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The spacetime around compact objects is an excellent place to study gravity in the strong, non-linear, dynamical
regime where solar system tests cannot account for the effects of large curvature. Understanding the dynamics
of this spacetime is important for testing theories of gravity and probing a regime which has not yet been studied
with observations. In this paper, we construct an analytical solution for the exterior spacetime of a neutron star in
scalar-Gauss-Bonnet gravity that is independent of the equation of state chosen. The aim is to provide a metric
that can be used to probe the strong field regime near a neutron star and create predictions that can be compared
with future observations to place possible constraints on the theory. In addition to constructing the metric, we
examine a number of physical systems in order to see what deviations exist between our spacetime and that of
general relativity. We find these deviations to be small and of higher post-Newtonian order than previous results
using black hole solutions. The metric derived here can be used to further the study of scalar-Gauss-Bonnet
gravity in the strong field, and allow for constraints on corrections to general relativity with future observations.

I. INTRODUCTION

Einstein’s general relativity (GR) has proved to be an excep-
tional theory to describe gravitational phenomena in Nature.
From its early success in explaining the hithertomysterious ad-
vance of the perihelion of Mercury’s orbit around the Sun [1]
to its consistency with the gravitational wave observations of
merging black hole (BH) and neutron star (NS) binaries by the
LIGO/Virgo collaboration [2], GR has passed – with flying
colors – all experiments it has been confronted with.

Given the continual success of the theory, it is natural to ask:
should we consider GR as the final theory of the gravitational
interaction? Is it worth the effort to keep developing further
tests, seeking glimpses of a more complete theory? Regarding
the first question, field-theoretic considerations have shown
that GR is non-renormalizable, placing a major obstacle to its
quantization, and indicating that the theorymust bemodified in
the ultraviolet regime. Indeed, a generic prediction of the low-
energy limits of quantum gravity theories, such as string theory
and loop quantum gravity, is that GR ought to be augmented
by both additional fields and higher-order curvature scalars.
Regarding the second question, GR’s firm place in our vault
of fundamental physical theories implies that experimental
evidence for a deviation would shake the foundations of this
vault.

Where should we search for signatures of beyond GR phe-
nomenology? Compact objects, NSs and BHs, provide a
strong-field arena on which to put GR to the test in a regime
beyond the weak-fields and low-velocities of our Solar System.
The prototypical example are radio observations of binary pul-
sars, which through the detailed and careful monitoring of re-
ceived pulses can reconstruct the orbital motion of relativistic
binaries to stupendous precision [3–5]. Another example of
tests of GR with compact objects is through the observation of
electromagnetic radiation emitted by the accretion disks that
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surround black holes, although these tests are more challeng-
ing because of the complex astrophysics in play during such
observations [6, 7]. A final andmore recent example is through
the observation of the x-ray pulse profile emitted by hot spots
on the surface of rapidly rotating stars [8–12].
All of the tests mentioned probe the exterior spacetime of

compact objects in one way or another. Therefore, the con-
struction of spacetimes close to these compact objects are
required to place constraints on theories that go beyond GR.
While there are many modified theories that attempt to explain
anomalies between observations and the theoretical predic-
tions of GR [13, 14], a particularly interesting one is Einstein-
dilaton-Gauss-Bonnet (EdGB) gravity. This theory is inter-
esting because it emerges in the low energy limit of heterotic
string theory [15], and it agrees well with GR in the weak
field region [16]. EdGB gravity modifies the Einstein-Hilbert
action through the coupling of the Gauss-Bonnet invariant and
a dynamical (dilaton) scalar field [17]. BH solutions in this
theory have already been developed [18–21], but until now,
NS solutions had only been obtained numerically [22–24].
In this paper, we present the first analytical solution of the

field equations in the small-dilaton expansion of EdGB gravity
(i.e. of scalar-Gauss-Bonnet (sGB) gravity) that represents the
exterior spacetime of non-rotating NSs, working in the small
coupling approximation. These solutions depend only on the
mass of the NS and the strength of the sGB coupling param-
eter, without any dependance on the dilaton scalar charge or
any additional constants of integration. This is contrary to
what has been found in other theories containing a scalar field
(see. [25, 26]), where a scalar charge depends on integrals over
the interior of the source. The absence of this term allows our
final analytic solution to be implemented directly, without the
need to integrate the interior solution numerically to find the
charge term.
With the known analytical exterior metric, we study

the properties of this spacetime by considering (timelike)
geodesics, and derive sGB corrections to the innermost sta-
ble circular orbit (ISCO), to the (circular) orbital frequency
and to the epicyclical radial frequencies of perturbed circular
orbits. We also consider null geodesics and derive sGB cor-
rections to the visible fraction of a NS hot spot as observed
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FIG. 1. (color online) Mass-radius curves for various equations of
state. The solid lines represent the GR solution, while the dashed
lines correspond to our sGB solutions for α = 15κM2

� . The central
densities of the stars shown here range between 0.5-2.3×1015 g/cm3.

from spatial infinity.
A representative result is shown in Fig. 1, where we present

the sGB-corrected mass-radius relation of NS for different val-
ues of the sGB coupling parameter and different equations of
state (EoSs). Each point in this plane represents a NS solution
of a given total gravitationalmass and a given total radius, fixed
through a numerical integration of a given central density that
requires the metric be asymptotically flat at spatial infinity and
C1 everywhere. Observe that the largest deviations arise in the
high compactness regime of the mass-radius relation, where
the central densities are highest. This makes sense given that
sGB gravity introduces higher curvature corrections to GR,
which are bound to be largest when the compactness is as
large as possible.

The structure of this paper is as follows. Section II presents
the basics of sGBgravity, including its action and its field equa-
tions. Section III explains our approach to finding a NS solu-
tion in sGB gravity for the exterior spacetime, while Sec. IV
focuses on the interior regime and it presents the numerical
solution to the interior fields. Section V discusses some astro-
physical applications that differ from the known results of GR.
Finally, Sec. VI concludes and discusses how this metric may
be used in the future. In the remainder of this paper, we use
the (−,+,+,+) metric signature and the conventions of [27],
as well as units in which c = 1 = G.

II. SCALAR GAUSS-BONNET GRAVITY

In this section, we present the action of sGB gravity and its
field equations. We then introduce the perturbative scheme
we will employ to analytically solve the field equations, and
we conclude by presenting the perturbatively expanded field
equations.

A. Action

We start by considering the action of a class of theories
that contain modifications proportional to the Gauss-Bonnet
invariant, whose taxonomy was described in [28]:

S = SEH + Sϕ + SGB + Sm (1)

where SEH is the Einstein-Hilbert action given by

SEH ≡ κ

∫
d4x
√
−g R , (2)

with κ ≡ (16π)−1, g is the determinant of the metric gab ,
R ≡ gabRab = gabR c

acb
is the Ricci scalar (with Rab and

Rabcd being the Ricci and Riemann tensors respectively) and

Sϕ ≡ −
1
2

∫
d4x
√
−g [∇aϕ∇

aϕ + 2U (ϕ)] . (3)

is the action of a canonical scalar field ϕ with potential U.
The coupling between the scalar field and the Gauss-Bonnet
density

G ≡ R2 − 4RabRab + RabcdRabcd (4)

is given by

SGB ≡

∫
d4x
√
−g α f (ϕ) G , (5)

where f (ϕ) specifies the functional form of the coupling and
α (with dimensions of [length]2) its strength. Finally, Sm is the
action of matter fields minimally coupled to the metric.
The choice of f (ϕ) defines the particular member in the

class of Gauss-Bonnet theories. For example, EdGB gravity
is defined via f (φ) = eφ , with typically a massless dilaton so
U(ϕ) = 0. Other coupling function f (φ) were also introduced
in [29, 30] and in the context of spontaneous black hole scalar-
ization in [24, 31–33]. Hereafter, we expand f (ϕ) in a Taylor
series f (ϕ) = f (0)+ f,ϕ(0)ϕ+O(ϕ2) and work in the so-called
decoupling limit of the theory [28]. Since G is a topological
density, the first term in the series yields a boundary term to the
action which does not contribute to the equations of motion.
In the second term, f,ϕ(0) can be absorbed into the definition
of α and we obtain:

SGB ≡

∫
d4x
√
−g α ϕG . (6)

The action in Eq. (1) with SGB given by Eq. (6), is
sometimes called decoupled dynamical Gauss-Bonnet grav-
ity (D2GB) [28] or more simply sGB gravity in this paper.
This theory is invariant under constant shifts ϕ→ ϕ + c when
U = 0 [34–36], and thus, it belongs to shift-symmetric Horn-
deski gravity [37]. In this paper, we will restrict attention to
sGB gravity with U(ϕ) = 0.
We here work in the small-coupling approximation in which

sGB modifications are small relative to GR predictions. This
approximation can be enforced by requiring that α/`2 � 1,
where ` is the characteristic length of our system. For isolated
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NSs, the characteristic length scale is ` =
√

R3/M = R/
√

C ,
where R is the radius of the star, M its mass and C its com-
pactness. This length scale suggests the introduction of the
dimensionless coupling parameter1

ᾱ =
α

κ M2
�

, (7)

in terms of which the small coupling approximation reduces
to ᾱ � κ−1(R/M�)2C −1. For NSs with R ∼ 11 km and
C ∼ 0.2, the small coupling approximation then requires that
α � 600 km2 or equivalently ᾱ � 1.5 × 104. The small-
coupling approximation is well-justified because of current
constraints on α. Observations of the orbital decay of low-
mass x-ray binaries [38] require that α < 9 km2, or ᾱ < 220.
When making plots, we will here work with ᾱ ∈ (0, 30), which
satisfies both the small coupling approximation and current
constraints from low-mass x-ray binary observations.

