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In an earlier work [S. Kastha et al., PRD 98, 124033 (2018)], we developed the parametrized multipolar
gravitational wave phasing formula to test general relativity, for the non-spinning compact binaries in quasi-
circular orbit. In this paper, we extend the method and include the important effect of spins in the inspiral
dynamics. Furthermore, we consider parametric scaling of PN coefficients of the conserved energy for the
compact binary, resulting in the parametrized phasing formula for non-precessing spinning compact binaries
in quasi-circular orbit. We also compute the projected accuracies with which the second and third generation
ground-based gravitational wave detector networks as well as the planned space-based detector LISA will be
able to measure the multipole deformation parameters and the binding energy parameters. Based on different
source configurations, we find that a network of third-generation detectors would have comparable ability to
that of LISA in constraining the conservative and dissipative dynamics of the compact binary systems. This
parametrized multipolar waveform would be extremely useful not only in deriving the first upper limits on any
deviations of the multipole and the binding energy coefficients from general relativity using the gravitational
wave detections, but also for science case studies of next generation gravitational wave detectors.

I. INTRODUCTION

Mergers of compact binaries are unique probes of the predic-
tions of general relativity (GR) in the strong-gravity regime [1–
5]. The gravitational wave (GW) detections made so far [6–
12] by advanced LIGO [13] and advanced Virgo [14], have
been used in various ways to test GR by employing different
methods [8, 9, 15–18] to find very good agreement with the
predictions of GR within the statistical uncertainties. With
several more of such events expected to be detected in the
future observing runs, developing efficient methods to carry
out such tests will play a central role in extracting the best
science from these observations. Ongoing developments of
the science case for third-generation ground-based detectors
such as Einstein Telescope [19] and Cosmic Explorer [20], and
space-based LISA interferometer [21, 22] further motivates
developing generic methods to test GR using GWs.

There are a wide variety of tests proposed in the literature
to assess GR using GW observations. These are often broadly
classified as model independent tests (or theory-agnostic tests)
and theory-dependent tests. Parametrized tests of GR [23–30],
Parametrized post-Einsteinian framework [26, 31] and inspiral-
merger-ringdown consistency tests [32] are examples of the
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first kind whereas and the model dependent tests include tests
aimed at looking for signatures of a specific alternative theory
(or a class of alternative theories) such as those suggested in
Refs. [33–36].

Recently, we proposed a new theory-agnostic test to probe
the multipolar structure of compact binaries in GR [37]. The ba-
sic idea is to ask using GW observations how well we can infer
the multipole structure of the gravitational field of the compact
binary and search for potential deviations. In order to answer
this question, we computed a parametrized gravitational wave-
form model explicitly keeping track of the contributions to
the gravitational waveform from different radiative-multipole
moments of the compact binary following the formalism de-
veloped in Refs. [38–43]. This prescription is built on the post-
Newtonian (PN) approximation developed for compact binary
systems with non-spinning component masses in quasi-circular
orbits. By introducing seven independent parameters associ-
ated to the deviation of the seven radiative-multipole moments
from GR, we re-derived the GW flux. This parametrized multi-
polar waveform facilitates tests of GR in a model independent
way with GW observations [37]. We computed the projected
accuracies on the measurements of these multipole coefficients
for various ground-based and space-based detectors [37].

There is a strong astrophysical evidence that stellar mass
black hole (BH) binaries [44, 45] as well as super-massive BH
binaries [46] may have highly spinning binary constituents.
The spins of the compact binary components affect the bi-
nary dynamics and give rise to a very different radiation pro-
file as compared to their non-spinning counterparts. Hence a
physically realistic waveform model should account for the
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spin dynamics of compact binaries. Within the PN formalism,
the gravitational waveform has been calculated considering
the point masses with arbitrary spins up to a very high accu-
racy [47–73]. Hence, in this paper, we extend our parametrized
multipolar GW energy flux as well as PN waveform model,
presented in Ref. [37], with spin-orbit and spin-spin contribu-
tions from binary components. We assume that the component
spins are either aligned or anti-aligned with respect to the or-
bital angular momentum of the binary which is inspiraling in
quasi-circular orbit. Here, in addition to the multipolar struc-
ture, we present the phasing formula which also parametrizes
the conservative dynamics of the binary. This is achieved by
introducing free parameters at each PN order in the binding
energy expression which take value unity in GR, by definition.

Having included the effects of spins in our parametrized test
of multipole structure, we use Fisher information matrix based
parameter estimation scheme to compute projected bounds on
the various multipolar parameters. Along with the complete
study on the bounds of the multipolar parameters, we also
provide the bounds on the parameters associated to conserva-
tive sector for the first time in this paper. We consider GW
observation through networks of the various second and third
generation ground-based detectors as well the proposed space-
based LISA mission [22]. Inclusion of spin effects not only
increases the dimensionality of the parameter space but also
degrades the measurement accuracy of parameters. We find
that a network of third-generation ground-based detectors and
the space-based LISA mission would have comparable sensi-
tivity to detect potential deviations in the multipolar structure
of compact binaries.

This paper is organized as follows. In Sec. II we discuss
our computational scheme for the multipolar parametrized
gravitational wave energy flux. In Sec. III we explore the mod-
ifications in the parametrized frequency domain (TaylorF2)
waveform due to the various contributions from spins. There-
after, in Sec. IV we briefly describe the parameter estimation
techniques we use in this paper. Section V provides a detailed
description about the various GW detector configurations used
for our analysis. In Sec. VI we discuss the bounds on the
multipole coefficients for various GW detectors and Sec. VII
presents our concluding remarks.

II. PARAMETRIZED GRAVITATIONAL WAVE ENERGY
FLUX

During the inspiral phase of the compact binary dynamics,
the radiation reaction time scale is much longer than the time
scale for orbital motion. Due to this separation of time scales,
two vital ingredients for computing the phase evolution are
the conserved orbital energy of the binary and the gravita-
tional wave energy flux from the system. While the former
characterizes the conservative dynamics of the binary, the latter
describes the dissipative dynamics.

The computation of the multipolar parametrized flux for-
mula makes use of the entire machinery of the Multipolar
post-Minkowskian and post-Newtonian formalism developed
over past several years [39, 42, 43, 52, 74–78] (see [79] for

a review.) Following Ref. [37], we use the GW energy flux
parametrized in terms of the various radiative multipole mo-
ments of compact binary while including contributions from
the spins of the binary components in quasi-circular orbits.
More explicitly, to capture the generic deviations from GR,
parametric deviations are introduced at the level of mass-
type (UL) and current-type (VL) radiative multipole moments
through simple scaling relationships of the kind

UL → µl UGR
L , (2.1)

VL → εl VGR
L , (2.2)

where µl = 1 + δUL/UGR
L and εl = 1 + δVL/VGR

L take the value
unity in GR. The conservative dynamics of the binary also gets
imprinted on the GW phasing formula via the PN expression
for conserved energy. If the underlying theory of gravity is not
GR, the corresponding PN coefficients could be different. In
our framework, these are parametrized by a set of parameters
{αk} which are all unity in GR.

A modifed theory of gravity could predict one or more of
these multipole moments to be different from that of GR. It
may also predict the conserved energy of the binary to be differ-
ent from GR. In our formalism the set of parameters {µl, εl, αk}

parametrize all such differences. Hence a measurement of
these coefficients would give us a direct handle on possible
deviations of the multipole moments and/or conservative dy-
namics from the GR predictions. Indeed, it is possible that
these coefficients may be functions of the binary parameters
(masses, spins etc) in a modified theory. However, since we
have no prior knowledge about the ‘true’ underlying theory
of gravity, any method to look for its signatures has to be
theory-agnostic which motivates our parametrization. (A more
generic parametrization may involve introducing free parame-
ters at every PN order of all the multipole moments. Obviously,
given the large number of free parameters, this would result in
bounds which are uninformative.)

