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A continuum approach to the three valence-quark bound-state problem in quantum field theory,
employing parametrisations of the necessary kernel elements, is used to compute the spectrum and
Poincaré-covariant wave functions for all flavour-SU(3) octet and decuplet baryons and their first
positive-parity excitations. Such analyses predict the existence of nonpointlike, dynamical quark-
quark (diquark) correlations within all baryons; and a uniformly sound description of the systems
studied is obtained by retaining flavour-antitriplet–scalar and flavour-sextet–pseudovector diquarks.
Thus constituted, the rest-frame wave function of every system studied is primarily S-wave in
character; and the first positive-parity excitation of each octet or decuplet baryon exhibits the
characteristics of a radial excitation. Importantly, every ground-state octet and decuplet baryon
possesses a radial excitation. Hence, the analysis predicts the existence and masses of positive-
parity excitations of the Ξ, Ξ∗, Ω baryons, states which have not yet been empirically identified.
This body of analysis suggests that the expression of emergent mass generation is the same in all
u, d, s baryons and, notably, that dynamical quark-quark correlations play an essential role in the
structure of each one. It also provides the basis for developing an array of predictions that can be
tested in new generation experiments.

I. INTRODUCTION

The nucleon’s first excited state, the ∆-baryon, was
discovered almost 70 years ago [1]. In the intervening pe-
riod, baryon spectroscopy has, inter alia: delivered the
quark model [2, 3] and the colour quantum number [4];
and played a crucial role in the development of quantum
chromodynamics (QCD) [5, 6]. Quark potential mod-
els based on three flavours of light quark – u, d, s [7–9]
can describe the known spectrum of ground-state flavour-
SU(3) octet and decuplet baryons [10]. They also predict
many related excited states; a feature which initiated a
widespread international search for such systems [11–25].
The search is still underway because only a small percent-
age of the predicted states have thus far been found. This
is the “missing (baryon) resonance” problem.

One solution to the missing resonance problem is to
suppose that typical three-quark potential models do not
provide a sound guide to baryon excitations. An al-
ternative is to reduce the number of degrees-of-freedom
within the system by describing baryons as two-body
quark+pointlike-diquark bound-states [26, 27], in which
case the number of excited states is much diminished.
However, given that the baryon spectrum computed us-
ing lattice-regularised QCD (lQCD) possesses a number
of states that is consistent with three-quark models [28],
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the pointlike-diquark answer appears incorrect. All the
same, it does not follow that the diquark concept is elim-
inated: only that such quark-quark correlations cannot
be pointlike.

The analysis of a baryon as a three–valence-body
bound-state problem in continuum quantum field theory
became possible following the formulation of a Poincaré-
covariant Faddeev equation [29–33], which is depicted
in Fig. 1. This approach assumes that dynamical, non-
pointlike diquark correlations play an important role in
baryon structure. It is founded on a simplified treat-
ment of the scattering problem in the two-body quark-
quark subchannels of the full three-body problem (see,
e.g. Ref. [34], Sec. II.A.2), which capitalises on the obser-
vation that the same interaction which describes colour-
singlet mesons also generates diquark correlations in the

FIG. 1. Poincaré covariant Faddeev equation: a lin-
ear integral equation for the matrix-valued function Ψ, be-
ing the Faddeev amplitude for a baryon of total momentum
P = pq + pd, which expresses the relative momentum corre-
lation between the dressed-quarks and -nonpointlike-diquarks
within the baryon. The shaded rectangle demarcates the ker-
nel of the Faddeev equation: single line, dressed-quark propa-
gator (Sec. II B); Γ, diquark correlation amplitude (Sec. II C);
and double line, diquark propagator (Sec. II D).
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colour-antitriplet (3̄) channel [35, 36]. Whilst the di-
quarks do not survive as asymptotic states, viz. they do
not appear in the strong interaction spectrum [37, 38],
the attraction between the quarks in the 3̄ channel draws
a picture in which two quarks are always correlated as a
colour-3̄ diquark pseudoparticle, and binding is effected
by the iterated exchange of roles between the bystander
and diquark-participant quarks. This approach to the
spectrum and interactions of baryons has been applied
widely with phenomenological success, e.g. Refs. [39–48].

A spectrum of flavour-SU(3) octet and decuplet
baryons, their parity partners, and the radial excita-
tions of these systems, was computed in Ref. [45] us-
ing a symmetry-preserving treatment of a vector× vector
contact-interaction (SPCI) as the foundation for the rel-
evant few-body equations. Namely, in the gap- and
Bethe-Salpeter equations solved to prepare the baryon
bound-state kernel, a momentum-independent vector-
boson-exchange kernel was used, with the ultraviolet di-
vergence regulated so as to ensure the relevant Ward-
Green-Takahashi identities are preserved [49]. With such
an approach: the diquark bound-state amplitudes are
momentum-independent but the diquarks are dynamical
degrees-of-freedom with nonzero electromagnetic radii
[50]; and one obtains a spectrum that is qualitatively
equivalent to the quark-model and lQCD results.

Realistic momentum-dependent dynamics was in-
cluded in Ref. [43], which computes a reduced flavour-
SU(2) spectrum that qualitatively matches the analo-
gous quark-model result. Aspects of that formulation,
however, prevent direct access to the mass-shell for many
of the predicted states, hindering computation of the as-
sociated wave functions and hence limiting the available
structural information.

Herein, we avoid such difficulties by employing a QCD-
kindred framework, used elsewhere [46] to perform a com-
parative study of the four lightest (I = 1/2, JP = 1/2±)
baryon isospin-doublets; extending it to flavour-SU(3)
and delivering therewith a spectrum of octet and decuplet
baryons and their first positive-parity excitations along
with structural insights drawn from analyses of their
Poincaré-covariant wave functions. Our results should
supply the foundation for subsequent calculations of a
diverse array of baryon-resonance electroproduction form
factors, existing empirical information on which [51–68]
along with recent photocoupling measurements [69], will
be enlarged by forthcoming experiments at the Thomas
Jefferson National Accelerator Facility (JLab).

We emphasise that the continuum analyses indicated
above form part of the body of Dyson-Schwinger equa-
tion (DSE) studies of hadron structure [70–83]. In this
approach, the challenge is a need to employ a trunca-
tion so as to define a tractable problem. Much has been
learnt; and one may now separate DSE studies into three
classes. Class-A. model-independent statements about
QCD; Class-B. illustrations of such statements using
well-constrained model elements and possessing a trace-
able connection to QCD; Class-C. QCD-inspired analyses

whose elements have not been computed using a trunca-
tion that preserves a systematically-improvable connec-
tion with QCD. The analysis described herein lies within
Class-C.

We describe our approach to the baryon bound-state
problem in Sec. II; and detail and explain the character of
the solutions for the octet and decuplet baryons and their
first positive-parity excitations in Sec. III. Section IV pro-
vides a summary and indicates some new directions.

II. BARYON BOUND STATE PROBLEM

A. Faddeev equation

In its general form, the Faddeev equation sums all pos-
sible exchanges and interactions that can take place be-
tween the three dressed-quarks that express a baryon’s
valence-quark content. Used with a realistic quark-
quark interaction [84–90], it predicts the appearance of
soft (nonpointlike) fully-interacting diquark correlations
within baryons, whose characteristics are greatly influ-
enced by dynamical chiral symmetry breaking (DCSB)
[41]. Consequently, the problem of determining a
baryon’s mass, internal structure, etc., is transformed
into that of solving the linear, homogeneous matrix equa-
tion depicted in Fig. 1.

