
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Reconstructing phenomenological distributions of compact
binaries via gravitational wave observations

Daniel Wysocki, Jacob Lange, and Richard O’Shaughnessy
Phys. Rev. D 100, 043012 — Published 13 August 2019

DOI: 10.1103/PhysRevD.100.043012

http://dx.doi.org/10.1103/PhysRevD.100.043012
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Daniel Wysocki,∗ Jacob Lange, and Richard O’Shaughnessy
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Gravitational wave measurements will provide insight into the population of coalescing compact
binaries throughout the universe. We describe and demonstrate a flexible parametric method to
infer the event rate as a function of compact binary parameters, accounting for Poisson error and
selection biases. Using synthetic data based on projections for LIGO and Virgo’s third observing
run (O3), we discuss how well GW measurements could constrain the mass and spin distribution
of coalescing neutron stars and black holes in the near future, within the context of several phe-
nomenological models described in this work. We demonstrate that only a few tens of events can
enable astrophysically significant constraints on the spin magnitude and orientation distribution of
BHs in merging binaries. We discuss how astrophysical priors or other measurements can inform the
interpretation of future measurements. Using publicly-available results, we estimate the event rate
versus mass for binary black holes. To connect to previously-published work, we provide estimates
including reported O2 BBH candidates, making several unwarranted but simplifying assumptions
for the sensitivity of the network and completeness of the reported set of events. Consistent with
prior work, we find BHs in binaries likely have low natal spin. With available results and a popu-
lation favoring low spin, we can’t presently constrain the typical misalignments of the binary black
hole population. All of the tools described in this work are publicly available and ready-to-use to
interpret real or synthetic LIGO data, and to synthesize projected data from future observing runs.a

I. INTRODUCTION

The Advanced Laser Interferometer Gravitational
Wave Observatory (LIGO) [1] and Virgo [2, 3] detectors
have and will continue to discover gravitational waves
from coalescing binary black holes and neutron stars.
Several tens of binary black holes and potentially neu-
tron stars are expected to be seen in O3, LIGO’s next
observing run, alone; and several hundreds more detec-
tions are expected over the next five years [4, 5]. Already,
the properties of the sources responsible – the inferred
event rates, masses, and spins – have confronted other
observations of black holes’ masses and spins [5], chal-
lenged previous formation scenarios [5, 6], and inspired
new models [7–10] and insights [11, 12] into the evolution
of massive stars and the observationally-accessible grav-
itational waves they emit [13, 14]. Over the next several
years, our understanding of the lives and deaths of mas-
sive stars over cosmic time will be transformed by the
identification and interpretation of the population(s) re-
sponsible for coalescing binaries [6, 15, 16], because mea-
surements will enable robust tests to distinguish between
formation scenarios [17] with present [18] and future in-
struments [19, 20].

During the first few years of discovery, substantial the-
oretical modeling challenges and the rapid pace of events
suggest that GW observations could soon outpace the-
ory. In this work, we introduce a flexible, concrete,
and production-ready approach to infer compact binary
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merger rate and compact binary distribution, in the con-
text of an (arbitrary) parameterized phenomenological
model. We extend or employ previously proposed models
[21, 22]. We are motivated by how constraints on these
phenomenological models enable us to address broad as-
trophysical questions – the mass and spin distribution
of neutron stars and black holes, as imparted at their
birth; the dominant formation mechanism for compact
binaries, such as the role of dynamical versus isolated
formation channels for binary black holes. To that end,
we provide concrete demonstrations of how a few GW
measurements will provide insights that enable sharp dis-
crimination between proposed astrophysical alternatives,
or measurements of their parameters. We use simple phe-
nomenological arguments and calculations to character-
ize the information that these first few hundred obser-
vations should provide. Conversely, we provide simple
approaches to extend our phenomenological approach in
sophistication and complexity as several thousand com-
pact binary mergers provide sharp constraints on their
underlying properties. This approach complements in-
ferences that work within a concrete model family as ex-
plored in other proof-of-concept investigations (see, e.g.,
[16, 17, 23–28] and references therein).