In this paper we focus on the contributions to the flux from
spin angular momentum of the binary components and hence
quote only the spin-dependent part of the parametrized GW
energy flux which may be added to the non-spinning results
of [37] to get the complete phasing. Among the few different
approaches to consider the PN spin corrections to the con-
servative dynamics as well as gravitational radiation from a
compact binary system, we adopt the PN iteration scheme in
harmonic coordinates [58] to obtain spin contributions to the
radiative moments in GR which we further rescale as described
in Eqs. (2.1)-(2.2).

We closely follow the prescription given in Refs. [52, 54, 56–
58] to account for the contributions to the conservative and
dissipative sectors of the compact binary dynamics from the
individual spins. In our notation, the individual spins of the
component masses, m1 and m2 are S1 and S2 with quadrupolar
polarisabilities κ1 and κ2, respectively, which are unity for Kerr
black holes. We denote the total mass for the system to be
m = m1 + m2, relative mass difference, δ = (m1 − m2)/m
and the symmetric mass ratio, ν = m1m2/m2. Furthermore
following the usual notation, we present our results in terms of
the symmetric combination of the quadrupolar polarisabilities,
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κ+ = κ1 + κ2 and the anti-symmetric combination, κ− = κ1 − κ2.
Our results are expressed in the Center of Mass frame where
the spin variables S and Σ have the following relations with
the spins of each of the constituent masses of the binary,

S= S1 + S2 , (2.3)

Σ= m
(

S2

m2
−

S1

m1

)
, (2.4)

and S L = S · L̂ and ΣL = Σ · L̂ are the projections along the
direction (with L̂ = L/|L|) of orbital angular momentum (L).

Depending on the order of spin corrections, the GW flux
schematically has the following structure,

F = FNS + FSO + FSS + FSSS + ...., (2.5)

where FNS is the non-spinning contribution computed in Eq.
(2.8) of Ref. [37], FSO is the spin-orbit (SO) contribution which

linearly depends on the spins, and FSS is quadratic in spins
arising due to the spin-spin (SS) interactions. Similarly FSSS
denotes the cubic-in-spin effects on the GW energy flux. Here
we report the parametrized multipolar flux accounting for spin-
orbit effects up to 3.5PN order and quandratic-in-spin contribu-
tions up to 3PN order. We do not provide the cubic spin and the
partial quadratic-in-spin contribution at 3.5PN order. The non-
spinning flux computed in Ref. [37] should be added to these
to obtain the total flux. We provide explicit expressions for
the spin-orbit and quadratic-in-spin contributions to multipolar
parametrized GW fluxes in the following subsections.

A. Spin-orbit contribution

Considering the leading order spin corrections to the
multipole moments as well as in the equation of motion
(EOM) and following the same technique as prescribed in
Refs. [52, 54, 56], we re-compute the parametrized SO part of
the energy flux, which is given as

FSO =
32
5

c5

G
ν2µ2

2x5
{

x3/2

Gm2

(
− 4S L + δΣL

[
−

4
3

+
ε̂2

2

12

])
+

x5/2

Gm2

(
S L

[316
63
−

514
63

ν − µ̂2
3

(598
63
−

2392
63

ν
)
− ε̂2

2

( 43
126
−

86
63
ν
)

+ε̂2
3

(20
63
−

20
21
ν
)]

+ δΣL

[208
63
−

10
9
ν − µ̂2

3

(1025
252

−
1025
84

ν
)
− ε̂2

2

( 367
1008

−
11
18
ν
)

+ ε̂2
3

(20
63
−

20
21
ν
)])

+
πx3

Gm2

(
− 16S L + δΣL

[
−

16
3

+
ε̂2

2

6

])
+

x7/2

Gm2

(
S L

[58468
1323

+
154424
1323

ν +
3494
1323

ν2 + µ̂2
3

(120121ν2

1134
−

345665ν
1512

+
65491
1296

)
+µ̂2

4

(
−

272392ν2

1323
+

544784ν
3969

−
272392
11907

)
+ ε̂2

2

(
−

1534ν2

3969
−

1165ν
2646

+
2131
15876

)
+ ε̂2

3

(
−

7300ν2

567
+

7150ν
567

−
1556
567

)
+ε̂2

4

(5741ν2

882
−

5741ν
1176

+
5741
7056

)]
+ δΣL

[28423ν2

3969
+

366697ν
7938

+
49844
3969

+ µ̂2
3

(319661ν2

18144
−

811795ν
9072

+
253385
9072

)
+µ̂2

4

(
−

3184ν2

49
+

7960ν
147

−
1592
147

)
+ ε̂2

2

(
−

41471ν2

127008
−

37585ν
31752

+
14383
63504

)
+ ε̂2

3

(
−

490ν2

81
+

5140ν
567

−
188
81

)
+ε̂2

4

(5741
7056

−
28705
7056

ν +
5741
1176

ν2
)])}

. (2.6)

Spin-orbit corrections to the flux first appear at 1.5PN order
due to spin-dependent terms in mass quadrupole moments at
1.5PN order and current quadrupole moment at 0.5PN order.
Hence the leading order SO corrections bring in the µ2 and
ε2 in the parametrized GW flux at 1.5PN. As clearly stated in
Ref. [52], at 2.5PN order the SO contributions come from mass-
and current-type quadrupole and octupole moments, which is
evident from Eq. (2.6) since only µ2, µ3, ε2 and ε3 are present up
to 2.5PN order. At 3PN order, the spin dependences come from
the 1.5PN tail integral performed on mass quadrupole moment
and the 2.5PN tail integral performed on current quadrupole
moment [54]. Hence at 3PN order only µ2 and ε2 are present.
As we go to higher order we find that at 3.5PN order, µ4 and
ε4 are also present along with the lower order coefficients. As
a check on the calculation, in the limit µ2 = µ3 = µ4 = µ5 =

ε2 = ε3 = ε4 = 1, Eq. (2.6) reduces to Eq. (4) of Ref. [52].
B. Spin-spin contribution

Quadratic-in-spin corrections first appear at 2PN order to
the GW flux and the waveform (see Refs. [47, 49, 51, 66, 80]
for details), whereas SS terms at 3PN are first calculated in
Ref. [57].

Along with the terms quadratic-in-spin in the EOM, the com-
plete SS contributions to the flux are generated from the four
leading multipole moments, Ii j, Ii jk, Ji j and Ji jk. Hence FSS is
completely parametrized by µ2, µ3, ε2 and ε3 (see Eq. (2.7)).
We have also written the SS contribution at 3.5PN order arising
from the two leading order tail integrals performed on mass
and current quadrupole moments. However, at 3.5PN order
SS contributions are partial. Hence these contributions will be
neglected for the waveform computations.
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FSS =
32
5