B. Dressed quarks

Regarding flavour-SU(3) octet and decuplet baryons
and their radial excitations, the Faddeev kernel in Fig. 1
involves three basic elements, viz. the dressed light-quark
propagators, Sf (p), f = u, d, s, and the correlation am-
plitudes and propagators for all participating diquarks.
Much is known about Sf (p), and in constructing the ker-
nel we use the algebraic forms described in Appendix A,
which have proven efficacious in the explanation and
unification of a wide range of hadron observables [39–
42, 91, 92]. (N.B. We assume isospin symmetry through-
out, i.e. u- and d-quarks are mass-degenerate and de-
scribed by the same propagator. Consequently, all di-
quarks in an isospin multiplet are degenerate.)

C. Correlation amplitudes

In Fig. 1, all participating diquarks are colour-
antitriplets because they must combine with the by-
stander quark to form a colour singlet. Notably, the
colour-sextet quark+quark channel does not support cor-
relations because gluon exchange is repulsive in this chan-
nel [35].

Diquark isospin-spin structure is more complex. Ac-
counting for Fermi-Dirac statistics, five types of correla-
tion are possible in a J = 1/2 bound-state: flavour-3̄–
scalar, flavour-6–pseudovector, flavour-3̄–pseudoscalar,
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flavour-3̄–vector, and flavour-6–vector. However, only
the first two are important in positive-parity systems
[43, 45, 46]; and the associated leading correlation am-
plitudes are, respectively:

Γj0+(k;K) = gj0+
~H T j

3̄f
γ5C F (k2/[ωj0+ ]2) , (1a)

Γg1+µ(k;K) = igg1+
~H T g6f

γµC F (k2/[ωg1+ ]2) , (1b)

where: K is the total momentum of the correlation,
k is a two-body relative momentum, F is the func-
tion in Eq. (A.4), ωj,g

JP are size parameters, and gj,g
JP

are couplings into the channel, fixed by normalisation;
~H = {iλ7

c ,−iλ5
c , iλ

2
c}, with {λkc , k = 1, . . . , 8} denot-

ing Gell-Mann matrices in colour-space, expresses the
diquarks’ colour antitriplet character; C = γ2γ4 is the
charge-conjugation matrix;

{T j
3̄f
, j = 1, 2, 3} = {iλ2, iλ5, iλ7} , (2a)

{T g6f
, g = 1, . . . , 6} = {s0λ

0 + s3λ
3 + s8λ

8, λ1, λ4,

s0λ
0 − s3λ

3 + s8λ
8, λ6, s0λ

0 − 2s8λ
8} , (2b)

with s0 =
√

2/3, s3 = 1/
√

2, s8 = 1/
√

6, {λk, k =
1, . . . , 8} denoting flavour-SU(3) Gell-Mann matrices,
λ0 = diag[1, 1, 1], and all flavour matrices left-active on
column[u, d, s]. (Our Euclidean metric conventions are
explained in Ref. [39], Appendix B.)

Turning to decuplet baryons, since it is not possible
to combine a 3̄f diquark with a 3f -quark to obtain a
member of the symmetric 10f representation of SU(3)f ,
decuplet baryons only contain 6f–axial-vector diquarks,
which are associated with the amplitudes in Eq. (1b).

The amplitudes in Eqs. (1) are normalised canonically:

2Kµ =
∂

∂Qµ
Π(K;Q)

∣∣∣∣K2=−[mj,g

JP ]2

Q=K

, (3a)

Π(K;Q) = tr

∫
d4k

(2π)4
Γ̄(k;−K)S(k +Q/2)

× Γ(k;K)ST(−k +Q/2) , (3b)

where Γ̄(k;K) = C†Γ(−k;K)C, [·]T denotes matrix
transpose, and S = diag[Su, Sd, Ss]. When the involved
correlation amplitudes carry Lorentz indices µ, ν, the
left-hand-side of Eq. (3b) also includes a factor δµν . It
is apparent now that the strength of coupling in each
channel, gj,g

JP in Eq. (1), is fixed by the associated value

of ωj,g
JP .

D. Diquark propagators, masses, couplings

A propagator is associated with each quark-quark cor-
relation in Fig. 1; and we use [39, 46]:

∆0+j(K) =
1

[mj
0+ ]2

F (K2/[ωj0+ ]2) , (4a)

∆1+g
µν (K) =

[
δµν +

KµKν

[mg
1+ ]2

]
1

[mg
1+ ]2

F (K2/[ωg1+ ]2) .

(4b)

These algebraic forms ensure that the diquarks are con-
fined within the baryons, as appropriate for coloured cor-
relations: whilst the propagators are free-particle-like at
spacelike momenta, they are pole-free on the timelike
axis. This is sufficient to ensure confinement via the vi-
olation of reflection positivity (see, e.g. Ref. [80], Sec. 3).

The diquark masses and widths are related via

mj,g
JP =

√
2ωj,g

JP . (5)

This identification accentuates the free-particle-like prop-
agation characteristics of the diquarks within the baryon
[39]. The mass-scales are constrained by numerous stud-
ies; and we use (in GeV):

m
(1)
0+ = 0.80 , m

(2,3)
0+ = 0.95 , (6a)

m
(4,5,7)
1+ = 0.90 , m

(6,8)
1+ = 1.05 , m

(9)
1+ = 1.20 , (6b)

where the values of m
(j=1)
0+ and m

(g=4,5,7)
1+ are drawn from

Refs. [39, 40], because they provide for a good descrip-
tion of numerous dynamical properties of the nucleon,

∆-baryon and Roper resonance; and the masses m
(j=2,3)
0+ ,

m
(g=6,8)
1+ and m

(g=9)
1+ are derived therefrom via an equal-

spacing rule, viz. replacing one light-quark by a s-quark
brings an extra 0.15 GeV ≈ ME

s −ME
u from Eq. (A.8).

This is the standard response found in solutions of the
relevant Bethe-Salpeter equations [93]; and for complete-
ness, we will subsequently display results with all diquark
masses varied by ±5%.

Using Eqs. (1), (3), and the masses in Eqs. (6):

g
(1)
0+ = 14.75 , g

(2,3)
0+ = 9.45 , (7a)

g
(4,5,7)
1+ = 12.73 , g

(6,8)
1+ = 7.62 , g

(9)
1+ = 3.72 . (7b)

Given that it is the coupling-squared which appears in
the Faddeev kernels, scalar diquarks will dominate the
Faddeev amplitudes of J = 1/2 baryons; but pseu-
dovector diquarks must also play a material role because
g2

1+/g2
0+ ≈ 0.7.

E. Remarks on the Faddeev kernels

The elements described in the preceding subsections
are sufficient to specify the Faddeev kernels describing
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the quark cores of all positive-parity octet and decuplet
baryons. Moreover, owing to our deliberate use of al-
gebraic parametrisations for these inputs, the Faddeev
equations thus obtained can be solved directly on the
baryon mass-shells, providing simultaneously the associ-
ated on-shell Faddeev amplitudes and wave functions.

It should be recorded, however, that whilst the alge-
braic forms we use are based on existing calculations
and associated insights [91, 92], their pointwise forms are
not necessarily accurate representations of QCD’s solu-
tions for these quantities on the complete momentum do-
mains available to their arguments. Efforts to determine
such pointwise accurate representations are ongoing, e.g.
Refs. [94–101]. Nevertheless, on the domains sampled in
solving the Faddeev equations, our algebraic forms are
fair approximations, as highlighted, e.g. in Ref. [46], Ap-
pendix A; and this is sufficient for our purposes.

Usefully, too, the inputs we use for the propaga-
tors and correlation amplitudes are constrained by ob-
servables and hence they express many effects that are
lost in straightforward implementations of the lowest-
order (rainbow-ladder, RL) truncation of the bound-state
equations [102].