B. Field equations

We can obtain the field equations of the theory by varying
the action S with respect to the metric and the scalar field, with
the result

Gab = −
α

κ
Kab +

1
2κ

(
Tm
ab + Tϕ

ab

)
, (8a)

�ϕ −U,ϕ = −α G , (8b)

where Gab is the Einstein tensor,

Kab = −2R∇a∇bϕ + 2 (gabR − 2Rab)�ϕ + 8Rc(a∇
c∇b)ϕ

− 4gabRcd∇c∇dϕ + 4Racbd∇
c∇dϕ, (9)

while the stress-energy for the scalar field is

Tϕ
ab
= ∇aϕ∇bϕ −

1
2
gab [∇cϕ∇

cϕ − 2U(ϕ)] . (10)

As we stated before, we will here choose the scalar field to
be massless and not self-interacting, meaning that we can set
U = 0 = U,ϕ in the field equations.

Since we are interested in obtaining NS solutions in this
theory, we assume that matter is described by a perfect fluid,
whose stress-energy tensor is

Tab
m = (ε + p) uaub + p gab , (11)

where ua is the four-velocity of the fluid (with pressure p
and total energy density ε) subject to the constraint uaua =

−1. Due to the diffeomorphism invariance of the theory, Tab
m

satisfies the conservation law

∇aTab
m = 0 , (12)

1 Note that this dimensionless coupling parameter is different from that cho-
sen in other work [38], since here we normalize α by M� instead of M .

as can be verified directly by taking the divergence of the field
equations and using the equations ofmotion for the scalar field.
The EoS of cold nuclear matter characteristic of old NSs

can be well approximated by a barotropic EoS, that is p =
p(ε). The large uncertainties on the properties of matter in NS
interiors result in awide variety of competingEoSmodels [39].
Here, to remain agnostic on which EoS correctly describes NS
interiors we consider eight different EoSs, which cover a wide
range of underlying nuclear physics models. In increasing
order of stiffness we use: FPS [40], SLy [41], WFF1 [42],
WFF2 [42], AP4 [40], ENG [43], AP3 [40], and MPA1 [44].

C. Perturbative expansion for the metric and fluid variables

Having obtained the field equations, we now present the
perturbative scheme that we will use throughout this work.
This approach was first introduced in [17] and was used in a
number of studies involving BHs [20, 35, 45, 46]. Here, we
apply this scheme for the first time to relativistic stars.
Let us consider a static, spherically symmetric star with

spacetime described by the line element

ds2 = −e2τdt2 + e2σdr2 + r2dΩ2 , (13)

where the metric functions τ and σ contain only radial depen-
dence, and dΩ2 = dθ2 + sin2 dφ2 is the line element of the unit
two-sphere. The first step in the small-coupling approximation
is to expand all variables ®z ∈ {τ, σ, ϕ, ε, p} in a power series
in ᾱ as follows

®z(r) =
N∑
n=0
®zn(r) , (14)

where the subscript n determines the power of ᾱ associated
with ®zn, i.e. ®zn = O(ᾱn).
With these expansions, we can immediately make a few

observations. First, at O(ᾱ0), the scalar field is everywhere
constant, because its source is zero [cf. Eq. (8b)]. We can then
exploit shift-symmetry to impose ϕ0 = 0. Second, at O(ᾱ1),
we have τ1 = σ1 = 0. This follows from the fact that ϕ0 = 0
and by Eq. (8a), the Einstein equations are identical to those of
GR at this order. Furthermore, since the metric is unaffected
to this order and there is no direct coupling between ϕ and
matter, we also have that ε1 = p1 = 0.
In this paper, we will obtain solutions for all variables ®z up

to O(ᾱ2). From the proceeding discussion, we can outline the
steps of the calculation ahead as follows:

1. at O(ᾱ0), the problem is identical to GR and we have to
calculate {p0, ε0, τ0, σ0};

2. at O(ᾱ1), we have to determine ϕ1 on the background
of a GR star obtained in the previous step;

3. at O(ᾱ2), we must take into account the backreaction
of the scalar field ϕ1 onto the star to calculate ®z2 ∈
{p2, ε2, τ2, σ2}. The first two quantities tell us how the
fluid is redistributed, while the latter how the spacetime
is modified relative to the background GR metric.
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The perturbative scheme outlined above could be carried
out to higher orders. For instance, at O(α3) we would need
to calculate ϕ3 using the solutions for ®z2. Then, at O(α4), ϕ3
would be used to obtain ®z4. We here stop our calculations
at O(ᾱ2) because this is the lowest order at which the metric
is modified, and therefore, the lowest-order we must have at
hand if we want to calculate sGB corrections to astrophysical
observables.

D. Perturbative expansion of the field equations

At O(ᾱ0), the GR limit of the field equations give

G0
ab =

1
2κ
[(ε0 + p0) uaub + p0gab] . (15)

As usual [47], it is convenient to introduce a mass function
m0 = (r/2)[1 − exp(−2σ0)], and then from the (t, t) and (r, r)-
components of Eq. (15), we find

m′0 = 4πε0r2 , (16a)

τ′0 =
4πp0r3 + m0
r (r − 2m0)

, (16b)

Additionally, we can use the conservation law of Eq. (12) to
obtain

p′0 =
(ε0 + p0)

(
4πp0r3 + m0

)
r (2m0 − r)

, (17)

The system of equations (16) and (17) are known as the
Tolman-Oppenheimer-Volkoff (TOV) equations [48, 49] and
they are valid inside the star. The field equations outside the
star can be obtained from the set above through the limits
(ε0, p0) → 0.
At O(ᾱ1), we have to solve the following equation

�0ϕ1 = −α G0 , (18)

both inside and outside the star, where the d’Alembertian oper-
ator and the Gauss-Bonnet curvature invariant are constructed
from themetric functions found atO(ᾱ0), i.e. τ0 andσ0. Thus,
equation (18) can be rewritten explicitly as

e−2σ0

r
[
ϕ′′1 r + ϕ′1

(
τ′0 r − σ′0 r + 2

) ]
= −αG (19)

At O(ᾱ2), the (t, t) and (r, r) components of the field equa-
tions yield

{
−64π αϕ′′1 +

[
64π αϕ′1 + 2 r (2τ2 − 2σ2 + 1)

]
σ′0 + 2 rσ′2 − 2τ2 + 2σ2 − 1

}
e−2σ0 − 192π αϕ′1σ

′
0e−4σ0

+ 64π αϕ′′1 e−4σ0 + 2τ2 + 1 = 4πr2 [
4ε0τ2 + ϕ

′2
1 e−2σ0 + 2 (ε0 + ε2)

]
(20a)

(1 − 2σ2) e2σ0 − 192π αϕ′1τ
′
0e−2σ0

(
64π αϕ′1 + 2r

)
τ′0 + 2rτ′2 + 1 = 4πr2 [

(4p0σ2 + 2p0 + 2p2) e2σ0 + ϕ′21
]
, (20b)

while the conservation law of Eq. (12) gives

p′2 = −
1
r2

[(
ϕ′′1 r2 +

(
τ′0r2 − σ′0r2 + 2r

)
ϕ′1

−8ατ′′0 − 8α
(
τ′20 − τ

′
0σ
′
0

))
ϕ′1e−2σ0

+8α
(
τ′′0 + τ

′2
0 − 3τ′0σ

′
0

)
ϕ′1e−4σ0

]
− (p0 + p2 + ε0 + ε2) τ

′
0 + (p0 + ε0) τ

′
2 + p′0 (21)

in the stellar interior. The equations in the exterior can be
found through the limits (ε0, ε2, p0, p2) → 0.

III. SOLUTIONS OF THE FIELD EQUATIONS OUTSIDE
THE STAR

In this section, we first solve analytically, in vacuum, the
equations presented in Sec. II order by order in ᾱ. The gen-
eral solutions to these equations will depend on integrations
constants. These constants can be fixed by examining the solu-
tions’ asymptotic behavior at spatial infinity and imposing that
(i) the spacetime is asymptotically flat and that (ii) the scalar
field approaches zero at spatial infinity.