c5

G
ν2µ2

2x5 1
G2m4

{
x2

(
S 2

L

[
4 + 2κ+

]
+ S LΣL

[
2κ+δ + 4δ − 2κ−

]
+ Σ2

L

[ ε̂2
2

16
+ κ+ − δκ− − (4 + 2κ+)ν

])
+x3

(
S 2

L

[
−

1198
63
−

46κ+

7
+

55δκ−
21

+ µ̂2
3

(1367
168

+
1367κ+

336
−

δκ−
1008

)
+ ε̂2

2

(1
6

+
κ+

12
−
δκ−
18

)
+

20
63
ε̂2

3

+ν
(82

7
+

41κ+

7
− µ̂2

3

[1367
42

+
1367κ+

84

]
− ε̂2

2

[2
3

+
κ+

3

])]
+ S LΣL

[
−

193δκ+

21
−

1436δ
63

+
193κ−

21

+µ̂2
3

(293δκ+

72
+

1367δ
168

−
293κ−

72

)
+ ε̂2

2

(5δκ+

36
−

143δ
252

−
5κ−
36

)
+

40
63
δε̂2

3 + ν
(41δκ+

7
+

82δ
7
−

49κ−
3

+µ̂2
3

[293κ−
18

−
1367δ

42
−

1367κ+δ

84

]
− ε̂2

2

[δκ+

3
+

2δ
3
−

5κ−
9

])]
+ Σ2

L

[
−

26
9
−

193κ+

42
+

193δκ−
42

+ µ̂2
3

(293κ+

144
−

293δκ−
144

)
−ε̂2

2

[31
56
−

5κ+

72
+

5δκ−
72

]
+

20
63
ε̂2

3 + ν
(1562

63
+

619κ+

42
−

233δκ−
42

− µ̂2
3

[1367
168

+
12305κ+

1008
−

8203δκ−
1008

]
+ε̂2

2

(167
168
−

13κ+

36
+

2δκ−
9

)
−

80
63
ε̂2

3

)
+ ν2

(
−

41κ+

7
−

82
7

+ µ̂2
3

[1367
42

+
1367κ+

84

]
+ ε̂2

2

[2
3

+
κ+

3

])])
+πx7/2

(
S 2

L

[
16 + 8κ+

]
+ S LΣL

[
8κ+δ + 16δ − 8κ−

]
+ Σ2

L

[ ε̂2
2

8
+ 4κ+ − 4δκ− − (16 + 8κ+)ν

])}
. (2.7)

As an algebraic check, in the limit, µ2 = µ3 = µ4 = µ5 =

ε2 = ε3 = ε4 = 1 for Eq. (2.7), we confirm the recovery of
the accurate expression for SS contribution to GW flux in GR
reported in Eq. (4.14) of Ref. [57].

III. PARAMETRIZED MULTIPOLAR GRAVITATIONAL
WAVE PHASING

The GW phase and its frequency evolution are obtained by
using the energy conservation law which essentially balances
the rate of change of conserved orbital energy E and the emitted
GW flux,

F = −
d
dt

E. (3.1)

Hence an accurate model for conserved orbital energy is needed
to obtain the GW phasing formula.

In GR, for a non-spinning compact binary inspiraling in
quasi-circular orbit, the expression for the conserved energy
per unit mass is given in Refs. [78, 81–86], whereas the SO
corrections upto 3.5PN order and the SS corrections upto 3PN
order are quoted in Refs. [52, 54, 56, 57].

In alternative theories of gravity, along with the deformations
at the level of multipole moments, we expect the conserved
orbital energy to be deformed as well. In order to incorporate
theses effects, we introduce free parameters αk, characterizing
the deviations at different PN orders in the expression of con-
served energy defined in GR for compact binaries in aligned (or
anti-aligned)-spin configuration. For spin corrections to con-
servative dynamics we consider SO contributions upto 3.5PN
order and SS contributions at 3PN order to the energy. The
3.5PN closed-form expression for the parametrized conserved
energy reads as

E(v) = −
1
2
να0v

2
[
1 −

(
3
4

+
1
12
ν

)
α̂2v

2 +

{
14
3

S L + 2δΣL

}
α̂3

Gm2 v
3 −

{
27
8
−

19
8
ν +

1
24
ν2 +

S 2
L

G2m4 (κ+ + 2) +
S LΣL

G2m4 (δκ+ + 2δ − κ−)

+
Σ2

L

G2m4

(1
2
κ+ −

δ

2
κ− − ν[κ+ + 2]

)}
α̂4v

4 +

{[
11 −

61
9
ν
]
S L +

[
3 −

10
3
ν
]
δΣL

}
α̂5

Gm2 v
5 −

{
675
64
−

(34445
576

−
205
96

π2
)
ν +

155
96

ν2

+
35

5184
ν3 +

S 2
L

G2m4

([5
3
δκ− +

25
6
κ+ −

50
9

]
− ν

[5
6
κ+ +

5
3

])
+

S LΣL

G2m4

([5
2
δκ+ −

25
3
δ −

5
2
κ−

]
− ν

[5
6
δκ+ +

5
3
δ +

35
6
κ−

])
+

Σ2
L

G2m4

([5
4
κ+ −

5
4
δκ− − 5

]
− ν

[5
4
κ+ +

5
4
δκ− − 10

]
+ ν2

[5
6
κ+ +

5
3

])}
α̂6v

6 +

{(135
4
−

367
4
ν +

29
12
ν2

)
S L

+
(27

4
− 39ν +

5
4
ν2

)
δΣL

}
α̂7

Gm2 v
7
]
, (3.2)

with α̂i = αi/α0. To obtain the gravitational waveform in fre- quency domain under the stationary phase approximation [87],
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we use the standard prescription outlined in Refs. [88, 89].
The important difference here is that we use the parametrized
expressions for the GW flux and conserved energy given by
Eq. (2.5) and (3.2) respectively. Further we consider the am-
plitude to be at the leading quadrupolar order. The standard
restricted PN waveform in frequency domain, thus, reads as

h̃S ( f ) = A µ2 f −7/6eiψS ( f ), (3.3)

with A = M
5/6
c /
√

30π2/3DL; Mc = (m1m2)3/5/(m1 + m2)1/5

and DL are the chirp mass and luminosity distance. In the case
of LISA, to account for its triangular geometry, we multiply the
gravitational waveform by a factor of

√
3/2 while calculating

the Fisher matrix for LISA [90]. The parametrized multipolar
phasing, ψS ( f ), has the same structure as that of the energy
flux (see Eq. (2.5)). Schematically the parametrized phasing
formula can be written as,

ψS ( f ) = 2π f tc − φc −
π

4
+

3α0

128νv5µ2
2

[
ψNS( f ) + ψSO( f )

+ψSS( f )
]
, (3.4)

where the parametrized non-spinning part, ψNS( f ) is given by

Eq. (A.2) in Ref. [37]. Here we show only the SO and SS parts:
ψSO( f ) and ψSS( f ). As mentioned earlier, we do not account
for the partial contribution due to the spin-spin interactions to
the phasing formula at the 3.5PN order.

To evaluate the parametrized TaylorF2 phasing for aligned
spin binaries, we use the conventional notations for the spin
variables (χ1,χ2), with the following re-definitions,

χ1 = Gm2
1S1, (3.5)

χ2 = Gm2
2S2. (3.6)

Furthermore, we use χs = (χ1 + χ2)/2 and χa = (χ1 − χ2)/2
to present the phasing formula, where χ1 and χ2 are the pro-
jections of χ1 and χ2 along the orbital angular momentum,
respectively. These spin variables have the following relations,

S L= Gm2[δχa + (1 − 2ν)χs] , (3.7)
ΣL= −Gm2[δχs + χa] . (3.8)

Finally we write down the expressions for ψSO and ψSS, the
main results of this paper, below

ψSO =v3
{[

32
3

+
80
3
α̂3 +

1
3
ε̂2

2 −

(
32
3

+
40
3
α̂3 +

4
3
ε̂2

2

)
ν

]
χs +

[
32
3

+
80
3
α̂3 +

1
3
ε̂2

2

]
δχa

}
+ v5

(
1 + 3 log[v/vLSO]

){[
−

64160
567

+
93920

567
ν −

1760
189

ν2 + α̂2

(
160
9
−

1280
81

ν −
160
81

ν2
)

+ α̂3

(
−

85600
567

+
12400

81
ν −

22000
567

ν2
)

+ α̂5

(
−

1120
9

+
16940

81
ν

−
280
81

ν2
)

