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We study a simple extension of quasi-single field inflation in which the inflaton

interacts with multiple extra massive scalars known as isocurvatons. Due to the

breaking of time translational invariance by the inflaton background, the theory

includes kinetic mixings among the inflaton and isocurvatons. These mixings give

rise to novel new features in the primordial non-Gaussianities of the scalar curvature

perturbation. A noteworthy feature is the amplitude of the squeezed bispectrum

can grow nearly as (ks/kl)
−3 while oscillating as cos γ log(ks/kl), where ks/kl is the

ratio of the lengths of the short and long wavevectors. Observation of such a shape

would provide evidence for the existence of multiple isocurvatons during inflation. In

addition, we consider the effects of these non-Gaussianities on large-scale structure.

I. INTRODUCTION

The inflationary paradigm [1] posits a period of time shortly after the big bang during
which the universe’s energy density was dominated by vacuum energy and the size of the
universe grew exponentially. Such an era would explain the near isotropy of the CMB and
the near flatness of the universe. At the same time, inflation provides a quantum mechanical
origin for the energy density perturbations which have an almost scale-invariant Harrison-
Zel’dovich power spectrum [2] (see [3] for a review).

The simplest inflationary theories are known as single-field inflation models and involve a
single scalar field called the “inflaton.” In slow-roll models, the inflaton vacuum expectation
value φ0 is initially displaced from the minima of the inflaton potential Vsr(φ). The potential
is chosen such that there is a period of time (the inflationary era) during which φ0’s potential
energy dominates over its kinetic energy and drives the exponential expansion of the universe.
After more than 50−60 e-folds of expansion, φ0’s kinetic energy becomes large and inflation
ends.

Since φ̇0 6= 0, time-translational invariance is spontaneously broken. This gives rise
to a Goldstone boson π that sources scalar curvature perturbations [4]. In the simplest
single-field models, the curvature perturbations are approximately Gaussian [5]. To produce
large primordial non-Gaussianities (PNG), one can add extra fields to the inflationary field
content and include interactions between π and the new fields1. This leads to interesting

1 Large non-Gaussianities can also be achieved in more complicated single field models, see for example

[6, 7].
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new shapes and features of primordial non-Gaussianity that could be observed in the CMB
and large-scale structure (LSS) and used to constrain the inflationary theory.

Quasi-single field inflation (QSFI) is a well-studied extension of single-field inflation mod-
els [8] that could potentially give rise to significant PNG. In QSFI, one adds a single extra
scalar field σ of mass m, known as the isocurvaton, and includes a kinetic mixing between σ
and π of the form2 µπ̇σ and a potential for the isocurvaton V (σ). In QSFI the isocurvaton
never fulfills the roll of the inflaton, rather, its purpose is to generate PNG through its
interactions with π.

The connected three- (bispectrum) and four- (trispectrum) point functions of π in QSFI
have been studied extensively [8–18]. The squeezed limit of the bispectrum, which occurs
when the lengths of two of the three wavevectors are roughly equal and much larger than the
length of the third wavevector, has been shown to exhibit particularly interesting behavior.
Let kl denote the length of the larger wavevectors and ks the length of the shorter one. It
has been shown that if m and µ are both much smaller than the Hubble constant during
inflation H, then the magnitude of the squeezed bispectrum in QSFI grows approximately
as (ks/kl)

−3. In the opposite limit, m,µ � H, the magnitude of the squeezed bispectrum
was found to oscillate logarithmically in ks/kl but grow only as (ks/kl)

−3/2 [8, 17].
Since single-isocurvaton QSFI gives rise to distinct PNG, it is worthwhile to study theories

that include multiple isocurvatons σI (we will call these theories multi-isocurvaton QSFI).
It turns out that interactions such as ρ(σ̇1σ2− σ̇2σ1) and µ1π̇σ1 give rise to novel features in
the PNG. Specifically, for certain choices of ρ and µ1, the squeezed bispectrum undergoes
logarithmic oscillations in ks/kl and grows approximately as (ks/kl)

−3. This is very different
from the behavior of the squeezed bispectrum in single-isocurvaton QSFI, which can only
exhibit oscillations or nearly cubic power law growth in different limits of µ and m.

Several previously studied inflationary models predict log-oscillating or oscillating shapes
for the bispectrum [7, 9, 19–31]. Using shape templates, the Planck collaboration has begun
constraining these oscillating/log-oscillating bispectra [32]. The authors of [30] showed that a
tachyonic instability generated by a waterfall transition can result in a bispectrum exhibiting
log-oscillations as well as nearly cubic power law growth in the squeezed limit. The instability
would also induce a peak in the primordial power spectrum at or near the scale of the
waterfall transition3. In this paper, we show that multi-isocurvaton QSFI can also generate
log-oscillations as well as nearly cubic power law growth in the squeezed bispectrum. We also
provide a bispectrum shape template for multi-isocurvaton QSFI that could be searched for
experimentally. Since there is no preferred scale in multi-isocurvaton QSFI, e.g. the waterfall
transition in [30], there is no peak in the power spectrum.

Previous work has demonstrated that non-Gaussianities that grow like (ks/kl)
−3 in the

squeezed limit can have significant effects on large-scale structure [33–36]. For example, in
single-isocurvaton QSFI models with m,µ � H, non-Gaussian contributions to the dark
matter halo-halo power spectrum Phh(ks) become much larger than the Gaussian contribu-
tion as ks → 0. The halo-halo power spectrum Phh(q) will also be sensitive to the extra fields
and interactions present in multi-isocurvaton QSFI. We will show that for certain choices
of the parameters ρ and µ1, the bispectrum and trispectrum contributions to Phh(ks) will
dominate over the Gaussian contribution while oscillating logarithmically as ks → 0.

