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7DISPEA, Università di Urbino “Carlo Bo”, Via S. Chiara, 27 61029 Urbino/INFN, Italy
8The School of Physics and Astronomy, University of Birmingham, Birmingham, UK

9European Space Astronomy Centre, European Space Agency, Villanueva de la Cañada, 28692 Madrid, Spain
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21Gravitational Astrophysics Lab, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 USA
22Airbus Defence and Space, Gunnels Wood Road, Stevenage, SG1 2AS, United Kingdom

(Dated: August 20, 2019)

We present two novel methods, tested by LISA Pathfinder, to measure the gravitational con-
stant G for the first time in space. Experiment 1 uses electrostatic suspension forces to mea-
sure a change in acceleration of a test mass due to a displaced source mass. Experiment 2 mea-
sures a change in relative acceleration between two test masses due to a slowly varying fuel tank
mass. Experiment 1 gave a value of G = 6.71 ± 0.42 (×10−11) m3s−2kg−1 and Experiment 2 gave
6.15±0.35 (×10−11) m3s−2kg−1, both consistent with each other to 1σ and with the CODATA 2014
recommended value of 6.67408 ± 0.00031 (×10−11) m3s−2kg−1 to 2σ. We outline several ideas to
improve the results for a future experiment, and suggest that a measurement in space would isolate
many terrestrial issues that could be responsible for the inconsistencies between recent measure-
ments.

∗ Deceased 30 March 2017
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I. INTRODUCTION

The gravitational constant G has proven to be one of
the most difficult constants of nature to measure. Re-
sults over the years have shown that although individual
experiments have reached relative uncertainties of parts
in 105 [1][2][3][4][5][6], the disagreement between them
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remains at just below parts in 103 [7]. It is therefore be-
coming more important to develop new methods of mea-
suring this constant to shed light on the disagreement.

Since the source of the scatter is thought to be due to
errors not accounted for [8][9], it follows that a measure-
ment in space, as a new experimental method in a novel
environment, would be informative in future global aver-
ages (such as the CODTATA values). If precise enough,
it could provide a compelling and unbiased complemen-
tary measurement independent of many sources of error
that could explain the observed scatter, e.g. unbalanced
local gravitational fields.

The aim of this work is to discuss two possible meth-
ods for a space based interferometry measurement, with
an emphasis on which method would be easiest to im-
prove for the future. It is hoped that these analyses will
highlight first steps to reach a relative uncertainty com-
petitive with terrestrial measurements.

LISA Pathfinder (LPF) [10] was a drag-free interfer-
ometer located at the first Lagrange point in space be-
tween the Earth and Sun. It measured the differential
acceleration between two gold-platinum test masses sus-
pended in drag free control. By the end of its lifetime, it
had surpassed both its requirements and those of its full
scale model LISA [11]. Given the success of the mission,
and in coordination with other system tests, a handful of
days near the end of the mission extension were allocated
to performing a dedicated big G experiment for the first
time in space. However, because Pathfinder was not de-
signed to perform this sort of measurement, it was known
that systematics such as absolute distances would limit
the results to no better than 1 % relative uncertainty.

Section II of this work reports the results of a dedicated
experiment, which varied the distance between two test
masses to source a signal. Section III describes a second
method that varied a mass in time to provide a signal.
The first experiment is used as a benchmark for exper-
iments not in drag free, while the second illustrates the
relative ease and cleanliness of a method in drag-free con-
trol.

II. EXPERIMENT 1

A. Method

The principle of this experiment is to measure a change
in force on a test mass due to a displacement of a source
mass. In LPF, this was achieved using the electrostatic
forces that suspended the two test masses. A controlled
displacement of one test mass would induce a change in
electrostatic restoring control force on the second test
mass that is proportional to G.

More precisely, one of the gold-platinum masses, la-
beled the source mass (SM), is moved a large distance1 of

1 large relative to distance between test mass faces and electrode

600µm, 900µm or 1200µm away from the second mass,
labeled the test mass (TM). A twenty minute dwell time
is allowed for the control system to settle. The source
mass is then moved a large distance in the opposite di-
rection, and left to dwell again. The difference in the
suspension forces required to hold the test mass station-
ary is then proportional to the change in gravitational
force on the test mass due to the change in proximity of
the source mass, as illustrated in Figure 1a, taken from
the experiment design document [12].

Since the signal is measured using the electrostatic sus-
pension forces in the SM-TM direction, LPFs state of
the art drag-free control cannot be used as it requires no
forces applied to the TM in this direction. As a result,
the thrusters must be switched off through each mea-
surement to avoid drowning the signal in noise. This
then leaves the spacecraft motion un-corrected for the
influence of the solar radiation pressure (SRP) flux from
the sun, causing it to ‘sail’ both translationally and ro-
tationally due to the geometry of the solar array and a
small offset of the spacecraft centre of mass. The domi-
nant effect on the TM was a small component of the SRP
force leaking into the measurement axis as the spacecraft
rotated during each sail. The rotational velocity of the
spacecraft also induced a centrifugal force FCent,x on the
masses, although not as large as the SRP leakage.

