sets that define the All and Reduced sets of chains.

We represent the dark energy equation of state as

w(z) = wfiducial +

NPC∑
i=1

αiei(z), (1)

where ei(z), with i = 1, ..., NPC, are the principal compo-
nents of a covariance matrix of perturbations around the
fiducial model wfiducial = −1. The principal components
used here have support in the range 0 < z < zmax, and
for z > zmax we extrapolate assuming w = −1.

We construct the PC basis from the eigenvectors of the
Wide Field Infrared Survey Telescope (WFIRST) exper-
iment [29] supernovae Fisher matrix, which has SN data
up to zmax = 3 [30]. Note that we do not include sim-
ulated WFIRST data in our likelihood analysis; instead,
our goal is to use current datasets to make predictions
for future experiments, such as WFIRST, that will gather
SN and WL data. Finally, a Planck -like likelihood is also
added to the total Fisher matrix. The details on how the
basis was constructed can be found in equations 6 - 14
in Ref. [9]. The shape of the 5 PCs used in this work are
shown in Figure 1.

For this work we ran three different sets of chains
for each of the All and Reduced data sets with varying
numbers of principal components, NPC = {1, 3, 5}. The
choice of number of principal components is based on the
following considerations. A single PC is equivalent to the
usual cosmological constant model for dark energy, and
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FIG. 1: The first five principal components of the dark energy equation of state obtained from the WFIRST
supernovae Fisher matrix, as described in Section II and Ref. [9].

serves as a baseline. Using 3 PCs is useful to contrast
to results with two-parameter models for w(z) (such as
CPL), illustrating the consequences of such restrictive
models of Dark Energy, since there is usually still a sig-
nificant amount of useful information in the third PC
[31]. The case of 5 PCs is chosen to showcase the effect
of including PCs that have low signal-to-noise, i.e. they
are relatively unconstrained by the data, on the Mν con-
straints. In Section IV we discuss the posteriors of the
PC amplitudes to show that indeed, past the third PC
they cannot be constrained to better than ten percent.

Note that the minimum supernova redshift from the
Pantheon sample imposes zmin = 0.01, which means that
in fact for 0 < z < zmin the PCs can oscillate signifi-
cantly. There is no fundamental reason why w(z) must
not change arbitrarily at ultra-low redshift [32], and the
PCs capture that possibility.

The vector of model parameters for the chains is given
by

~θ = {Ωc, θA,Ωb, τ, ns, lnAs, τ, α1, ..., αNPC ,Mν}. (2)

Here, Ωc is the cold dark matter density, θA is the angular
size of the horizon at the time of recombination, Ωb is
the baryon density, τ is the reionization optical depth,
and As and ns are the initial curvature power spectrum
amplitude and tilt. We define Mν ≡

∑
mν as the sum of

the neutrino masses and assume the so-called degenerate
hierarchy, where all three neutrino eigenstates are equally

massive (i.e. the mass of the ith neutrino eigenstate is
mν,i = Mν/3 for i = {1, 2, 3}). Finally, the αi parameters
are the amplitudes of the PCs ei(z), as per Eq. (1).

To evaluate the joint effect of massive neutrinos and
a model-independent equation of state for dark energy,
we consider a variety of cosmological probes of geome-
try (the Hubble expansion rate as a function of redshift
H(z) and the luminosity distance DL(z)) and probes of
the growth (the matter power spectrum P (k), the shear

power spectrum Pκ` , and S8 ≡ σ8

√
Ωm/0.3, where σ8 is

the amplitude of the linear matter power spectrum at a
scale of 8h−1 Mpc1).