The purpose of this work is to determine the shapes of the bispectrum and trispectrum
in multi-isocurvaton QSFI and explore their effects on LSS. In section II we write down a

2 Kinetic mixing terms such as µπ̇σ can appear in the Lagrangian because the inflaton vev spontaneously

breaks Lorentz invariance
3 See Fig. 7 in [30].
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general quadratic Lagrangian for multi-isocurvaton QSFI and determine the mode functions
of the π and σI fields. In section III we compute the primordial bispectrum and trispectrum
due to a cubic interaction of the form σ3

1, and provide a template for the bispectrum shape.
Finally, in section IV we calculate the contribution of the PNG to the halo-halo power
spectrum Phh(ks) and halo-matter power spectrum Phm(ks).

II. THE MODEL AND MODE FUNCTIONS

We consider multi-isocurvaton QSFI, which include an inflaton field and N extra scalar
fields known as “isocurvatons.” The inflaton develops a time-dependent vacuum expectation
value φ0 that sources a background de-Sitter metric

ds2 =
1

(Hτ)2
(
dτ 2 − (dxi)2

)
(2.1)

where H is the Hubble parameter during inflation and τ is proper time. We assume that
φ0 exhibits a slow-roll trajectory, which means φ̈0 ' 0 and H is approximately constant
throughout the inflationary era (see [3] for a review of slow-roll inflation). The quantum
fluctuations of the inflaton and isocurvaton fields perturb the metric about (2.1) and source
scalar and tensor curvature fluctuations, ζ(τ, ~x) and γij(τ, ~x).

To describe the field fluctuations, we use the effective field theory of inflation formalism
[4]. Following [4], we choose uniform inflaton gauge in which the inflaton fluctuations are set
to zero. We then observe that the time-dependent inflaton vev spontaneously breaks time
diffeomorphism invariance, giving rise to a Goldstone boson π that transforms as π(x) →
π(x)−ξ(x) under time-diffeomorphisms t→ t+ξ(x). The degrees of freedom in the effective
theory are π, the metric fluctuations, and the fluctuations of the N isocurvaton fields σI .
To construct the effective theory, one writes all possible terms invariant under the full set of
space-time diffeomorphisms involving these fields (see [14] for a complete derivation in the
context of single-isocurvaton QSFI).

We will be interested in computing the momentum space correlation functions of π at the
time when the modes exit the horizon. This implies we can work in the “decoupling limit”
of the effective theory [4] and set the metric perturbations to zero. Correlation functions of
ζ in the gauge where π is zero can be related to correlation functions of π in the decoupling
limit by [4]

ζ = −(H/φ̇)π. (2.2)

The leading quadratic Lagrangian simplifies to any term quadratic in π and σI that is
consistent with a shift symmetry in π and a background de-Sitter space-time:

L2 =
1

2(Hτ)2

(
(∂τπ)2 − c̃2π (∂iπ)2 + Z̃IJ∂τσI∂τσJ − c̃2σIJ∂iσI∂iσJ + 2β̃I∂τπ∂τσI + δ̃I∂iπ∂iσI

− (Hτ)−2 m̃2
IJσIσJ − 2 (Hτ)−1 ρ̃IJσI∂τσJ − 2 (Hτ)−1 µ̃IσI∂τπ

)
.

(2.3)

Note, repeated indices are summed over and we have included the
√
−g factor from the

action in the Lagrangian. We have dropped terms quadratic in the fields that have more
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than two derivatives because they are suppressed by powers of the cutoff Λ of the effective
theory.

Several terms in (2.3) can be eliminated by field redefinitions. For example, the δ̃I∂iπ∂iσI
interaction can be absorbed into other couplings by performing the time diffeomorphism that
induces the shift π → π+ δ̃IσI/(2c

2
π). Moreover, we can rotate and re-scale σI to diagonalize

c̃2σIJ and set Z̃IJ = 1. Equation (2.3) then simplifies to

L2 =
1

2(Hτ)2
(

(∂τπ)2 − c2π (∂iπ)2 + (∂τσI)
2 − c2σI (∂iσI)

2 + 2βI∂τπ∂τσI

− (Hτ)−2m2
IJσIσJ − 2 (Hτ)−1 ρIJσI∂τσJ − 2 (Hτ)−1 µIσI∂τπ

)
. (2.4)

The matrix m2
IJ is symmetric while ρIJ is anti-symmetric4. The interactions µI π̇σI and

ρIJσI σ̇J could result from a UV theory containing terms such as (σI/Λ)gµν∂µφ∂νφ and
(σI/Λ)gµν∂µσJ∂νφ. The kinetic mixings in (2.4) arise because the inflaton vev spontaneously

breaks Lorentz invariance. If φ̇0 = 0, Lorentz invariance is unbroken and the kinetic mixings
must vanish. By dimensional analysis, this means µI and ρIJ are proportional to φ̇0/Λ.

