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Dynamically formed compact object binaries may still be eccentric while in the LIGO/Virgo
band. For a neutron star (NS) in an eccentric binary, the fundamental modes (f-modes) are excited
at pericenter, transferring energy from the orbit to oscillations in the NS. We model this system by
coupling the evolution of the NS f-modes to the orbital evolution of the binary as it circularizes and
moves toward coalescence. NS f-mode excitation generally speeds up the orbital decay and advances
the phase of the gravitational wave signal from the system. We calculate how this effect changes the
timing of pericenter passages and examine how the cumulative phase shift before merger depends
on the initial eccentricity of the system. This phase shift can be much larger for highly eccentric
mergers than for circular mergers, and can be used to probe the NS equation of state.

I. INTRODUCTION

In its first and second observing runs, the LIGO/Virgo
collaboration has detected 10 black hole (BH) binary
mergers [1] and one neutron star (NS) binary merger
[2]. As LIGO and Virgo improve in sensitivity, they
are expected to detect many more NS binary merger
events. The proposed formation channels for compact ob-
ject (CO) binary mergers can be divided into two broad
classes: isolated binary evolution and dynamical forma-
tion. In the first, an isolated stellar binary becomes
tighter in separation due to drag forces in the common-
envelope phase [e.g. 3–10]. CO binaries that form via
this pathway are expected to be circular while emitting
gravitational waves (GWs) in the LIGO band. In the sec-
ond class, CO binaries form dynamically through gravita-
tional interactions between multiple stars and COs. For
instance, BH binaries in dense star clusters can become
bound and shrink in separation due to three-body en-
counters (e.g. an exchange interaction between a binary
and a CO) and/or secular interactions [e.g. 11–18]. An-
other type of dynamical formation occurs in the galac-
tic field, where CO mergers are induced in hierarchical
triple or quadruple systems [19–23]. Intriguingly, some
fraction of dynamically assembled CO binaries may emit
GWs within the LIGO band while their orbits are still
highly eccentric. The formation rate for such binaries
is uncertain, but detecting these eccentric systems by
LIGO/Virgo would be of great interest.

The effects of tides on the gravitational waveform of
coalescing NS binaries in circular orbits have been stud-
ied in many papers [e.g. 24–33]; (see Section I of [34] for
a short review). Quasi-equilibrium tides (corresponding
to the quadrupolar f-mode distortion of the NS) are im-
portant at high frequencies (near binary merger). An
analytical expression for the GW phase shift associated
with quasi-equilibrium tides was derived in [35] (see also
[36]) and used to obtain constraints on NS tidal deforma-
bility from GW170817 [2]. Numerous papers have been
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written on the nuclear physics implications of such a con-
straint (see [37]). On the other hand, resonant tides,
which occur when the tidal forcing frequency (of order
the orbital frequency) matches an intrinsic NS mode fre-
quency, have also been explored. The general conclusion
is that the phase shifts due to tidal resonances are negligi-
ble for “canonical” NSs (mass 1.4 M� and radius 10 km),
but can be important if the NS has a larger radius (e.g
R & 13 km) [34, 38–46] (see [34] for a review).

In this work, we study the effect of dynamical tides
on the orbital decay and the resulting GW signal from
an eccentric CO binary with a NS. We focus on the f-
mode oscillation of the NS as other modes (g-modes and
r-modes) couple rather weakly with the tidal potential
and produce very small effects even in resonance with
circular orbits (see [34] and references therein). By cou-
pling the f-mode evolution to the post-Newtonian (PN)
orbital evolution, we calculate the effect of tides on the
GW signal as the binary evolves toward merger. Sev-
eral recent papers have examined the energy transfer to
the f-mode at pericenter passages, GWs from the excited
f-mode, and the corresponding change in the binary tra-
jectory with varying degree of approximations [46–49, see
also the appendix of the present paper]. There have also
been several numerical relativity simulations of the final
stages of eccentric NS binary mergers [50–53]. Our paper
instead focuses on how the energy exchange between the
NS f-mode and the orbit affects the phase of the GW sig-
nal prior to binary merger (or NS tidal disruption). We
evolve the amplitude of the NS f-mode as the binary de-
cays and circularizes due to gravitational radiation from
a highly eccentric orbit to one that is moderately eccen-
tric or near circular. We specifically investigate how tides
alter the phase and timing of features in the GW signal
of an eccentric coalescing NS binary. We study binaries
with a range of initial pericenter separations and eccen-
tricities to quantify how such dynamical tides affect or-
bital evolution as a function of eccentricity.