Since conventions for the calculation of the shear power
spectrum vary across the literature, we briefly outline the
procedure used in this paper. The shear power spectrum

1 Generally, the parameter combination f(z)σ8 (where f(z) is the
logarithmic derivative of the linear growth rate of matter fluctu-
ations) is of interest to measure the growth of structure because
it is insensitive to galaxy bias. In the ΛCDM cosmology, f(z) is
well approximated by f(z) = Ωm(z)0.545. Different conventions
exist for the definition of S8 however: the value of the exponent
varies and sometimes Ωm is divided by a fiducial value Ωm,fid.
Here we choose 0.5 as our exponent and use Ωm,fid = 0.3 for a
direct comparison of S8 with values quoted in Ref. [5].
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is given by

Pκ` =
2π2

`3

∫ zs

0

dz
W 2(z)χ(z)

H(z)
∆2 (k, z) (3)

=
2π2

`3

∫ zs

0

dz F (z) ∆2 (k, z) , (4)

where ∆2 is the dimensionless matter power spectrum,

∆2(k, z) =
k3P (k, z)

2π2
(5)

and

F (z) =
W 2(z)χ(z)

H(z)

1

c3
(6)

is known as the lensing weight function. Note that we
use the Limber approximation [33], whereby k ≈ `/χ(z),
to evaluate the integral.

For a dark energy model that has an equation of state
that is a function of redshift (and a flat universe),

H(z) = H0

[
Ωm(1 + z)3 + Ων(z)+

ΩDE × exp
[
3

∫ z

0

d ln(1 + z′)(1 + w(z′))
]]1/2

, (7)

where Ων(z)h2 ≈ Mν(1 + z)3/93.14 eV when neutrinos
become non-relativistic, χ is the comoving distance:

χ(z) = c

∫
dz

1

H(z)
, (8)

and W (z) is the weight function,

W (z) =
3

2
ΩmH

2
0g(z)(1 + z). (9)

Here g(z) is known as the efficiency factor, and it is de-
fined as

g(z) ≡ χ(z)

∫ ∞
z

dz′n(z′)
χ(z′)− χ(z)

χ(z′)
, (10)

where n(z) is the distribution of lenses (normalized such
that

∫
n(z)dz = 1). The four tomographic bins for DES

[19] are shown in Figure 2.
Throughout the remainder of the paper, we refer to

the set of chains that vary neutrino mass and w(z) con-
structed with PCs as νwCDM. The chains that vary neu-
trino mass but w = −1 are referred to as νΛCDM, and
those with the usual cosmology (i.e. with w = −1 and
Mν = 0.06 eV) are referred to as ΛCDM.

III. RESULTS

In Sections I and II we stated that the first three PCs
are generally generally well constrained, while higher PCs
are not. For our PC basis and the data sets we have

FIG. 2: Tomographic distribution of lenses n(z) in the
Dark Energy Survey[19].

employed, we find that, indeed, the first three PCs can be
constrained to better than 10% while the 4th and 5th PCs
cannot. We therefore emphasize that the results with 3
PCs are out fiducial results while the ones for 5 PCs
should be seen as an extreme example that illustrates
the effect of including modes that are ill-constrained by
the data.

Tables II and III show the best-fit and 95% C.L.
bounds on several cosmological parameters, includingMν

and S8, marginalized over principal component ampli-
tudes, for both models and data sets. For a given data
set combination, the posteriors in the νwCDM chains are
significantly degraded with respect to ΛCDM, which is
expected since we are marginalizing over several more pa-
rameters2. More important, however, is the fact that the
extra freedom given to the dark energy in the νwCDM
chains is able to undo some of the changes induced by
neutrinos, which consequently means that larger neutrino
masses can be accommodated within the data: notice
the difference in the νwCDM posteriors shown in Fig-
ure 3. As we increase the number of PCs - and thus
give the dark energy more freedom - the allowed neu-
trino masses increase considerably, with an upper bound
of . 0.38 (0.33) eV (95% C.L.) with 3 PCs and . 0.55
(0.42) eV (95% C.L.) with 5 PCs in the All (Reduced)
data set. Compare this to the results in Ref. [10], where
the allowed parameter space for massive neutrinos in a
cosmology with a phantom, CPL-parametrized w(z) was
(slightly) broader than ΛCDM but still quite limited,
with Mν < 0.19 eV. Clearly, letting the behavior of dark