Using (H2/φ̇0)
2 ∼ 2π2∆2

ζ , where

∆2
ζ =

k3

2π2
Pζ(k) ' 2.11× 10−9 (2.5)

is the dimensionless power spectrum [37], the cutoff can be expressed in terms of |µI | as

Λ

H
∼ H

|µI |
× 104. (2.6)

For µI ∼ O(H), this implies that Λ� H and higher derivative terms are suppressed.
We can recover previously studied single-isocurvaton QSFI models by taking limits of

(2.4). If we take N = 1, β1 = 0 and c2π = c2σ1 = 1, we recover the quadratic part of the
QSFI Lagrangian originally considered by Chen and Wang [8]. The resulting Lagrangian
only has two parameters, µ1 and m11. Single-isocurvaton QSFI with generic speeds of sound
and nonzero β1 was studied in [14]. The presence of a nontrivial ρIJ matrix is the main new
aspect of theories with N > 1 isocurvatons.

One way to treat the kinetic mixings parameterized by µI , βI and ρIJ is to write the
Fourier transforms of the π and σI fields in terms of a common set of raising and lowering
operators

π̂(τ,x) =

∫
d3k

(2π)3
H

k3/2

N+1∑
i=1

(
â
(i)
k π

(i)(η)e−ik·x + c.c
)

σ̂I(τ,x) =

∫
d3k

(2π)3
H

k3/2

N+1∑
i=1

(
â
(i)
k σ

(i)
I (η)e−ik·x + c.c

)
(2.7)

where η = kτ . The mode functions π(i)(η) and σ(i)(η) obey the Euler-Lagrange equations
obtained from (2.4),

σ
(i)
I

′′
− 2

η
σ
(i)
I

′
+ c2σIσ

(i)
I +

m2
IJ

η2
σ
(i)
J +

µI
η
π(i)′ + βI

(
π(i)′′ − 2

η
π(i)′

)
+
ρIJ
η

(
2σ

(i)
J

′
− 3

η
σ
(i)
J

)
= 0

4 Any symmetric part of ρIJ can be absorbed into m2
IJ through an integration by parts.
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π(i)′′ − 2

η
π(i)′ + c2ππ

(i) − µI
η

(
σ
(i)
I

′
− 3

η
σ
(i)
I

)
+ βI

(
σ
(i)
I

′′
− 2

η
σ
(i)
I

′
)

= 0

(2.8)

where primes denote derivatives with respect to η. The mode functions asymptotically obey
the Bunch-Davies vacuum condition. Since equations (2.8) are coupled, they are difficult
to solve analytically for general parameters5. Instead, we use the numerical solutions of
(2.8) to perform most of the calculations in our analysis. However, one can derive the
small η behavior of the mode functions analytically, which turns out to fix the wavevector
dependence of the squeezed and collapsed limits of the bispectrum and trispectrum.

In the limit6 −η << 1, we can neglect the terms in (2.8) proportional to the speeds of
sound. The leading late time behavior for the mode functions can be written as

π(i)(η) = a(i)s (−η)s σ
(i)
I (η) = b

(i)
I,s(−η)s. (2.9)

For example, specializing to N = 2 and inserting (2.9) into (2.8) yields the following equation
for s, ∣∣∣∣∣∣

(s− 3)s (s− 3)(sβ1 − µ1) (s− 3)(sβ2 − µ2)
s((s− 3)β1 + µ1) m2

11 + (s− 3)s m2
12 + (3− 2s)ρ

s((s− 3)β2 + µ2) m2
12 + (2s− 3)ρ m2

22 + (s− 3)s

∣∣∣∣∣∣ = 0, (2.10)

which can be solved for six different roots:

s = 0, s−, s
∗
−, 3− s−, 3− s∗−, 3. (2.11)

In general, s− is a complex number satisfying7 0 < Re[s−] ≤ 3/2. The s = 0 solution arises
from the shift symmetry in π and can only exist in the π mode functions. The leading η
behavior of the mode functions is

π(i)(η) = a
(i)
0 + a(i)s−(−η)s− + a

(i)
s∗−

(−η)s
∗
− + . . .

σ
(i)
I (η) = b

(i)
I,s−

(−η)s− + b
(i)
I,s∗−

(−η)s
∗
− + . . . . (2.12)

Equations (2.12) imply that as η → 0, π(i) approaches a constant while σ
(i)
I decays to 0.

The late time behavior of σI in multi-isocurvaton QSFI can be very different from its
late time behavior in single-isocurvaton QSFI [8]. If we write s− ≡ α + iγ, equation (2.12)
becomes

σ
(i)
I (η) = b

(i)
I,s−

(−η)αeiγlog(−η) + b
(i)
I,s∗−

(−η)αe−iγlog(−η). (2.13)

Observe that the modes oscillate logarithmically in η with frequency γ. Moreover, α dictates
how quickly the modes decay at late times. In the original Chen and Wang theory [8] γ
can only be nonzero when α = 3/2 (see e.g. [17]). This means that while the isocurvaton’s
mode functions exhibit oscillatory behavior at late times, they decay quickly as η → 0. On

5 Analytic progress can be made in the context of single-isocurvaton QSFI in the regimes where µ1, m11 � H

[18], or µ1, m11 � H [10, 17, 38, 39].
6 We have chosen the convention in which inflation occurs between −∞ < τ ≤ 0
7 For general model parameters Re[s−] can be less than 0, however the modes would then be tachyonic and

grow rather than decay as η → 0.
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the other hand, in a multi-isocurvaton QSFI theory with ρIJ 6= 0, one can obtain γ 6= 0 with

α < 3/2, which means that σ
(i)
I can oscillate while decaying slowly.