GW measurements probe only a selection-biased part
of the compact binary distribution. Previously reported
estimates of the overall compact binary event rate rely on
extrapolation away from the observed population, using
some fixed model for the compact binary mass distribu-
tion [5]. In fact, the compact binary mass distribution
and inferred event rate are strongly coupled. This paper
provides the first self-consistent approach to infer both
the compact binary event rate and parameter distribu-
tion; then describes and explains the expected correlation
in an accessible way.
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Several recent studies have explored how well GW mea-
surements can constrain the mass and spin distribution
of binary black holes [5, 21, 23, 29–38]. Our approach is
novel insofar as it both reconstructs the strongly corre-
lated event rate and parameter distribution, making our
method a robust tool to assess astrophysical formation
scenarios. In our modeling, we focus on measuring the
BH spin magnitude and misalignment distribution, as a
method to probe the formation scenarios for binary BHs.
As first described in [17], GW provide a unique oppor-
tunity to distinguish between between isolated and dy-
namic formation mechanisms: measurements of the spin
properties of the BHs [6, 18, 32, 36, 39, 40]. The presence
of a component of the BH spins in the plane of the orbit
leads to precession of that plane. If suitably massive and
significantly spinning, such binaries will strongly precess
within the LIGO sensitive band. If BBHs are the end
points of isolated binary star systems, they would be ex-
pected to contain BHs with spins preferentially aligned
with the orbital angular momentum [40, 41], and there-
fore rarely be strongly precessing. If, however, BBHs
predominantly form as a result of gravitational interac-
tions inside dense populations of stellar systems, the rel-
ative orientations of the BH spins with their orbits will
be random, and some gravitational wave signals may be
very strongly precessing. At this early stage, observa-
tions cannot firmly distinguish between these two sce-
narios, or more broadly other possible BBH formation
mechanisms [6]. These include the evolution of isolated
pairs of stars [7, 8, 25, 42–44], dynamic binary forma-
tion in dense clusters [9], and pairs of primordial black
holes (BHs) [10]; see, e.g., [6] and references therein.
Loosely speaking, however, the isolated evolution and
globular cluster formation scenarios are the most well-
developed and verifiable using independent observational
constraints. More broadly, precise measurements of their
properties will provide unique clues into how BHs and
massive stars evolve [18–20, 33, 36, 39, 45].

This paper is organized as follows. In Section II we
describe our techniques to infer compact binary popula-
tions, building upon inferences about parameters of in-
dividual events. Unlike prior work, we simultaneously
reconstruct the event rate, mass distribution, and spin
(vector) distribution. In Section III, we demonstrate
our our population inference strategy with two exam-
ples. In the first, we perform a full end-to-end analy-
sis of a synthetic GW data generated from a synthetic
population of astrophysically distributed sources. In the
second, using a tool to mimic how well we could con-
strain parameters of a candidate GW signal, we perform
a large-scale investigation into how well GW measure-
ments could constrain the mass and spin distribution of
binary black holes. We find that the mass and spin dis-
tribution can be tightly constrained with only a few tens
of events. By virtue of explicitly exploiting only some
of the available information, our estimates are necessar-
ily conservative. In Section IV, we apply our method to
the currently-reported binary black hole population. For

simplicity assuming the reported events to date represent
a fair sample of the results of LIGO’s first two observing
runs (O1 and O2), we corroborate previous results, find-
ing black hole spins are likely small and that the black
hole mass spectrum may have an upper bound. Due to
small BH spins, except for GW151226, we can extract
no information about typical BBH spin-orbit misalign-
ments. We emphasize our demonstration uses a non-
final sample for LIGO’s O2 survey: depending on that
survey’s results, applying our methods to final O2 re-
sults could produce substantially different astrophysical
conclusions. In Section V we briefly discuss the accu-
racy to which population parameters can be determined,
and the surprisingly significant role of waveform system-
atics in the near future. After summarizing our con-
clusions in Section VI, we supply three appendices. In
Appendix A, we describe a robust, extensible procedure
for generating synthetic posterior distributions for pro-
posed GW events. This open-source procedure could be
widely used to assess the viability of GW measurements
to distinguish between proposed astrophysical channels.
A subsequent short Appendix B describes how to gener-
ate synthetic populations of selection-biased GW sources
using this procedure. Next, in Appendix C, following on
and extending previous work, we use toy models for both
the measurement process and source population to illus-
trate how well GW observations will constrain the mass
and spin distribution of compact binaries, likely provid-
ing robust insights into compact object formation (e.g.,
BH natal spins and maximum masses) and binary forma-
tion mechanisms (e.g., dynamical over isolated).