2 Ref. [10] points out that since the expansion rate in models where
the dark energy is exclusively phantom is higher than that of the
cosmological constant, this degrades constraints on Mν to main-
tain the distance to the last scattering surface fixed (and the
converse is true in non-phantom dark energy models, despite the
larger parameter space). Note, however, that while this con-
tributes to our wider posteriors to some extent, our dark energy
is not forced to be phantom − and indeed Figure 4 shows that
the fractional difference between H(z)νwCDM and H(z)ΛCDM is
not always positive.
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energy be dictated by the data instead of imposing a
specific parametrization can significantly open up the al-
lowed parameter space for Mν . Furthermore, comparing
the two different data set combinations for a given model
reveals that low-redshift growth information has a slight
preference for cosmologies with massive neutrinos: for
both the νΛCDM and νwCDM chains, Mν is pushed up-
wards when going from the Reduced to the All data set.
This makes sense considering that WL surveys, such as
DES, tend to have a valus of S8 that are 2−3σ lower than
that of Planck [5], and S8 and Mν are anti-correlated.
Note that this anti-correlation is also why in going from
νΛCDM to νwCDM the value of S8 decreases.

TABLE II: νwCDM

All Reduced

NPC 1 3 5 1 3 5

Mν [eV] < 0.23 < 0.38 < 0.55 < 0.21 < 0.33 < 0.42

S8 0.81+0.02
−0.02 0.81+0.02

−0.02 0.80+0.02
−0.03 0.82+0.02

−0.02 0.82+0.02
−0.03 0.82+0.03

−0.03

Mean and 95% C.L. errors for Mν and S8 in the νwCDM chains,
for the the All and Reduced group of chains, and varying number

of PCs. Entries with no subscript correspond to chains where
only an upper bound was obtained for that parameter.

TABLE III: νΛCDM

All Reduced

Mν [eV] < 0.21 < 0.20

S8 0.81+0.02
−0.02 0.82+0.02

−0.02

Mean and 95% C.L. errors for Mν and S8 in the νΛCDM chains,
for the the All and Reduced group of chains. Entries with no

subscript correspond to chains where only an upper bound was
obtained for that parameter.

For the remainder of the paper we focus on the chains
with the All data set; we found that the differences in the
remaining posteriors between the All and the Reduced
data sets were marginal, so to avoid clutter we choose to
show results for the more comprehensive of the two. For
reference, Appendix A shows the results for the Reduced
data set.

Figure 4 shows the fractional difference of νwCDM
(left) and νΛCDM (right) with respect to ΛCDM for the
luminosity distance DL(z) (top row) and the Hubble ex-
pansion rate as a function of redshift H(z) (bottom row),
for the chains with 1, 3, and 5 PCs. Note that the bands
shown correspond to the 1σ confidence levels. Looking
at the top left panel of Figure 4, it can be seen that the
luminosity distance in the νwCDM and ΛCDM models
agree at small redshifts (z . 1), but at higher redshifts
there is an amplitude difference between them, reaching
a ∼ 1σ difference for the case with 3 PCs, and > 1σ
with 5 PCs. This is indicative of the fact that neutri-
nos change the background evolution, and while at low
redshifts the dynamical dark energy can counteract these
changes, the same is not true for redshifts z & 2, where

it becomes subdominant. Furthermore, we do not have
support from BAO and SN data in this redshift range, so
we find that at these redshifts the changes massive neu-
trinos induce in the background expansion are disfavored
by the ΛCDM model. The fact that at low redshifts the
dark energy is able to counteract the effects induced by
neutrinos is what allows for the much larger values of Mν

in νwCDM than in ΛCDM, as shown in Figure 3.

This effect is also visible in the posterior for H(z) (nat-
urally, since H(z) and DL(z) are related by an integral).
Between z ≈ 1− 2.5, the expansion rate in the νwCDM
cosmology is lower than in ΛCDM, which is indicative
of the dark energy behaving as a phantom component
(indeed we see the w(z) posteriors having values lower
than −1 in this range, consistent with what is found in
Ref. [34]). This behavior is driven by the dark energy
attempting to appease the aforementioned “discrepancy”
in the background favored by BAO data versus massive
neutrinos.

Figure 5 shows the fractional difference in the mat-
ter power spectrum (at z = 0) and the cosmic shear
power spectrum for the same combination of models as
the ones used in Figure 4. On small scales we can see
the characteristic suppression of power on scales below
the free-streaming length of neutrinos (O(10−2 h/Mpc)
for the allowed neutrino masses in the νwCDM chains)
in the matter power spectrum. Since quite large neutrino
masses can be accommodated as we increase the number
of PCs, this suppression becomes more marked with in-
creasing PC number. Furthermore, on large scales (small
k), there is an overall amplitude shift upwards, with the
shift constituting a > 1σ deviation from ΛCDM for the
chains with 5 PCs. This is expected since the ampli-
tude of the power spectrum increases as we increase the
amount of dark energy in the universe (or decrease the
amount of matter).