+

(
13670
1701

−
58090
1701

ν +
13640
1701

ν2 + α̂3

[
68350
1701

−
34175
189

ν +
136700
1701

ν2
])
µ̂2

3 +

(
6835
6804

−
13670
1701

ν +
27340
1701

ν2
)
µ̂2

3ε̂
2
2

+

(
−

1465
486

+
23230
1701

ν −
10880
1701

ν2 + α̂2

[
5
9
−

175
81

ν −
20
81
ν2

]
+ α̂3

[
200
243
−

100
27

ν +
400
243

ν2
])
ε̂2

2 +

(
5

243
−

40
243

ν +
80

243
ν2

)
ε̂4

2

+

(
1600
567

ν −
1600
189

ν2
)
ε̂2

3

]
χs +

[
−

64160
567

+
17440

567
ν + α̂2

(
160

9
+

160
81

ν

)
− α̂3

(
85600

567
−

44000
567

ν

)
− α̂5

(
1120

9
−

4340
81

ν

)
+

(
13670
1701

−
23930
1701

ν + α̂3

[
68350
1701

−
273400

1701
ν

])
µ̂2

3 +

(
6835
6804

−
6835
1701

ν

)
µ̂2

3ε̂
2
2 +

(
−

1465
486

+
4520
1701

ν + α̂2

[
5
9

+
5

81
ν

]
+α̂3

[
200
243
−

800
243

ν

])
ε̂2

2 +

(
5

243
−

20
243

ν

)
ε̂4

2

]
δχa

}
+ πv6

{[
640

3
−

640
3
ν + α̂3

(
1600

3
−

800
3
ν

)
+ (10 − 40ν)ε̂2

2

]
χs

+

[
640

3
+ 10ε̂2

2 +
1600

3
α̂3

]
δχa

}
+ v7

{[
−

175520
63

+
7871090

1323
ν −

4100
3

ν2 −
199520
1323

ν3 + α̂2

(
16040

21
−

195280
189

ν

−
11600

189
ν2 +

440
63

ν3
)

+ α̂3

(
−

11825200
3969

+
11267500

3969
ν −

1322350
1323

ν2 +
644800

3969
ν3

)
+ α̂4

(
540 − 920ν +

1160
3

ν2

−
20
3
ν3

)
+ α̂5

(
−

8560
3

+
169070

27
ν −

68690
27

ν2 +
1100
27

ν3
)

+ α̂7

(
− 2430 +

16785
2

ν − 2580ν2 − 15ν3
)

+ µ̂2
3

(
58105

189

−
22900195

15876
ν +

8056835
10584

ν2 +
2844815

7938
ν3

)
+ µ̂2

3α̂2

(
−

6835
126

+
127285

567
ν −

32335
1134

ν2 −
3410
567

ν3
)

+ µ̂2
3α̂3

(
524075

1323

−
5309275

2646
ν +

2381500
1323

ν2 −
592600

1323
ν3

)
+ µ̂2

3α̂5

(
6835

9
−

2795515
648

ν +
20505

4
ν2 −

6835
81

ν3
)

+ µ̂2
3ε̂

2
2

(
3260435
127008
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−
7054105

31752
ν +

4326905
7938

ν2 −
355490

1323
ν3

)
+ µ̂2

3ε̂
2
2 α̂2

(
−

6835
1008

+
485285

9072
ν −

116195
1134

ν2 −
6835
567

ν3
)

+ µ̂2
3ε̂

2
2 α̂3

(
−

34175
3402

+
580975

6804
ν −

341750
1701

ν2 +
136700

1701
ν3

)
+ µ̂2

3ε̂
4
2

(
−

6835
18144

+
6835
1512

ν −
6835
378

ν2 +
13670

567
ν3

)
+ µ̂2

3ε̂
2
3

(
−

136700
3969

ν +
136700

567
ν2

−
546800

1323
ν3

)
+ µ̂4

3

(
−

129865
1764

ν +
259730

441
ν2 −

519460
441

ν3
)

+ µ̂4
3ε̂

2
2

(
−

9343445
1016064

+
9343445

84672
ν −

9343445
21168

ν2 +
9343445

15876
ν3

)
+µ̂4

3α̂3

(
−

46717225
190512

+
794192825

381024
ν −

233586125
47628

ν2 +
46717225

23814
ν3

)
+ µ̂2

4

(
289760
11907

ν −
205600

567
ν2 +

1149440
1323

ν3
)

+µ̂2
4α̂3

(
3586000

11907
−

23309000
11907

ν +
14344000

3969
ν2 −

1793000
1323

ν3
)

+ µ̂2
4ε̂

2
2

(
89650
11907

−
896500
11907

ν +
986150

3969
ν2 −

358600
1323

ν3
)

+ε̂2
2

(
−

1193245
15876

+
938855

2646
ν −

7469165
31752

ν2 +
83995
1134

ν3
)

+ ε̂2
2 α̂2

(
1465

72
−

407885
4536

ν +
5335
162

ν2 +
2720
567

ν3
)

+ ε̂2
2 α̂3

(
18850

567

−
92825

567
ν +

73700
567

ν2 −
16000
567

ν3
)

+ ε̂2
2 α̂4

(
135

8
−

635
8
ν +

1145
24

ν2 −
5
6
ν3

)
+ ε̂2

2 α̂5

(
140

9
−

14315
162

ν + 105ν2 −
140
81

ν3
)

+ε̂2
2 ε̂

2
3

(
50

189
−

1900
567

ν +
7750
567

ν2 −
3400
189

ν3
)

+ ε̂4
2

(
1745
1512

−
1585
162

ν +
12970

567
ν2 −

5000
567

ν3
)

+ ε̂4
2 α̂2

(
−

5
36

+
355
324

ν −
170
81

ν2

−
20
81
ν3

)
+ ε̂4

2 α̂3

(
−

25
243

+
425
486

ν −
500
243

ν2 +
200
243

ν3
)

+ ε̂6
2

(
−

5
1296

+
5

108
ν −

5
27
ν2 +

20
81
ν3

)
+ ε̂2

3

(
258520

3969
ν −

966200
3969

ν2

+
612800

3969
ν3

)
+ ε̂2

3 α̂2

(
−

400
21

ν +
10400

189
ν2 +

400
63

ν3
)

+ ε̂2
3 α̂3

(
2000
189

−
13000

189
ν +

8000
63

ν2 −
1000

21
ν3

)
+ ε̂2

4

(
28705
1764

ν

−
28705

294
ν2 +

57410
441

ν3
)]
χs +

[
−

175520
63

+
3039410

1323
ν +

29300
1323

ν2 + α̂2

(
16040

21
−

23200
189

ν −
4360
189

ν2
)

+α̂3

(
−

11825200
3969

+
5354900

3969
ν −

1289600
3969

ν2
)

+ α̂4

(
540 − 380ν +

20
3
ν2

)
+ α̂5

(
−

8560
3

+
72770

27
ν −

17050
27

ν2
)

+α̂7

(
− 2430 +

9495
2

ν − 105ν2
)

+ µ̂2
3

(
58105

189
−

15599425
15876

ν −
5525
24

ν2
)

+ µ̂2
3α̂2

(
−

6835
126

+
50425
567

ν +
11965
1134

ν2
)

+µ̂2
3α̂3

(
524075

1323
−

341800
189

ν +
1185200

1323
ν2

)
+ µ̂2

3α̂5

(
6835

9
−

2180365
648

ν +
211885

162
ν2

)
+ µ̂2

3ε̂
2
2

(
3260435
127008

−
2245385
15876

ν

+
1230335

7938
ν2

)
+ µ̂2

3ε̂
2
2 α̂2

(
−

6835
1008

+
34175
1296

ν +
6835
2268

ν2
)

+ µ̂2
3ε̂

2
2 α̂3

(
−

34175
3402

+
136700
1701

ν −
273400

1701
ν2

)
+ µ̂2

3ε̂
4
2

(
−

6835
18144

+
6835
2268

ν −
6835
1134

ν2
)

+ µ̂4
3

(
−

7005875
31752

ν +
7005875

7938
ν2

)
+ µ̂4

3α̂3

(
−

46717225
190512

+
46717225

23814
ν −

46717225
11907

ν2
)