Figure 1b shows the suspension forces acting on both
the TM and SM for a typical signal run in this exper-
iment. Clearly seen is a steady and accelerating back-
ground drift. This is a combination of centrifugal and
SRP forces acting on the spacecraft and leaking into the
measured forces on both masses. Also noted are the step
changes in the forces on the masses as the control system
works to displace the SM in its housing.

The rotational motion of the spacecraft also limited
the time allowed per solar sail to avoid it rotating be-
yond its allowed limits, and consequently only allowing
four source mass dwell times per solar sail. This afforded
two independent differences between positive and nega-
tive SM displacement dwell times, and therefore two in-
dependent fits for G per solar sail. The sail was repeated
10 times, with the final solar sail half as long, giving a
total of 19 independent fits for G. An additional 4 hour
long blank run, where a solar sail was executed with no
source mass displacement, was used to assess the mag-
nitude of the SRP force component in the measurement
axis, FRad,x. Furthermore, an injected sinusoidal force
was also used to fit for the gain gTM between a requested
electrostatic force on the TM in the x direction, FTM,x,
and the actual force applied.

Using super-scripts to indicate the source mass po-
sition, and labelling the test mass position relative to
the spacecraft as measured by the interferometry sys-
tem, oTM , the residual change in acceleration of the test

housing (4 mm), and relative to distances used in LPF nominal
mission (≤ 1µm)
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(a)

(b)

FIG. 1: (a) In the experimental procedure [12], a source
mass is moved from positive to negative displacement,

and the change in force to hold the test mass stationary
is then proportional to the change in gravitational force

on the TM. (b) Suspension forces on TM and SM
through a signal run are shown. Note the four step

changes in the SM force that cause the large
displacement within the housing, and a general trend in
the data indicating background sources of noise to be

characterized and subtracted. Inlay shows the first high
resolution section of FTM,x data, where periodic glitches
can be seen. Larger glitches are also observed in almost

every FSM,x dwell time, and are likely related to the
periodic glitches in FTM,x.

mass between the positive and negative source mass dwell
times, after accounting for all of the known forces during
a solar sail, can be written as

a
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ö
(2)
TM − ö
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Where mTM is the mass of the test mass, and aGrav,SM
is the acceleration of the test mass due to the source
mass. Note that because the test mass is stationary rela-
tive to its housing, the contribution from the surrounding
spacecraft material cancels in the difference between the
positive and negative SM displacements.

Equation 1 shows the leading order contributions to
the measured change in force on the TM. When consid-
ering the next order corrections, it would be necesary to
include a time derivative of the TM suspension force and
a delay parameter to account for delays in the control
loops. It would also be necessary to include the back re-
action on the spacecraft from forces applied on the SM.
However, as can be seen in the large forces acting be-
tween dwell times to move the SM in Figure 1b, the
peaks in FSM,x are significantly lower, and give an esti-
mated contribution of below 1 % to the measured signal.
These terms are therefore neglected in this analysis given
the best case scenario is a measurement around several
percent. For this reason the larger glitches observed in
FSM,x will not be discussed later in the same detail as
the periodic glitches observed in FTM,x, although the two
are likely related.

This analysis is split into three stages. The first is a
frequency space Monte Carlo fit for the gain using an
injected force calibration tone, followed by a linear least
squares fit for the SRP force using the blank run, and
finally a second linear least squares fit for the gravita-
tional constant using the remaining signal runs. The de-
tails and results of each fit will be presented separately
in the following sections.

B. Electrostatic Force Gain

To fit for the gain, gTM , a force calibration tone was
injected in FTM,x at 10 mHz and 30 mHz during a solar
sail. The response of the test mass motion, as measured
by the interferometer relative to the spacecraft, is used
with the force requested to fit for a gain in frequency
space. The power spectral density (PSD) of the resid-

ual injection acceleration, ãinjTM , is simplified to only two
terms given by

ãinjTM = ˜̈oinjTM −
gTM
mTM

F̃ injTM,x (2)

where tilde represents a PSD, when fitting in the range[
8× 10−3 Hz, 3.8× 10−2 Hz

]
. This simplification occurs

as the spacecraft rotation, and therefore the SRP, cen-
trifugal and gravitational terms, evolve at much lower
frequencies outside of the fitting range. The residual ac-
celeration is compared to the same expression computed
for the blank run, where a solar sail was performed with
no injection. By minimizing the difference between the
injection residual and blank run residuals in the fitting
range, the algorithm can find the best fit gain and an
error using the mean and standard deviation of the pos-
terior distribution.
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Figure 2 (bottom panel) shows the time series of the
injected force in the x direction on the TM (red), and
the response in the second time derivative of the TM po-
sition relative to the spacecraft (blue). Looking at the
out of loop force öTM − FTM,x/mTM (black), which has
been detrended to remove the slow drift of the SRP term
for better visualization, periodic glitches in the data are
seen around 10−2 Hz. These were observed in FTM,x (e.g.
Figure 1b, where larger amplitude glitches are also ob-
served in FSM,x that are likely related in origin) and oTM
for all SM dwell times, and are thought to come from
clock synchronization errors when the spacecraft was in
configurations that applied variable suspension forces to
both test masses. Although the periodicity of the FTM,x

glitches is regular, the shape is not, making their subtrac-
tion very difficult. Furthermore, their 100 s periodicity is
exactly at the calibration tone frequency, making their
influence on the fits non-negligible.