For the shear power spectrum, we show the fractional
difference in the fourth source tomographic redshift bin
n(z4) shown in Figure 2 (it is nearly identical in all red-
shift bins so we chose to show a single one for clarity).
The deviation away from ΛCDM of the shear power spec-
trum on large scales (` . 100) is larger than that of the
matter power spectrum. Recall from Eq. (3) that the
integral to calculate the shear power spectrum contains
two distinct terms: the dimensionless matter power spec-
trum, and the lensing weight function, which encodes the
background expansion. It is this additional dependence
on the background which makes the difference with re-
spect to ΛCDM larger in the shear power spectrum than
the matter power spectrum, since as discussed above,
neutrinos induce large differences in the background at
high redshift.

The potentially large deviation from ΛCDM suggests
this observable as an exciting candidate to falsify ΛCDM,
assuming weak lensing surveys can observe a wide enough
` range to mitigate systematics such as the multiplic-
ity bias, which is a nuisance parameter that shifts the
overall amplitude of the cosmic shear signal. Upcom-
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(a) (b)

FIG. 3: Constraints on the sum of neutrino masses and S8 ≡ σ8

√
Ωm/0.3 from the νwCDM and νΛCDM scenarios.

(a) All data set. (b) Reduced data set.

FIG. 4: Fractional difference for the luminosity distance DL(z) (top row) and the Hubble expansion rate as a
function of redshift H(z) (bottom row) for νwCDM (left) and νΛCDM (right), with respect to ΛCDM, for the All

data set. Bands correspond to 1σ confidence levels.

ing data from the Wide Field Infrared Survey Telescope
(WFIRST) [35, 36], the Large Scale Synoptic Survey

(LSST) [37, 38] and Euclid [39], will soon have better con-
straining power at large scales, although they will only
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FIG. 5: Fractional difference for the matter power spectrum P (k) at z = 0 (top row) and the shear power spectrum
Pκl (bottom row) for νwCDM (left) and νΛCDM (right) with respect to ΛCDM, for the All data set. Bands

correspond to 1σ confidence levels.

be able to reach scales of about `min ≈ 30.

IV. DISCUSSION

We have studied the constraints on the sum of the neu-
trino masses when marginalizing over principal compo-
nents of the equation of state of a dynamical dark energy
component that is allowed to cross the phantom barrier
w(z) = −1. Exploring cosmological constraints on Mν in
the context of a general dark energy scenario is necessary
because the background expansion is critical to probe the
sum of the neutrino masses, meaning that there is a de-
generacy between the dynamics of the dark sector and
our ability to provide strong constraints on Mν .

Our ability to constrain neutrinos with cosmology is
further complicated by the fact that typical SN and
(most) BAO measurements correspond to redshifts where
dark energy cannot be ignored (z . 0.7). At higher red-
shifts, where dark energy is a subdominant component
in the universe, the ability to compensate for neutrinos
with large masses is diminished, and we found that this
leads to observable deviations from ΛCDM.

We investigated the effect of massive neutrinos on a
variety of cosmological probes of geometry and growth
within our cosmic-acceleration scenario and found that,
by giving the dark energy equation of state more freedom
than in traditionally-used parametrizations, dark energy
can undo changes in the background expansion induced
by the presence of massive neutrinos at late times. This
was visible in the luminosity distance, where for z < 2
the posteriors for the ΛCDM and νwCDM chains agreed.