+µ̂4
3ε̂

2
2

(
−

9343445
1016064

+
9343445
127008

ν −
9343445

63504
ν2

)
+ µ̂2

4

(
31840

147
ν −

31840
49

ν2
)

+ µ̂2
4α̂3

(
3586000

11907
−

7172000
3969

ν

+
3586000

1323
ν2

)
+ µ̂2

4ε̂
2
2

(
89650
11907

−
179300

3969
ν +

89650
1323

ν2
)

+ ε̂2
2

(
−

1193245
15876

+
65255

882
ν −

1742365
31752

ν2
)

+ ε̂2
2 α̂2

(
1465

72

−
71105
4536

ν −
1130
567

ν2
)

+ ε̂2
2 α̂3

(
18850
567

−
27800
189

ν +
32000
567

ν2
)

+ ε̂2
2 α̂4

(
135

8
−

95
8
ν +

5
24
ν2

)
+ ε̂2

2 α̂5

(
140

9
−

11165
162

ν

+
2170

81
ν2

)
+ ε̂2

2 ε̂
2
3

(
50

189
−

100
63

ν +
50
21
ν2

)
+ ε̂4

2

(
1745
1512

−
50
9
ν +

710
189

ν2
)

+ ε̂4
2 α̂2

(
−

5
36

+
175
324

ν +
5

81
ν2

)
+ε̂4

2 α̂3

(
−

25
243

+
200
243

ν −
400
243

ν2
)
− ε̂6

2

(
5

1296
−

5
162

ν +
5

81
ν2

)
+ ε̂2

3

(
3800
189

ν −
3800
63

ν2
)

+ ε̂2
3 α̂3

(
2000
189

−
4000
63

ν

+
2000

21
ν2

)
− ε̂2

4

(
28705
1764

ν −
28705

882
ν2

)]
δχa

}
(3.9)



7

ψSS( f )= v4
{[
− 10κ+ −

5
8
ε̂2

2 − 15κ+α̂4 − δκ−

(
10 + 15α̂4

)
+

(
− 40 + 20κ+ +

5
2
ε̂2

2 − α̂4[60 − 30κ+]
)
ν

]
χ2

s +

[
− 20κ−

−30κ−α̂4 − δ

(
20κ+ + 30κ+α̂4 +

5
4
ε̂2

2

)
+ νκ−

(
40 + 60α̂4

)]
χsχa +

[
− 10κ+ −

5
8
ε̂2

2 − 15κ+α̂4 − δκ−

(
10 + 15α̂4

)
+

(
40 + 20κ+ + α̂4[60 + 30κ+]

)
ν

]
χ2

a

}
+ v6

{[
−

1120
9

+
1150

7
κ+ + κ−δ

(
1150

7
−

690
7
ν

)
+

(
38600

63
−

2990
7

κ+

)
ν

−

(
3880
21
−

1940
21

κ+

)
ν2 +

1600
63

ν2ε̂2
3 + α̂2

(
− 30κ+ −

[
30 +

10
3
ν

]
δκ− +

[
− 120 +

170
3
κ+

]
ν +

[
−

40
3

+
20
3
κ+

]
ν2

)
−α̂3

(
3200

9
−

1600
3

ν +
1600

9
ν2

)
+ α̂4

(
1070

7
κ+ +

[
1070

7
−

550
7
ν

]
δκ− +

[
4280

7
−

2690
7

κ+

]
ν −

[
2200

7
−

1100
7

κ+

]
ν2

)
+α̂6

(
−

1600
9

+
700

3
κ+ +

[
700

3
−

500
3
ν

]
δκ− +

[
1600

9
−

1900
3

κ+

]
ν +

[
2000

9
+

200
3
κ+

]
ν2

)
+ µ̂2

3

(
−

95
7
κ+ +

[
−

95
7

+
13675

252
ν

]
δκ− +

[
−

6835
126

+
20515

252
κ+

]
ν +

[
13670

63
−

6835
63

κ+

]
ν2

)
+ µ̂2

3α̂4

(
−

6835
168

κ+ −

[
6835
168

−
6835
42

ν

]
δκ−

−

[
6835

42
−

6835
28

κ+

]
ν +

[
13670

21
−

6835
21

κ+

]
ν2

)
− µ̂2

3ε̂
2
2

(
6835
2016

−
6835
252

ν +
6835
126

ν2
)