II. METHOD

A. Characterizing and inferring parameters of
individual binary black holes

A coalescing compact binary in a quasicircular orbit
can be completely characterized by its intrinsic parame-
ters, namely its individual masses mi and spins Si, and
its seven extrinsic parameters: right ascension, declina-
tion, luminosity distance, coalescence time, and three Eu-
ler angles characterizing its orientation (e.g., inclination,
orbital phase, and polarization). In this work, we will
also use the total mass M = m1 + m2 and mass ratio q
defined in the following way:

q = m2/m1, where m1 ≥ m2. (1)

We will also refer to two other commonly-used mass pa-
rameterizations: the chirp massMc = (m1m2)3/5/(m1+
m2)1/5 and the symmetric mass ratio η = m1m2/(m1 +
m2)2. With regard to spin, we define an effective spin
[46–48], which is a combination of the spin components

along the orbital angular momentum direction L̂, in the
following way,

χeff = (S1/m1 + S2/m2) · L̂/M (2)
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where S1 and S2 are the spins on the individual BH. We
will also characterize BH spins using the dimensionless
spin variables

χi = Si/m
2
i . (3)

We will express these dimensionless spins in terms of
cartesian components χi,x, χi,y, χi,z, expressed relative to

a frame with ẑ = L̂ and (for simplicity) at the orbital fre-
quency corresponding to the earliest time of astrophysical
interest (e.g., an orbital frequency of ' 10Hz).

When necessary, compact binary parameters are in-
ferred through the use of Bayesian analysis via RIFT [49],
which reproduces the results of standard Monte Carlo
techniques described in [50, 51] and references therein.
For any event, fully characterized by parameters x, we
can compute the (Gaussian) likelihood function p(d|x)
for detector network data d containing a signal by us-
ing waveform models and an estimate of the (approxi-
mately Gaussian) detector noise on short timescales (see,
e.g., [50–52] and references therein). In this expression
x is shorthand for the set of 15 parameters needed to
fully specify a quasicircular BBH. The posterior proba-
bility distribution is therefore p(x|d) ∝ p(d|x)p(x), where
p(x) is the prior probability of finding a merger with
different masses, spins, and orientations somewhere in
the universe. These parameters x can and are often
described with alternate coordinate systems. We some-
times refer to the source luminosity distance dL or equiv-
alently its source redshift z; and to the detector frame
or redshifted masses mi,z = mi(1 + z). (To distinguish
from the detector-frame masses, we will sometimes re-
fer to mi as the source-frame binary masses.) LIGO–
Virgo analyses have adopted a fiducial prior pref(x) that
is uniform in orientation, in luminosity distance cubed,
in redshifted mass, in spin direction (on the sphere),
and, importantly for us, in spin magnitude [50, 51]. Us-
ing standard Bayesian tools [50, 51], one can produce
a sequence of independent, identically distributed sam-
ples xn,s (s = 1, 2, . . . , S) from the posterior distribution
p(x|d) for each event n; that is, each xn,s is drawn from
a distribution proportional to p(dn|xn)pref(xn). Typical
calculations of this type provide <∼ 104 samples [50, 51]
from which the posterior probability distribution is in-
ferred.

For other examples involving purely synthetic observ-
ing scenarios, we perform this procedure with a familiar
Fisher matrix approximation for the form of p(d|x) as a
function of x [53–55]; see Appendix A for details.