A. O(ᾱ0) equations

At this order, the solutions of Eqs. (16) have the usual
Schwarzschild form

e2τ0 = e−2σ0 = 1 −
a
r
, (22)

where a is an integration constantwhich (aswewill see shortly)
is relatedwith the gravitationalmass M of the star. In obtaining
this solution, we required that the metric be asymptotically flat
near spatial infinity.

B. O(ᾱ1) equations

At this order, we need to consider Eq. (18). To solve it, we
first calculate G0 which can easily be found using Eqs. (22) to
be

G0 =
12 a2

r6 , (23)

and in turn Eq. (19) becomes

r (a − r) ϕ′′1 + (a − 2 r) ϕ′1 = α
12 a2

r4 , (24)
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where Eq. (22) was used once again.
Equation (24) can be solved analytically to find

ϕ1 =
c1
a

ln
(
1 −

a
r

)
+

4α
a2 ln

(
1 −

a
r

)
+

2α
r

(
2
a
+

1
r
+

2a
3r2

)
+ c2 , (25)

where c1 and c2 are two integration constants. Requiring that
the field vanishes at spatial infinity (i.e. that the cosmological
background value of the scalar field is zero), we set c2 = 0.
Expanding ϕ1 about spatial infinity, we find that

ϕ1 = −
c1
r
−

a c1

2 r2 −
a2 c1

3 r3 + O(r
−4) , (26)

which shows that c1 is the scalar monopole charge. Refer-
ence [28] showed that this charge vanishes for all stars, and
therefore, we can set c1 = 0. The final expression for the scalar
field outside the star is then

ϕ1 =
4α
a2 ln

(
1 −

a
r

)
+

2α
r

(
2
a
+

1
r
+

2 a
3 r2

)
. (27)

C. O(ᾱ2) equations

At this order, we can substitute ϕ1 [cf. Eq. (27)] into
Eqs. (20). The resulting system of differential equations can
be solved to find

τ2 = −
3ζ
4

(
1 −

7a
6r

) (
1 −

a
r

)−1
ln

(
1 −

a
r

)
− d1 ζ

a
2r

(
1 −

a
r

)−1
+ d2

− ζ
a
r

(
1 −

a
r

)−1
(

3
4
−

a
2r
−

3a2

16r2 −
5a3

48r3

−
11a4

160 r4 −
a5

20r5 +
5a6

48r6

)
, (28a)

σ2 =
d1 ζ

2

( a
r

) (
1 −

a
r

)−1
−
ζ

8
a
r

(
1 −

a
r

)−1
ln

(
1 −

a
r

)

− ζ
a2

r2

(
1 −

a
r

)−1
(

1
8
+

a
16r
+

a2

24r2 +
a3

32r3

+
a4

40r4 −
23a5

48r5

)
, (28b)

where d1 and d2 are integration constants and we defined the
dimensionless parameter ζ 2 via

ζ ≡
256πα2

a4 . (29)

The constants of integration can be determined by studying
the asymptotic behavior of the metric functions about spatial
infinity. For the gtt metric component we find

gtt = e2d2 −
a (1 + d1 ζ)

r
e2d2 + O(r−2) , (30)

and thus, we set d2 = 0 without loss of generality, as any other
choice corresponds to a simple rescaling of the time coordinate
t → t exp(d2). From the 1/r term we identify

M ≡
a
2
(1 + d1 ζ) . (31)

as a renormalized mass: the gravitational mass of the star that
would be measured by an observer at spatial infinity when per-
forming a Keplerian observation. Decomposing the mass via
M = M0 + M2, we can identify M0 = a/2 as the gravitational
mass of a GR NS, and M2 = ζd1M0 as the sGB correction to
it. A similar mass renormalization occurs for black holes [20].
We can now re-express our exterior solution in terms of the

renormalized mass. First, we eliminate a in favor of M in
Eq. (31) and substitute the resulting equation into Eq. (28).
The resulting expressions for τ2 and σ2 can now be inserted
in gtt = − exp[2(τ0 + τ2)] and grr = exp[2(σ0 + σ2)] and
then, after an re-expansion in powers of ζ , we obtain our final
expressions for the metric up to O(ᾱ2):

gtt = −

(
1 −

2 M
r

)
+

[
3
2

(
1 −

7 M
3 r

)
ln

(
1 −

2 M
r

)
+

M
r

(
3 −

4 M
r
−

3 M2

r2 −
10 M3

3 r3 −
22 M4

5 r4 −
32 M5

5 r5 +
80 M6

3 r6

)]
ζ , (32a)

grr =

(
1 −

2 M
r

)−1
−

M
r

(
1 −

2 M
r

)−2 [
1
2

ln
(
1 −

2 M
r

)
+

M
r
+

M2

r2 +
4 M3

3 r3 +
2 M4

r4 +
16 M5

5 r5 −
368 M6

3 r6

]
ζ . (32b)

2 Note with this definition of ζ , the condition ζ � 1 is not necessarily
true. The small coupling approximation requires that α/`2 � 1, and
α/`2 , ζ1/2.

The equations (32) are independent of d1, and are instead fully
determined by the mass M of the star and the strength of the
coupling constant (through ζ) only.
For consistency, let us now re-express the scalar field also in

terms of the renormalized mass. The astute reader will notice
that to O(ᾱ1) we can simply replace a → 2M in Eq. (27) to
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obtain:

ϕ1 =
α

M2 ln
(
1 −

2 M
r

)
+

2α
r

(
1
M
+

1
r
+

4 M
3 r2

)
, (33)

which is our final expression for the scalar field at O(ᾱ1). The
sGB corrections to a can be ignored in the scalar field, as they
would enter at O(ᾱ3).

D. Comparison with black holes spacetimes

Before proceeding with the interior solution, let us compare
the solutions obtained above to their counterparts for BHs [20],
focusing first on the scalar field solution. The only difference
between the calculation performed here and the one carried
out for BHs is that in the latter case ϕ1 must be regular at the
event horizon. This results in a nonzero value of c1 that yields

ϕBH
1 =

2α
r

(
1

M•
+

1
r
+

4 M•
3 r2

)
, (34)

which is identical to the second term in Eq. (33) with M
replaced by the hole’s mass M•. In a sense then, ϕ1 is equal
to ϕBH

1 plus a correction that arises from its continuity across
the stellar surface. We also observe that the BH limit of the
NS solution for ϕ1 is discontinuous. One can see this easily by
evaluating Eq. (33) at the surface of the star R0 and taking the
BH limit, M/R ∼ M0/R0 → 1/2, which is possible for certain
anisotropic fluids in GR [50, 51].

Let us now compare the NS and BH exterior solutions for
the exterior metric. As in the case of the scalar field, requiring
that the metric tensor be regular at the horizon yields

gBH
tt = −

(
1 −

2M•
r

)
−

1
3

M3
•

r3

(
1 +

26M•
r
+

66
5

M2
•

r2 +
96
5

M3
•

r3 −
80M4

•

r4

)
ζ ,

(35a)

gBH
rr =

(
1 −

2M•
r

)−1
−

M2
•

r2

(
1 −

2M•
r

)−2

×

(
1 +

M•
r
+

52
3

M2
•

r2 +
2M3
•

r3 +
16
5

M4
•

r4 −
368

3
M5
•

r5

)
ζ .

(35b)

As in the case of the scalar field, the BH solution contains
no logarithmic terms, implying that the BH limit of the NS
solution is singular. This is because of the different choice
of constants of integration in the NS and BH cases. Notice
also that in the BH case the metric differs from GR through
terms of δgBH

tt = O(M
3
• /r

3) and δgBH
rr = O(M

2
• /r

2) in the
far field, while in the NS case it differs through terms of
δgtt = O(M7/r7) = δgrr .

E. Note on the absence of a scalar charge in the NS solution

In the case of other scalar-tensor theories, the work of [25,
26] shows that the exteriormetric depends explicitly on a scalar

charge, which in turn depends on the metric and matter terms
within the star. If one wished to find the values of this charge,
one would have to solve the TOV equations numerically for a
specific set of initial conditions and a given equation of state.
In our case, the exterior metric does not depend on any scalar
charge, but rather it depends only on the mass, radius and
coupling constant of the theory.

IV. SOLUTIONS OF THE FIELD EQUATIONS INSIDE
THE STAR

For completeness, let us now tackle the problem of solv-
ing for the fluid variables, scalar field, and metric components
inside the star. This step will inevitably require numerical in-
tegrations, for a relationship between pressure p and energy
density ε (i.e. the EoS) must be given and the resulting equa-
tions cannot be solved analytically. In this section, we present
the numerical scheme and the numerical solutions for the inte-
rior fields. We stress however that the exterior solutions found
in the previous section do not require these interior numerical
solutions.