+ ε̂2
2

(
470
63
−

5
6
κ+ −

[
5
6
−

20
9
ν

]
δκ−

−

[
730
21
−

35
9
κ+

]
ν +

[
1240

63
−

20
9
κ+

]
ν2

)
− ε̂2

2 α̂2

(
15
8
−

175
24

ν −
5
6
ν2

)
− ε̂2

2 α̂3

(
100

9
− 50ν +

200
9
ν2

)
+ ε̂2

2 α̂4

(
−

5
6
κ+

−

[
5
6
−

10
3
ν

]
δκ− −

[
10
3
− 5κ+

]
ν +

[
40
3
−

20
3
κ+

]
ν2

)
− ε̂4

2

(
5

24
−

5
3
ν +

10
3
ν2

)]
χ2

s +

[(
2300

7
−

5980
7

ν +
3880

21
ν2

)
κ−

+

(
−

2240
9

+
2300

7
κ+ +

(
560

9
−

1380
7

κ+

)
ν

)
δ + α̂2

([
− 60 +

340
3
ν +

40
3
ν2

]
κ− −

(
60 +

20
3
ν

)
δκ+

)
− α̂3δ

(
6400

9
−

1600
3

ν

)
+α̂4

([
2140

7
−

5380
7

ν +
2200

7
ν2

]
κ− +

[
2140

7
−

1100
7

ν

]
κ+δ

)
+ α̂6

([
1400

3
−

3800
3

ν +
400

3
ν2

]
κ− +

[
−

3200
9

+
1400

3
κ+

−

(
5600

9
+

1000
3

κ+

)
ν

]
δ

)
+ µ̂2

3

([
−

190
7

+
20515

126
ν −

13670
63

ν2
]
κ− +

[
−

190
7

+
13675

126
ν

]
δκ+

)
+ µ̂2

3α̂4

([
−

6835
84

+
6835

14
ν

−
13670

21
ν2

]
κ− −

[
6835

84
−

6835
21

ν

]
δκ+

)
− µ̂2

3ε̂
2
2δ

(
6835
1008

−
6835
252

ν

)
+ ε̂2

2

([
−

5
3

+
70
9
ν −

40
9
ν2

]
κ− +

[
940
63
−

5
3
κ+ −

(
650
63

−
40
9
κ+

)
ν

]
δ

)
− ε̂2

2 α̂2δ

(
15
4

+
5

12
ν

)
− ε̂2

2 α̂3δ

(
200
9
− 50ν

)
+ ε̂2

2 α̂4

([
−

5
3

+ 10ν −
40
3
ν2

]
κ− +

[
−

5
3

+
20
3
ν

]
δκ+

)
−ε̂4

2δ

(
5
12
−

5
3
ν

)]
χsχa +

[
−

1120
9

+
1150

7
κ+ −

(
3320

63
+

2990
7

κ+

)
ν +

(
3880
21

+
1940
21

κ+

)
ν2 +

(
1150

7
−

690
7
ν

)
δκ−

+α̂2

(
− 30κ+ +

[
120 +

170
3
κ+

]
ν +

[
40
3

+
20
3
κ+

]
ν2 −

[
30 +

10
3
ν

]
δκ−

)
− α̂3

(
3200

9
−

12800
9

ν

)
+ α̂4

(
1070

7
κ+

−

[
4280

7
+

2690
7

κ+

]
ν +

[
2200

7
+

1100
7

κ+

]
ν2 +

[
1070

7
−

550
7
ν

]
δκ−

)
+ α̂6

(
−

1600
9

+
700

3
κ+ −

[
800
9

+
1900

3
κ+

]
ν

+

[
400
3

+
200
3
κ+

]
ν2 +

[
700

3
−

500
3
ν

]
δκ−

)
+ µ̂2

3

(
−

95
7
κ+ +

[
6835
126

+
20515

252
κ+

]
ν −

[
13670

63
+

6835
63

κ+

]
ν2

−

[
95
7
−

13675
252

ν

]
δκ−

)
+ µ̂2

3α̂4

(
−

6835
168

κ+ +

[
6835

42
+

6835
28

κ+

]
ν −

[
13670

21
+

6835
21

κ+

]
ν2 −

[
6835
168

−
6835

42
ν

]
δκ−

)
+µ̂2

3ε̂
2
2

(
−

6835
2016

+
6835
504

ν

)
+ ε̂2

2

(
470
63
−

5
6
κ+ −

[
340
63
−

35
9
κ+

]
ν −

[
40
9

+
20
9
κ+

]
ν2 −

[
5
6
−

20
9
ν

]
δκ−

)
− ε̂2

2 α̂2

(
15
8

+
5
24
ν

)
−ε̂2

2 α̂3

(
100
9
−

400
9
ν

)
+ ε̂2

2 α̂4

(
−

5
6
κ+ +

[
10
3

+ 5κ+

]
ν −

[
40
3

+
20
3
κ+

]
ν2 −

[
5
6
−

10
3
ν

]
δκ−

)
− ε̂4

2

(
5
24
−

5
6
ν

)]
χ2

a

}
(3.10)

As a consistency check, we confirm the recovery of the corresponding GR expression for the TaylorF2 phasing for
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PN order frequency dependences Multipole coefficients

0 PN f −5/3 µ2

1 PN f −1 µ2, µ3, ε2

1.5 PN f −2/3 µ2, ε2

2 PN f −1/3 µ2, µ3, µ4, ε2, ε3

2.5 PN log log f µ2, µ3, ε2, ε3

3 PN f 1/3 µ2, µ3, µ4, µ5, ε2, ε3, ε4

3 PN log f 1/3 log f µ2

3.5 PN f 2/3 µ2, µ3, µ4, ε2, ε3, ε4

TABLE I. Update of the summary given in Table I of Ref. [37] for the
multipolar structure of the PN phasing formula. Contribution of vari-
ous multipoles to different phasing coefficients and their frequency
dependences are tabulated. The additional multipole coefficients
appearing due to spin are underlined. Following the definitions intro-
duced in Ref. [37], µl refer to mass-type multipole moments and εl

refer to current-type multipole moments.

aligned spin binaries (see Refs. [53, 91, 92]) in the limit, µ2 =

µ3 = µ4 = µ5 = ε2 = ε3 = ε4 = α0 = α2 = α3 = α4 = α5 =

α6 = α7 = 1. We also update Table I of Ref. [37] to explicitly
show the appearances of the parameters µl and εl at various PN
order of the phasing formula (see Table I).

One of the salient features of the parametrized multipolar spin-
ning phasing derived here is the presence of ε2 at 1.5PN order
and ε3 at 2.5PN order (logarithmic) due to the spin-orbit in-
teractions and hence not present in the non-spinning phasing.
Though at 2PN and 3PN order, due to the spin-spin interac-
tions, there are no additional multipole moments compared
to the non-spinning systems, these are the orders at which
κ+,− appear. This has interesting interpretation as κ+,− can be
thought of as parametrizing potential deviations from BH na-
ture [93, 94] as binaries comprising of non-BHs will have κ+,−

to be different from 2 and 0, respectively, which are the unique
values corresponding to binary black holes. The cross-terms of
the multipole coefficients with κ+,− showcase the degeneracy
between binary black holes in alternative theories and non-BHs
in GR. As one can see from Eq. (3.10), µ2, µ3 and ε2 are the
multipole coefficients which are sensitive to the non-BH nature
(vis-a-vis the above mentioned parametrization). As can be
seen from the phasing formula, these imprints will be higher
order corrections to the multipole coefficients and may not in-
fluence their estimates unless the values of κ+,− are sufficiently
high.

IV. PARAMETER ESTIMATION SCHEME

In this section, we briefly describe the semi-analytical Fisher
information matrix based parameter estimation scheme [95–
98] used in our analysis. We also discuss the leading order

bounds on the systematics of the estimated parameters due to
the difference between the spinning and non-spinning wave-
forms in the Appendix for LISA.

For ~θ being the set of parameters defining the GW signal
h̃( f ;~θ), the Fisher information matrix is defined as

Γmn =

〈
∂h̃( f ;~θ)
∂θm

,
∂h̃( f ;~θ)
∂θn

〉
, (4.1)

where 〈..., ...〉 is the inner product weighted by the detector
noise. To be precise,

〈a, b〉 = 2
∫ fhigh

flow

a( f ) b∗( f ) + a∗( f ) b( f )
S h( f )

d f . (4.2)

Here ‘∗’ denotes the complex conjugation and S h( f ) is the
one-sided noise power spectral density (PSD) of the detector
while flow and fhigh denote the lower and upper limits of the
integration. Though flow arises from the detector sensitivity,
fhigh is defined by the frequency at the last stable orbit of the
binary beyond which the PN approximation would break down.
In the large signal-to-noise ratio (SNR) limit, the distribution of
the inferred parameters follow a Gaussian distribution around
their respective true values for which the variance-covariance
matrix of the errors on the parameters is simply the inverse of
the Fisher matrix,

Cmn = (Γ−1)mn,

and the 1σ statistical error is, ∆statθm =
√

Cmm.
Fisher information matrix method, by default, assumes a flat

prior distribution in the range [−∞,∞] on all the parameters
to be estimated [97, 99]. In contrast, in the large SNR limit, a
Gaussian prior can also be implemented on the desired param-
eter as described in Ref. [97]. For our purpose, we employ a
Gaussian prior on φc centered around φc = 0 with a variance of
about π2. This choice is somewhat adhoc but ensures that the
width of the Gaussian is not too small to significantly influence
the result but helps us deal with the ill-conditionedness of the
Fisher matrix. This also restricts the prior range to exceed to
the unphysical domain beyond ±π. Hence our modified Fisher
matrix has the following form,

Γ′ = Γ + Γ(0), (4.3)

where Γ(0) is a diagonal matrix with only one non-zero element
corresponding to Γ

(0)
φcφc

component. We use this modified Fisher
matrix (Γ′) for the estimation of 1σ statistical errors which also
can be interpreted as the 1σ upper bounds on any deviation of
these coefficients from GR value.

We estimate the statistical errors on various multipole coeffi-
cients while considering an eight dimensional parameter space,
{tc, φc, logA, logMc, log ν, χs, χa, µ` or ε` or αm} to specify the
true GW signal.

V. DETECTOR CONFIGURATIONS

We describe here the various detector configurations we
considered in the present study.
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FIG. 1. Projected 1σ errors on the multipole and the energy coefficients as a function of total mass for two different mass ratios q = m1/m2 = 1.2, 5
and two spin configurations, χ1 = 0.9, χ2 = 0.8 and χ1 = 0.3, χ2 = 0.2 for the second generation detector network. All the sources are at a fixed
luminosity distance of 100 Mpc with the angular position and orientations to be θ = π/6, φ = π/3, ψ = π/6, ι = π/5. To obtain the numerical
estimates showed in this plot, we also consider a prior distribution on φc. To be precise, we assume the prior on φc for each detector in the
network to follow a Gaussian distribution with a zero mean and a variance of 1/π2.
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FIG. 2. Projected 1σ errors on the multipole and the energy coefficients as a function of total mass for two different mass ratios q = m1/m2 = 1.2, 5
and two spin configurations, χ1 = 0.9, χ2 = 0.8 and χ1 = 0.3, χ2 = 0.2 for the third generation detector network. All the sources are at a fixed
luminosity distance of 100 Mpc with the angular position and orientations to be θ = π/5, φ = π/6, ψ = π/4, ι = π/4. To obtain the numerical
estimates showed in this plot, we also consider a prior distribution on φc. To be precise, we assume the prior on φc for each detector in the
network to follow a Gaussian distribution with a zero mean and a variance of 1/π2.