In Section II, we present our model for evolving the
NS f-mode and binary orbit. In Section III we discuss
the behavior of the mode-orbit coupling in the absence
of relativistic effects. In Section IV we present results of
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our calculations for binaries with a range of initial peri-
center separations and eccentricities, and we conclude in
Section V. The Appendix contains an analytical assess-
ment of the mode-orbit resonance effect, which we show
generally produces a small GW phase shift.

II. EQUATIONS OF MOTION INCLUDING
DYNAMICAL TIDES AND GR EFFECTS

The orbit of a NS binary evolves in response to the
tides raised on the NS as well as general relativity (GR).
For a binary with a NS (mass M1 and radius R1) and
companion M2 (either another NS or a BH), the Newto-
nian gravitational potential produced on M1 by M2 is

U(r, t) = −M2

∑
lm

Wlmr
l

D(t)(l+1)
e−imΦ(t)Ylm(φ, θ), (1)

where r = (r, θ, φ) is the position vector in spherical co-
ordinates with respect to the center of mass of M1, D(t)
and Φ(t) are respectively the orbital separation and true
anomaly, and

Wlm =(−1)(l+m)/2

[
4π

2l + 1
(l +m)!(l −m)!

]1/2

×
[
2l
(
l +m

2

)
!

(
l −m

2

)
!

]−1

. (2)

We adopt units such that G = c = 1 throughout the
paper. We will focus on the dominant quadrupole tides
(l = 2), for which W2±2 =

√
3π/10, W2±1 = 0, and

W20 =
√
π/5.

The Lagrangian displacement vector ξ(r, t) denotes
the fluid perturbation on M1 driven by the tidal po-
tential. We can decompose ξ(r, t) into normal modes
ξα(r) ∝ eimφ of frequencies ωα, where α = {nrlm} spec-
ifies the mode index:[

ξ
∂ξ/∂t

]
=
∑
α

cα(t)

[
ξα(r)

−iωαξα(r)

]
. (3)

A freely oscillating mode has ξ(r, t) ∝ eimφ−iωαt. This
decomposition includes both positive and negative mode
frequencies [54]. We neglect NS rotation and adopt the
convention ωα > 0 such that m > 0 corresponds to pro-
grade modes and m < 0 to retrograde modes. The mode
amplitude cα(t) satisfies

ċα + iωαcα =
iM2WlmQα

2ωαDl+1
e−imΦ, (4)

with

Qα ≡
∫
d3x ρξ∗α · ∇(rlYlm). (5)

In Eqs. (4) and (5), ξα is normalized such that 〈ξα, ξα〉 ≡∫
d3x ρξ∗α · ξα = 1, and we have adopted the units

G = M1 = R1 = 1 in these equations, so that Qα is
dimensionless [42, 55].

The general relativistic equations of motion of com-
pact binaries in eccentric orbits are rather complicated,
and even the notion of eccentricity is difficult to define
in general relativity [e.g. 56, 57]. For the purpose of our
study, we find it convenient to use the effective one-body
PN equations of motion developed by [58] (see also [59]
for discussion). These equations of motion contain all PN
corrections through (Post)5/2-Newtonian order, includ-
ing effects due to the radiation reaction. We incorporate
the tidal effect in the same way as in [60]. Thus, restrict-
ing to the l = 2 modes, the orbital evolution equations
are

D̈ =DΦ̇2 −
∑
α

3Mt

D4
W2mQα

(
eimΦcα + c.c.

)
− Mt

D2

(
1 +APN +A5/2 +BPNḊ +B5/2Ḋ

)
, (6)

Φ̈ =− 2ḊΦ̇

D
+
∑
α

im
Mt

D5
W2mQα

(
eimΦcα − c.c.

)
− Mt

D2

(
BPN +B5/2

)
Φ̇, (7)

where the sum over α is restricted to positive mode fre-
quencies (with m = ±2, 0) and Mt = M1 + M2 is the
total mass. Throughout this paper, we use the values
ωα = 1.22 (M1/R

3
1)1/2 and Qα = 0.56, which correspond

the l = 2 f-mode of a Γ = 2 polytrope (i.e. P ∝ ρΓ).
In Eqs. (6) and (7), A5/2 and B5/2 represent the leading-
order gravitational radiation reaction forces, and the APN

and BPN terms are the non-dissipative first and second-
order PN corrections. These coefficients are given by

A5/2 =− 8µ

5D
Ḋ

(
18v2 +

2Mt

3D
− 25Ḋ2

)
, (8)