10-2 10-1
10-15

10-10

0 200 400 600 800 1000 1200
-1

0

1

10-11

FIG. 2: Top: Amplitude spectral densities of the
injected TM acceleration (blue) and the residuals of the
best fit model evaluated for the injection data (red) and

the blank run (yellow). Dashed black vertical lines
indicate the fitting range used in the algorithm.

Bottom: By taking the injected acceleration (blue) and
subtracting the TM movement as measured by the

interferometer (red) the out of loop acceleration
(yellow) shows the presence of periodic glitches roughly

every 100 s. These coincide with the lower frequency
injection, making the fits for the gain not as sensitive as

in previous experiments.

Figure 2 (top panel) shows the amplitude spectral den-
sities (ASD) of the injection tone residuals (red) and the
blank run evaluation of the model (yellow), with the orig-
inal calibration tone ASD for comparison (blue). Note
the two residuals still exhibit a periodic structure at the
frequency of the glitches and harmonics thereof. This
suggests that the calibration tone was loud enough to fit
for the gain, but the posterior error is larger than in nom-
inal mission fits for the same parameter, as the blank run
also exhibited glitches.

Figure 3 shows the posterior distribution for the gain,

FIG. 3: Top: Posterior distribution of TM electrostatic
gain. Bottom: Residual errors after fitting a Gaussian

to the posterior.

with central value and 1σ error 1.0786 ± 0.0095. This
is in close agreement with the system identification ex-
periments, where the gain on the equivalent test mass
was measured at 1.0748±0.0001 [13]. A good agreement
in posterior value is observed as expected, indicating the
goodness of the fit, with a larger relative error substan-
tiating the impact of the glitches on the posterior.

C. Solar Radiation Pressure

As the spacecraft rotated through a solar sail, a compo-
nent of the relatively large solar radiation pressure (SRP)
force on the spacecraft entered into the TM-SM axis. As-
suming a constant SRP force in the Sun-Earth direction,
FRad,Z′ , it is possible to subtract this component from
the electrostatic force on the SM using the projection

FRad,x =(cos(θSC) sin(ηSC) cos(φSC)

− sin(φSC) sin(θSC))FRad,Z′ (3)

A blank run is used to fit for FRad,Z′ using the space-
craft angles θSC , ηSC , φSC , calculated using the star-
tracker data. Since the entire blank run is a long (al-
most 4 hour) SM dwell time, the longer stretch of us-
able data can be split into twenty segments instead
of just four. Ten pairs of neighbouring segments can
then be used in equation 1 to provide ten independent
linear least squares fits for FRad,Z′ , recalling that the
source mass is static through the blank run and there-

fore a
(2)
Grav,SM − a

(1)
Grav,SM = 0.

Figure 4 shows the FRad,Z′ fit results through the blank
run. The solid red line shows the weighted mean of the
independent estimates (−7.876 ± 0.048) × 10−8 N, with
an associated error shaded red. The weighted mean error
was calculated using a quadrature sum of the errors for
the individual points, plus a standard deviation between
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the points to account for their residual scatter. The re-
sulting value for FRad,Z′ is then an average SRP force in
the Sun-Earth direction through the blank run solar sail.

FIG. 4: Fit results for FRad,Z , using 20 segments of the
Blank Run for 10 independent fits.

The magnitude of FRad,x (SRP component on the test
mass) through the blank run grew from −6× 10−10 N to
12×10−10 N as the spacecraft rotated. Comparing this to
the signal term in equation 1, around parts in 10−11 N for
a source mass displacement of 600µm, it can be said that
a great deal of uncertainty in this method comes from
a signal buried in background SRP ‘noise’. Minimizing
this parasitic force, either by calibration or isolation, will
greatly enhance the quality of the measurement. This
will be addressed again later when comparing the present
method with a fuel consumption estimate.

D. Fitting the Signal

For each of the ten solar sails where the source mass
is moved, the gravitational acceleration signal term is
calculated as

Tsig = a
(2)
Grav,SM − a

(1)
Grav,SM = 2

GmSM

d3
∆r (4)

where mSM is the mass of the SM, d is the separation
between the TM and SM when both are centred in their
housings, and ∆r is the total distance travelled by the SM
between the two dwell positions. A linear least squares fit
was performed for the value of G that minimized δaresTM
for each of the runs. The 15 remaining values, after veto-
ing four with large transients and interchanged TM/SM
masses, are shown in Figure 5.