B. Population inference

We use Bayesian inference to constrain the mass and
spin distributions of the astrophysical population of
BBH’s. To do this, we assume that the distribution is
one of a family of distributions, parameterized by Λ, and
scaled by some overall rate R = dN/(dtdVc), which is

constant in comoving volume Vc. Each BBH in the pop-
ulation has properties denoted by λ ≡ (m1,m2,χ1,χ2)

Ultimately we are interested in determining the likeli-
hood of the astrophysical BBH population having a given
merger rate R and obeying a given parameterization Λ,
given the data for N detections, D = (d1, . . . , dN ). This
likelihood, L(R,Λ) ≡ p(D | R,Λ), is that of an inhomo-
geneous Poisson process

L(R,Λ) ∝ e−µ(R,Λ)
N∏
n=1

∫
dλ `n(λ)R p(λ | Λ), (4)

where µ(R,Λ) is the expected number of detections un-
der a given population parameterization Λ with overall
rate R and where `n(λ) = p(dn|λ) is the likelihood of
data dn given binary parameters λ. A derivation for µ is
given in Section II C.

Using Bayes’ theorem, p(R,Λ | D) ∝ p(R,Λ)L(R,Λ),
one may obtain a posterior distribution on R and Λ,
after assuming some prior p(R,Λ). To avoid comput-
ing the normalization constant, we instead draw samples
from the posterior distribution via Goodman and Weare’s
Affine Invariant Markov chain Monte Carlo (MCMC) En-
semble sampler [56], as implemented in the Python pack-
age emcee [57].

C. Estimate for V T

Current LIGO-Virgo search sensitivity is well-
approximated by a familiar approximation: a source will
typically be detected if the estimated signal to noise of
the second-most-sensitive detector is greater than 8; see,
e.g., [58] and references therein. Using this approxima-
tion, one can directly evaluate the characteristic volume
within which a source will be detected [59]; for nonspin-
ning BH binaries, this estimate is in reasonable agree-
ment with detailed calculations of search sensitivity [5].
In this work, we therefore adopt the same approxima-
tion. Specifically, we estimate the orientation-averaged
sensitive 3-volume V to which a search is sensitive by
the integral [6, 60]

V (λ) =

∫
P (< D(z)/Dh(λ))

dVc

dz

dz

1 + z
, (5)

where D(z) is the luminosity distance for redshift z;
Dh(m1(1+z),m2(1+z)) is the horizon distance to which
the source can be seen; Vc is the comoving volume; z is
the redshift of the merger event; and the cumulative dis-
tribution P (> w) =

∫
w>w(Ω,ι,ψ)

dΩdψd cos ι is a cumu-

lative distribution for w = 8/ρ where ρ is the signal-to-
noise ratio[59–61]. Using this definition for V , we expect
that for a uniform comoving merger rate R (e.g., in units
of Gpc−3 yr−1), and after observing at this sensitivity for
a time T the average number of detections will be

µ(R,Λ) =

∫
(V T )(λ)Rp(λ | Λ)dλ, (6)
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where p(λ | Λ) is the probability density function for a
random binary in the Universe to have intrinsic param-
eters λ. In this expression, Λ denotes the parameters
which characterize the distribution from which all coa-
lescing binaries are drawn. To calculate the horizon dis-
tance Dh and hence V for each combination of candidate
binary parameters, we use the IMRPhenomD gravita-
tional waveform approximation [62, 63].

The procedure described above allows us to estimate
V for any nonprecessing binary. Figure 1 shows this esti-
mate as a function of the component masses, based on a
single LIGO detector operating at O1 sensitivity. Moti-
vated by LIGO observations to date, however, we assume
black holes will not be rapidly spinning. In these circum-
stances, spin has at best a modest impact on the sensitive
volume; further complications due to precession would be
expected to be smaller still [64, 65].