To illustrate this, we specialize to the case of two isocurvatons and focus on two sets of
parameters which will serve as our benchmark models. The first set is

µ1 = m12 = m21 = βI = 0, cπ = cσ1 = cσ2 = 1,

µ2 = 0.6H, m2
11 = m2

22 = −ρ212 = −(5H)2 (2.14)

which yields s− ' 0.06− 5.00i, while the second is

µ1 = m12 = m21 = βI = 0, cπ = cσ1 = cσ2 = 1,

µ2 = 0.4H, m11 = m22 = 0.3H, ρ12 = H (2.15)

which yields s− ' 0.46− 1.00i. Notice, the masses squared in (2.15) are negative, which is
usually a signal of tachyonic modes whose mode functions diverge as η → 0. However, due
to the kinetic mixing, the mass squared parameters that appear in the Lagrangian do not
equal the physical masses squared. Indeed, α > 0 for this set of parameters, which implies
σI → 0 as η → 0.

For α < 3/2 and γ 6= 0, α and γ are typically the same order of magnitude. Some tuning
is required in order to produce α � 1 with γ ∼ O(1). This means, rapid oscillations that
decay slowly cannot be produced without some degree of tuning between model parameters8.

III. PRIMORDIAL NON-GAUSSIANITY

In the previous section, we showed that theories with multiple-isocurvaton have a kinetic
mixing term parameterized by the matrix ρIJ that cannot exist in single-isocurvaton models.
If this term is present, the mode functions of π and σI can exhibit oscillatory behavior
that decays slowly at late times. We now study the effects of this behavior on the non-
Gaussianities of the scalar curvature perturbations of the metric, ζ.

We are interested in computing the “in-in” correlation functions of ζ at τ = 0, which are
related to those of π through (2.2). The in-in correlator of an operator O can be expressed
in the so-called “commutator form” (see for example [40]) as

〈O(0)〉 =
∞∑
N=0

iN
∫ 0

−∞
dτN

∫ τN

−∞
dτN−1· · ·

∫ τ2

−∞
dτ1〈[Hint(τ1), [Hint(τ2), . . . [Hint(τN),O(0)] . . . ]]〉I

(3.1)
where the fields on the right hand side of (3.1) evolve according to (2.7) and (2.8). In
general, the interaction Hamiltonian consists of an isocurvaton potential V (σI) as well as
interactions involving combinations of π and σI . For simplicity, we assume the potential
consists of a cubic interaction involving only the σ1 field and that the interaction Hamiltonian
is dominated by this interaction9:

Hint(τ) =
1

(Hτ)4

∫
d3x

V ′′′

3!
σ1(x)3 + . . . . (3.2)

In the next two subsections, we compute the bispectrum and trispectrum of ζ due to this
interaction.

8 For example, in eq. (2.15), we tuned m2
ii = −ρ2.

9 The potential V (σI) is not related to the other operators in the effective theory by any symmetry and

can, in principle, be the largest term in the interaction Hamiltonian.
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FIG. 1. A diagramatic representation of the leading contribution to the bispectrum. Dashed lines

represent π, while solid lines represent σ1.

A. Bispectrum

We first consider the three-point function of ζ. Let ζk denote the Fourier transform of
ζ(x, 0). The bispectrum Bζ is defined as

〈ζk1ζk2ζk3〉 = Bζ(k1,k2,k3)(2π)3δ3(k1 + k2 + k3). (3.3)

Using equations (2.2), (2.7), (3.1) and (3.2), it is straightforward to show that to leading
order in V ′′′

Bζ(k1, k2, k3) = −2

(
H2

φ̇0

)3
V ′′′

H

1

k31k
3
2k

3
3

×
∫ 0

−∞

dτ

τ 4
Im
(
π(i)(0)σ

(i)∗
1 (k1τ)π(j)(0)σ

(j)∗
1 (k2τ)π(k)(0)σ

(k)∗
1 (k3τ)

)
(3.4)

where repeated mode labels are summed. Note, the sum π(i)(0)σ
(i)∗
1 (kiτ) is nonzero because

of the kinetic mixings.
The τ integral in (3.4) is potentially IR divergent due to the factor of 1/τ 4 in the integrand.

Even though we do not have explicit expressions for the mode functions, it can be shown
using the canonical commutation relations (see Appendix A) that the integral is indeed finite
in the IR. One can then evaluate the bispectrum using the numerical solutions of (2.8).

Consider the squeezed limit of (3.4), which occurs when kl ≡ k1 ∼ k2 and ks ≡ k3 � kl,
i.e. there are two long sides and one short side of the triangle traced out by the ki. We
can factor out the momentum dependence from the time integral by changing integration
variables to η = klτ and expanding to leading order in ks/kl using (2.12). We find

Bsq
ζ (kl, ks) = −4

(
H2

φ̇0

)3(
V ′′′

H

)
1

k6l

(
ks
kl

)−3+α
(

cos (γ log ks/kl) Re
[
a
(i)
0 b

(i)∗
1,s−y

∗(α, γ)
]

+ sin (γ log ks/kl) Im
[
a
(i)
0 b

(i)∗
1,s−y

∗(α, γ)
] )

(3.5)

where

y(α, γ) =

∫ 0

−∞

dη

(−η)4−α−iγ
Im

[(
π(i)(0)σ

(i)∗
1 (η)

)2]
. (3.6)
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FIG. 2. Plots of the shape functions S(k1, k2, k3) in the range k1 > k2 > k3 for multi-isocurvaton

oscillatory shape (red) and local shape (transparent gray). In the left and right panels we plot

parameters (2.14) and (2.15) respectively.