Notwithstanding that, some correction of the Faddeev
kernels is necessary to overcome an intrinsic weakness
of the equation depicted in Fig. 1. Namely, resonant
contributions, viz. meson-baryon final-state-interactions
(MB FSIs), should be included [103, 104].

It is essential not to miscount when incorporating
these effects. In practical calculations they divide into
two distinct types. The first is within the gap equa-
tion, where pseudoscalar-meson loop-corrections to the
dressed-gluon-quark vertex act to reduce uniformly the
mass-function of a dressed-quark [103–106]. This effect
can be pictured as a single quark emitting and reabsorb-
ing a pseudoscalar meson. It can be mocked-up by simply
choosing the parameters in the gap equation’s kernel so
as to obtain dressed-quark mass-functions that are char-
acterised by mass-scales ME

u ≈ 0.4 GeV, ME
s ≈ 0.5 GeV.

Such an approach has been widely employed with phe-
nomenological success [71, 73, 74, 77, 82], and is implicit
herein.

The second type of correction arises in connection
with bound-states and may be likened to adding pseu-
doscalar meson exchange between dressed-quarks within
the bound-state [34, 107–110], as opposed to the first
type of effect, i.e. emission and absorption of a meson by
the same quark. The type-2 contribution is that com-
puted in typical evaluations of meson-loop corrections to
hadron observables based on a point-hadron Lagrangian
[111]. This fact should be borne in mind when estimat-
ing the size of meson-loop corrections to the quark-core
masses of baryons computed using the equation depicted
in Fig. 1.

F. Faddeev amplitudes

In solving the Faddeev equation, Fig. 1, one obtains
both the mass-squared and bound-state amplitude of all
baryons with a given value of JP . In fact, it is the form
of the Faddeev amplitude which fixes the channel. A
baryon is described by

ΨB = ψB1 + ψB2 + ψB3 , (8)

where the subscript identifies the bystander quark, i.e.
the quark that is not participating in a diquark correla-
tion, ψB1,2 are obtained from ψB3 =: ψB by a cyclic per-
mutation of all quark labels.

For an octet baryon (B8 = N,Λ,Σ,Ξ; JP = 1/2+),

ψ8(pi, αi, σi)

=
∑
j∈B8

[Γj0+(k;K)]α1α2
σ1σ2

∆0+j(K) [ϕ
8j
0+(`;P )u(P )]α3

σ3

+
∑
g∈B8

[Γg1+µ]α1α2
σ1σ2

∆1+g
µν [ϕ

8g
1+ν(`;P )u(P )]α3

σ3
, (9)

where (pi, σi, αi) are the momentum, spin and isospin
labels of the quarks constituting the bound state; P =
p1+p2+p3 = pd+pq is the total momentum of the baryon;
k = (p1 − p2)/2, K = p1 + p2 = pd, ` = (−K + 2p3)/3;
j and g are the labels in Eqs. (2) and the sums run over
those flavour-combinations permitted in B8, detailed in
Appendix B; and u(P ) is a Euclidean spinor (see Ref. [39],
Appendix B for details). The remaining elements in
Eq. (9) are the following matrix-valued functions:

ϕ
8j
0+(`;P ) =

2∑
k=1

sj8k(`2, ` · P ) Sk(`;P ) , (10a)

ϕ
8g
1+ν(`;P ) =

6∑
k=1

ag+3
8k (`2, ` · P ) γ5Ak

ν (`;P ) , (10b)

where

S1 = ID , S2 = iγ · ˆ̀− ˆ̀· P̂ ID ,

A1
ν = γ · `⊥P̂ν , A2

ν = −iP̂νID , A3
ν = γ · ˆ̀⊥ ˆ̀⊥

ν , (11)

A4
ν = iˆ̀⊥ν ID , A5

ν = γ⊥ν − A3
ν , A6

ν = iγ⊥ν γ · ˆ̀⊥ − A4
ν ,

with ˆ̀2 = 1, P̂ 2 = −1, `⊥ = ˆ̀
ν+ˆ̀·P̂ P̂ν , γ⊥ = γν+γ·P̂ P̂ν .

Owing to the symmetry-prescribed absence of flavour-3̄
components, the structure of decuplet baryons is simpler
(B10 = ∆,Σ∗,Ξ∗,Ω; JP = 3/2+):

ψ10
µ (pi, αi, σi)

=
∑
g∈B10

[Γg1+µ]α1α2
σ1σ2

∆1+g
µν [ϕ10g

νρ (`;P )uρ(P )]α3
σ3
, (12)

where uρ(P ) is a Rarita-Schwinger spinor (Ref. [39], Ap-
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pendix B); and, with Sk and Ak
ν in Eq. (11),

ϕ10g
νρ (`;P ) =

8∑
k=1

ag+3
10k (`2, ` · P ) Dk

νρ(`;P ) , (13a)

Dk
νρ = Sk δνρ , k = 1, 2 , (13b)

Dk
νρ = iγ5 Ak−2

ν `⊥ρ , k = 3, . . . , 8 . (13c)

Inserting the appropriate amplitude into the equation
defined by Fig. 1, the specific form of the bound-state
equation for the considered baryon is obtained. We do
not record these equations herein. They are readily de-
rived following the procedures detailed, e.g. in Ref. [39].

G. Faddeev wave functions

The (unamputated) Faddeev wave function can be
computed from the amplitude specified by Eqs. (9) – (13)
simply by attaching the appropriate dressed-quark and
diquark propagators. It may also be decomposed in the
form of Eqs. (10), (13). Naturally, the scalar functions

are different, and we label them s̃j8k, ãg8k, ãg10k.

Both the Faddeev amplitude and wave function are
Poincaré covariant, i.e. they are qualitatively identical in
all reference frames. Naturally, each of the scalar func-
tions that appears is frame-independent, but the frame
chosen determines just how the elements should be com-
bined. Consequently, the manner by which the dressed-
quarks’ spin, S, and orbital angular momentum, L, add
to form a particular JP combination is frame-dependent:
L, S are not independently Poincaré invariant.1 Hence,
in order to enable comparisons with typical formulations
of constituent quark models, here we subsequently list
the set of baryon rest-frame quark-diquark angular mo-
mentum identifications [114, 115].

(i) Octet baryons:

2S : S1,A2
ν , (A3

ν + A5
ν ) ; (14a)

2P : S2,A1
ν , (A4

ν + A6
ν ) ; (14b)

4P : (2A4
ν − A6

ν )/3 ; (14c)
4D : (2A3

ν − A5
ν )/3 ; (14d)

viz. the scalar functions associated with these combi-
nations of Dirac matrices in a Faddeev wave function
possess the identified angular momentum correlation be-

1 The nature of the combination is also scale dependent because
the definition of a dressed-quark and the character of the correla-
tion amplitudes changes with resolving scale, ζ, in a well-defined
manner [112, 113]. Our analysis is understood to be valid at
ζ ' 1 GeV.

tween the quark and diquark. Those functions are:

2S : s̃j81, ã
g
82, (ãg83 + 2ãg85)/3 ; (15a)

2P : s̃j82, ã
g
81, (ãg84 + 2ãg86)/3 ; (15b)

4P : (ãg84 − ãg86) ; (15c)

4D : (ãg83 − ãg85) . (15d)

(ii) Decuplet baryons:

4S : D1
νρ ; (16a)

2P : D4
νρ,−(D5

νρ + D7
νρ) ; (16b)

4P : D2
νρ + (2D5

νρ + 2D7
νρ)/3 ; (16c)

2D : D3
νρ,−(D6

νρ + D8
νρ) ; (16d)

4D : (−2D6
νρ + D8

νρ −D1
νρ)/3 ; (16e)

4F : (−4D5
νρ + D7

νρ −D2
νρ)/5 . (16f)

The associated scalar functions are

4S : ãg101 − (ãg106 − ãg108)/3 ; (17a)

2P : ãg104, (2ãg102 − ãg105 − 2ãg107)/3 ; (17b)

4P : ãg102 − (ãg105 − ãg107)/5 ; (17c)

2D : ãg103,−(ãg106 + 2ãg108)/3 ; (17d)

4D : − ãg106 + ãg108 ; (17e)

4F : − ãg105 + ãg107 . (17f)

III. SOLUTIONS AND THEIR PROPERTIES

A. Masses of the dressed-quark cores

We can now report results obtained by solving the Fad-
deev equations for octet and decuplet baryons and their
first positive-parity excitations. Our computed masses
are listed in Table I: the uncertainties indicate the re-
sponse of a given mass to a coherent 5% increase/decrease
in the mass-scales associated with the diquarks and
dressed-quarks, Eqs. (6), (A.5), respectively.