Though we pursue a semianalytic estimate for V T
and hence the expected number of GW-detected events,
detailed analysis of gravitational wave searches in real
data with synthetic sources can evaluate µ and hence the
search sensitivity directly [4, 5, 66, 67]. Such an approach
will be particularly necessary when search selection bi-
ases (e.g., due to detector noise nongaussianity) cause
the search sensitivity threshold to deviate away from the
simple SNR threshold described here.

D. Examples of phenomenological population
models

Motivated by the qualitative features of predictions
produced by detailed binary formation calculations, sev-
eral groups have proposed purely or weakly phenomeno-
logical models for the binary mass distribution [5, 21,
22, 68]. Following [5, 21], we adopt a pure truncated
power law for the relative intrinsic probability p(m1,m2)
for the source-frame masses in m1 and m2. Departing
from previous work, we assume the probability density is
nonzero only in a region mmin ≤ m2 ≤ m1 ≤ mmax, and
m1 + m2 ≤ Mmax. Unless otherwise noted, we assume
that Mmax is a property of the detector, not astrophysics,
and following the conservative scenario described in [21]
fix it at 200M�. With these assumptions, our mass dis-
tribution model has parameters αm, km,mmin,mmax and
a functional form

p(m1,m2) =
(m2/m1)kmm−αm1

(m1 −mmin)

× C(αm, km,mmin,mmax,Mmax) (7)

inside our mass limits and zero elsewhere, representing a
truncated power law in m1 with index −αm and a sim-
ple power law conditional distribution p(m2|m1) in sec-
ondary mass. The normalization constant C is defined
so
∫
A
dm1dm2p(m1,m2)dm1dm2 = 1. Unless otherwise

noted, we will adopt km = 0 in this work. Because GW
networks are much more sensitive to more massive BHs

with M >∼ 200M�, this model and its fiducial choices
(e.g., αm ' 2) produces a detected merger distribution
∝ Rp(m1,m2)V T which is roughly uniform over a wide
range of masses, usually terminated by the specific cut-
off choices mmax,mmin rather than by selection biases
against low mass black holes or the rarity of massive
BBHs. In the analysis described below, we leave Mmax

fixed.
Motivated by binary neutron star observations as well

as the desire to reproduce arbitrary substructure and fea-
tures in the mass distribution, we will also examine Gaus-
sian mass distributions in component mass mi

pG(m1) = N (m,σm)(m1) (8)

which is characterized by its mean value m and variance
σm. In this work, we will typically explore the special
case of p(m1,m2) = pG(m1)pG(m2) and apply this dis-
tribution to the case of binary neutron stars, where the
narrow width σ relative to the mean m implies the distri-
bution has effectively no support for undesirable regions
(e.g., m < 0). Finally, for complete generality, we also
discuss mixtures of mass distributions, including Gaus-
sian mixture models as previously employed in [29]:

p(m1,m2|Λ) =
∑
α

wαpα(m1,m2|Λα) (9)

This latter approach allows complete generality and, with
suitable smoothing priors on w, the ability to reproduce
arbitrarily complicated mass distributions and circum-
vent systematic limitations due to our choice of model.
In particular, these more generic models would allow us
to reproduce features previously proposed in the litera-
ture, including overabundances at specific masses near
the pair-instability supernova threshold [69–74].

For binary black hole spins, we adopt a simple flexible
phenomenological model for each BH spin magnitude χi:
a beta distribution,

p(χi | αχi , βχi) =
χ
αχi−1

i (χmax − χi)βχi−1

B(αχi , βχi)χ
β+α+1
max

(10)

with unknown shape parameters αχi and βχi (i = 1, 2).
This tractable two-parameter distribution allows us to
fit to the observed mean and variance – all that the
sparse sample of existing observations will allow. In this
work, we for simplicity assume both black hole spins are
drawn from the same distribution and χmax = 1. Like-
wise, for simplicity we adopt the unphysical but easily-
described parameterization of the spin-orbit misalign-
ment θi = arccos L̂ · Ŝi proposed by Talbot and Thrane
[32]: a unimodal distribution based on a Gaussian in cos θ
that smoothly deforms into a uniform distribution in the
limit of large σχi :

p(cos θi | σχi) ∝ N (cos θi; 1, σχi), (11)