The squeezed bispectrum oscillates logarithmically in ks/kl with angular frequency γ and
the amplitude grows as (ks/kl)

−3+α. As mentioned earlier, in single-isocurvaton QSFI, γ
can only be nonzero when α = 3/2, which means the amplitude of an oscillating squeezed
bispectrum can only grow as (ks/kl)

−3/2 in these models. This is not the case for the
multi-isocurvaton models given by (2.14) or (2.15), whose oscillating bispectrum grow ap-
proximately as (ks/kl)

−2.94 and (ks/kl)
−2.54 respectively.

To illustrate the momentum dependence of the full bispectrum, it is useful to define the
shape function

S(k1, k2, k3) = κ(k1k2k3)
2Bζ(k1, k2, k3). (3.7)

The normalization factor κ is chosen so that S(k, k, k) = 1.
In Fig. 2, we plot the shape function of multi-isocurvaton QSFI for the model param-

eters (2.14) and (2.15). For comparison, we also include the shape function of local non-
Gaussianity

Sloc(k1, k2, k3) =
1

3
(k1k2k3)

2

[
1

(k1k2)3
+

1

(k2k3)3
+

1

(k3k1)3

]
(3.8)

which is close to the shape function of the single-isocurvaton QSFI originally considered by
Chen and Wang in the limit µ1,m11 � H [8, 18].

Fig. 2 is consistent with the analytic results for the squeezed bispectrum of multi-
isocurvaton QSFI. In the limit k3/k1 → 0, the shape function oscillates logarithmically
in k3/k1 and its amplitude has power law growth. On the other hand, in single-isocurvaton
QSFI, the shape function for an oscillating bispectrum decays to 0 as k3/k1 → 0. Note,
to get very rapid oscillations and nearly local power law growth for the multi-isocurvaton
shape, one needs to tune parameters as in (2.14). However, even the shape for the untuned
parameters (2.15) displays a visible turn due to nonzero γ.

For single-isocurvaton QSFI with γ = 0, the shape function has been approximated as
[8]:

SQSFI
α (k1, k2, k3) = 33α−2 (k21 + k22 + k23) (k1 + k2 + k3)

1−3α

(k1k2k3)
1−α (3.9)
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FIG. 3. We plot shape functions S(k1, k2, k3) of the multi-isocurvaton oscillatory shape in the range

k1 > k2 > k3. We plot the shape computed numerically in red and plot the approximate shape

defined in eq. (3.10) in blue. The top-left plot has parameters (α, γ, φ) = (0.06,−5.00,−1.55), top-

right (0.23,−2.50,−1.58), bottom-left (0.46,−1.00, 3.08), and bottom-right (0.14,−0.50,−2.78).

A good phenomenological fit to the multi-isocurvaton QSFI shape is

SOQSFI
α,γ,φ (k1, k2, k3) = C

(
cos

(
γ log

(
k2k3

k1 (k1 + k2 + k3)

)
+ φ

)
+ 2 perms.

)
SQSFI
α (k1, k2, k3)

(3.10)
where the normalization C = (3 cos (γ log (1/3) + φ))−1 enforces SOQSFI = 1 in the equi-
lateral limit. Note that the shape function is parameterized by three numbers α, γ, and a
phase φ. In Fig. 3, we plot the shape functions evaluated numerically against the shape
functions computed with (3.10).

We can also define the parameter fOQSFI
NL , corresponding to the magnitude of this shape.

In keeping with convention10, we define:

Bζ(k1, k2, k3) =
18

5
(k3Pζ(k))2fOQSFI

NL

1

k21k
2
2k

2
3

SOQSFI
α,γ,φ (k1, k2, k3). (3.11)

By matching the squeezed limit of (3.11) onto (3.5), we can obtain V ′′′/H as a function of

fOQSFI
NL :

V ′′′

H
= − 9

10
(|a(i)0 |2)3/2

√
2π2∆2

ζf
OQSFI
NL

C√
Im
[
a
(i)
0 b

(i)∗
1,s−y

∗(α, γ)
]2

+ 1
9
Re
[
a
(i)
0 b

(i)∗
1,s−y

∗(α, γ)
]2 .

(3.12)

10 Conventionally, fNL is defined via BΦ(k1, k2, k3) = 6A2fNL
1

k2
1k

2
2k

2
3
S(k1, k2, k3) where A is given by the

power spectrum’s normalization PΦ(k) = A/k3 (see, e.g. [41]).
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FIG. 4. A diagramatic representation of the collapsed trispectrum. Dashed lines represent π, while

solid lines represent σ1.

Even for γ ∼ O(0.1), the oscillating QSFI bispectrum shape still displays qualitatively
distinct features. Specifically, the shape can get large and negative in the squeezed limit.
This is different from many other bispectrum shapes that grow in the squeezed limit because
they typically remain positive rather than become negative (see [32]).

B. Collapsed Trispectrum

We now consider the four-point function of ζ, which is defined as

〈ζk1ζk2ζk3ζk4〉 = Tζ(k1,k2,k3,k4)(2π)3δ3(k1 + k2 + k3 + k4). (3.13)

We focus on the collapsed limit, which occurs when kl1 ≡ k1 ∼ k2, kl2 ≡ k3 ∼ k4, and
ks ≡ |k1 + k2| = |k3 + k4| � kli. The integrand will be symmetric in kl1 and kl2, which
means we can untangle the limits of the time integrals. The collapsed four-point then
simplifies to

Tζ
coll(kl1, kl2, ks) = 4

(
H2

φ̇0

)4(
V ′′′

H

)2
1

k
9/2
l1 k

9/2
l2

(
k2s

kl1kl2

)−3/2+α
[

cos

(
γ log

kl2
kl1

)(
|b(i)1,s−|

2 + |b(i)1,s∗−
|2
)
|y(α, γ)|2

+2 cos

(
γ log

k2s
kl1kl2

)
Re
[
b
(i)
1,s−b

(i)∗
1,s∗−

y(α, γ)2
]

−2 sin

(
γ log

k2s
kl1kl2

)
Im
[
b
(i)
1,s−b

(i)∗
1,s∗−

y(α, γ)2
] ]
. (3.14)

Note, not every term oscillates logarithmically in ks/kl. Instead, there are two terms which
oscillate with angular frequency 2γ as well as one that does not oscillate at all in ks/kl.