The individual errors propagated from the fitting
stages do not cover the scatter between points. This is
thought to arise primarily from assumptions made about
variability in the SRP force. In principle it is capable
of changing value not only gradually in time as the solar
output changes, but also within a solar sail as the pro-
jected spacecraft geometry in the plane perpendicular to

FIG. 5: Fit results for G as measured by LPF. The
blue points show the independent measurements while

the red solid line shows their weighted mean, with total
error given by the red shaded area. The mean value
found was 6.71± 0.42

(
×10−11

)
m3s−2kg−1, a 6.3 %

relative error.

the incident force changes. This effective force is not cal-
ibrated for and therefore could lead to large uncertainties
in the values obtained.

In principle the effect is pseudo-random. The space-
craft orientation from solar sail to solar sail is not de-
terministic as it depends on the initial alignment of
the spacecraft, which varies from sail to sail, and so,
in principle, the scatter can be averaged out using all
15 measurements. The mean value was then given a
total error of the quadrature sum of individual errors,
plus a standard deviation divided by the square root
number of points to account for assumptions made in
SRP variability. The final mean value was found to be
6.71 ± 0.42

(
×10−11

)
m3s−2kg−1, a 6.3 % relative error

and in agreement with the CODATA 2014 recommended
value of 6.67408±0.00031 (×10−11) m3s−2kg−1 to 1σ [7].

E. Analysis of Errors

To further illustrate the roll of the SRP force in this
method, the first two dwell times of the third solar sail
are subtracted one from the other and shown in Figure
6. The pink line (top) is the component of the SRP force
in the TM-SM axis, the red (bottom) is the electrostatic
force on the TM in the TM-SM axis, the dashed red line
(middle top) is the signal term using the value for G fit in
this solar sail, and finally the blue (middle with glitches)
and black (middle) shows the differential acceleration be-
tween the two masses and the centrifugal force on the TM
due to spacecraft rotation.

Note that the example of terms given here is from the
beginning of a solar sail, where the component of the SRP
force in the measurement axis is relatively small. As the
spacecraft rotated through a solar sail, this term grew
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FIG. 6: Break down of the terms in equation 1
contributing to a single estimate of G, taken as a

difference of the first two dwell times of the third solar
sail, to demonstrate the order of magnitude of the
signal term relative to the other noise terms. Inlay:

Zoom of central terms. Note the regular glitches in the
differential acceleration channel and their amplitude

relative to the signal term.

exponentially and further exaggerated the problem. Fur-
thermore, given that the SRP force on the spacecraft was
assumed constant both within and between solar sails, a
small variability of this force can have an amplified effect
on the signal due to the relative magnitudes. Unfortu-
nately the blank run was only performed once, meaning
analysis of the SRP variation in situ is limited to what is
presented here and in [14].

Another difficulty encountered was the presence of
glitches in SM dwell times with period 100 s and ampli-
tude comparable to the target signal. Notice in the inlay
plot of Figure 6, showing a close up of the central terms,
regular glitches are clearly visible in the differential accel-
eration, öTM , and electrostatic force acting on the TM in
the TM-SM direction, FTM,x. Their amplitude is compa-
rable to the signal term (dashed red) and although they
are regular in time, their shape varies. Consequently, it
was not possible to subtract a fit to their shape and their
presence poses a systematic error.

In order to quantitatively assess if the SRP force and
periodic glitches negatively affected the analysis, the
number of G measurements can be increased by not lim-
iting equation 1 to pairs of subsequent SM dwell times.
In this situation, each positive SM displacement seg-
ment is subtracted from all negative SM displacement
segments across all solar sails. This gives a total of
100 now dependent G estimates, shown in Figure 7 as
a function of the change in SM proximity to the TM,
∆xSM . The mean value using this extended population
is 6.77± 0.31

(
×10−11

)
m3s−2kg−1, a 4.6 %

(
σ/
√
n
)

rel-
ative error. More importantly, there is a large varia-
tion between the points, particularly for the lower ∆xSM
which spanned almost double the mean value extracted.

FIG. 7: Measurements of G using all 100 possible
couplings between any pair of high resolution data

segments. The mean value (red line, associated error
shaded red) was found to be

6.77± 0.31
(
×10−11

)
m3s−2kg−1, a 4.6% relative error.

Parameter Value Error Units δḠ/Ḡ

d 37.6 0.0052 [cm] 3.38 × 10−4

mTM 1.9282 0.0005 [kg] 6.88 × 10−5

mSM 1.928 0.0005 [kg] 6.88 × 10−5

gTM 1.0786 0.0095 [ ] 2.34 × 10−3

FRad,Z′ −7.876 0.048 [×10−8N ] 1.63 × 10−3

δḠ1 0.0193 − [×10−11 kg−1m3s−2] −
δḠ2 0.423 − [×10−11 kg−1m3s−2] −
δḠtot 0.42 − [×10−11 kg−1m3s−2] −

TABLE I: Leading uncertainties in experiment 1 and
their contribution to total relative error according to
equation 6. δG1 contains propagated uncertainties on

averaging the independent measurements together, each
of which is dominated by systematics such as glitches,
while δG2 corresponds to a standard σ/

√
n error to

account for implicit assumptions leading to a scatter
between values.