A. O(ᾱ0) equations

As we saw in Sec. II C, to this order we need to solve the
TOV equations of GR, i.e. Eqs. (16) and (17). We start by
choosing an EoS from our catalog for which, given a central
total energy density εc, gives the corresponding central pres-
sure pc = p(εc). We can then integrate Eqs. (16) and (17) from
r = 0 up to a point where p0(R0) = 0, which determines the
star’s radius R0.
In practice, we do this integration starting from a small,

finite value of rc and using a series solution valid in this region

m0(rc) =
4π
3
εc r3

c + O(r
5
c ) , (36a)

p0(rc) = pc −
2
3

(
3π p2

c + 4π pc εcπ ε
2
c

)
r2

c + O(r
4
c ) , (36b)

τ0(rc) = τ0c +

(
2π pc +

2π
3
εc

)
r2

c + O(r
4
c ) . (36c)

We terminate all integrations at the location where p0/p0c =
10−11. The constant τ0c in the series solution of the metric is
arbitrary and is fixed a posteriori.
At the star’s surface R0 we impose that the metric functions

τ0 and σ0 are continuous, that is:

τin
0 (R0) = τ

ext
0 (R0) , (37a)

σin
0 (R0) = σ

ext
0 (R0) . (37b)

We can analytically match Eqs. (16a) and (22) at R0 to find

a = 2m0(R0) ≡ 2M0 , (38)

where m0(R0) is the mass of the star enclosed inside the radius
R0. Furthermore, Eq. (37a) fixes the value of the constant τ0c.
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Our final numerical solution for τ0 corresponds to a simple
shift τ0 → τ0 + τ0c.
The outcome of these integrations can be summarized in a

mass-radius relation, shown in Fig. 1. In this figure, the solid
lines correspond to various mass-radius curves for the EoSs in
our catalog.

B. O(ᾱ1) equations

At O(ᾱ1) we only need to solve Eq. (18). From the O(ᾱ0)
solution, we know a and R0, which fully determines ϕext

1 and
its derivative at R0 [cf. Eq. (33)]. This information can be used
as initial conditions to integrate Eq. (18) inside the star: we
start our integration at r = R0 and move in toward r = 0. In
this calculation, it is useful to note that G0 is given by

G0 =
48 m2

0
r6 −

128π(m + 2πr3p0)

r6 , (39)

inside the star [32], where the functions m0, p0 and ε0 are all
known from the O(ᾱ0) calculation.
The radial profiles of G0 and ϕ1 are shown in Fig. 2 using

the SLy EoS with the scalar-Gauss-Bonnet coupling fixed to
ᾱ = 15. In the top-panel, we see that G0 is mostly negative
within the star, except near the surface (indicated by the dashed
vertical line) where it changes sign and then matches smoothly
to its exterior form, given in Eq. (23). We also observe that
G0 has a larger magnitude for stars with larger values of ε0c.
This is can be seen by substituting the expansions of Eq. (36)
in Eq. (39). We find that G0 is negative and nearly constant
close to the center of the star at r ≈ 0, with its magnitude
proportional to ε0c. In the bottom-panel, we see that NSs with
larger central energy densities ε0c have larger amplitudes of
ϕ1 at their cores. This is unsurprising given the fact that the
source of the scalar, i.e. G0, has a larger magnitude near the
stellar center. At the surface, ϕ1 connects smoothly with its
exterior solution, given by Eq. (25) (at this order in α). The
results for other EoSs are qualitatively the same as the ones
shown here.

Let us now investigate how the central values of the scalar
field ϕ1 vary as a function of both ε0c and of ᾱ. This de-
pendence is shown in Fig. 3 for four representative values of
ᾱ = {5, 10, 15, 20} covering a range of central energy densities
ε0c that span stars with masses 0.552 M� to 2.03 M� using the
SLy EoS. We see that for small ε0c (i.e. low-mass stars) all
values of ϕ1c converge towards zero regardless of the strength
of the coupling. This is can understood by noticing that in this
limit G0 is very small and nearly flat (cf. Fig. 2), thus sourcing
ϕ1 weakly. For larger ε0c, the situation is different and we see
a stronger dependence of the central value of ϕ1 on ᾱ. Unsur-
prisingly, the magnitude of ϕ1 is larger at the stellar core the
larger the strength of the coupling ᾱ.

C. O(ᾱ2) equations

AtO(ᾱ2)we need to solve Eqs. (20) and (21). The boundary
conditions are similar to those at O(ᾱ0). Imposing continuity

4

3

2

1

0

0 [
cm

4 ]

1e 23

0c = 5
0c = 10
0c = 15
0c = 20

0 2 4 6 8 10 12 14
Radius [km]

0.03

0.02

0.01

0.00

1

FIG. 2. (color online) Radial profiles of the Gauss-Bonnet invariant
G0 (top) and the scalar field ϕ1 (bottom) at O(ᾱ1) for an SLy EoS.
In both panels, the different colors correspond to different central
energy densities ε0c (in units of 1014 g/cm3). The vertical dashed
lines correspond to the radius for each star. All scalar field solutions
were calculated at a fixed ᾱ = 15 coupling constant strength.

6 8 10 12 14 16 18 20 22

0c [1014 g/cm3]

0.05

0.04

0.03

0.02

0.01

0.00

1c

= 5
= 10
= 15
= 20

FIG. 3. (color online) Central values of the scalar field ϕ1 for various
values of ᾱ as a function of the central densities of the star with an
SLy EoS. Observe how the central value of the scalar field converges
toward zero at small central densities irrespective of the coupling
constant.

at the surface gives us

ginab(α
0, α2, R2) = gext

ab(α
0, α2, R2) , (40)

where R2 is the radius of the NS at O(ᾱ2) given by the condi-
tion:

p0(R2) + p2(R2) = 0 . (41)

As in theO(ᾱ0) integrations, we start from rc and integrate out-
wards until the point R2 where the condition (p2 + p0)/p0c =
10−11 is met. Equation (40) allow us to determine the nu-
merical value of d1, which in turn allows us to calculate the
renormalized mass M [Eq. (31)] and thereby determine the
exterior metric in terms of interior quantities.

When integrating Eqs. (20)-(21) we need to be careful on
how we calculate the perturbed density ε2. To do this, we take
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our total density ε(p) = ε0 + ε2, and solve for ε2 as

ε2 = ε (p0 + p2) − ε0 (p0) , (42)

where ε(p0+p2) is a spline interpolation of our EoS table. This
allows us to eliminate the variable ε2 in favor of the perturbed
pressure p2. With Eq. (42) and the solutions to all fields up to
O(ᾱ), we can solve our system of equations given by Eqs. (20)
and (21).

The dashed curves in Fig. 1 show the mass-radius relations
calculated to O(ᾱ2) for the various EoSs of our catalog. We
see that for a fixed value of ᾱ the deviations from the GR
mass-radius relation occur at larger masses. This is consis-
tent with our previous observations on ϕ1, which had a larger
magnitude for larger masses. Consequently, these large scalar
fields backreact more strongly onto the GR solution, causing
larger changes to the mass and the radius. The sGB correc-
tions typically lead to less massive NSs regardless of the EoS
considered, as result consistent with those of [22]. For clarity,
in Fig. 1 we only showed curves with a fixed ᾱ = 15, but how
do the mass-radius curves change (for a fixed EoS) as we vary
ᾱ? This is shown in Fig. 4 for the SLy EoS. As expected, from
our previous discussion of the O(ᾱ1) results, an increase in ᾱ
causes larger deviations in the mass-radius curve. Indeed, the
larger the value of the sGB coupling, the smaller the maximum
NS mass that is allowed for a given EoS.

Figure 1 also shows vividly the difficulties of testing modi-
fied theories of gravity with masses and radii measurements of
NSs. In the absence of a complete understanding of matter in
theNS interior, the various competing EoSmodels predict NSs
that cover a wide portion of the (M, R)-plane. But this prob-
lem could be averted if, in the future, the EoS is constrained
through NICER [8–10] and/or LIGO/VIRGO [52]. Let us
imagine, for example, that the SLy EoS is favored by obser-
vations. If so, the observation of a ≈ 2M� NS (see e.g. [53])
would place the stringent constraint ᾱ . 10 (roughly one order
of magnitude more stringent than current bounds), since for
larger values a SLy EoS could not predict such a massive NS
(see Fig. 4). This constraint would be weaker if the true EoS
is stiffer (e.g. MPA1 and AP3), as larger values of ᾱ would be
required to pull themass-radius curve below≈ 2M�, but stiffer
EoSs are disfavored by recent tidal deformability constraints
from the GW170817 gravitational-wave event [54].

Our results shown above are in agreement with those ob-
tained previously in the literature. For example, NS solutions
in the full EdGB theory were presented first in Pani et al. [22].
We compared our final results with those from [22] (see e.g.
Figs. 1-3 in that paper) and found good agreement when the
coupling was small (i.e. in the decoupling limit).