A. Ground-based second generation detector network

As a representative case, we consider a world-wide net-
work of five second-generation ground based detectors: LIGO-
Hanford, LIGO-Livingston, Virgo, KAGRA [100], and LIGO-
India [101]. We assume the noise PSD for LIGO-Hanford,
LIGO-Livingstone and LIGO-India to be the analytical fit given
in Ref. [102] whereas the following fit is used for Virgo PSD,

S virgo
h ( f ) = 1.5344 × 10−47

[
1 + 1871 ×

(
16
f

)10

+ 11.72 ×
(

30
f

)6

+ 0.7431 ×
(

50
f

)2

+ 0.9404 ×
(

70
f

)
+ 0.2107 ×

(
100

f

)0.5



10

105 106 107

10−1

100

101
∆µ

2
q = 1.2
q = 5
q = 10

105 106 107

10−1

100

101

∆µ
3

105 106 107
10−1

100

101

∆µ
4

105 106 107

100

101

102

103

∆µ
5

105 106 107
100

101

102

103

∆ε
2

105 106 107

101

102

103

∆ε
3

Total Mass (M�)

FIG. 3. Projected 1σ errors on the multipole coefficients as a function of total mass for three different mass ratios q = m1/m2 = 1.2, 5 and 10
in case of LISA noise PSD. We assume χ1 = 0.9, χ2 = 0.8. All the sources are considered to be at a fixed luminosity distance of 3 Gpc. To
obtain the numerical estimates showed in this plot, we also consider a prior distribution on φc. To be precise, we assume φc to follow a gaussian
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+ 26.02
(

f
500

)2]
Hz−1 , (5.1)

where f is in units of Hz. We consider the lower cut off fre-
quency flow = 10 Hz for these detectors. For the Japanese de-
tector KAGRA we use the noise PSD given in Ref. [103] with
flow = 1 Hz. For all the detectors, fhigh is taken to be the fre-
quency at the last stable orbit, fLSO = 1/(πm 63/2). As opposed
to the single detector Fisher matrix analysis, for a network of
detectors, Fisher matrix is evaluated for each detector and then
added to obtain the network-Fisher-matrix. To estimate the
individual Fisher matrices we use a waveform that is weighted
with the correct antenna pattern functions F+/×(θ, φ, ψ) of the
detectors, where θ, φ and ψ are the declination, the right ascen-
sion and the polarization angle of the source in the sky. More
precisely we use the following waveform

h̃( f ) =
1 + cos2 ι

2
F+(θ, φ, ψ) h̃+( f )

+ cos ι F×(θ, φ, ψ) h̃×( f ) (5.2)

with

h̃+( f ) = A µ2 f −7/6e−iΨs , (5.3)

h̃×( f ) = −i h̃+( f ) . (5.4)

The individual F+/×(θ, φ, ψ) for each detector are estimated
incorporating their location on Earth and Earth’s rotation as
given in Ref. [104]. We calculate the Fisher matrix for each

detector considering an eight dimensional parameter space,
{tc, φc, logA, logMc, log ν, χs, χa, µ` or ε` or αm} specifying
the GW signal. Here we fix the four angles, θ, φ, ψ, ι to be
π/6, π/3, π/6, π/5 respectively and do not treat them as param-
eters in the Fisher matrix estimation. These four angles, being
the extrinsic parameters, have small correlation with the intrin-
sic ones especially with the multipole or the energy coefficients,
and hence have negligible effect on their measurement.

B. Ground-based third generation detector network

As a representative case for the third generation ground-
based detector network, we consider three detectors: one Cos-
mic Explorer-wide band (CE-wb) [105] in Australia, one CE-
wb in Utah-USA and one Einstein Telescope-D (ET-D) [106]
in Europe. We use the noise PSD given in Ref. [106] for
ET-D and the analytical fit given in Ref. [37] for the CE-wb.
We assume flow to be 1 and 5 Hz for the ET-D and CE-wb,
respectively. To evaluate the Fisher matrix for this network
configuration we use the same waveform as given in Eq. (5.2)
except for the estimation of Fisher matrix in case of ET-D, we
multiply the waveform by sin(π/3) because of its triangular
shape. We follow the same scheme as described in Sec. V A to
estimate the 1σ bounds on µ2, µ3, µ4, ε2 and α0, α2, α3, α4.
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FIG. 4. Projected 1σ errors on the multipole coefficients as a function of total mass for three different mass ratios q = m1/m2 = 1.2, 5 and 10
in case of LISA noise PSD. We assume χ1 = 0.3, χ2 = 0.2. All the sources are considered to be at a fixed luminosity distance of 3 Gpc. To
obtain the numerical estimates showed in this plot, we also consider a prior distribution on φc. To be precise, we assume φc to follow a gaussian
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C. Space-based LISA detector

For the space based detector, LISA, we use analytical fit
given in [107] and choose flow in such a way that the signal
stays in the detector band for one year or less depending on the
frequency at the last stable orbit. More specifically, we assume
flow to be [90, 108]

flow = max
[
10−5, 4.149 × 10−5

(
Mc

106M�

)−5/8(Tobs

1yr

)−3/8]
,

(5.5)
where Tobs is the observation time which we consider to be one
year. We assume the upper cut off frequency, fhigh, to be the
minimum of [0.1, fLSO]. The waveform we employ for LISA
is given in Eq. (3.3) except we multiply it by an additional
factor of

√
3/2 in order to account for the triangular shape of

the detector. We do not account for the orbital motion of LISA
in our calculations and consider LISA to be a single detector.

We next discuss the Fisher matrix projections for the various
deformation coefficients parametrizing the conservative and
dissipative sectors in the context of advanced ground-based
and space-based gravitational wave detectors.

VI. RESULTS

Our results for the ground-based detectors are depicted in
Figs. 1 (second generation) and 2 (third generation) and those

for the space-based LISA detector are presented in Figs. 3,
4, 5, 6 and 7. For the second and third generation ground-
based detectors configurations, we choose the binary systems
with two different mass ratios q = 1.2, 5 for two sets of spin
configurations: high spin case (χ1 = 0.9, χ2 = 0.8) and low
spin case (χ1 = 0.3, χ2 = 0.2). We also assume the luminosity
distance to all these prototypical sources to be 100 Mpc. We
consider these sources are detected with a network of second
or third generation detectors as detailed in the last section. For
LISA, we consider our prototypical supermassive BHs to be at
the luminosity distance of 3 Gpc with three different mass ratios
of q = 1.2, 5, 10. For these mass ratios, we investigate both
high spin (χ1 = 0.9, χ2 = 0.8) and low spin (χ1 = 0.3, χ2 = 0.2)
scenarios.