It is worth noting the emergence of a Σ-Λ mass-
splitting despite the fact that we have assumed isospin
symmetry, i.e. mass-degenerate u- and d-quarks, de-
scribed by the same propagator, so that all diquarks in
an isospin multiplet are degenerate. The origin of the Σ-
Λ splitting can be understood by comparing Eqs. (B.1b)
and (B.1c), with the latter adapted to the neutral Σ0

case following Eq. (49) in Ref. [116]. Whilst the Λ0 and
Σ0 baryons are associated with the same combination
of valence-quarks, their spin-flavour wave functions are
different: the Λ0

I=0 contains more of the lighter J = 0
diquark correlations than the Σ0

I=1. It follows that the
Λ0 must be lighter than the Σ0. The mechanism under-
lying this splitting is analogous to that which produces



6

TABLE I. Computed dressed-quark-core masses of ground-state octet and decuplet baryons, and their radial excitations.
Row 1: Baryon ground-states. Row 2: Ground-state masses obtained using the ESR described in connection with Eq. (19).
Row 5: First positive-parity excitations of the ground-states. Row 6: Masses of positive-parity excitations obtained using the
ESR described in connection with Eq. (19). Masses in rows labelled “expt.” are taken from Ref. [10]; and those in rows labelled
“ESRexpt.” were obtained using the ESR discussed in connection with Eq. (19) applied to the empirical masses. (Underlined
entries were used as the basis for associated ESR estimates and the entries marked by asterisks are described in the text
surrounding Eqs. (20).) A hyphen in any position indicates that no empirically known resonance can confidently be associated
with the theoretically predicted state. (All dimensioned quantities are listed in GeV.)

Row N Λ Σ Ξ ∆ Σ∗ Ξ∗ Ω

n=0 1 DSE 1.19(13) 1.37(14) 1.41(14) 1.58(15) 1.35(12) 1.52(14) 1.71(15) 1.93(17)

2 ESRDSE 1.19(13) 1.39(14) 1.39(14) 1.58(15) 1.35(12) 1.54(14) 1.74(15) 1.93(17)

3 expt. 0.94 1.12 1.19 1.31 1.23 1.38 1.53 1.67

4 ESRexpt. 0.94 1.13 1.13 1.31 1.23 1.39 1.52 1.67

n=1 5 DSE 1.73(10) 1.85(09) 1.88(11) 1.99(11) 1.79(12) 1.93(11) 2.08(12) 2.23(13)

6 ESRDSE 1.73(10) 1.86(10) 1.86(10) 1.99(11) 1.79(12) 1.93(12) 2.08(12) 2.23(13)

7 expt. 1.44(03) 1.60+0.10
−0.04 1.66(03) - 1.57(07) 1.73(03) - -

8 ESRexpt. 1.44(03) 1.64(05) 1.64(05) 1.84(08)∗ 1.57(07) 1.73(03) 1.89(04)∗ 2.05(02)∗

the π-ρ mass difference, and also to that associated with
the colour-hyperfine interaction used in quark models. It
is realised here via the breaking of isospin-symmetry in
the associated baryon wave functions.

The quark-core masses of octet and decuplet baryons
and their first positive-parity excitations have previously
been computed using the SPCI [45]. Thus, in Fig. 2, we
compare our predictions with those reported therein. Ev-
idently, so far as computed masses are concerned, there
is little material difference between the results obtained
using Faddeev equation kernels with realistic momen-
tum dependence and those produced by a momentum-
independent interaction. This outcome is consistent with
findings elsewhere [39, 49, 50, 117–125], viz. implemented
judiciously, the SPCI typically produces results that are
practically equivalent to those obtained with QCD-like
kernels so long as the probe momenta involved are smaller
than the relevant dressed-quark masses, Eqs. (A.8).

Table I compares our predictions for the quark-core
masses with empirical values, where known, of the Breit-
Wigner mass associated with each state considered [10].2

For added clarity, this information is also depicted in
Fig. 3. It is apparent that the computed masses are uni-
formly larger than the corresponding empirical values.
As described in Sec.II E, this is because our results should
be viewed as those of a given baryon’s dressed-quark core,
whereas the empirical values include all contributions, in-
cluding MB FSIs, which typically generate a measurable
reduction [19]. This was explained and illustrated in a
study of the nucleon, its parity-partner and their radial

2 Table I associates the nucleon’s first positive-parity excitation
with the dressed-quark core of the Roper resonance. The justifi-
cation for this identification is presented in Ref. [126], along with
a discussion of the attendant controversy.

excitations in Ref. [46]; and has also been demonstrated
using the SPCI [45, 116]. Identifying the difference be-
tween our predictions and experiment as the result of
MB FSIs, then one finds that such effects are fairly ho-
mogeneous across the spectrum:

mean[m
8
DSE −m

8
expt.] = 0.26(4) , (18a)

mean[m
10
DSE −m

10
expt.] = 0.19(5) . (18b)

Namely, they act to reduce the mass of ground-state octet
and decuplet baryons and their first positive-parity exci-
tations by 0.23(6) GeV.

Here it is also worth recalling an equal spacing rule
(ESR) [127, 128]; namely, within a given level, to a good
approximation, baryon masses can be related linearly to
number-weighted combinations of mass-scales associated
with their constituent valence-quarks [93]. This is illus-
trated in the second row of Table I, which were obtained
by defining

M80
u = mN/3 = 0.397(43) , (19a)

M80
s = (mΞ −M80

u )/2 = 0.592(53) , (19b)

M100
u = m∆/3 = 0.450(40) , (19c)

M100
s = mΩ/3 = 0.643(57) , (19d)

and identifying, e.g. mESR
Σ∗ = 2M

100
u + M

100
s . Repeating

such a procedure with the empirical entries in Row 3, we
obtain the fourth row in Table I. Evidently, ESR esti-
mates are reliable.