V. ASTROPHYSICAL APPLICATIONS

Now that we have a analytic solution for the exterior space-
time of aNS in sGB gravity (see Eqn. (32)), let us explore some
astrophysical applications to investigate the physical effects of
the corrections on observables.

Probing astrophysical phenomena in the vicinity of NSs
naturally requires that one first analyze the geodesic motion of

10.50 10.75 11.00 11.25 11.50 11.75 12.00 12.25
Radius [km]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
as

s [
M

]

J0348+0432

GR
 = 5
 = 10
 = 15
 = 20
 = 25
 = 30

FIG. 4. (color online) Mass-radius curves with a SLy EoS for varying
couplings ᾱ. Observe that greater couplings lead to a decrease in the
maximummass of NSs, which can aid in constraining the theory with
observations of massive pulsars.

massive test particles and of light in the stellar exterior. Since
our metric is static and axisymmetric, we know it possesses a
timelike and azimuthal Killing vector, which imply the exis-
tence of two conserved quantities: the specific energy E and
the specific angular momentum L

E = −gtt Ût , L = gφφ Ûφ . (43)

where the dots indicate differentiation with respect to proper
time. From normalization condition of the four-velocity,
uaua = ε , where ε = (−1 or 0) for time-like or null trajec-
tories respectively, we obtain

Ûr2

2
= Veff(r) , (44)

which describes the radial motion of the particle in terms of
the effective potential

Veff(r) = −
1

2grr

(
E2

gtt
+

L2

gφφ
− ε

)
. (45)

Because of spherical symmetry, we can set θ = π/2 (and
therefore gφφ = r2) without loss of generality.

A. Circular orbits around the star

Let us study the circular motion of massive test particles
(ε = −1) around a NS with exterior metric given by Eqs. (32).
For a circular orbit at r = r∗, the conditions Veff(r∗) = 0 and
V ′eff(r∗) = 0 must be satisfied. Using Eq. (45), we can solve for
E and L, and expand in powers of ζ to obtain

E = E0 + ζE2 + O(ζ
2) , (46a)

L = L0 + ζL2 + O(ζ
2) , (46b)
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where E0 and L0 are the GR specific energy and angular mo-
mentum for circular orbits [47]

E0 =

(
1 −

2M
r∗

) (
1 −

3 M
r∗

)−1/2
, (47a)

L0 = (Mr∗)1/2
(
1 −

2M
r∗

)
E0 , (47b)

and E2 and L2 are modifications of O(ᾱ2). The latter are given
by

E2 = −

(
1 −

3 M
r∗

)−3/2 [
3
4
−

31 M
8 r∗

+
21 M2

4 r2
∗

]
ln

(
1 −

2 M
r∗

)
−

M
r∗

(
1 −

3 M
r∗

)−3/2 (
3
2
−

25 M
4 r∗

+
19 M2

4 r2
∗

+
19 M3

6 r3
∗

+
33 M4

10 r4
∗

+
21 M5

5 r5
∗

−
596 M6

15 r6
∗

+
40 M7

r8
∗

)
,

(48)

and

L2 =
(M r∗)1/2

8

(
1 −

3 M
r∗

)−3/2
ln

(
1 −

2 M
r∗

)
+ (M r∗)1/2

(
1 −

3 M
r∗

)−3/2 (
M

4 r∗
+

M2

4 r2
∗

+
M3

3 r3
∗

+
M4

2 r4
∗

+
4 M5

5 r5
∗

−
188 M6

3 r6
∗

+
80 M7

r7
∗

)
. (49)

We may now make use of Eqs. (44) and (45) along with our
circular orbit conditions to find the sGB modifications to the
location of the ISCO. Doing so, we find that the ISCO radius
is

RISCO = 6M −
3M
2

[
5047

14580
+ ln

(
2
3

)]
ζ + O(ζ2) . (50)

which reproduces the well-known GR result when ζ = 0. No-
tice that the sGB correction pushes the ISCO location farther
away from the stellar surface (assuming the star is sufficiently
compact so that the ISCO is outside the surface in GR in the
first place) by a small amount RISCO − 6M ≈ +0.089Mζ .

B. Modified Kepler’s third law

Now let us derive an expression for the orbital frequency
Ωφ = dφ/dt of a massive particle in circular orbit at radius
r∗ as measured by an observer at infinity. Using Eqs. (43)
and (46) we find

Ω
2
φ/Ω

2
0 − 1 = −

7
4

ln
(
1 −

2 M
r∗

)
ζ −

(
1 −

2 M
r∗

)−1

×

(
7 M
2 r∗
−

7 M2

2 r2
∗

−
7 M3

3 r3
∗

−
7 M4

3 r4
∗

−
14 M5

5 r5
∗

−
1976 M6

15 r6
∗

+
560 M7

3 r7
∗

)
ζ + O(ζ2) , (51)

where Ω2
0 = M/r3

∗ is the usual GR result. Expanding Eq. (51)
in the far field limit we find to leading order in ζ

Ω
2
φ ≈ Ω

2
0

(
1 +

128M6

r6
∗

ζ

)
, (52)

which is consistent with our expansions of the sGB metric
deformation in Sec. III D. Unlike the case for BHs, where
the correction to the frequency occurs as O(M2/r2) [20], the
presence of the logarithmic term in Eq. (51) gives a small
correction. This suggests that weak-field observables will be
very poor probes of sGB gravity.

C. Quasiperiodic oscillations

Let us now focus on the frequencies of quasi-periodic os-
cillations (QPOs). There are a number of models which have
been proposed as possible causes of QPOs including the rel-
ativistic motion of matter [55] and resonance between orbital
and epicyclic motion [56]. Regardless of the model in ques-
tion, it may be interesting to calculate the sGB corrections the
QPO frequencies to study what effect, if any, this modification
to GR has.
The orbital frequency was already calculated in Eq. (52),

so let us now calculate the epicyclic frequency for time-
like geodesics. This frequency is determined by a radially-
perturbation to the circular orbit equation [Eq. (44)], which
yields

Ω
2
r = −

1
2 Ût

∂2Veff(r)
∂r2 . (53)

Solving Eq. (53) with the Veff(r) defined in Eq. (45) gives us

Ω
2
r/Ω

2
0 = 1 −

6 M
r
−

7
4

(
1 −

48 M
7 r

)
ln

(
1 −

2 M
r

)
ζ

+
M
r

(
1 −

2 M
r

)−1 (
7
2
−

55 M
2 r
+

65 M2

3 r2 +
41 M3

3 r3

+
66 M4

5 r4 +
9832 M5

15 r5 −
15056 M6

15 r6 −
256 M7

r7

)
ζ

+ O(ζ2) . (54)

If one were to asymptotically expand this frequency about
spatial infinity, one would again find that the sGB corrections
are highly suppressed. As we will see below, however, QPOs
are sensitive to physics near the ISCO, and in this regime, the
sGB corrections are not nearly as suppressed.
In addition to these two frequencies, there is often a third one

that is important in QPOs and measures the rate of periastron
precession of the orbit. This precession frequency can be
found via

Ωper = ΩsGB −Ωr , (55)

and it is usually important in lower frequency QPOs3 [59].

3 Some models treat this frequency as stemming from inhomogeneities near
the inner accretion disk boundary, causing a beat frequency [57]. However,
this was found to be inconsistent with observations [58].
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FIG. 5. (color online) Orbital frequencies Ωr versus ΩsGB for a NS
of mass 1.4 M� to leading order in ζ .

With these three frequencies in hand, one could imagine using
the observation of QPOs to place constraints on sGB. Fig-
ure 5 depicts two of our frequencies against one another (in
dimensionless units) and illustrates how there are noticeable
deviations from the GR predictions as α increases. Observe
that the frequencies approach each other when either of them
is small, since here one approaches the weak-field regime de-
scribed in Eq. (52).

Onemay present these frequencies in terms of an observable
quantity, namely the dimensionless linear orbital velocity v,
as done in [59, 60]. By introducing the orbital velocity as
v = (MΩsGB)

1/3, we may re-express the ratio of the precession
frequency to the orbital frequency as a series in velocity to
obtain

Ωper

ΩsGB
= 3 v2 +

9
2
v4 +

27
2

v6 +
405
8

v8 +
1701

8
v10

+

(
15309

16
+ 384 ζ

)
v12 + O(v14) , (56)

where the modification to the GR solution again is suppressed
by a high power of velocity that is consistentwith the expansion
of Eq. (52). As before, the largest deviations will then occur
for observables that are sensitive to physics near the surface of
the NS, i.e. where the orbital velocity is not extremely small.