B5/2 =
8µ

5D

(
6v2 − 2Mt

D
− 15Ḋ2

)
, (9)

APN =(1 + 3η)v2 − 2(2 + η)
Mt

D
− 3

2
ηḊ2

+
3

4
(12 + 29η)

(
Mt

D

)2

+ η(3− 4η)v4

+
15

8
η(1− 3η)Ḋ4 − 3

2
η(3− 4η)v2Ḋ2

− 1

2
η(13− 4η)

Mt

D
v2 − (2 + 25η + 2η2)

Mt

D
Ḋ2,

(10)

BPN =− 2(2− η)Ḋ − 1

2
Ḋ

[
η(15 + 4η)v2

−(4 + 41η + 8η2)
Mt

D
− 3η(3 + 2η)Ḋ2

]
, (11)

with µ = M1M2/Mt the reduced mass, η = µ/Mt, and

v2 = Ḋ2 + (DΦ̇)2.
Note that while Eqs. (6) and (7) include gravitational

radiation associated with the orbital motion, they do not
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include gravitational radiation due to the tidally excited
oscillation modes. Incorporating the latter effect is com-
plicated by the fact that the orbit and modes can radiate
coherently (see [38] for the circular orbit case where this
effect can be included in an approximate way), and is be-
yond the scope of this paper. Because of this, our results
in Section IV underestimate the influence of dynamical
tides on the orbital evolution.

The total energy of the system is the sum of the energy
in the oscillation modes and the orbital energy, including
the interaction between the modes and the gravitational
potential. The total energy in stellar oscillations is

Emode = 2
∑
α

ω2
α|cα|2, (12)

where the sum is again restricted to positive mode fre-
quencies. The Newtonian expression for the orbital en-
ergy is

Eorb =− µMt

D
+
µ

2

(
Ḋ2 +D2Φ̇2

)
− µMt

∑
α

W2mQα
D3

(eimΦcα + c.c.). (13)

When GR effects are neglected (i.e. APN = BPN =
A5/2 = B5/2 = 0), the total energy Etot = Eorb + Emode

is conserved.

III. ORBIT AND MODE EVOLUTION
WITHOUT GR

Before studying coalescing binaries using the full equa-
tions from Section II, we consider in this section the
“mode + orbit” problem without GR (i.e. we set APN =
BPN = A5/2 = B5/2 = 0). Previous studies of dynamical
tides in a variety of astrophysical situations [61–66] have
demonstrated that the coupled evolution of the eccentric
orbit and tidally driven oscillation modes can yield differ-
ent behaviors depending on the binary orbital properties.
We briefly discuss how the binary pericenter distance Dp

and eccentricity e affect the interaction between the orbit
and the oscillation modes. For a more thorough analysis,
see Section 2 of [64].

For a NS in an eccentric binary, the l = 2 f-mode is
excited most strongly at pericenter, and the mode am-
plitude changes by the real quantity ∆cα (see Eq. 10 of
[64]) during each pericenter passage, transferring energy
and angular momentum between the orbit and the NS
f-mode. When the binary is highly eccentric, the shape
of the NS orbit near pericenter is unchanged over many
orbits, and ∆cα remains constant over multiple pericen-
ter passages. We can relate ∆cα to a change in the mode
energy in the “first” passage (i.e. when there is no pre-
existing mode oscillation)

∆Emode = 2
∑
α

ω2
α(∆cα)2. (14)

FIG. 1: The evolution of the mode energy, Eq. (12),
orbital energy (∆Eorb = Eorb − Eorb,0), Eq. (13), and
total energy (∆Etot = Etot − Etot,0 = Emode + ∆Eorb)
in units where G = M1 = R1 = 1 for a binary with a
single NS. We have used a Γ = 2 polytrope to model the
NS with ωα = 1.22 (M1/R

3
1)1/2 and Qα = 0.56. The

initial pericenter and eccentricity are Dp,0 = 5.995R1

and e0 = 0.9, corresponding to |∆P̂α| = 1.6× 10−4 (see
Eq. 15). This calculation does not include GR (i.e.
A5/2 = B5/2 = APN = BPN = 0). The l = 2,
m = (2, 0,−2) f-modes are all accounted for in the
integration. The peaks occur during pericenter passages.
The mode energy away from pericenter undergoes
small-amplitude oscillations over multiple orbits.

FIG. 2: Same as Fig. 1, but with an initial pericenter
distance of Dp,0 = 6R1 and |∆P̂α| = 1.5× 10−4. The
mode energy (away from the peaks at pericenter
passages) can reach larger values than in Fig. 1 due to a
resonance between the mode frequency and the orbital
frequency (ωα ' 401Ωorb).