It turns out that a loop contribution to the trispectrum can produce terms that oscillate
with frequency 4γ. We explore this in Appendix B.

IV. LARGE-SCALE STRUCTURE

In this section, we determine the effects of PNG on large-scale structure, specifically the
halo-halo power spectrum Phh and the matter-halo power spectrum Phm. It is well known
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that in certain inflationary theories, such as single-isocurvaton QSFI, the contributions of
PNG to Phh and Phm can become much larger than the Gaussian contributions at wavevec-
tors of order (102 Mpc/h)−1 [18, 42, 43]. We now consider this in multi-isocurvaton QSFI.

The primordial curvature perturbations are related to the linearly evolved smoothed
matter density perturbations today, δR(k), by [44]

δR(k) =
2k2

5ΩmH2
0

T (k)WR(k)ζk (4.1)

where Ωm is the ratio of the matter density and the critical density today, H0 is the Hubble
constant today, T (k) is the BBKS transfer function [45] and WR(k) is a window function
smoothing over radius R. We use the top-hat window function

WR(k) =
3 (sinkR− kRcoskR)

(kR)3
. (4.2)

.
Since we are interested in scales of order 102 Mpc/h, δh can be related to δR through a

bias expansion. For simplicity, we use a local-in-matter-density bias expansion (for a more
comprehensive treatment, see [46])

δh(x) = b1δR(x) + b2
(
δR(x)2 − 〈δR(x)2〉

)
+ . . . (4.3)

The bias coefficients can be approximated using the threshold model introduced in [47]. We
assume that halos form instantaneously at some redshift zcoll, and that halos only form at
points where the overdensity exceeds some critical threshold δc(zcoll). We also neglect the
evolution of halos after collapse. In this model, the bias coefficients b1 and b2 are then

b1 = 2
e−δ

2
c/(2σ

2
R)

√
2πσR erfc(δc/(

√
2σR))

b2 =
e−δ

2
c/(2σ

2
R)δc√

2πσ3
R erfc(δc/(

√
2σR))

(4.4)

where σ2
R = 〈δR(x)2〉. In deriving our numerical results, we use δc = 4.215, which corresponds

to δc(zcoll) = 1.686 at zcoll = 1.5 [48], and R = 3 Mpc/h. While a more sophisticated
treatment of halo dynamics will change our precise numerical results, we do not expect
them to impact our conclusions qualitatively.

We will be interested in computing the halo-halo power spectrum Phh,

〈δh(k1)δh(k2)〉 = Phh(k1)(2π)3δ3(k1 + k2) (4.5)

as well as the halo-matter power spectrum Phm,

〈δh(k1)δR(k2)〉 = Phm(k1)(2π)3δ3(k1 + k2). (4.6)

The Gaussian contributions to Phh and Phm are found to be

Phh(ks)
∣∣∣
G

= b21

(
H2

φ̇0

)2(
2

5ΩmH2
0R

2

)2

ksR
4|a(i)0 |2

Phm(ks)
∣∣∣
G

= b1

(
H2

φ̇0

)2(
2

5ΩmH2
0R

2

)2

ksR
4|a(i)0 |2. (4.7)
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At wavevectors of order (102 Mpc/h)−1 � R−1, the most significant non-Gaussian contri-
butions to Phh are due to the squeezed and collapsed limits of the bispectrum (3.5) and
trispectrum (3.14). Then, plugging (4.1) and (4.3) into (4.5) and using (3.5) and (3.14)
gives

Phh(ks)

Phh(ks)
∣∣
G

= 1− 8

(
b2
b1

)(
H2

φ̇0

)(
2

5ΩmH2
0R

2

)(
V ′′′

H

)
1

(ksR)2−α
1

|a(i)0 |2(
cos (γ log ksR) Re

[
J∗(α, γ)y∗(α, γ)a

(i)
0 b

(i)∗
1,s−

]
+ sin (γ log ksR) Im

[
J∗(α, γ)y∗(α, γ)a

(i)
0 b

(i)∗
1,s−

])
+ 8

(
b2
b1

)2(
H2

φ̇0

)2(
2

5ΩmH2
0R

2

)2(
V ′′′

H

)2
1

(ksR)4−2α
1

|a(i)0 |2(
|J(α, γ)|2 |y(α, γ)|2 |b(i)1,s− |

2

+ cos (2γ log ksR) Re
[
J(α, γ)2y(α, γ)2b

(i)
1,s−b

(i)∗
1,s∗−

]
− sin (2γ log ksR) Im

[
J(α, γ)2y(α, γ)2b

(i)
1,s−b

(i)∗
1,s∗−

])
. (4.8)

where, to compactify notation, we have defined

J(α, γ) =
1

2π2

∫ ∞
0

dx x3−α−iγT (x/R)2W (x/R)2 (4.9)

The most significant non-Gaussian contribution to Phm comes from the squeezed bispectrum:

Phm(ks)

Phm(ks)
∣∣
G

= 1− 4

(
b2
b1

)(
H2

φ̇0

)(
2

5ΩmH2
0R

2

)(
V ′′′

H

)
1

(ksR)2−α
1

|a(i)0 |2(
cos (γ log ksR) Re

[
J∗(α, γ)y∗(α, γ)a

(i)
0 b

(i)∗
1,s−

]
+ sin (γ log ksR) Im

[
J∗(α, γ)y∗(α, γ)a

(i)
0 b

(i)∗
1,s−

])
. (4.10)

In Figure 5 we plot (4.8) for the model parameters (2.14) and (2.15) and |fOQSFI
NL | = 10.