The residuals of equation 1, δaresTM , can be used to
qualitatively asses the variation not accounted for in the
model. A mean residual of −3.9 ± 23.6

(
×10−12

)
ms−2

was found for the extended population of measurements,
suggesting no significant DC term has been excluded in
the model used. The 1σ error is of the same order as
the signal, ±6× 10−12 ms−2, emphasising that the signal
term was not loud enough to overcome the variability in
the background terms not accounted for in the model.
Furthermore, a 100 % change in G, as shown in Figure 7,
corresponds to < 1 % variation in SRP force. This mag-
nitude of variation in FRad,Z′ is not impossible over the
time span of the experiment, and therefore could explain
some of the scatter in Figure 5.

The main contributions to the final error are outlined
in table I. The leading uncertainty on the ith independent
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G measurement is(
δGi
Gi

)2

= 9

(
δd

d

)2

+

(
δmSM

mSM

)2

+

(
δgTM
gTM

)2

+

(
δFRad,Z′

FRad,Z′

)2

+

(
δmTM

mTM

)2

(5)

where the contributions from the right hand side of equa-
tion 1 are dominated by systematics; uncertainties from
measurements such as space craft angles and interfer-
ometry readouts are comparatively negligible relative to
absolute distances and masses. The final G value for
experiment 1 is a mean average between n = 15 mea-
surements Ḡ =

∑n
i=1

Gi

n , with a propagated systematic

error of δḠ1 = 1
n

√∑n
i=1(δGi)2, which corresponds to a

relative uncertainy of

δḠ2
1

Ḡ2
=
(

9

(
δd

d

)2

+

(
δmSM

mSM

)2

+

(
δgTM
gTM

)2

+

(
δFRad,Z′

FRad,Z′

)2

+

(
δmTM

mTM

)2 ) n∑
i=1

1

n2
G2
i

Ḡ2
(6)

The second error, added to account for assumptions
implicit in the model (e.g. constant FRad,Z′), is a stan-
dard deviation between the independent measurements
divided by the root of the number of measurements;

δḠ2 =
√

1
n(n−1)

∑n
i=1(Gi − Ḡ)2. The final measurement

uncertainty is then the quadrature sum of the two errors

∆Ḡtot =
√
δḠ2

1 + δḠ2
2, shown at the bottom of table I.

The dominating systematic errors in δG1 are the un-
certainties in the DC values of the gain and SRP force.
To improve the results of this experiment, it is important
to calibrate these terms more accurately. This would in-
clude more blank runs to take into account the variability
of the SRP force both between solar sails and within a
solar sail. The change in the component of the SRP force
in the measurement axis due to geometric effects as the
space raft rotates was not taken into account. By in-
cluding more blank runs, this effect could be better char-
acterized. In addition, specific testing of the solar sail
mode would identify ways to avoid glitches in the data,
and reduce their impact on the fits.

A more accurate calibration of both d and mSM are
necessary to improve δG1. Since these parameters did
not vary in time, their calibration were not as stringent
pre-flight as other components of the LPF technology.
Therefore calibrating them to a better precision would
not pose a limiting factor in optimizing this experiment.
However, it is also noted that their absolute values were
specifically chosen, and altering them to boost the signal
term could pose a threat to LPFs performance.

In order to reduce the random errors in δG2, which
dominated over δG1 in the total error, a better un-
derstanding of the second order effects in the model is
needed. Several of the signal runs were identical in con-

ditions but exhibited very different values for G. Since
all other factors were the same between these subsequent
runs, it stands to reason that other disturbances in the
spacecraft were not accounted for in the model. If this
experiment is to be repeated, understanding the source
of this variation is essential.

III. EXPERIMENT 2

A. Method

The second experiment derived a signal from a vari-
able source mass (SM) outside of the main interferome-
try. The change in mass of the fuel tanks through the
LPF nominal mission produced a time dependent correc-
tion to the main observable ∆gx. Three separate feeds
from four tanks located in the spacecraft changed the
mass distribution of the satellite uniquely. As the fuel
was consumed, the magnitude of the fuel mass correc-
tion, ∆gfuelx , was proportional to Big G.

Figure 8a shows the layout of the surrounding space-
craft material looking down through the solar array. Feed
branches 1, 2 and 3 are labeled along with the two test
mass housings. Feed branch i has a correction to ∆gobsx
characterized by ∆gfuel = κiGdmi/dt with κi a constant
geometric factor computed by finite element models, and
dmi/dt the mass flow rate of the ith tank. G is the gravi-
tational constant, assumed to be 6.67×10−11 m3s−2kg−1

in nominal mission experiments [15].