First we discuss the qualitative features in the plots. As ex-
pected, the third generation detector network which has better
band width and sensitivity does better than the second gener-
ation detectors whereas LISA and third generation detectors
perform comparably, though for totally different source config-
urations. The bounds on the multipole coefficients describing
the dissipative dynamics broadly follows the trends seen in the
non-spinning study carried out in Ref. [37]. The mass-type
multipole moments are measured better than the current-type
ones appearing at the same PN order with µ2 (corresponding
to the mass quadrupole) yielding the best constraint as it is
the dominant multipole which contribute to the flux and the
phasing. Due to the interplay between the sensitivity and mass
dependent upper cut-off frequency, the errors increase as a
function of mass in the regions of the parameter space we
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FIG. 5. Projected 1σ errors on the energy coefficients as a function of total mass for three different mass ratios q = m1/m2 = 1.2, 5 and 10 in
case of LISA noise PSD. We assume χ1 = 0.9, χ2 = 0.8. All the sources are considered to be at a fixed luminosity distance of 3 Gpc. To obtain
the numerical estimates showed in this plot, we also consider a prior distribution on φc. To be precise, we assume the prior on φc to follow a
gaussian distribution with a zero mean and a variance of 1/π2.

explore. The errors improve as the mass ratio increases for
all cases except µ2. As argued in Ref. [37], µ2 is the only
multipole parameter which appears both in the amplitude and
the phase of the waveform and hence shows trends different
from the other multipole coefficients. Inclusion of spins, on
the whole, worsens the estimation of the multipole coefficients
compared to the non-spinning case. This is expected as the
spins increase the dimensionality of the parameter space but
does not give rise to new features that helps the estimation.
Effects such as spin-induced precession, which bring in a new
time scale and associated modulations, may help counter this
degradation in the parameter estimation. But this will be a
topic for a future investigation. We also find that as a function
of the spin magnitudes, the parameter estimation improves
and hence highly spinning systems would yield stronger con-
straints on these coefficients. The estimation of various αk,
parametrizing the conservative dynamics, also broadly follow
these trends. However, there is an important exception. The

bounds on α3 is consistently worse than those of α4. This may
be attributed to the important difference between them that α3
parametrizes the 1.5PN term in the conserved energy which
has only spin-dependent terms whereas the 2PN term contains
both non-spinning and spinning contributions. Hence though
α4 is sub-leading in the PN counting, and hence the bounds are
better.

We now discuss the quantitative results from these plots.
One of the most interesting results is the projected constraints
on coefficients that parametrize conservative dynamics. For
third generation ground-based detectors, and for the prototyp-
ical source specifications, the bounds on 2PN conservative
dynamics can be ∼ 10−2 which is comparable to or even better
than the corresponding bounds expected from LISA. On the
multipole coefficients side, the quadrupole coefficient µ2 may
be constrained to ≤ 10−1(10−2) for second (third) generation
detector network while the bounds from LISA are also ∼ 10−2.
The best bounds for µ3 are ∼ 10−1, 10−2, 10−2 for second gener-
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obtain the numerical estimates showed in this plot, we also consider a prior distribution on φc. To be precise, we assume the prior on φc to
follow a gaussian distribution with a zero mean and a variance of 1/π2.

ation, third generation and LISA, respectively, corresponding
to highly spinning binaries. The projected bounds on the higher
multipole coefficients from third generation detector network
and LISA are comparable in all these cases, though one should
keep in mind the specifications of the sources we consider for
these two cases are very different.

VII. CONCLUSION

We extend our previous work [37] by including spin ef-
fects in the inspiral dynamics and provide a waveform model,
parametrized in terms of multipole and PN binding energy coef-
ficients, for non-precessing compact binaries in quasi-circular
orbit. The spin-orbit contributions are computed up to 3.5PN
order while the spin-spin contributions are obtained up to 3PN
order. We also provide the projected 1σ bounds on the mul-

tipole coefficients as well as the PN deviation parameters in
the conserved energy for the second generation ground based
detector network, the third generation ground based detector
network and the space-based detector LISA, using the Fisher
matrix approach. We find that the four leading order multipole
coefficients and the four leading order PN conserved energy
coefficients are measured with reasonable accuracy using these
GW detectors.

We are currently in the process of implementing this
parametrized waveform model presented in this paper in LAL-
Inference [109] to carry out tests of GR proposed here on real
GW data. As a follow up, it will be interesting to compute the
parametrized waveform within the effective-one-body formal-
ism and investigate the possible bounds on these coefficients.
Inclusion of higher modes of the gravitational waveforms,
which contain these multipole coefficients in the amplitude
of the waveform, will also be an interesting follow up in the
future.
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Appendix: Systematic bias due to the use of non-spinning
waveform model for GW detections by planned space-based

detector LISA

The use of inaccurate waveform model may lead to sys-
tematic biases in the parameter estimation [110, 111]. For a
detector data stream, s, consisting of a true waveform h̃T( f ;~θT)
and recovered with an approximate waveform h̃AP( f ;~θbest fit),
the systematic errors on various parameters can be ob-
tained by minimizing

〈
[h̃T( f ;~θT)− h̃AP( f ;~θbest fit)], [h̃T( f ;~θT)−

h̃AP( f ;~θbest fit)]
〉

[110]. Since we are interested in quantifying
the systematics due to the difference between the spinning and
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noise PSD. We consider systems with three different total masses, m = 105, 106, 107 M� having mass ratio q = 10. All the sources are considered
to be at a fixed luminosity distance of 3 Gpc.

non-spinning waveforms, we adopt the minimization scheme
developed in Ref. [110]. The basic assumption behind this
scheme is to define a one parameter family of waveform models
(h̃λ( f ; θ)) that interpolate between both h̃T( f ;~θT) ≡ h̃λ=1( f ; θ)
and h̃AP( f ;~θ) ≡ h̃λ=0( f ; θ). As it turns out, after a set of ap-
proximations, the linearized estimate for the systematic error
is (see Eq. (29) in Ref. [110])

∆sysθm =
(
Γ−1

AP

)
mk

〈
iAµ2 f −7/6∆ψeiψ

∣∣∣∣
θ=θbest fit

,
∂h̃AP( f ;~θbest fit)

∂θk

〉
,

(A.1)
where (ΓAP)mk is the Fisher matrix obtained from the approxi-
mate waveform h̃AP( f ;~θ) and ∆ψ = ψT − ψAP. All the quanti-
ties are evaluated at the best fit values of the parameters which
coincide with the true values in the large SNR limit.

To quantify the systematic bias, we consider a six dimen-
sional parameter space consists of {tc, φc, lnA, lnMc, lnν, µ`
or ε`} to completely specify the approximate waveform
h̃AP( f ;~θbest fit), for our purpose the parametrized non-spinning
TaylorF2 waveform. We use the same approximate waveform
to estimate the six dimensional Fisher matrix, ΓAP.On the other
hand, we consider the parametrized non-precessing TaylorF2
waveform to be our true waveform model.

In Fig. 8 we show the systematic biases on µ2 and µ3 for
binaries with three different total masses, M = 105 M�, 106

M�, 107 M� and mass ratio q = 10 as a function of individ-

ual spin parameter χ1 = χ2 = χ for LISA. Due to a smaller
total mass (M = 105M�) a large number of inspiral cycles
reside in the LISA band. Hence even with very small spin
values χ ∼ O(10−3), the systematic errors become larger than
the statistical errors, which demands a parametrized spinning
waveform model. In contrast, for larger total masses of about
106 M� or 107 M�, the systematics affect the parameter estima-
tion when the spin magnitude is slightly larger ∼ O(10−1), as
expected. Hence it is very crucial to incorporate the spin correc-
tions in the waveform to reduce the effects of systematics when
extracting the information about the multipole coefficients. We
also find that as the total mass of binary increases the slope of
the systematic bias curves changes from positive to negative
for µ2 and vice-versa for µ3. This could be due to the nature of
the correlation (positive or negative) between these multipole
coefficients and the binary parameters (such as masses and
spins) with increasing total mass. We quote the leading order
estimates for the systematic biases in case of LISA only. Since
the Fisher matrix-based leading order estimation of systematic
biases for network configuration demands reformulation of
the prescription, we postpone these for future study in a more
rigorous and accurate Bayesian framework.

We give the inputs needed to compute the phasing for Tay-
lorT2, TaylorT3 and TaylorT4 in a Mathematica file (supl-
Multipole-spin.m) which serves the Supplemental Material to
this paper.
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