As the mode energy changes, so too will the orbital en-
ergy, causing a slight adjustment, |∆P |, in the initial
orbital period (initially P0). We define

|∆P̂α| ≡ ωα|∆P | '
3

2
ωαP0

(
∆Emode

|Eorb,0|

)
, (15)

where Eorb,0 is the initial orbital energy. Physically,

|∆P̂α| is the phase shift in the mode oscillation due to



4

FIG. 3: Same as Fig. 1, but with a smaller initial
pericenter distance of Dp,0 = 3R1 so that |∆P̂α| = 82.
The mode energy grows chaotically over many orbits.

tidal energy transfer at pericenter. The phase shift is
largest for binaries with strong tidal interactions (small
Dp) and large orbital periods (high e).

In the absence of mode damping and GR, the proper-
ties |∆P̂α| and ωαP0 determine the behavior of the“mode
+ eccentric orbit” system over multiple orbits. The sys-
tem exhibits three types of behavior:

1. When |∆P̂α| . 1, the orbit and the f-mode oscil-
lations gently trade a small amount of energy (of
order ∆Emode) back and forth, as shown in Fig. 1.

2. When |∆P̂α| . 1 and ωαP0 = 2πn (with integer
n), the mode exhibits resonant behavior, with the
mode energy climbing to Emode � ∆Emode, but
still undergoing oscillations (see Fig. 2).

3. When |∆P̂α| & 1, the mode energy grows chaoti-
cally and can reach an appreciable fraction of the
NS binding energy (see Fig. 3). This behavior oc-
curs because the pericenter energy transfer changes
the orbital period enough that the phase of the f-
mode at pericenter is nearly random from one orbit
to the next. The chaotic mode growth resembles
a diffusive process, except there exists an “upper
floor” that the mode energy can attain. Note that
the linear mode treatment is no longer appropriate
when the f-mode energy becomes too large.

A highly eccentric NS binary may pass through the
regimes for all three behaviors — low-amplitude oscilla-
tions, resonance, and chaotic growth — as gravitational
radiation shrinks the orbit. However, as we shall see in
Section IV (see also the Appendix), because of the rapid
orbital decay, these behaviors may not manifest as promi-
nently as in the case of non-dissipative systems.

IV. ORBIT AND MODE EVOLUTION
INCLUDING GR

We have integrated Eqs. (4), (6), and (7) for coalescing
NS binaries on initially eccentric orbits and compared the
results with integrations that do not include tidal effects
[cα(t) = 0]. Our goal is to quantify how tides affect
the orbital evolution of a coalescing NS binary and the
resulting gravitational waveform.

A sample integration is shown in Fig. 4 for an equal
mass M1 = M2 = 1.4M�, R1 = R2 = 10 km NS binary
with initial pericenter distance Dp,0 = 6R1 and initial
eccentricity e0 = 0.9. At time t = 0, the NSs are at
apocenter with separationD0 = Dp,0(1+e0)/(1−e0), and
Eα = 0 for both NSs, i.e, there is no energy in the f-mode.
We define e0 in terms of the ratio of the initial angular
velocity, Φ̇0, to Φ̇circ,0, the angular velocity required to
maintain a circular orbit with radius D0 (in the absence
of tidal effects and gravitational radiation) such that

√
1− e0 ≡

Φ̇0

Φ̇circ,0

. (16)

We obtain Φ̇circ,0 by solving Eq. (6) for Φ̇(t = 0) using

D(0) = D0 and Ḋ(0) = D̈(0) = cα(0) = 0. The GW
frequency at the initial pericenter passage is

fp,0 =
1

π

√
Mt(1 + e0)

a0(1− e0)3
. (17)

For our sample system, fp,0 = 575 Hz. We stop the inte-
gration when the binary separation D(t) becomes smaller
than 2.5R1. The time when a system reaches this crite-
rion is labeled tmerg.

Comparison of the calculations with and without tides
reveals that tides typically speed up the binary coales-
cence (see Fig. 4). The difference in phase traversed be-
fore merger (related to the number of orbits completed
between t = 0 and t = tmerg) is

∆Φ(t) = ΦNtide(t)− Φtide(t), (18)

where Φtide(t) [ΦNtide] is the orbital phase at time t for
a calculation that includes [does not include] tidal ef-
fects. For the example depicted in Fig. 4, we see that
∆Φ reaches 4 radians, mostly accumulated in the last
∼ 10 ms prior to merger. The mode energy (Eq. 12) ap-
proaches ∼ 10−3 of the NS binding energy (M2

1 /R1) and
is dominated by the m = 2 prograde mode.