By introducing a multiplicative factor A on ∆gfuelx , it
is possible to use the fuel tanks as a make-shift source
mass and fit for the value of G by scaling the assumed
value. The model used here for ∆gobsx is

∆gobsx = A∆gfuelx + ∆gPx (7)

where ∆gPx (t) is the relative differential acceleration be-
tween the two test masses (TMs) due to pressure changes,
proposed to be a combination of out-gassing effects and
thermal fluctuations affecting residual gas pressure [15].
The model used here is

∆gPx (t) ≈ P0

(
24× 60× 60

t− T0

)α
+ C0 (8)

where P0 is an amplitude for the pressure induced rel-
ative acceleration, C0 is a DC correction, and T0 is a
time from launch to ventilation, where the inside of the
spacecraft began out-gassing, set at 37 days. The index
α describes the decay of the residual gas effects on the
relative acceleration, and is predicted to be a mix of two
power laws. When α = 0.5, the model describes temper-
ature fluctuations affecting residual gas pressure in the
housings, and when α = 1.0, it describes ventilation of
gas in the housings to the vacuum outside the spacecraft.

There was an option to include T0 in the set of fit pa-
rameters {P0, α, C0, A}. Doing so would allow a better
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FIG. 8: (a) Diagram of spacecraft surrounding the
central LISA Technology Package. Three fuel tanks feed
branches (FBs) are indicated. (b) Thruster 3 mass flow

as measured by the sensors for both A (blue) and B
(red) sides. Although B side is off, there is a non-zero
rate measured. Subtracting the B side from the A side

(yellow) corrects for the DC offset and some of the drift.

mixing of the power laws mentioned previously, as it is
not clear that setting T0 to the ventilation date would
allow the model to fully capture effects due to both tem-
perature fluctuations and with out-gassing. However, in
this analysis it was noted that the knowledge of the fuel
tank geometries and proximity to the test masses limit
the extent to which a full fit could be performed on the
data. Furthermore, second order effects such as thermal
behaviour within each ∆gobsx segment were not included,
limiting the scope of the analysis. For these reasons it
was decided that for a proof of concept it is not necessary
to allow T0 to vary in the fits, but is noted as an essential
improvement.

The LPF cold gas propulsion system comprises three

tanks, or feed branches, of gaseous nitrogen which is
slowly released through valves to provide µN thrusts to
the spacecraft. For each tank, there are two primary noz-
zles (A side) and two redundant nozzles (B side), with
the B side closed while the A side is open and vice-versa.
Each nozzle contains a mass flow sensor that feeds into
a closed feedback loop with the relative acceleration be-
tween the two test masses. The zero-points (zero mass
flow) of the nozzles are therefore not constrained as well
as the scientific equipment, especially in DC flow. Conse-
quently, there is a non-zero and drifting zero point mass
flow registered by the sensors. Figure 8b shows the mea-
sured mass flow through an example nozzle for both the
A (blue, switched on) and B (red, switched off) sides.
Note the drift and non-zero mass flow for the B side.

In order to compensate this systematic error, the con-
stant component of the zero-point offset are assumed the
same for both the A and B sides. Hence, subtracting the
B side from the A side (yellow data in Figure 8b) should
only leave the drifting component, which can then be
characterized by a peak-to-peak error when taking the
mean. In practice this corresponds to around 5% rela-
tive error for the total mass flow from a tank.

For the segments of ∆gobsx , eleven measurements were
taken across the nominal mission all using the lowest pos-
sible force and torque authorities in the mission (50 pN
and 1.5 pNm on TM2, 0 pN and 1 pNm on TM1 [16]).
This ensured that no systematic errors were encountered
by different levels of cross-talk in each measurement run.
Furthermore, the low suspension forces allowed for qui-
eter runs and therefore better measurements relative to
other ∆gobsx configurations. Each run typically lasted 1-2
days, and was averaged to a mean with standard devi-
ation error in order to average out noise in the data.
Figure 9 shows the data used for the fit. The observed
∆gobsx are shown in blue, ∆gfuelx in red and the resulting
pressure out-gassing law in yellow for the simple example
A = 1.
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FIG. 9: Data used for Experiment 2 fits. The ∆gobsx
(blue, with laser noise) are corrected for a variable fuel
tank mass ∆gfuelx (red) and a slow release of residual

pressure in the TM housings ∆gPx (yellow).
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The log-likelihood was taken as a Gaussian, with width
dependent on choice of A since this parameter scales the
∆gfuelx data and their associated errors. The algorithm
is therefore biased to lower values of A, which reduce the
overall errors in the fit. The log-likelihood used for the
fit is

logL = −
∑
i

log

(√
2πσ2

i

)
−0.5

∑
i

(
∆gobsx − yi

)2
σ2
i

(9)

for yi = A∆gfuelx,i +∆gPx,i and variance σ2
i =

(
δ∆gobsx,i

)2
+

A2
(
δ∆gfuelx,i

)2
for each of the i points created by aver-

aging over 105 s of ∆gobsx (t) data. This was done to aver-
age out temperature fluctuations within each ∆gx run as
only long term trends between runs are relevant for the
fits and temperature was assumed constant from run to
run in the nominal mission. All prior distributions were
taken as uniform and over wide ranges to allow the algo-
rithm to fully explore possible correlations. Large errors
in the data also meant using informative priors would
risk over-biasing the fit.