D. Light bending

Let us now consider photon motion in the sGB exterior
spacetime, as depicted in Fig. 6. Imagine then a photon leaving
the surface of the NS along the unit vector ®k, which makes an
angle γ with the unit vector ®n normal to the star’s surface.
The angle ψ, between ®n and the line of sight, is an important
quantity in astrophysical applications. For instance, when
γ = π/2, ψ = ψcrit is the critical angle between the line of
sight and the normal to the surface beyond which the photon
cannot reach the observer. This allows one to define a visible
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FIG. 6. Diagram of emitted photon trajectory. A photon emitted in
the direction ®k from the surface of the star orthogonal to ®n will have
its trajectory bent by an angle ι = ψ − γ to an impact parameter of b.

fraction of the star as

ς ≡
1
2
[1 − cos (ψcrit)] . (57)

Moreover, in the context of pulse profile modeling, photons
emitted by the hot spot can only reach the observer when the
are emitted if emitted with cosψ > cosψcrit [61].
Let us now derive an expression for ψ. We again restrict

attention to equatorial orbits, such that θ = 0 and Ûθ = 0, and
change notation φ → ψ in Eqs. (43) and (44) with ε = 0.
Solving for the fraction dψ/dr yields

dψ
dr
=

1
gψψ

[
−

1
grr

(
E2

L2
1
gtt
+

1
gψψ

)]−1/2

. (58)

Since E and L are constant, we can simplify the above expres-
sion through the emission angle γ, defined via [61]

tan2 (γ) =
uψuψ
urur

. (59)

The above expression allows us to find a relation between E ,
L, and γ, namely4

L
E
=

√
−
gtt (R)
gψψ(R)

sin (γ) , (60)

where we evaluate the metric functions at the stellar surface.
Substituting Eq. (60) into Eq. (58) gives a direct relation be-
tween ψ and γ for a given R, which can be solved to obtain

ψ(R, γ) =
∫ ∞

R

dr
gψψ

[
−

1
grr

(
1

gψψ
−
gψψ(R) csc2 (γ)

gtt (R) gtt

)]
.

(61)
The integral in Eq. (61) may not be straightforward to solve,
even numerically, but following [63, 64], we can rewrite it

4 The ratio of L/E is also called the impact parameter [62], which is denoted
as b in Fig. 6.
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FIG. 7. (color online) Critical angle as a function of compactness for
several coupling values ζ . If we were to fix α as done in previous
figures, we would also need to specify the NS mass. Since we can
only measure M/R directly (and not the NS mass) with light bending
tests, it makes more sense here to fix ζ instead.

in terms of the compactness M/R and a new variable x =√
1 − R/r to ease the numerical integration.
The results of evaluating Eq. (61) as a function of the com-

pactness are shown in Fig. 7. Observe that there is a greater
deflection of light for NSs of greater compactness. This is
apparent even in the GR limit, and it is due to the effects
of curvature near compact objects. However, this effect is
enhanced in sGB gravity, increasing with larger ζ 5, which
dictates how strongly the G correction contributes to the sys-
tem. For stars with smaller masses and larger radii, there is a
negligible change in the deflection of light, regardless of the
strength of ζ . The curvature of spacetime near the surface of
these NS is simply not large enough even with the quadratic
curvature nature of our theory to cause any deviations that may
be detectable in future observations.

We may also look at how light bending in sGB gravity
compares to light bending in GR, as shown in Fig. 8 for various
choices of ζ values and two fixed compactnesses. As with
Fig. 7, there are only tiny deviations when the compactness
is small. However, NSs with larger compactnesses do present
sGB corrections to light bending that make it stronger relative
to GR.

As a final calculation, we can also find the visible fraction of
the NS surface, given in Eq. (57). This is shown in Fig. 9. In
agreement with our previous results, there is little to be learned
about sGBgravity fromobservations of low compactness stars.
However, as the compactness increases, so does the effects
of the coupling with the Gauss-Bonnet invariant. Likewise,
larger values of the coupling constant lead to larger changes
in the visible fraction. In GR, it is known that for NSs with
M/R ≈ 0.28, strong gravitational light bending can make the
whole surface of the star visible [65]. The effect of the scalar-
Gauss-Bonnet coupling is to reduce the necessary compactness
the whole surface of the star to become visible. For instance,
when ζ = 5, this compactness is 0.264.

5 The relation between ζ and α depends on the mass of the NS, which is
not specified here. As a reference, for a 1.4 M� NS, ᾱ = (10, 20, 30)
corresponds to ζ ≈ (0.5, 2.1, 4.6).
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FIG. 8. (color online) Light bending in sGB gravity. The solid lines
represent the GR solution, while the dashed (dotted) lines correspond
to ζ = 2.5 (ζ = 5). Deviations from GR are more noticeable when
the compactnesses is large and and ζ increases light bending, at fixed
emission angle γ.
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FIG. 9. (color online) Visible fraction of a star as a function of
compactness for various coupling strengths. The lines terminate at the
value of compactness for which the whole surface of the star becomes
visible. Large values of ζ require smaller values of compactness for
this to happen.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we obtained an analytical metric that repre-
sents the exterior spacetime of a NS in sGB gravity as well
as an analytical expression for the scalar field. The metric
was derived through a small-coupling perturbative scheme and
depends only on the mass of the NS in question and the de-
sired strength of the coupling constant. Our metric is valid
to O(ᾱ2) and we have outlined how higher-order corrections
can be obtained. We applied the new spacetime to a sam-
ple of astrophysical applications, including the motion of test
particle (which is important for instance to model QPOs) and
light bending (which is important to model x-ray pulse profiles
generate by hot spots at the surface of rotating NSs).
Our work opens the door for number a future studies with

NSs in sGB gravity, with the convenience of now being able
to treat the metric analytically. One application could be the
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development of an effective-one-body (EOB) formalism, to
model NS binaries in sGB, along the lines of the recent work
in scalar-tensor theories [66]. Having the theory expressed in
an EOB framework allows one to understand the dynamics of
the two-body system, the radiation-reaction components of the
system, and knowledge of the gravitational-waveform emitted
from a coalescing binary [67].

Another possible use for the exterior metric is in the model-
ing of x-ray pulse profiles as a possible testbed for sGB gravity.
These pulse profiles are generated by the x-ray emission from
hot spots on the surface of rotating NS [65] (see [68–70] for
reviews). As the photons propagate from the surface towards
the observer, they probe the spacetime around the NS which,
in principle, can leave detectable deviations in the observed
pulse profile relative to what is predicted in GR. This pos-
sibility was recently explored in the context of scalar-tensor
theories [11, 12, 71]. In particular, [12] showed that in princi-
ple observations made by NICER can constrain these theories.
It would be interesting to see if the same is true in sGB gravity.

A final observation of interest is the absence of any sGB
gravity integration constants in the final expression for the ex-

terior metric presented in Eq. (32). This is rather unexpected
because in other theories (such as in scalar tensor theories) the
exterior metric does depend on charges that must be computed
numerically. In sGB gravity, however, the exterior metric is
fully determined in terms of the mass of the star M and the
coupling constant of the theory α. A deeper physical or math-
ematical understanding of why this is the case in sGB gravity
would be most interesting and will be studied elsewhere.

ACKNOWLEDGMENTS

This work was supported by NSF Grant No. PHY-1250636
and PHY-1759615, as well as NASA grants NNX16AB98G
and 80NSSC17M0041. We thank Alejandro Cárdenas-
Avendaño, Paolo Pani, Thomas Sotiriou and Kent Yagi for
helpful discussions. Computational efforts were performed on
the Hyalite High Performance Computing System, operated
and supported byUniversity Information TechnologyResearch
Cyberinfrastructure at Montana State University.

[1] C. M. Will, Living Rev. Rel. 17, 4 (2014), arXiv:1403.7377
[gr-qc].

[2] B. P. Abbott et al. (LIGO Scientific, Virgo), (2018),
arXiv:1811.12907 [astro-ph.HE].

[3] T. Damour, Class. Quant. Grav. 32, 124009 (2015),
arXiv:1411.3930 [gr-qc].

[4] N. Wex, (2014), arXiv:1402.5594 [gr-qc].
[5] M. Kramer, Int. J. Mod. Phys. D25, 1630029 (2016),

arXiv:1606.03843 [astro-ph.HE].
[6] D. Psaltis, Living Reviews in Relativity 11, 9 (2008).
[7] A. Cardenas-Avendano, J. Godfrey, N. Yunes, and A. Lohfink,

(2019), arXiv:1903.04356 [gr-qc].
[8] K. C. Gendreau, Z. Arzoumanian, and T. Okajima, in Space

Telescopes and Instrumentation 2012: Ultraviolet to Gamma
Ray, Proc. SPIE, Vol. 8443 (2012) p. 844313.

[9] Z. Arzoumanian et al., in Space Telescopes and Instrumentation
2014: Ultraviolet to Gamma Ray, Proc. SPIE, Vol. 9144 (2014)
p. 914420.

[10] K. Gendreau and Z. Arzoumanian, Nature Astronomy 1, 895
(2017).