This effect had two important consequences. First,
much larger neutrino masses can be accommodated
within the data: the upper bound of Mν is as high as 0.38
eV (95% C.L., 3 PCs) or 0.55 eV (95% C.L., 5 PCs), when
including weak lensing data. Second, at higher redshifts,
where dark energy is a subdominant component in the
universe and we do not have supporting data, there are
large (∼ 1σ) deviations from ΛCDM in the background,
since such large neutrino masses are not generally allowed
by the combination of CMB and BAO data in ΛCDM
(which is why analyses using combinations of these data
sets find stringent upper bounds Mν < 0.12 eV). Fur-
thermore, these large changes to the expansion history
of the universe are also visible in the matter power spec-
trum at z ≈ 0, where there is a large amplitude increase
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on large scales in νwCDM with respect to ΛCDM and,
consequently, on the shear power spectrum, since it is a
measure of the integrated large-scale structure along the
line-of-sight.

Since BAO measurements can probe amplitude shifts
in distances, our results can be seen as a compelling case
to pursue the BAO signal with high-z tracers of the un-
derlying baryonic density field [40, 41]. High-redshift
Type IA supernovae can also be critical, since they can
constrain changes in the shape of the luminosity distance
induced by the transition between the low- and high-z be-
havior. These measurements are within reach in the near
future. For instance, recently there was a first detection
of the BAO with the Lyman-α forest, at z = 2.4 [42].
Furthermore, experiments like eBOSS [43] and DESI [44]
will provide distance measurements at these redshifts in
the very near future.

The large amplitude offset in the shear power spectrum
also makes it an exciting candidate to falsify ΛCDM,
particularly since future surveys like LSST, Euclid, and
WFIRST will reach very large scales, down to `min ≈ 30
(although this might not be enough to mitigate systemat-
ics that could hinder the use of this observable to falsify
ΛCDM). As an aside, having more precise weak lens-
ing information will be interesting due to the S8 tension
between Planck and other weak lensing surveys, since
to date there is no satisfying mechanism to solve it (al-
though plenty of exotic models have been proposed); sev-
eral weak lensing measurements [5, 27, 45–47] seem to
have values of S8 that are slightly lower than those of
Planck.

Previous works have shown that allowing neutrino
mass to vary when inferring cosmological parameters
from weak lensing data sets lowers S8: for instance, Ref.
[5] showed that their best-fit value of S8 was lowered with
respect to ΛCDM by 0.5σ when allowing neutrino mass
to vary. Adding neutrinos to Planck data has a similar
effect, meaning that simply extending the base ΛCDM
model by allowing Mν 6= 0.06 eV does not solve the ten-
sion.

Here we have seen that our PC-built equation of state
further reduces S8, and would have this effect if we con-
sidered a CMB likelihood and a WL likelihood indepen-
dently, meaning that the additional freedom given to the
dark energy component does not solve the tension either.

Note that, conversely, previous works that used non-
parametric equations of state for dark energy were op-
timistic about the prospect of an evolving dark energy
to solve cosmological tensions: Ref. [34] found that they
could mitigate the tensions in H0 (between local H0 and
Planck) and Ωm (between BOSS and Planck) with such
an evolving dark energy model. Furthermore, Ref. [48]
claimed that extending ΛCDM to include neutrinos could
solve the S8 tension; however, this paper did not consider
separately the effect of adding neutrinos to data sets that
favor high S8 (e.g. CMB) and data sets that favor low
S8 (e.g. WL), which is an important distinction that we
have made here.

Our goal for this paper was to construct a model-
independent w(z) and see how the constraints on Mν

compared not only to ΛCDM but also to other works
that have considered Mν in the context of specific
parametrizations for w(z). As we have already men-
tioned, Ref. [10] found Mν < 0.19 eV in their phan-
tom, two-parameter dark energy cosmology. However,
Ref. [31] showed, by choosing specific parametrizations
for w(z) and projecting them onto the PC basis, that the
first three PCs contain most of the information, which
means that two-parameter models could be neglecting
relevant information, leading to constraints on Mν that
are artificially tight. Our results corroborate this conclu-
sion: we find that the first three PCs can be constrained
with better than 10% precision. The crucial consequence
of this is that with only 3 PCs we have already opened
up the allowed parameter space of neutrinos considerably
(Mν . 0.4). This puts into question the claim that cur-
rent data prefers Mν � 0.3 eV, since we have shown that
this depends quite dramatically on our assumption about
the behavior of dark energy.