B. Fit Results

A Markov Chain Monte Carlo algorithm was run for
four million draws, and exhibited convergence on the
posterior values. Figures 10a and 10b show the results,
where correlations are observed between all parameters
except C0.

The marginalized posteriors for P0, α and A are Gaus-
sian with correlations seen between all three parameters,
shown in the corner plot of Figure 10b. The posterior for
C0 is unbounded from below, indicating the data uncer-
tainties were too large for the fit to be sensitive to this
parameter.

Table II summarizes the main contributions to the un-
certainties of each point, and the posterior values from
the fit. The uncertainties in each point are dominated by
the measurment errors in the ṁi values used, and the sys-
tematic uncertainties in the geometric knowledge of the
experiment, included in κi. The 1σ errors of each pa-
rameter are also shown, with a large variation in relative
magnitude. The most constrained fit parameter was α,
with a relative error of 3.5 %, while the least constrained
was C0, which was not constrained by the fit. Repeating
these fits excluding C0 yielded the same posterior val-
ues and 1σ errors for the remaining parameters. The
fit result for A shows that the fuel correction through
the nominal mission was significant enough to provide a
signal for A matching the dedicated experiment results
despite using only a few hundred grams change in mass
at a comparable distance of around 1 m.

Figure 11 shows the best fit model (red), calculated us-
ing the posterior values and errors in Table II, with the
observed ∆gobsx data (blue). Shaded areas indicate the
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FIG. 10: (a) Posterior distributions for a simplified
model to describe the trend of DC ∆gx measurements
through the LPF nominal mission. All marginalized
distributions were Gaussian except log10(C0), which

was not constrained by the fit. Repeating the fits
excluding C0 produced the same posterior distributions.

(b) Posterior correlations for a simplified model to
describe the trend of DC ∆gx measurements through
the LPF nominal mission. The large error bars on the
fuel consumption data meant the fit was not sensitive

anymore to changes in C0. A strong correlation is
observed between α and log10(P0), while weak

correlations are observed in the remaining parameters.

error in the data or model, and underline that the uncer-
tainty in the model was dominated by the uncertainties in
the mass flow sensor data. Had this been calibrated out-
side the control loop, the fit parameter posteriors could
have been more narrow and the best fit model error re-
gion a tighter match to the observed data.

The value for α obtained was very close to a perfect
out-gassing power law of 1. This suggests that the ther-
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Parameter Value Error
Rel. Error

(%)
Units

κi ARRAY ARRAY 0.8 [m−2]
ṁi ARRAY ARRAY ≤ 4.5 [kgs−1]

δ∆gfuelx ARRAY ARRAY ≤ 4.6% [kg−1m3s−2]

δ∆gobsx ARRAY ARRAY ≤ 1.7% [kg−1m3s−2]
log10(P0) −8.584 0.070 0.82 [log10(ms−2)]

α 0.915 0.032 3.5 [ ]
log10(C0) −81 40 50 [log10(ms−2)]

A 0.922 0.052 5.6 [ ]

G 6.15 0.35 5.6 [×10−11 kg−1m3s−2]

TABLE II: Leading uncertainties for Experiment 2.
δ∆gfuelx includes the systematic uncertainties associated
with geometric knowledge of the experiment (in FEM

model camculations of κi) and measurement errors from
the mass flow sensors (in ṁi). The final relative error
on G is then the relative error extracted for A in the

fits, which is dominated by ṁi in δ∆gfuelx .

FIG. 11: Posterior model with data. Large errors on
the mass flow data allowed a larger spread in possible

fit parameters.

mal fluctuations had negligible effect on the residual gas
pressure within the housings, which could be a result of
using many ∆gobsx data through the entire nominal mis-
sion. Doing the analysis in this way allowed for averaging
over thermal fluctuations in each data segment, thereby
averaging out this effect and biasing to an almost perfect
out-gassing law.

The value of A found corresponds to G = 6.15 ±
0.35

(
×10−11

)
m3kg−1s−2, a 1σ relative error of 5.6%,

and again in agreement with the 2014 recommended
value of 6.67408±0.00031 (×10−11) m3s−2kg−1 to 2σ [7].
The relative ease of this method coupled with the better
end error on the value obtained underlines the impor-
tance of using the drag free control when using interfer-
ometers to measure big G.

C. Analysis of Errors

The results of this method show that a relatively easy
measurement of the gravitational constant can be made
with a source mass and interferometer. Looking at table
II, the leading contributions to the posterior error on A
was in the fuel tank positions, extents and mass flow
rates, which were not calibrated to the same precision as
other components of the LISA LPF experiment.

Systematic uncertainties in geometry were contained in
the finite element calculations of κi, which to first order
behaved as 1/R2

SM−TM where RSM−TM is the absolute
distance between the fuel tank and the closest TM. Mea-
surement errors in ṁi, due to a zero point flow that was
difficult to extract and correct for, dominated the sta-
tistical uncertainty in the fit. The majority of the LPF
analyses were done in frequency domain, which placed
less stringent requirements on absolute values used to cal-
culate and measure these parameters, therefore by more
accurately measuring geometric properties pre-flight, and
using out of loop mass flow sensors, the leading contri-
butions to the uncertainty can be drastically improved.
The end uncertainty on A is then given by next order
terms in the model.