We also employed the ESR in connection with our pre-
dictions for the quark-core masses of the baryons’ first
positive-parity excitations, with the results in Rows 5 and
6 of Table I. Once again, apart from missing the isospin-
breaking Σn=1 − Λn=1 splitting, all other masses are ac-
curately reproduced. (Even the Λn=1 and Σn=1 masses
are separately accurate to within 1%.) These outcomes
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FIG. 2. Comparison between the masses listed in Ta-
ble I (black circles), computed herein using Faddeev equation
kernels built with dressed-quarks and diquarks described by
QCD-like momentum-dependent propagators and amplitudes,
and those obtained using a symmetry-preserving treatment of
a vector× vector contact-interaction (blue stars) [45]. Upper
panel: octet states. Lower panel: decuplet states. The ver-
tical riser indicates the response of our results to a coherent
±5% change in the mass-scales associated with the diquarks
and dressed-quarks, Eqs. (6), (A.5), respectively. The hor-
izontal axis lists a particle name with a subscript that indi-
cates whether it is ground-state (n = 0) or first positive-parity
excitation (n = 1).

suggest that reasonable estimates of the empirical masses
for the first positive-parity excitations of all octet and de-
cuplet baryons may be obtained by using ESRs based on
measured masses. Using a (Λ,Σ)-isospin average to de-
fine the empirical ESR for octet radial excitations, this
approach yields the results marked by asterisks in Row 8
of Table I, i.e. our Faddeev equation analysis predicts
the existence of positive-parity excitations of the Ξ, Ξ∗,
Ω baryons with the following Breit-Wigner masses (in
GeV):

mΞn=1 = 1.84(08) , (20a)

mΞ∗
n=1

= 1.89(04) , mΩn=1 = 2.05(02) . (20b)

Such states are also found in quark models, e.g.
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FIG. 3. Upper panel: Pictorial representation of octet
masses in Table I. Circles (black) – computed masses. The
vertical riser indicates the response of our predictions to a
coherent ±5% change in the mass-scales associated with the
diquarks and dressed-quarks, Eqs. (6), (A.5), respectively. Di-
amonds (green) – empirical Breit-Wigner masses [10]. The
horizontal axis lists a particle name with a subscript that indi-
cates whether it is ground-state (n = 0) or first positive-parity
excitation (n = 1). Lower panel: Analogous plot for the de-
cuplet masses in Table I. Where noticeable, the estimated un-
certainty in the location of a resonance’s Breit-Wigner mass
is indicated by an error bar.

Refs. [129–132], but the mass values are model-
dependent.

Since these states possess strangeness −2 (Ξ, Ξ∗)
and −3 (Ω), finding them in photoproduction and elec-
tron scattering experiments is difficult owing to marked
Zweig-rule suppression and the need to measure multi-
particle (> 3) final states. Notwithstanding that, a
search for very strange baryons is part of the programmes
with the CLAS12 and GlueX detectors at Jefferson Lab
(JLab) [133–135]. They may also be located using kaon
beams at the Japan proton accelerator research complex
(J-PARC) [12, 24]. It is possible that signals for the
predicted Ξn=1 state may already be present in data
obtained with µ+-beams using the COMPASS detec-
tor at CERN [136] and all predictions in Eq. (20) could
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FIG. 4. Upper panel – Relative strengths of various diquark components within the indicated baryon’s Faddeev amplitude,
defined via Eqs. (22), (23). Lower panel – Relative contribution to a baryon’s mass from a given diquark correlation in that
baryon’s Faddeev amplitude, defined in association with Eqs. (24).

be tested at CERN in future using the proposed kaon-
enriched hadron beams [137].

B. Diquark content

It is interesting now to dissect the results in vari-
ous ways and thereby sketch the character of the quark
cores that constitute the ground-state octet and decu-
plet baryons and their first positive-parity excitations.
We begin by exposing their diquark content.

The Faddeev amplitude of each baryon can be decom-
posed into a sum of Nqq terms, {Fi, i = 1, . . . , Nqq},
each one of which is directly identifiable with a particu-
lar diquark component. The value of Nqq depends on the
baryon’s spin-flavour structure, Eqs. (B.1) and (B.2):

N Λ Σ Ξ ∆ Σ∗ Ξ∗ Ω

Nqq 14 10 14 14 8 16 16 8
. (21)

In connection with each term, we define

Di =

∫
d4`

(2π)4
|Fi(`2, ` · P )|2 (22)

and subsequently compute

Qt = W−1
∑
i∈t

Di , W =

Nqq∑
i=1

Di , (23)

where t ranges over the s(= 0+) and a(= 1+) compo-
nents of the baryon considered. Here, W defines a four-
dimensional L2-norm of the baryon’s Faddeev amplitude
and the ratios Qt=sj ,ag express the relative size of the
contribution from each diquark correlation to this norm.
The values of these fractions are one indication of the rel-
ative strengths of the various diquark components within
a baryon. They are listed in Table C.1 and depicted for
the more complex octet states in Fig. 4–upper panel.

An alternative gauge is to consider the relative con-
tribution to a given baryon’s mass owing to each of the
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FIG. 5. Octet baryons and their first positive-parity excitations. Upper panel – Baryon rest-frame quark-diquark orbital
angular momentum fractions, as defined in Eqs. (27). Lower panel – Relative contribution of various quark-diquark orbital
angular momentum components to the mass of a given baryon.

diquark components in its Faddeev amplitude. We eval-
uate this by computing the hadron’s mass in the ab-
sence of all except the dominant diquark correlation (of-
ten the lightest possible contributor) and then introduc-
ing the remaining correlations in their order of impor-
tance, which is determined by trial-and-error. Typically,
the mass obtained using only the dominant correlation
is larger than the all-correlation result. (Otherwise, the
Faddeev equation would suppress any new correlation.)
We therefore define the relative mass-contribution of a
given correlation as follows. Suppose two diquarks con-
tribute: qq1, qq2, with qq1 dominant. Further suppose
that the qq1-only baryon has mass m1 and adding qq2

gives mfinal = m2 < m1, then

P1 = m1/(m1 + |m2 −m1|) , (24a)

P2 = |m2 −m1|/(m1 + |m2 −m1|) . (24b)

This procedure has a clear generalisation to systems with
more than two diquark correlations; and the results ob-
tained in this way are listed in Table C.2 and depicted for
the more complicated octet states in Fig. 4–lower panel.

As observed elsewhere [46], the difference between the
upper and lower panels of Fig. 4 is marked. In each of
the octet cases depicted in the lower panel, there is a
single dominant diquark component; namely, a scalar di-
quark; and each new correlation adds binding, reducing
the computed mass. On the other hand, measuring the
relative strength of diquark correlations using the Fad-
deev amplitude decomposition, drawn in Fig. 4–upper
panel, one arrives at a somewhat different picture; but
such differences can largely be attributed to the lack of
interference between diquark components in the measure
defined by Eqs. (22), (23). Notwithstanding these facts,
comparisons between baryons using any single measure
are meaningful, e.g. using either scheme, the nucleon and
its first positive-parity excitation possess very similar di-
quark content.

Naturally, the true importance of a given correlation
within one or another baryon is properly measured by its
role in determining observables, and this speaks in favour
of the mass-fraction measure and its analogues, such as
the canonical normalisation [40], which relates to electric
charge contributions. Following this reasoning, impacts
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FIG. 6. Decuplet baryons and their first positive-parity excitations. Upper panel – Baryon rest-frame quark-diquark orbital
angular momentum fractions, as defined in Eqs. (27). Lower panel – Relative contribution of various quark-diquark orbital
angular momentum components to the mass of a given baryon.

of various diquark components of the nucleon and ∆-
baryon on their elastic and transition form factors have
been explored elsewhere [39–42, 48].