To understand how tidal effects influence the GW sig-
nal, we calculate the waveform assuming that the binary
is “face-on.” The components of the strain, h+ and h×,
are given by

h+ =
1

d
(Ïxx − Ïyy), h× =

2

d
Ïxy, (19)

where Ixx, Iyy, and Ixy are components of the quadrupole
moment tensor (the xy coordinates are defined in the or-
bital plane), and d is the distance to the system. Ne-
glecting the quadrupole moment contributions from the
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FIG. 4: An example of how f-mode oscillations alter the orbital evolution of a coalescing, eccentric NS binary with
M1 = M2 = 1.4M� and R1 = R2 = 10 km. The NSs are modeled as Γ = 2 polytropes. This system has initial
eccentricity e0 = 0.9 and pericenter distance Dp,0 = 6R1, corresponding to a GW pericenter frequency of
fp,0 = 575 Hz. The solid blue lines in the top two panels show the binary separation and orbital phase (true
anomaly) including tidal effects, while the dashed red lines show the same without tides. The blue (red) circles and
triangles mark the times of apocenter and pericenter. The quantity ∆t(Np) is defined as the difference in the timing
of a pericenter passage for calculations with and without tides, where Np is the number of pericenter passages prior
to merger, i.e. the example in the top panel shows ∆t(Np = 1). The third panel shows ∆Φ, the difference in the
orbital phase for calculations with and without dynamical tides (see Eq. 18). The bottom panel shows the evolution
of the mode energies; the m = 2 (prograde) mode dominates.

oscillation modes, we have

Ixx = µD2 cos2 Φ, Iyy = µD2 sin2 Φ, Ixy = 2µD2 sin 2Φ.
(20)

The waveform is given by

h+ =
2µ

d

(
Ḋ2 cos 2Φ +DD̈ cos 2Φ− 4DḊΦ̇ sin 2Φ

−2D2Φ̇2 cos 2Φ−D2Φ̈ sin 2Φ
)
, (21)

h× =
2µ

d

(
Ḋ2 sin 2Φ +DD̈ sin 2Φ + 4DḊΦ̇ cos 2Φ

−2D2Φ̇2 sin 2Φ +D2Φ̈ cos 2Φ
)
. (22)
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FIG. 5: The gravitational waveform (Eq. 23) that corresponds to the orbital evolution shown in Fig. 4. The
amplitude is scaled by (R1/d), with d the distance to the system. The bottom panel shows the difference in the
phase of the GWs, ∆Ψ(t), for a calculation with dynamical tides and one without (Eq. 24).

We can combine h+ and h× to form a complex strain
with amplitude A and phase Ψ,

Ae−iΨ(t) = h+ − ih×. (23)

Figure 5 shows the waveform that corresponds to the
orbital evolution depicted in Fig. 4. The bottom panel
shows the phase difference due to dynamical tides:

∆Ψ(t) = ΨNtide(t)−Ψtide(t). (24)

Note that ∆Ψ(t) ∼ 2∆Φ(t), as one would expect from the
form of Eqs. (21) and (22). The spikes in ∆Ψ(t) occur as
the system passes through pericenter. In the final stages
of orbital decay and circularization, ∆Ψ quickly climbs.

We label the value of ∆Ψ when D = 2.5R1 as ∆Ψmerg

(see the bottom panel of Fig. 5).
Because the orbit is initially very eccentric, the orbital

frequency sweeps through many (of order 10’s of) res-
onances with the f-mode throughout orbital decay. The
resonances occur when ωα = nΩorb for integer n (see Sec-
tion III). However, because of the rapid orbital decay and
the large n values involved, we do not see discrete reso-
nant excitation of the mode amplitude (see Appendix).
The orbital phase Φ does not suddenly increase when
ωα = nΩorb

1.

1 This behavior is different from the circular orbit case, where
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FIG. 6: Cumulative time advance due to dynamical tides [see the top panel of Fig. 4 for the definition of ∆t(Np),
where Np is the number of pericenter passages prior to merger] as a function of the number of orbits for equal mass
NS binaries with an initial pericenter distance of Dp,0 = 5R1 in the left panel and Dp,0 = 6R1 in the right panel.