[11] H. O. Silva and N. Yunes, Phys. Rev. D99, 044034 (2019),
arXiv:1808.04391 [gr-qc].

[12] H. O. Silva and N. Yunes, (2019), arXiv:1902.10269 [gr-qc].
[13] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Phys. Rept.

513, 1 (2012), arXiv:1106.2476 [astro-ph.CO].
[14] E. Berti et al., Class. Quant. Grav. 32, 243001 (2015),

arXiv:1501.07274 [gr-qc].
[15] H. Zhang, M. Zhou, C. Bambi, B. Kleihaus, J. Kunz, and

E. Radu, Phys. Rev. D95, 104043 (2017), arXiv:1704.04426
[gr-qc].

[16] T. P. Sotiriou and E. Barausse, Phys. Rev. D75, 084007 (2007),
arXiv:gr-qc/0612065 [gr-qc].

[17] S. Mignemi and N. R. Stewart, Phys. Rev. D47, 5259 (1993),
arXiv:hep-th/9212146 [hep-th].

[18] P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis, and E.Win-
stanley, Phys. Rev. D54, 5049 (1996), arXiv:hep-th/9511071
[hep-th].

[19] T. Torii, H. Yajima, and K.-i. Maeda, Phys. Rev. D55, 739
(1997), arXiv:gr-qc/9606034 [gr-qc].

[20] N. Yunes and L. C. Stein, Phys. Rev. D83, 104002 (2011),
arXiv:1101.2921 [gr-qc].

[21] D.Ayzenberg andN.Yunes, Phys. Rev.D90, 044066 (2014), [Er-
ratum: Phys. Rev.D91,no.6,069905(2015)], arXiv:1405.2133
[gr-qc].

[22] P. Pani, E. Berti, V. Cardoso, and J. Read, Phys. Rev. D84,
104035 (2011), arXiv:1109.0928 [gr-qc].

[23] B. Kleihaus, J. Kunz, and S. Mojica, Phys. Rev. D90, 061501
(2014), arXiv:1407.6884 [gr-qc].

[24] D. D. Doneva and S. S. Yazadjiev, JCAP 1804, 011 (2018),
arXiv:1712.03715 [gr-qc].

[25] R. Coquereaux and G. Esposito-Farese, Ann. Inst. H. Poincare
Phys. Theor. 52, 113 (1990).

[26] T. Damour and G. Esposito-Farese, Class. Quant. Grav. 9, 2093
(1992).

[27] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (W.
H. Freeman, San Francisco, USA, 1973).

[28] K. Yagi, L. C. Stein, and N. Yunes, Phys. Rev. D93, 024010
(2016), arXiv:1510.02152 [gr-qc].

[29] G. Antoniou, A. Bakopoulos, and P. Kanti, Phys. Rev. Lett. 120,
131102 (2018), arXiv:1711.03390 [hep-th].

[30] G. Antoniou, A. Bakopoulos, and P. Kanti, Phys. Rev. D97,
084037 (2018), arXiv:1711.07431 [hep-th].

[31] D. D. Doneva and S. S. Yazadjiev, Phys. Rev. Lett. 120, 131103
(2018), arXiv:1711.01187 [gr-qc].

[32] H. O. Silva, J. Sakstein, L. Gualtieri, T. P. Sotiriou, and E. Berti,
Phys. Rev. Lett. 120, 131104 (2018), arXiv:1711.02080 [gr-qc].

[33] H. O. Silva, C. F. B. Macedo, T. P. Sotiriou, L. Gualtieri,
J. Sakstein, and E. Berti, Phys. Rev. D99, 064011 (2019),
arXiv:1812.05590 [gr-qc].

[34] T. P. Sotiriou and S.-Y. Zhou, Phys. Rev. Lett. 112, 251102
(2014), arXiv:1312.3622 [gr-qc].

[35] T. P. Sotiriou and S.-Y. Zhou, Phys. Rev. D90, 124063 (2014),
arXiv:1408.1698 [gr-qc].

https://doi.org/10.12942/lrr-2014-4
http://arxiv.org/abs/1403.7377
http://arxiv.org/abs/1403.7377
http://arxiv.org/abs/1811.12907
https://doi.org/10.1088/0264-9381/32/12/124009
http://arxiv.org/abs/1411.3930
http://arxiv.org/abs/1402.5594
https://doi.org/10.1142/S0218271816300299
http://arxiv.org/abs/1606.03843
https://doi.org/10.12942/lrr-2008-9
http://arxiv.org/abs/1903.04356
https://doi.org/10.1117/12.926396
https://doi.org/10.1117/12.926396
https://doi.org/10.1117/12.926396
https://doi.org/10.1117/12.2056811
https://doi.org/10.1117/12.2056811
https://doi.org/10.1038/s41550-017-0301-3
https://doi.org/10.1038/s41550-017-0301-3
https://doi.org/10.1103/PhysRevD.99.044034
http://arxiv.org/abs/1808.04391
http://arxiv.org/abs/1902.10269
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1016/j.physrep.2012.01.001
http://arxiv.org/abs/1106.2476
https://doi.org/10.1088/0264-9381/32/24/243001
http://arxiv.org/abs/1501.07274
https://doi.org/ 10.1103/PhysRevD.95.104043
http://arxiv.org/abs/1704.04426
http://arxiv.org/abs/1704.04426
https://doi.org/10.1103/PhysRevD.75.084007
http://arxiv.org/abs/gr-qc/0612065
https://doi.org/10.1103/PhysRevD.47.5259
http://arxiv.org/abs/hep-th/9212146
https://doi.org/10.1103/PhysRevD.54.5049
http://arxiv.org/abs/hep-th/9511071
http://arxiv.org/abs/hep-th/9511071
https://doi.org/10.1103/PhysRevD.55.739
https://doi.org/10.1103/PhysRevD.55.739
http://arxiv.org/abs/gr-qc/9606034
https://doi.org/10.1103/PhysRevD.83.104002
http://arxiv.org/abs/1101.2921
https://doi.org/10.1103/PhysRevD.91.069905, 10.1103/PhysRevD.90.044066
http://arxiv.org/abs/1405.2133
http://arxiv.org/abs/1405.2133
https://doi.org/ 10.1103/PhysRevD.84.104035
https://doi.org/ 10.1103/PhysRevD.84.104035
http://arxiv.org/abs/1109.0928
https://doi.org/10.1103/PhysRevD.90.061501
https://doi.org/10.1103/PhysRevD.90.061501
http://arxiv.org/abs/1407.6884
https://doi.org/10.1088/1475-7516/2018/04/011
http://arxiv.org/abs/1712.03715
https://doi.org/10.1088/0264-9381/9/9/015
https://doi.org/10.1088/0264-9381/9/9/015
https://doi.org/10.1103/PhysRevD.93.024010
https://doi.org/10.1103/PhysRevD.93.024010
http://arxiv.org/abs/1510.02152
https://doi.org/10.1103/PhysRevLett.120.131102
https://doi.org/10.1103/PhysRevLett.120.131102
http://arxiv.org/abs/1711.03390
https://doi.org/10.1103/PhysRevD.97.084037
https://doi.org/10.1103/PhysRevD.97.084037
http://arxiv.org/abs/1711.07431
https://doi.org/10.1103/PhysRevLett.120.131103
https://doi.org/10.1103/PhysRevLett.120.131103
http://arxiv.org/abs/1711.01187
https://doi.org/ 10.1103/PhysRevLett.120.131104
http://arxiv.org/abs/1711.02080
https://doi.org/10.1103/PhysRevD.99.064011
http://arxiv.org/abs/1812.05590
https://doi.org/10.1103/PhysRevLett.112.251102
https://doi.org/10.1103/PhysRevLett.112.251102
http://arxiv.org/abs/1312.3622
https://doi.org/10.1103/PhysRevD.90.124063
http://arxiv.org/abs/1408.1698


13

[36] M. Saravani and T. P. Sotiriou, (2019), arXiv:1903.02055 [gr-
qc].

[37] T. Kobayashi, M. Yamaguchi, and J. Yokoyama, Prog. Theor.
Phys. 126, 511 (2011), arXiv:1105.5723 [hep-th].

[38] K. Yagi, Phys. Rev. D86, 081504 (2012), arXiv:1204.4524 [gr-
qc].

[39] J. M. Lattimer and M. Prakash, Phys. Rept. 621, 127 (2016),
arXiv:1512.07820 [astro-ph.SR].

[40] A. Akmal, V. R. Pandharipande, and D. G. Ravenhall, Phys.
Rev. C58, 1804 (1998), arXiv:nucl-th/9804027 [nucl-th].

[41] F. Douchin and P. Haensel, Astron. Astrophys. 380, 151 (2001),
arXiv:astro-ph/0111092 [astro-ph].

[42] R. B. Wiringa, V. Fiks, and A. Fabrocini, Phys. Rev. C 38, 1010
(1988).