C. Rest-frame orbital angular momentum

Drawing upon Sec. II G, we now expose the rest-frame
orbital angular momentum content of each baryon. Con-
nected with each matrix in Eqs. (14), (16), there is
a scalar function, the collection of which we denote
as {Yi, i = 1, . . . , Nqq}, e.g. the five rest-frame 2S-
components in the proton are identified with Y1,...,5 and,
using Eq. (15a), these functions are

s̃1
N1, ã4,5

N2, [ã4,5
N3 + 2ã4,5

N5]/3. (25)

Using this decomposition, we compiled Table II. Plainly
every one of the systems considered is primarily S-wave in
nature, since they are not generated by the Faddeev equa-
tion unless S-wave components are contained in the wave
function. This observation provides support in quantum

field theory for the constituent-quark model classifica-
tions of these systems, so long as here angular momentum
is understood at the hadronic scale to be that between
the quark and diquark. Notwithstanding that, Table II
reveals that P -wave components play a measurable role
in octet ground-states and their first positive-parity ex-
citations: they are attractive in ground-states and re-
pulsive in the excitations. Regarding decuplet systems:
the ground-state masses are almost completely insensi-
tive to non-S-wave components; and in the first positive-
parity excitations, P -wave components generate a little
repulsion, some attraction is provided by D-waves, and
F -waves have no measurable impact.

In order to further elucidate these remarks, we turn
our attention to the Faddeev wave functions themselves
and, for each baryon, compute

Li =

∫
d4`

(2π)4
|Yi(`2, ` · P )|2, (26)

and subsequently define the following rest-frame angular
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TABLE II. Computed baryon quark-core masses: upper
panel, flavour-octet; and lower panel, flavour-decuplet.
Row 1, each panel: results obtained using the complete Fad-
deev wave function, i.e. with all angular momentum compo-
nents included. Subsequent rows: masses obtained when the
indicated rest-frame angular momentum component(s) is(are)
excluded from the Faddeev wave function. Empty locations
indicate that a solution is not obtained under the conditions
indicated. (All dimensioned quantities are listed in GeV.)

L content Nn=0 Nn=1 Λn=0 Λn=1 Σn=0 Σn=1 Ξn=0 Ξn=1

S, P,D 1.19 1.73 1.37 1.85 1.41 1.88 1.58 1.99

−, P,D − − − − − − − −
S,−, D 1.24 1.71 1.40 1.83 1.42 1.84 1.59 1.97

S, P,− 1.20 1.74 1.37 1.85 1.41 1.89 1.58 1.99

S,−,− 1.24 1.71 1.40 1.83 1.42 1.84 1.59 1.97

L content ∆n=0 ∆n=1 Σ∗n=0 Σ∗n=1 Ξ∗n=0 Ξ∗n=1 Ωn=0 Ωn=1

S, P,D, F 1.35 1.79 1.52 1.93 1.71 2.08 1.93 2.23

−, P,D, F − − − − − − − −
S,−, D, F 1.36 1.75 1.52 1.90 1.71 2.06 1.93 2.22

S, P,−, F 1.35 1.82 1.52 1.95 1.71 2.09 1.93 2.24

S, P,D,− 1.35 1.79 1.52 1.93 1.71 2.08 1.93 2.23

S,−,−,− 1.35 1.80 1.52 1.93 1.71 2.08 1.93 2.23

momentum strengths:

S = T−1
∑
i∈S

Li , P = T−1
∑
i∈P

Li ,

D = T−1
∑
i∈D

Li , F = T−1
∑
i∈F

Li ,
(27a)

T =

Nqq∑
i=1

Li . (27b)

Constructed thus, T defines a four-dimensional L2-norm
of the baryon’s rest-frame Faddeev wave function and the
ratios S, P, D, F express the relative size of the contri-
bution from each angular momentum component to this
norm. Our results are depicted in the upper panels of
Figs. 5, 6.

As with our examination of the diquark content, an-
other gauge of the relative importance of different partial
waves within a baryon is to depict their contributions to
a baryon’s mass, which can be computed using the infor-
mation in Table II. The results are depicted in the lower
panels of Figs. 5, 6. Once again, even though some con-
tributions are repulsive and others attractive, we draw
all bars as positive, following a procedure analogous to
that described in connection with Eqs. (24).

Fig. 5 reveals that, concerning the rest-frame quark-
diquark orbital angular momentum fractions in octet
baryons, both measures deliver the same qualitative pic-
ture of each baryon’s internal structure. It follows that
there is little mixing between partial waves in the com-
putation of a baryon’s mass. Regarding Fig. 6, this is

also true for the decuplet states, but there are greater
quantitative dissimilarities. It is nevertheless evident in
both panels that S-wave strength is shifted into D-wave
contributions within decuplet positive-parity excitations,
as has previously been observed [44, 93].

It is here worth contrasting these results for low-lying
positive-parity baryons with those obtained elsewhere
[46] for the two lightest (I, JP ) = (1/2, 1/2−) partners of
the nucleon. For those systems: no solution is obtained
unless P -waves are present; P -waves are the largest com-
ponent of the rest-frame wave function and dominant in
determining the mass, with S-waves bringing some at-
traction; and D-waves are negligible.

The remarks closing Sec. III B highlight that it is also
desirable to explore the effects of various angular mo-
mentum components of a given baryon’s wave function
on observables accessible at modern facilities. This has
already been shown to provide valuable insights, e.g. in
connection with the possible appearance of a zero in the
proton and neutron elastic form factors [41], a feature
which is greatly influenced by P -wave components in the
nucleon’s rest-frame wave function even though their ef-
fect on the nucleon mass is small.

D. Pointwise Structure

The results described hitherto reveal global (inte-
grated) features of the octet and decuplet baryons and
their first positive-parity excitations. It is also worth ex-
posing aspects of their local structure as it is expressed in
the pointwise behaviour of their Faddeev amplitudes. To
this end, we consider the zeroth Chebyshev moment of
all partial waves in a given baryon’s rest-frame Faddeev
wave function, i.e. projections of the form

Y (`2;P 2) =
2

π

∫ 1

−1

du
√

1− u2 Y (`2, u;P 2) , (28)

where u = ` · P/
√
`2P 2.

The order-zero Chebyshev projection of the quark-
core Faddeev amplitudes for the nucleon and its positive-
parity excitation are plotted in Ref [46], Fig. 4; and we re-
produce those results. Herein, therefore, in Fig. 7 we elect
to depict the projections for the Λ-baryon and its first
positive-parity excitation, which are qualitatively equiv-
alent. Namely, each projection for the Λn=0 is of a single
sign (positive or negative). Those associated with the
quark core of the Λn=1 are quite different: all S- and
P -wave components exhibit a single zero at some point
within 0.2 < |`|/GeV . 0.4. Similar statements hold
true of the Σn=0,1 and Ξn=0,1. Drawing upon experience
with quantum mechanics and with excited-state mesons
studied via the Bethe-Salpeter equation [138–141], this
pattern of behaviour for the first positive-parity excited
states indicates that each one may be interpreted as the
simplest radial excitation of its ground-state partner. It
is also worth remarking that the relative magnitudes of
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FIG. 7. Λ-baryon Faddeev wave functions, Chebyshev-moment projections, Eq. (28). S-wave: Λn=0 (upper-left panel) and Λn=1

(upper-right). Legend. “A” → s̃11 ; “B” → s̃ [2,3]1 ; “C” → (ã [6,8]
3 + 2ã [6,8]

5 )/3; and “D” → ã [6,8]
2 . P -wave: Λn=0 (lower-left panel)

and Λn=1 (lower-right). Legend. “A” → s̃12 ; “B” → s̃ [2,3]2 ; “C” → (ã [6,8]
4 + 2ã [6,8]

6 )/3; “D” → ã [6,8]
1 ; and “E” → (ã [6,8]

4 − ã [6,8]
6 ).

D-waves are negligible for all octet baryons considered herein.

these Faddeev amplitude projections are consistent with
the angular momentum contents indicated by Fig. 5.