FIG. 7: Cumulative GW phase difference between a calculation with dynamical tides and without at tmerg (the time
when D = 2.5R1) as a function of initial eccentricity e0 for two different values of the initial pericenter distance (see
Fig. 5). The two dashed lines show the result for circular orbits (see Eq. 26).
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FIG. 8: The upper panel is the same as in Fig. 7 with the orbital phase rather than the gravitational phase. The
lower panels show the final few orbits for calculations with (blue solid lines) and without (red dashed lines)
dynamical tides for binaries with Dp,0 = 5.0R1 and values of e0 that maximize (b. and c.) or minimize (d., e., and
f.) ∆Φmerg. The dotted green circles indicate D = 2.5R1.
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We now quantify how the tidal effects on the waveform
depend on e0 and Dp,0. Fig. 6 shows ∆t(Np) (see the top
panel of Fig. 4) as a function of the number of pericenter
passages prior to merger, Np, for two different values of
Dp,0 and a handful of values for e0. In general, a large
value of e0 can produce the largest timing shift for a given
Dp,0. For some values of e0, ∆t is negative, corresponding
to a binary where the pericenter passage occurs closer
to merger when tides are considered (see below). For a
smaller Dp,0, the time advance can accumulate in fewer
orbits. For example, for Dp,0 = 5R1 and e0 = 0.95, ∆t
can reach 80 ms in seven orbits, while for the same e0

and Dp = 6R1, more than sixteen orbits are required to
reach the same ∆t.

We can also examine how the cumulative phase shift
just before merger ∆Ψmerg (see Fig. 5, lower panel) varies
as a function of the initial eccentricity e0. While ∆t(Np)
mainly captures the effect of tides on orbital precession,
∆Ψmerg is a combination of the tidal influence on both
the precession rate and the orbital decay rate. Fig. 7
shows that the excitation of the f-mode has the largest
effect on systems that are highly eccentric and have small
pericenter distances.

Note that systems with larger e0 do not fully circularize
before D = 2.5R1. As a result, ∆Ψmerg has a significant
dependence on the orbital phase at merger. This effect
is visible in the large oscillations in ∆Ψmerg as a function
of e0. Fig. 8 depicts the orbit calculations for systems
at the extrema of the ∆Φmerg vs. e0 curve to illustrate
the reason for these oscillations. In general, dynamical
tides remove energy from the binary orbit and enhance
the rate of orbital decay. For a given Φ(t), the orbit-
averaged separation (a similar concept to the semi-major
axis) is always smaller for a calculation that includes dy-
namical tides than for one that does not. This is clearest
in the circular case [see panel (a) of Fig. 8], where the
binary separation is always slightly smaller in the cal-
culation that includes tides. For eccentric binaries, the
binary separation at merger (D = 2.5R1) can be signifi-
cantly different from the orbit-averaged separation. Some
binaries meet the condition for merger at pericenter and
merge early at smaller Φ(t) and wider orbit-averaged sep-
arations than 2.5R1. Others meet the merger condition
at apocenter and merge late at larger Φ(t). The max-
ima (minima) in the oscillations of ∆Φmerg vs. e0 occur
when the calculation with tides results in merger at a rel-
atively wide (tight) orbit while the calculation without
tides leads to a merger at a tighter (wider) orbit. Pan-
els (b) and (c) of Fig. 8 show calculations where ∆Φmerg

is maximized. Note that the final orbit with dynamical
tides (blue solid line) is wider than the final orbit without
dynamical tides (red dashed line) in these panels. Panels
(d), (e), and (f) correspond to binaries where ∆Φmerg is
negative. For these systems, the final orbits are signifi-
cantly wider for the calculations without dynamical tides
than for those with tides included.

For small e0, we can compare our ∆Ψmerg with the
analytical result of the GW phase shift due to tides. From

Eq. (66) of [26], the GW phase shift due to the tidal
distortion of M1 (induced by M2) as the binary decays
from a semi-major axis of ai to af is

∆Ψ =
3

16
κnqn

R5
1

M2
1M

1/2
t

(
a
−5/2
f − a−5/2

i

)(39

4
+
Mt

M2

)
,

(25)
where qn = (1 − n/5)κn, and κn is defined in Eq. (8) of
[26] 2. For a Γ = 2 polytrope, qn = 4κn/5 and κn = 0.66.
The term proportional to (Mt/M2) in Eq. (25) is due to
the gravitational emission of the tidally forced f-mode.
Our calculations do not account for this effect. Thus, for
comparison with our numerical results, we use

∆Ψ′ =
117

64
κnqn

R5
1

M2
1M

1/2
t

(
a
−5/2
f − a−5/2

i

)
, (26)

which does not include GW emission associated with the
mode. From Fig. 7, our results for small e0 are in agree-
ment with the predicted value of ∆Ψmerg from Eq. (26).
Note that, using Eq. 64 of [26],

Ωorb =

(
Mt

a3

)1/2
[

1 +
9

4

κnqnM2

M1

(
R1

a

)5
]
, (27)

Eq. (25) is equivalent to

dΨ

d ln f
=
dΨNtide

d ln f

[
1− 3κnqn

(
R1

a

)5(
11M2

M1
+
Mt

M1

)]
,

(28)
where dΨNtide/d ln f corresponds to the GW phase evo-
lution without tidal effects. Equation (28) is the same as
the expression derived in [35].