However, this is a double-edged sword: while having
too few PCs might yield artificially tight constraints, very
high PCs cannot be probed well by the SNe data. Since
most of the information is contained in the first few PCs,
the higher PCs are essentially given free rein to alter
the background cosmology, consequently opening up the
parameter space of neutrinos even more. As we point out
throughout the text, the discrepancies between ΛCDM
and νΛCDM are significantly larger with 5 PCs than with
3 PCs. Looking at Figure 3 it is apparent that as we add
more PCs to parametrize w(z) the constraint on Mν is
loosened. This means it is possible for theories of w(z) to
fit the SN data but increase Mν posteriors considerably.
One must therefore be cautious, and we leave results with
5 PCs as an extreme example.

Ultimately, there is no theoretical reason to favor the
CPL (or similar) parametrizations over others, and mod-
els yet to be investigated might rely on higher PCs to be
distinguished from ΛCDM [49], which is why pursing a
model-independent approach to parametrizing w(z) (and
being cautious when building a basis so as to not have
many unconstrained basis vectors) is an attractive alter-
native.

Unlike parametric forms for w(z), using PCs allows us
to remain agnostic with respect to what the alternative to
the cosmological constant may be, since at present there
is no strong theoretical or observational support for any
particular exotic dark energy scenario. It is worth noting
that the main caveat of the PCA method lies in the fact
that it does not assess by itself the physical plausibility
of the w(z) shapes that are marginalized over.

Finally, it is important to keep in mind that, as we
mentioned in Section II, PCs oscillate quite drastically at
ultra-low redshifts (outside the region of SNe support),
but they do so by construction: they are unphased by
physical assumptions, and are only driven by the data.
Although many dark energy models are very smooth,



9

there is no a priori reason to believe that dark energy
models with a low-redshift oscillatory w(z) are unphys-
ical (and in fact some models do predict such behavior
[32]). If one wanted to use the PCA method but had a
strong reason to rule out the low-redshift oscillations al-
lowed by the data, one could impose a prior that would
punish such behavior, thus limiting the behavior of the
PCs outside the redshift range supported by the data.
For example, one could impose that the PCs only have
non-zero weight at z > zmin.

In our implementation, where we have not imposed
any prior at low-redshift to remain agnostic, the low-
redshift oscillations degrade our ability to use local H0

to constrain Mν . We are therefore not claiming that
every model of dark energy would allow Mν ∼ 0.5 eV,
but merely that it is still possible to generate models
that could make such extreme masses compatible with
the data.
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Appendix A: Results for the Reduced data set

We show the 1σ confidence levels for the posteriors of
the luminosity distance and the Hubble expansion rate
(Figure 6) and the matter power spectrum at z = 0 (Fig-
ure 7) for the Reduced data set, in analogy with Figures 4
and 5 in the main text for the All data set. Note that we
do not show the shear power spectrum since the Reduced
data set does not have weak lensing data.



10

FIG. 6: Fractional difference for the luminosity distance DL(z) (top row) and the Hubble expansion rate as a
function of redshift H(z) (bottom row) for νwCDM (left) and νΛCDM (right), with respect to ΛCDM, for the

Reduced data set. Bands correspond to 1σ confidence levels.

FIG. 7: Fractional difference for the matter power spectrum at z = 0 P (k) (top row) and the shear power spectrum
Pκl (bottom row) for νwCDM (left) and νΛCDM (right) with respect to ΛCDM, for the Reduced data set. Bands

correspond to 1σ confidence levels.



11

[1] A. G. Riess et al. (Supernova Search Team), Astron. J.
116, 1009 (1998), arXiv:astro-ph/9805201 [astro-ph].

[2] S. Perlmutter et al. (Supernova Cosmology Project),
Astrophys. J. 517, 565 (1999), arXiv:astro-ph/9812133
[astro-ph].

[3] N. Aghanim et al. (Planck), (2018), arXiv:1807.06209
[astro-ph.CO].

[4] S. Alam, M. Ata, S. Bailey, F. Beutler, D. Bizyaev,
J. A. Blazek, A. S. Bolton, J. R. Brownstein, A. Burden,
C.-H. Chuang, J. Comparat, A. J. Cuesta, K. S. Daw-
son, D. J. Eisenstein, S. Escoffier, H. Gil-Maŕın, J. N.
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