As illustrated by the Ξ∗n=0,1 projections plotted in
Fig. C.1, this pattern of behaviour is repeated in decuplet
baryons: all zeroth-Chebyshev projections of decuplet
ground-state Faddeev wave functions are of a single sign
whereas each of these projections for the first positive-
parity excitation possesses a single zero. Once again,
therefore, the first positive-parity excitation can be iden-
tified as the simplest radial excitation of the ground-
state’s quark-diquark core.

These observations and conclusions match those in
Refs. [40, 43, 45, 46] and extend them to baryons with
strangeness.

IV. SUMMARY AND PERSPECTIVE

Using a Faddeev kernel that supports a uniformly good
description of observed properties of the nucleon, ∆-
baryon and Roper resonance, we computed the spectrum
and Poincaré-covariant wave functions for all flavour-
SU(3) octet and decuplet baryons and their first positive-
parity excitations (Sec. III A). A basic prediction of such

Faddeev equation studies is the presence of strong non-
pointlike, fully-interacting quark-quark (diquark) corre-
lations within all baryons; and our analysis confirms that
for a realistic description of these states, it is neces-
sary and sufficient to retain only flavour-3̄–scalar and
flavour-6–pseudovector correlations (Sec. III B). Namely,
negative-parity diquarks are negligible in these positive-
parity baryons. Moreover, in its rest-frame, every system
considered may be judged as primarily S-wave in charac-
ter (Sec. III C); and the first positive-parity excitation of
each octet or decuplet baryon exhibits the characteristics
of a radial excitation of the ground-state (Sec. III D).

In arriving at these conclusions, we draw a similar pic-
ture to quark model descriptions of these systems, so
long as rest-frame orbital angular momentum is identified
with that existing between dressed-quarks and -diquarks,
which are the correct strong-interaction quasiparticle
degrees-of-freedom at the hadronic scale and on a ma-
terial domain extending beyond. In addition, we confirm
the quark-model result that each ground-state octet and
decuplet baryon possesses a radial excitation and con-
sequently predict the existence of positive-parity excita-
tions of the Ξ, Ξ∗, Ω baryons, with the masses listed in
Eq. (20).
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Our structural predictions for the octet and decuplet
baryons and their first positive-parity excitations should
be tested because they focus attention on two key ques-
tions in baryon structure [142], viz. is the expression of
emergent mass generation the same in each baryon; and
are dynamical quark-quark correlations an essential ele-
ment in the structure of all baryons? With the analysis
herein, we answer “yes” to both questions for the en-
tire array of octet and decuplet baryons and their first
positive-parity excitations.

It is likely that for u, d-quark baryons, this challenge
will be addressed by new generation resonance electro-
production experiments at JLab [143] because, as recent
progress toward understanding the Roper resonance has
shown [13, 62, 126], such experiments probe the quark-
cores of the baryons involved when they employ photon
virtualities Q2 & 2m2

N , i.e. beyond the meson-cloud do-
main. Access to the structure of ground- and excited-
state hyperons, on the other hand, may require measure-
ments of hyperon radiative transitions. One task now,
therefore, is to complement studies of the nucleon-to-
Roper and nucleon-to-∆ transitions by delivering predic-
tions for an array of transition form factors involving the
baryons described herein on the entire domain of photon
virtualities that is accessible at modern facilities.

Another direction is the extension of our analysis to the
negative-parity partners of all states considered herein.
This would probably show that the complex structural
features of the (I, JP ) = (1/2, 1/2−) states revealed else-
where [44, 46] are also expressed in the flavour-SU(3)
analogues, e.g. negative-parity diquark correlations are
important; the Poincaré-covariant wave function of each
such negative-parity system are predominantly P -wave
in nature, but possess measurable S-wave components;
and the first negative-parity excitation of a given octet
or decuplet negative-parity ground-state possesses little
of the character of a radial excitation. However, such ex-
pectations should be verified; and empirical consequences
elucidated of whatever structural features are uncovered.

Furthermore, with the Faddeev amplitudes of the octet
baryons in hand, calculations of the axial couplings and
form factors of all these states are within reach, up-
dating and extending earlier analyses of the nucleon
[74, 144, 145]. The axial couplings of strange baryons
have many impacts, being important, inter alia, to un-
derstanding hypernuclear physics and hence the equation
of state for neutron stars [146]. They have recently been
calculated using lattice-regularised QCD [147], thereby
enabling potentially valuable theoretical comparisons
with future results from our framework which, e.g. may
shed additional light on the role of meson-baryon final-
state-interactions.
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Appendix A: Dressed quark propagator

The dressed-quark propagator can be written:

Sf (p) = −iγ · p σfV (p2) + σfS(p2) (A.1a)

= 1/[iγ · pAf (p2) +Bf (p2)] . (A.1b)

It is known that for light-quarks the wave function renor-
malisations and dressed-quark masses:

Zf (p2) = 1/Af (p2) , Mf (p2) = Bf (p2)/Af (p2) , (A.2)

respectively, receive strong momentum-dependent cor-
rections at infrared momenta [87, 148–152]: Zf (p2) is
suppressed and Mf (p2) enhanced. These features are an
expression of DCSB and, plausibly, of confinement [80];
and their impact on hadron phenomena has long been
emphasised [153].

Numerical solutions of the quark gap equation are now
readily obtained [87]. However, the utility of an algebraic
form for Sf (p) when calculations require the evaluation of
numerous multidimensional integrals is self-evident. An
efficacious parametrisation of Sf (p), which exhibits the
features described above, is expressed via [91, 92]:

σ̄fS(x) = 2 m̄f F(2(x+ m̄2
f ))

+ F(bf1x)F(bf3x)
[
bf0 + bf2F(εx)

]
, (A.3a)

σ̄fV (x) =
1

x+ m̄2
f

[
1−F(2(x+ m̄2

f ))
]
, (A.3b)

with x = p2/λ2, m̄f = mf/λ,

F(x) =
1− e−x

x
, (A.4)

σ̄S(x) = λσS(p2), σ̄V (x) = λ2 σV (p2). The mass-scale,

λ = 0.566 GeV, (A.5)



14

and parameter values

m̄f bf0 bf1 bf2 bf3
u 0.00897 0.131 2.90 0.603 0.185

s 0.210 0.105 3.18 0.858 0.185

, (A.6)

associated with Eqs. (A.3) were fixed in a fit to wide range
of meson observables [91, 92]. (These values should be
understood as determined at a renormalisation scale ζ =
1 GeV; and ε = 10−4 in Eq. (A.3a) acts only to decouple
the large- and intermediate-p2 domains.)

The dimensionless u = d and s current-quark masses
in Eq. (A.6) correspond to

mu = 5.08 MeV, ms = 119 MeV, (A.7)

and the parametrisation yields the following Euclidean
constituent-quark masses, defined as the solution ME =
p, p2 = M2(p2):

ME
u,d = 0.33 GeV, ME

s = 0.49 GeV. (A.8)

The ratio ME
u /mu = 65 is one expression of DCSB in

the parametrisation of Su(p). It emphasises the dra-
matic enhancement of the dressed light-quark mass func-
tion at infrared momenta. On the other hand, the result
ME
s /ms = 4.2 highlights once again that the s-quark lies

close to the transition boundary between dominance of
emergent mass generation over that connected with the
Higgs boson [154, 155].

As with the diquark propagators in Eq. (4), the ex-
pressions in Eq. (A.3) ensure confinement of the dressed
quarks via the violation of reflection positivity.