Note that at around (102 Mpc/h)−1, Phh begins to deviate from Phh|G. The oscillations
evident in Fig. 5 are a consequence of the oscillatory squeezed bispectrum and collapsed
trispectrum.

However, for |fOQSFI
NL | ∼ 10, the amplitude of the oscillations is quite small. Moreover, the

non-Gaussian contributions to Phh only begin to dominate over the Gaussian contribution
at a scale of order (103 Mpc/h)−1, which is unlikely to be detected experimentally in the
near future.

This scale is smaller than the scale at which the non-Gaussian contributions to Phh begin
to dominate in single-isocurvaton QSFI theories with fNL ∼ 10 and α small [18]. The reason
is the integrals involving the transfer functions, J(α, γ), are oscillatory in multi-isocurvaton
QSFI when γ 6= 0, which washes them out. This makes the coefficients of the non-Gaussian
contributions smaller in multi-isocurvaton QSFI than in single-isocurvaton QSFI.
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FIG. 5. We plot the halo-halo power spectrum scaled by the Gaussian halo-halo power spectrum

(i.e. the power spectrum for V ′′′ = 0). In the left panel, we plot the parameters from eq. (2.14) with

fOQSFINL = 10, and in the right panel, we plot the parameters from eq. (2.15) with fOQSFINL = −10.

V. CONCLUSION

In this paper, we studied quasi-single field inflation with multiple isocurvatons. Multi-
isocurvaton QSFI includes the interaction ρIJ σ̇IσJ which can give rise to novel inflationary
dynamics. In particular, the mode functions of π and σI can exhibit late time log oscil-
lations that decay slowly as η → 0. Due to these late time oscillations, the primordial
non-Gaussianities of ζ exhibit log-oscillatory behavior in ratios of wavevector magnitudes.

For example, the bispectrum is proportional to (ks/kl)
−3+α cos(γ log ks/kl) in the squeezed

limit, which means for small α it experiences nearly cubic growth while oscillating. This
behavior cannot be achieved in single-isocurvaton QSFI. Furthermore, the collapsed trispec-
trum goes as (ks/kl)

−3+2α(a+ b cos(2γ log ks/kl)), i.e. there is a term that does not oscillate
in ks/kl as well as one that does with frequency 2γ.

In models where α <∼ 0.5, the contributions of the squeezed bispectrum and collapsed
trispectrum to the halo-halo power spectrum Phh(ks) and the halo-matter power spectrum
Phm(ks) can dominate over the Gaussian contributions at ks ∼ (103 Mpc/h)−1. When γ 6= 0,
Phh and Phm oscillate logarithmically in ksR.
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Appendix A: Commutator Constraints

The η integrals of (3.6) are potentially IR divergent because of the factors of 1/η4 in
the integrands. It can be shown that all potentially IR divergent terms are zero. Eq. (2.8)
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implies that the σ mode functions can be written in series form as

σ
(i)
I (η) = b

(i)
I,s−

(−η)s− + b
(i)
I,s∗−

(−η)s
∗
− + b

(i)
I,2(−η)2 + b

(i)
I,2+s−

(−η)2+s− + b
(i)
I,2+s∗−

(−η)2+s
∗
−

+ b
(i)
I,3−s−(−η)3−s− + b

(i)
I,3−s∗−

(−η)3−s
∗
− + b

(i)
I,3(−η)3 + . . . (A1)

The equal time commutation relation [π, σI ] = 0 holds order by order in powers of η and
implies the following relations among the power series coefficients

π(i)(0)b
(i)∗
I,s−

=
(
π(i)(0)b

(i)∗
I,s∗−

)∗
, π(i)(0)b

(i)∗
I,s−

=
(
π(i)(0)b

(i)∗
I,s∗−

)∗
π(i)(0)b

(i)∗
I,3−s− =

(
π(i)(0)b

(i)∗
I,3−s∗−

)∗
, Im

(
π(i)(0)b

(i)∗
I,2

)
= 0 (A2)

where the sum over mode label i is implicit. Furthermore, the mode equations (2.8) imply

b
(i)
I,2+s−

= cb
(i)
I,s−

b
(i)
I,2+s∗−

= c∗b
(i)
I,s∗−

. (A3)

Combining the first relation in (A2) with (A3) yields

π(i)(0)b
(i)∗
I,2+s−

=
(
π(i)(0)b

(i)∗
I,2+s∗−

)∗
(A4)

The leading infrared behavior of (3.6) is then

y(α, γ) = 2 Im
[
π(i)(0)b

(i)∗
1,3

] ∫ 0

−∞

dη

(−η)1−α−iγ
Re
[
π(j)(0)σ

(j)∗
1 (η)

]
. (A5)

It is straightforward to fit the σ
(i)
1 mode functions to (A1) and determine the numerical

coefficient in (A5). The method to evaluate y(α, γ) is to choose an −ηIR < 1 and numerically
integrate from −∞ < η < ηIR using (3.6) and then integrate from ηIR ≤ η < 0 using (A5).