[43] L. Engvik, G. Bao, M. Hjorth-Jensen, E. Osnes, and E. Ost-
gaard, Astrophys. J. 469, 794 (1996), arXiv:nucl-th/9509016
[nucl-th].

[44] H. Müther, M. Prakash, and T. L. Ainsworth, Phys. Lett. B199,
469 (1987).

[45] P. Pani, C. F. B. Macedo, L. C. B. Crispino, and V. Cardoso,
Phys. Rev. D84, 087501 (2011), arXiv:1109.3996 [gr-qc].

[46] H. Witek, L. Gualtieri, P. Pani, and T. P. Sotiriou, (2018),
arXiv:1810.05177 [gr-qc].

[47] R. M. Wald, General Relativity (Chicago Univ. Pr., Chicago,
USA, 1984).

[48] R. C. Tolman, Phys. Rev. 55, 364 (1939).
[49] J. R. Oppenheimer andG.M.Volkoff, Phys. Rev. 55, 374 (1939).
[50] R. L. Bowers and E. P. T. Liang, Astrophys. J. 188, 657 (1974).
[51] G. Raposo, P. Pani, M. Bezares, C. Palenzuela, and V. Cardoso,

(2018), arXiv:1811.07917 [gr-qc].
[52] B. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 119,

161101 (2017), arXiv:1710.05832 [gr-qc].
[53] J. Antoniadis et al., Science 340, 6131 (2013), arXiv:1304.6875

[astro-ph.HE].

[54] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett.
121, 161101 (2018), arXiv:1805.11581 [gr-qc].

[55] L. Stella and M. Vietri, Phys. Rev. Lett. 82, 17 (1999),
arXiv:astro-ph/9812124 [astro-ph].

[56] M. A. Abramowicz and W. Kluzniak, Astron. Astrophys. 374,
L19 (2001), arXiv:astro-ph/0105077 [astro-ph].

[57] F. K. Lamb, N. Shibazaki, M. A. Alpar, and J. Shaham, Nat 317
(1985), 10.1038/317681a0.

[58] M. Mendez, M. van der Klis, and J. van Paradijs, Astrophys. J.
506, L117 (1998), arXiv:astro-ph/9808281 [astro-ph].

[59] K. Glampedakis, G. Pappas, H. O. Silva, and E. Berti, Phys.
Rev. D94, 044030 (2016), arXiv:1606.05106 [gr-qc].

[60] F. D. Ryan, Phys. Rev. D52, 5707 (1995).
[61] A. M. Beloborodov, Astrophys. J. 566, L85 (2002), arXiv:astro-

ph/0201117 [astro-ph].
[62] H. Sotani, Phys. Rev. D96, 104010 (2017), arXiv:1710.10596

[astro-ph.HE].
[63] K.H. Lo,M.ColemanMiller, S. Bhattacharyya, andF.K. Lamb,

Astrophys. J. 776, 19 (2013), arXiv:1304.2330 [astro-ph.HE].
[64] T. Salmi, J. Nättilä, and J. Poutanen, Astron. Astrophys. 618,

A161 (2018), arXiv:1805.01149 [astro-ph.HE].
[65] K. R. Pechenick, C. Ftaclas, and J.M. Cohen, TheAstrophysical

Journal 274, 846 (1983).
[66] F.-L. Julié, Phys. Rev. D97, 024047 (2018), arXiv:1709.09742

[gr-qc].
[67] T. Damour, Proceedings, Relativity and Gravitation: Perspec-

tives 100 years after Einstein’s stay in Prague: Prague, Czech
Republic, June 25-29, 2012, Fundam. Theor. Phys. 177, 111
(2014), arXiv:1212.3169 [gr-qc].

[68] J. Poutanen, AIP Conf. Proc. 1068, 77 (2008), arXiv:0809.2400
[astro-ph].

[69] F. Ozel, Rept. Prog. Phys. 76, 016901 (2013), arXiv:1210.0916
[astro-ph.HE].

[70] A. L. Watts et al., Rev. Mod. Phys. 88, 021001 (2016),
arXiv:1602.01081 [astro-ph.HE].

[71] H. Sotani and U. Miyamoto, Phys. Rev. D96, 104018 (2017),
arXiv:1710.08581 [astro-ph.HE].

http://arxiv.org/abs/1903.02055
http://arxiv.org/abs/1903.02055
https://doi.org/10.1143/PTP.126.511
https://doi.org/10.1143/PTP.126.511
http://arxiv.org/abs/1105.5723
https://doi.org/10.1103/PhysRevD.86.081504
http://arxiv.org/abs/1204.4524
http://arxiv.org/abs/1204.4524
https://doi.org/10.1016/j.physrep.2015.12.005
http://arxiv.org/abs/1512.07820
https://doi.org/10.1103/PhysRevC.58.1804
https://doi.org/10.1103/PhysRevC.58.1804
http://arxiv.org/abs/nucl-th/9804027
https://doi.org/10.1051/0004-6361:20011402
http://arxiv.org/abs/astro-ph/0111092
https://doi.org/10.1103/PhysRevC.38.1010
https://doi.org/10.1103/PhysRevC.38.1010
https://doi.org/ 10.1086/177827
http://arxiv.org/abs/nucl-th/9509016
http://arxiv.org/abs/nucl-th/9509016
https://doi.org/10.1016/0370-2693(87)91611-X
https://doi.org/10.1016/0370-2693(87)91611-X
https://doi.org/10.1103/PhysRevD.84.087501
http://arxiv.org/abs/1109.3996
http://arxiv.org/abs/1810.05177
https://doi.org/10.7208/chicago/9780226870373.001.0001
https://doi.org/10.1103/PhysRev.55.364
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1086/152760
http://arxiv.org/abs/1811.07917
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
http://arxiv.org/abs/1710.05832
https://doi.org/10.1126/science.1233232
http://arxiv.org/abs/1304.6875
http://arxiv.org/abs/1304.6875
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRevLett.121.161101
http://arxiv.org/abs/1805.11581
https://doi.org/10.1103/PhysRevLett.82.17
http://arxiv.org/abs/astro-ph/9812124
https://doi.org/10.1051/0004-6361:20010791
https://doi.org/10.1051/0004-6361:20010791
http://arxiv.org/abs/astro-ph/0105077
https://doi.org/10.1038/317681a0
https://doi.org/10.1038/317681a0
https://doi.org/10.1086/311650
https://doi.org/10.1086/311650
http://arxiv.org/abs/astro-ph/9808281
https://doi.org/10.1103/PhysRevD.94.044030
https://doi.org/10.1103/PhysRevD.94.044030
http://arxiv.org/abs/1606.05106
https://doi.org/10.1103/PhysRevD.52.5707
https://doi.org/10.1086/339511
http://arxiv.org/abs/astro-ph/0201117
http://arxiv.org/abs/astro-ph/0201117
https://doi.org/10.1103/PhysRevD.96.104010
http://arxiv.org/abs/1710.10596
http://arxiv.org/abs/1710.10596
https://doi.org/10.1088/0004-637X/776/1/19
http://arxiv.org/abs/1304.2330
https://doi.org/10.1051/0004-6361/201833348
https://doi.org/10.1051/0004-6361/201833348
http://arxiv.org/abs/1805.01149
https://doi.org/10.1086/161498
https://doi.org/10.1086/161498
https://doi.org/10.1103/PhysRevD.97.024047
http://arxiv.org/abs/1709.09742
http://arxiv.org/abs/1709.09742
https://doi.org/10.1007/978-3-319-06349-2_5
https://doi.org/10.1007/978-3-319-06349-2_5
http://arxiv.org/abs/1212.3169
https://doi.org/10.1063/1.3031209
http://arxiv.org/abs/0809.2400
http://arxiv.org/abs/0809.2400
https://doi.org/10.1088/0034-4885/76/1/016901
http://arxiv.org/abs/1210.0916
http://arxiv.org/abs/1210.0916
https://doi.org/10.1103/RevModPhys.88.021001
http://arxiv.org/abs/1602.01081
https://doi.org/10.1103/PhysRevD.96.104018
http://arxiv.org/abs/1710.08581

	The exterior spacetime of relativistic stars in scalar-Gauss-Bonnet gravity
	Abstract
	Introduction
	Scalar Gauss-Bonnet gravity
	Action
	Field equations
	Perturbative expansion for the metric and fluid variables
	Perturbative expansion of the field equations

	Solutions of the field equations outside the star
	O(0) equations
	O(1) equations
	O(2) equations
	Comparison with black holes spacetimes
	Note on the absence of a scalar charge in the NS solution

	Solutions of the field equations inside the star
	O(0) equations
	O(1) equations
	O(2) equations

	Astrophysical applications
	Circular orbits around the star
	Modified Kepler's third law
	Quasiperiodic oscillations
	Light bending

	Conclusions and outlook
	Acknowledgments
	References