We have only presented results for an equal mass NS-
NS binary, where tidal effects in both bodies contribute to
the GW phase shift. In a NS-BH binary only the NS tidal
response affects the GW phase shift. A NS-BH binary
will have a larger mass ratio than a NS-NS binary. From
Eq. (26), the GW phase shift from a coalescing circular
binary is smaller for a system with a larger mass ratio.
We expect that ∆Ψmerg for a NS-BH binary will exhibit
similar oscillations with the initial orbital eccentricity as
in Fig. 7, but with smaller amplitude and about a smaller
value of ∆Φ(tmerg).

V. DISCUSSION

We have demonstrated that dynamical tides (i.e. tidal
excitations of NS f-modes) can have a significant effect
on the orbits and therefore the GW signals from eccen-
tric CO binaries with at least one NS. We have devel-
oped a model that couples the evolution of the NS f-
mode with 2.5PN orbital evolution to track changes in

2 The usual tidal Love number is given by k2 = (3/2)κnqn.
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the “f-mode+eccentric orbit” system as the orbit circu-
larizes and moves toward coalescence. This model can
be readily applied to a NS-NS binary or a BH-NS bi-
nary. The primary difference between the two types of
binaries In general, the transfer of energy from the orbit
to the f-mode speeds up the orbital decay and advances
the phase of the GW signal. We have used our model
to quantify how the f-mode excitation affects the timing
of peaks in the GW signal as the binary moves toward
coalescence for systems with a range of initial pericenter
distances and eccentricities. We have found that systems
with large eccentricities (for a given pericenter) may ex-
perience GW phase shifts due to tides that are nearly an
order of magnitude larger than the phase shift produced
by a circular merger (see Fig. 7).

Although the event rate of eccentric CO binary merg-
ers with a NS is highly uncertain, such systems could
offer a wealth of information on the equation of state of
NSs. Observing these systems is complicated by fact that
quasi-circular waveform templates cannot efficiently ex-
tract the inspiral of a highly eccentric CO binary [67]. A
matched-filtering search would require a reliable calcula-
tion of the GW signal throughout inspiral, merger, and
ringdown. Alternative search methods have been devel-
oped in [68–70]. Eccentric NS binary coalescence may be
observable with third generation detectors [52, 53]. With
some refinements, our model could be used to predict the
timing of pericenter passages in eccentric NS binaries. To
do this, our model would need to be modified to include
the effects of NS spin, f-mode damping due to gravita-
tional emission, and most importantly higher order PN
effects. In particular, gravitational radiation associated
with the tidally excited f-mode is coherent with the orbit,
and can lead to a GW phase shift that is comparable to
that from f-mode excitation (as computed in this paper).
Therefore, our results provide a minimum expected phase
shift due to dynamical tides in eccentric NS binaries.

Appendix: Orbital decay through f-mode resonances

As the eccentric binary orbit decays due to gravita-
tional radiation, the orbital frequency Ωorb encounters
resonances with the f-mode frequency ωα such that

ωα = nΩorb, (A.1)

with integer n (see also Section III). When the orbital
frequency sweeps through a resonance slowly (over the
course of multiple orbits), the NS mode energy can in-
crease significantly, resulting in enhanced orbital decay
and a phase shift in the gravitational waveform. This
phase shift has been calculated for a variety of NS mod-
els and oscillation modes in the case of a circular orbit
[e.g. 34, 38–45], and recently was considered for the low
eccentricity case (e� 1) near the ωα = 3Ωorb resonance
[46]. We generalize this calculation to higher-order reso-
nances and arbitrary eccentricities, and show that these
resonances generally produce a small GW phase shift.