Appendix B: Loop Contribution to the Collapsed Trispectrum

Recall that the tree-level collapsed trispectrum, which has one internal line, has terms
that oscillate with frequency 2γ. We now show that a loop contribution to the collapsed
trispectrum, which has two internal lines, can contain terms that oscillate with frequency
4γ. The loop contribution to the collapsed trispectrum then induces terms in the halo-halo
power spectrum that oscillate as cos(4γlogksR).11

Consider a theory in which the interaction Hamiltonian is composed of a single σ4
1 inter-

action:

Hint(τ) =
1

(Hτ)4

∫
d3x

V ′′′′

4!
σ1(x)4. (B1)

Inserting two factors of (B1) into (3.1) yields the 1-loop contribution to the trispectrum:

T coll
ζ (kl1,kl2, ks) = 4

(
H2

φ̇0

)4

V ′′′′
2 1

k3l1k
3
l2

∫ 0

−∞

dη

η4

∫ kl2
kl1

η

−∞

dη′

η′4

∫
d3p

(2π)3
1

p3|p + ks|3

11 Contributions to the halo-halo power spectrum due to primordial non-Gaussianities sourced by quantum

loops in the context of single-isocurvaton QSFI were considered in [42, 43].
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FIG. 6. A diagramatic representation of the loop contribution to the collapsed trispectrum. Dashed

lines represent π, while solid lines represent σ1.

× Im

[(
π(i)(0)σ

(i)∗
1 (η)

)2]
Im

[(
π(j)(0)σ

(j)∗
1 (η′)

)2(
σ
(l)
1

(
p

kl1
η

)
σ
(l)∗
1

(
p

kl2
η′
))

×
(
σ
(m)
1

(
|p + ks|
kl1

η

)
σ
(m)∗
1

(
|p + ks|
kl2

η′
))]

(B2)

As described in [27, 42, 43], for ks � kl, the loop diagram can give a large contribution
to the collapsed trispectrum. In this limit, the loop integral is dominated by the region in
which p ∼ ks, which means the mode functions on the bottom line of (B2) can be expanded
in p/kli. Defining the integral

Z(ε1, ε2) ≡
∫

d3u

(2π)3
u−3+2ε1|u + x̂|−3+2ε2 , (B3)

where x̂ is an arbitrary unit vector, the loop contribution can be written:

Tζ
coll(kl1, kl2, ks) = 2

(
H2

φ̇0

)4

V ′′′′
2 1

k
9/2
l1 k

9/2
l2

(
k2s

kl1kl2

)−3/2+2α

[
Re[c1] + Re[c2] cos

(
2γ log

kl2
kl1

)
+ Re[c3] cos

(
2γ log

ks
kl1

)
+ Re[c3] cos

(
2γ log

ks
kl2

)
− Im[c3] sin

(
2γ log

ks
kl1

)
− Im[c3] sin

(
2γ log

ks
kl2

)
+ Re[c4] cos

(
2γ log

k2s
kl1kl2

)
− Im[c4] sin

(
2γ log

k2s
kl1kl2

)]
(B4)

where

c1 = 2y(2α, 0)2
(
|b(i)1,s− |

2|b(j)1,s∗−
|2Z(α, α) + |b(i)1,s−b

(i)∗
1,s∗−
|2Z(α + iγ, α− iγ)

)
c2 = |y(2α, 2γ)|2

((
|b(i)1,s−|

2
)2

+
(
|b(i)1,s∗−

|2
)2)

Z(α, α)

c3 = 4y(2α, 0)y(2α, 2γ)b
(i)
1,s−b

(i)∗
1,s∗−

(
|b(j)1,s− |

2 + |b(j)1,s∗−
|2
)
Z(α, α + iγ)

c4 = 2 |y(2α, 2γ)|2
(
b
(i)
1,s−b

(i)∗
1,s∗−

)2
Z(α + iγ, α + iγ). (B5)
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Note that the loop contribution to the trispectrum has terms that do not oscillate with
log ks/kli, terms that oscillate with frequency 2γ, and terms that oscillate with frequency
4γ.

The loop contribution to Phh due to the quartic σ4
1 interaction can also be computed:

Phh(ks)
∣∣
loop

Phh(ks)
∣∣
G

= 2

(
b2
b1

)2(
H2

φ̇0

)2(
2

5ΩmH2
0R

2

)2

V ′′′′
2 1

(ksR)4−2α
1

|a(i)0 |2(
Re
[
c1J(2α, 0)2 + c2 |J(2α, 2γ)|2

]
+ 2 cos (2γ log ksR) Re [c3J(2α, 0)J(2α, 2γ)]

− 2 sin (2γ log ksR) Im [c3J(2α, 0)J(2α, 2γ)]

+ cos (4γ log ksR) Re
[
c4J(2α, 2γ)2

]
− sin (4γ log ksR) Im

[
c4J(2α, 2γ)2

] )
(B6)

While it appears that the terms oscillating with frequency 4γ in (B6) could induce unique
observable features in Phh(ks), it turns out their coefficients are suppressed relative to those
of the non-oscillating terms since |J(2α, 2γ)| � J(2α, 0). This can be understood by noting
that while the magnitudes of the integrands of J(2α, 2γ) and J(2α, 0) are the same, the
integrand of J(2α, 2γ) is oscillatory and washes J(2α, 2γ) out.
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