Two improvements to the model can be identified from
this analysis. First, the exact time to venting, T0, can
also be fit to correctly allow for a more flexible mixing of
the pressure models. Second, thermal fluctuations within
each δgobsx segment can be included, instead of averaging
over 105 s segments of data. This could be done by fitting
a thermal coefficient to transform changes in temperature
to a thermal correction δgthx .

A different approach for this method would be to mea-
sure a constant outflow of material over a period of sev-
eral days to decrease the influence of the pressure varia-
tion ∆gPx . However, it is noted that this approach would
require a good understanding of the thermal transfer
function on the DC ∆gobsx data. Another approach would
be a larger SM closer to the TMs to increase the signal to
noise ratio. Since the SMs are independent of the central
interferometry system, it is possible to use many SMs
with varying total masses and at a variety of locations
without risking the LPF performance.

When optimizing the method, it is relatively easier to
have a gaseous source mass quickly released than to move
a solid source mass closer to the interferometric system.
Doing so would require a second optical bench to track
the source mass position as it is moved. Using instead
several calibrated gas tanks at various locations would
maximize the signal by changing the signs of the κi with-
out the need to simultaneously track positions.

IV. DISCUSSION

Experiment 1 exhibited several difficulties, such as pe-
riodic glitches and a coupling of the SRP force into the
measurement axis. Redesigning the experiment to mit-
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igate these effects would require many more injection
and blank runs to properly characterize the variability
of these effects. Conversely, the limiting factor in Ex-
periment 2 was the measurement of the mass flow rates.
Having mass flow sensors outside of the closed control
loops would allow a much more precise measurement of
this parameter, and already improve the results.

The relative amount of work to extract the signal in
Experiment 1 was greater than in Experiment 2. The lat-
ter required only one fit rather than three consecutive fits
in the former. With several dependent fits, it was diffi-
cult to disentangle the effects of errors in the final result,
for example how the glitches fed through the analysis.

Experiment 2 also demonstrated that a mass change of
a few hundred grams around a meter away is enough to
induce a measurable signal, whereas a mass movement of
hundreds of microns half a meter away was almost lost
in the background of Experiment 1. This emphasises the
need to use drag-free control to decouple the background
forces from the measurement.

Experiment 2 also has greater flexibility for optimiza-
tion compared to Experiment 1. One possibility is
shorter term measurements of days rather than months
to decrease the effects of pressure changes. Using sev-
eral SM tanks located near each TM, and staggering the
release of material, the sign for each κi is reversed and
the signal to noise ratio maximized. Quick releases of
large volumes of gas between consecutive noise measure-
ments would decrease the relative error of the mass flow;
measuring the total gas emitted rather than trying to ac-
curately measure a slow stream of material is relatively
easier to do. In contrast, Experiment 1 requires costly
repetitions of blank and injections runs which are lim-
ited in returns. Ultimately, a redesign to increase the
SM mass and minimize the SM-TM distance are neces-
sary to boost the signal, however this is detrimental to
the performance of the interferometer in which masses
and distances were specifically chosen.

Comparing the results, it is clearly beneficial to use
drag-free control when designing an experiment to mea-
sure big G. This allows the experiment to be shielded
from the external background forces that would other-
wise drown the signal. Furthermore, the performance
of a drag-free interferometer in space has already been
demonstrated. Additional source masses can then be
placed on the spacecraft to maximize signal to noise,
with little risk to the performance. Finally, after opti-
mizing the layout of SMs and the release of material,
systematic uncertainties in the geometric properties of
the experiment need to be accurately calibrated to reach
a competitive measurement of at least parts in 104.

V. CONCLUSION

Both the dedicated experiment and the fuel consump-
tion estimate yielded values of big G that are consis-
tent with each other, and with the literature values from

ground estimates. The end errors were both around
5− 10 %, but with drastically different compositions; to-
gether they pinpoint the complexities to be addressed in
designing a space based experiment to measure big G.

The use of drag free control interferometry was shown
to be a much more powerful tool to isolate the experiment
from sources of noise that would otherwise drown out
the signal. The success of the LPF mission was a large
factor in the success of Experiment 2, and it is noted that
the LPF DC noise budget reached was not limiting in
the results of this method. Therefore, should the choice
be made, resources can be allocated to optimizing the
gaseous source mass(s) for a stronger signal instead of
the noise budget of the system.

Competitive measurements of big G in space would
provide experimental fundamental physics with a way to
challenge the disparity in the terrestrial measurements
observed to date. As has been noted by the gravita-
tional community, moving to space affords a much more
quiet environment [17][18][19], isolating many of the noise
sources that could be the source of disagreements in re-
cent measurements. It is hoped that the findings outlined
here will facilitate this endeavor, and help pave the way
for even more precise measurements of this elusive uni-
versal constant.
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