FIG. 9: The GW phase shift (∆Ψres)n = 2(∆Φres)n (see
Eq. A.10) due to mode-orbit resonance (ωα = nΩorb

with positive integer n) as a function of the orbital
eccentricity at the resonance. The results are for the
l = m = 2 f-mode of a Γ = 2 polytropic NS model with
M1 = 1.4 M� and R1 = 10 km in an equal mass binary.
The dashed lines indicate δNres = 1 (see Eq. A.12). The
results for (∆Ψres)n (solid lines) are valid when
δNres > 1, in the shaded region to the left of the dashed
lines. The maximum displayed e for each value of n
corresponds to the condition that the pericenter
distance Dp exceeds 2.5R1.

When the orbital decay due to gravitational radiation
occurs on a much longer timescale than an orbital period,
we can approximate the gravitational potential produced
by M2 on M1 (Eq. 1) as a sum of multiple forcing fre-
quencies, nΩorb, with positive integer n. We neglect PN
effects (other than gravitational radiation) in this analy-
sis. The time evolution of the mode amplitude cα satisfies
[e.g. 55, 71]

ċα+iωαcα =
iM2WlmQα

2ωαal+1

∑
n

Fmn exp

[
−i

∫ t

dt nΩorb(t)

]
,

(A.2)
where a is the Newtonian semi-major axis, and

Fmn =
1

π

∫ π

0

cos[n(E − e sinE)−mΦ(t)]

(1− e cosE)2
dE, (A.3)

with E the eccentric anomaly and

cos Φ(t) =
cosE − e

1− e cosE
. (A.4)

Note that G = M1 = R1 = 1 in Eq. (A.2). Solving for
cα(t) yields

cαeiωαt =
∑
n

Fmn

∫
dt

iM2WlmQα
2ωαal+1

ei[ωαt−
∫ t dt nΩorb(t)].

(A.5)
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As Ωorb increases due to orbital decay, large changes in
the mode amplitude can occur when the orbit sweeps
through a resonance with the mode frequency.

If the orbital decay is sufficiently slow, the mode ampli-
tude after an encounter with the resonance ωα = nΩorb

can be evaluated using the stationary phase approxima-
tion, giving

|cα| '
iM2WlmQαFmn

2ωαa
l+1
n

(
2π

nΩ̇orb,n

)1/2

, (A.6)

with an and Ω̇orb,n evaluated at the resonance. The
change in the mode energy is (∆Eres)n = 2ω2

α|cα|2. The
associated change in the orbital phase due to the reso-
nance is given by [38]

(∆Φres)n ' −
(

ΩorbtD
∆Eres

|Eorb|

)
n

, (A.7)

where Eorb = −M1M2/2a is the orbital energy, and
tD = |a/ȧ| is the orbital decay time due to gravitational
radiation. Using (see Eq. 5.6 of [72])

Ω̇orb

Ωorb
=

3

2tD
=

96

5

M3
1 q(1 + q)

a4
F(e), (A.8)

where q = M2/M1, and

F(e) ≡ 1

(1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4

)
, (A.9)

we find

(∆Φres)n '
−25π

3× 29

(
R1

M1

)5
n

ω̄2
αq(1 + q)

[
W2mQαFmn
F(e)

]2

,

(A.10)
where ω̄ = ω/(M1R

−3
1 )1/2, and e is the eccentricity at

resonance. The phase shift in the gravitational waveform
is (∆Ψres)n ' 2(∆Φres)n.

Equations (A.6), (A.7) and (A.10) are valid only when
the orbital decay is sufficiently slow. From Eq. (A.6), we
see that the change in the mode amplitude corresponds
to the rate of change of the mode amplitude at resonance
multiplied by the duration of the resonance,

δtres ≡

(
2π

nΩ̇orb,n

)1/2

. (A.11)

The number of orbital cycles during which resonance oc-
curs is

δNres =
Ωorb,n

2π
δtres =

[
5

192π

(
R1

M1

)5/2
(1 + q)1/3

q

n2/3

ω̄
5/3
α F(e)

]1/2

.

(A.12)
Resonance is significant only when δNres & 1. When
δNres . 1, the orbit moves through the resonance too
quickly to strongly excite the oscillation.

We calculate (∆Ψres)n for the f-mode of a Γ = 2 poly-
tropic NS model with M1 = 1.4 M� and R1 = 10 km
over a large range of n and e and display the results in
Fig. 9. For NS binaries that satisfy δNres & 1, we find
that (∆Ψres)n is always less than 0.1. We conclude that
for eccentric NS binaries, f-mode resonances do not con-
tribute significantly to the tidally generated phase shift.
This finding is consistent with our numerical integrations
in Section IV, which did not exhibit sudden increases
in the mode energy corresponding to mode-orbit reso-
nances.
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