Appendix B: Assorted Formulae

As noted in Sec. II B, we assume isospin symmetry
throughout, in which case it suffices to specify the fol-
lowing spin-flavour column vectors for the octet baryon
Faddeev amplitudes:

up =

 u[ud]0+

d{uu}1+

u{ud}1+

↔
 s1

p

a4
p

a5
p

 , (B.1a)

uΛ =
1√
2


√

2 s[ud]0+

d[us]0+ − u[ds]0+

d{us}1+ − u{ds}1+

↔
 s1

Λ

s [2,3]
Λ

a [6,8]
Λ

 , (B.1b)

uΣ =

 u[us]0+

s{uu}1+

u{us}1+

↔
 s2

Σ

a4
Σ

a6
Σ

 , (B.1c)

uΞ =

 s[us]0+

s{us}1+

u{ss}1+

↔
 s2

Σ

a6
Σ

a9
Σ

 , (B.1d)

where [·]JP and {·}JP denote, respectively, flavour com-

binations generated by T j=1,2,3
3̄f

and T g=1,...,6
6f

in Eqs. (2),

with the subscript indicating the spin-parity of the as-
sociated correlation. Naturally, the same vector applies
to both ground-states and their radial excitations. The
difference between these states is expressed in the val-
ues of the coefficients sj8k(=1,2) and ag8k(=1,...,6) that ap-

pear in Eq. (10) and are obtained by solving the ap-
propriate Faddeev equations. A shorthand notation for
these coefficients, which expresses their connection with
Eqs. (2), is specified by the rightmost column of each of
Eqs. (B.1): superscript “1” connects with T 1

3̄f
, . . . , su-

perscript “4”→ T 1
6f

, . . . , superscript “9”→ T 6
6f

.

It is worth comparing Eqs. (B.1b) and (B.1c), with the
latter adapted to the neutral Σ0 case following Eq. (49) in
Ref. [116]. Whilst the Λ0 and Σ0 baryons are associated
with the same combination of valence-quarks, their spin-
flavour wave functions are different: the Λ0

I=0 contains
more of the lighter J = 0 diquark correlations than the
Σ0
I=1. It follows that the Λ0 must be lighter than the Σ0.
The analogous vectors for the decuplet baryons are:

u∆ = [u{uu}1+ ]↔ [a4
∆] , (B.2a)

uΣ∗ =

[
s{uu}1+

u{us}1+

]
↔

[
a4

Σ∗

a6
Σ∗

]
, (B.2b)

uΞ∗ =

[
s{us}1+

u{ss}1+

]
↔

[
a6

Ξ∗

a9
Ξ∗

]
, (B.2c)

uΩ = [s{ss}1+ ]↔ [a9
Ω] . (B.2d)

Naturally, owing to isospin symmetry, it is only neces-
sary to explicitly consider one state in any isospin mul-
tiplet: all members of the multiplet are degenerate; and
the flavour structures of the Faddeev amplitudes are sim-
ply related by isospin raising or lowering operations. For
instance, in the ∆-baryon quadruplet, one has:

u∆++ = u∆ = [u{uu}1+ ] , (B.3a)

u∆+ =

 u{ud}1+

√
2
3

d{uu}1+

√
1
3

 , (B.3b)

u∆0 =

 d{ud}1+

√
2
3

u{dd}1+

√
1
3

 , (B.3c)

u∆− = [d{dd}1+ ] . (B.3d)

Appendix C: Supplementary Tables and Figure

Here we collect two tables and a figure used above
in elucidating structural features of octet and decuplet
baryons and their first positive-parity excitations.
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TABLE C.1. Diquark fractions within octet and decuplet baryons and their first radial excitations, measured by their
contribution to the associated Faddeev amplitude: see Eqs. (22), (23). The superscript on sj , ag is a diquark enumeration
label: see Eqs. (B.1). In reading the decuplet results, recall: a4 ↔ {uu}1+ , a6 ↔ {us}1+ , a9 ↔ {ss}1+ . The rightmost column
lists the net scalar diquark fractions, i.e. the probability, by this measure, of finding a scalar diquark in the identified baryon.

s1 s2 s [2,3] a4 a5 a6 a [6,8] a9 PJP=0+

Octet (n = 0) N 0.37 0.42 0.21 37%

Λ 0.21 0.19 0.60 40%

Σ 0.47 0.34 0.19 47%

Ξ 0.51 0.22 0.27 51%

Octet (n = 1) N 0.39 0.41 0.20 39%

Λ 0.16 0.38 0.46 54%

Σ 0.41 0.26 0.34 41%

Ξ 0.47 0.23 0.30 47%

Decuplet (n = 0) ∆ 1.0 0%

Σ∗ 0.27 0.73 0%

Ξ∗ 0.72 0.28 0%

Ω 1.0 0%

Decuplet (n = 1) ∆ 1.0 0%

Σ∗ 0.27 0.73 0%

Ξ∗ 0.65 0.35 0%

Ω 1.0 0%

TABLE C.2. Diquark fractions within octet and decuplet baryons and their first radial excitations, measured by their
contribution to the associated mass: see Eqs. (24). The superscript on sj , ag is a diquark enumeration label: see Eqs. (B.1).
In reading the decuplet results, recall: a4 ↔ {uu}1+ , a6 ↔ {us}1+ , a9 ↔ {ss}1+ . The rightmost column lists the net scalar
diquark fractions, i.e. the probability, by this measure, of finding a scalar diquark in the identified baryon.

s1 s2 s [2,3] a4 a5 a6 a [6,8] a9 PJP=0+

Octet (n = 0) N 0.84 0.09 0.07 84%

Λ 0.17 0.76 0.07 93%

Σ 0.85 0.10 0.05 85%

Ξ 0.92 0.05 0.03 92%

Octet (n = 1) N 0.93 0.04 0.03 93%

Λ 0.08 0.88 0.04 96%

Σ 0.93 0.05 0.02 93%

Ξ 0.96 0.02 0.02 96%

Decuplet (n = 0) ∆ 1.0 0%

Σ∗ 0.12 0.88 0%

Ξ∗ 0.97 0.03 0%

Ω 1.0 0%

Decuplet (n = 1) ∆ 1.0 0%

Σ∗ 0.07 0.93 0%

Ξ∗ 0.98 0.02 0%

Ω 1.0 0%

In considering the diquark content of decuplet baryons
reported in Tables C.1, C.2, the mixed-flavour diquark,
when present, is favoured for an obvious reason, viz. con-
sidering the Faddeev equation kernel, it is fed by twice as

many exchange processes as the like-flavour correlation.
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FIG. C.1. Ξ∗-baryon Faddeev wave functions, Chebyshev-moment projections, Eq. (28). S-wave: Ξ∗n=0 (top-left panel) and
Ξ∗n=1 (top-right). Legend. “A”→ ã6

1 +(−ã6
6 + ã6

8 )/3; and “B”→ ã9
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6 + ã9
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8 . F -wave components are negligible for all
decuplet baryons considered herein.
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Few Body Syst. 57, 729 (2016).
[82] G. Eichmann, H. Sanchis-Alepuz, R. Williams,

R. Alkofer and C. S. Fischer, Prog. Part. Nucl. Phys.
91, 1 (2016).

[83] C. S. Fischer, Prog. Part. Nucl. Phys. 105, 1 (2019).
[84] M. Hopfer, A. Windisch and R. Alkofer, PoS Confine-

mentX, 073 (2012).
[85] D. Binosi, L. Chang, J. Papavassiliou and C. D. Roberts,

Phys. Lett. B 742, 183 (2015).
[86] R. Williams, C. S. Fischer and W. Heupel, Phys. Rev.

D 93, 034026 (2016).
[87] D. Binosi, L. Chang, J. Papavassiliou, S.-X. Qin and

C. D. Roberts, Phys. Rev. D 95, 031501(R) (2017).
[88] D. Binosi, C. Mezrag, J. Papavassiliou, C. D. Roberts
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