When using this model, we assume the polar angles φi
of each spin vector relative to the orbital angular mo-
mentum direction L̂ are uniformly distributed between
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FIG. 1. Estimated sensitive comoving volume (V ) versus mass and spin: Left: Sensitive comoving volume V at
O1 sensitivity for non-spinning BBH’s, in cubic giga-parsecs. Right: Sensitive comoving volume for equal-mass, equal-spin,
non-precessing BBH’s, relative to the zero-spin case. Note that V is strictly increased (decreased) if χi,z > 0 (< 0), with higher
mass making the effect more pronounced.

0, 2π. In this work, we assume BH spins are drawn from
the same spin misalignment distribution σχ1

= σχ2
. In

this approach, as in our parameter inference, all spins
are assumed specified at a gravitational wave frequency
fref = 20Hz. No compelling reason exists that astro-
physical formation processes should cause binaries of dif-
ferent masses and spins to be drawn from a single, uni-
versal misalignment distribution at an arbitrary refer-
ence frequency fref ; see, e.g., [16, 75] for more detailed
models. That said, this phenomenological approach is
qualitatively consistent with the kinds of misalignments
produced by binary SN natal kicks (e.g., 1− cos θi <∼ 0.1
for BH natal kicks of order 50km/s [40]), allowing us a
simple way to characterize whether observations support
or disfavor plausible amounts of spin-orbit misalignment.

E. Useful phenomenological parameters

Observations will constrain combinations of these phe-
nomenological parameters which reflect clear physical
features in the observed (selection-biased) distribution of
binary black holes. We can better characterize what we
learn from GW observations early on by adopting coor-
dinates conforming to these features.

For example, we could have mixture model [Eq. (9)]
consisting only of elements with distinctive features, each
characterizing a distinctive subpopulation of BHs. Such
subpopulations might be BHs near the pair-instability
supernova peak, binary neutron stars, and a popula-
tion of binaries with a continuous mass spectrum formed
through hierarchical growth in globular clusters (see, e.g.,
[21, 34, 76] and references therein). In such a scenario,
observations quickly constrain each element, leveraging
their distinctive features to identify the relative rates

Rwα and the subpopulations from each domain to con-
strain that region’s parameters. For the first few tens of
events, these observations will principally constrain the
mean and variance of the detection-weighted subpopula-
tion pα(m1,m2)V T . We therefore expect that the follow-
ing coordinate system will produce roughly uncorrelated
observables, for a typical model: (a) relative rates Rw
for different subpopulations; (b) the mean chirp mass
Mcα, symmetric mass ratio ηα, effective spin χeff,α, and
mean spin χ in each subpopulation, based on our un-
derstanding of GW measurement errors; and (c) the re-
spective widths ΣMc,α,Ση,α,Σχeff ,α,Σχ, where we adopt
upper case to distinguish between these symbols and our
model hyperparameters. In Appendix C, we use order-
of-magnitude arguments to explain how reliably each of
these quantities can be measured.

In the context of our fiducial single-component model,
we adopt a reference mass m1 = mref = 15M� and char-
acterize the overall event rate not by its normalization,
which depends on unobserved binaries with high and low
masses, but by the event rate Rp(mref) of binaries whose
primary m1 has a mass comparable to GW151226 [77].
We identify other natural coordinates for the distribution
of m1 via its detection-weighted cumulative distribution
P(< m1):

P(< x) =

∫
dλV (λ)p(λ)Θ(x−m1(λ))∫

dλV (λ)p(λ)
(12)

The mass corresponding to the upper (lower) bound of
the 90% symmetric detection-weighted probability on m1

serves as a proxy for mmax (mmin) which is directly ob-
servable and thus a more natural coordinate.1 In this

1 By contrast, Talbot and Thrane [22] introduce a model which de-
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work, we emphasize the upper boundm∗ of the detection-
weighted mass distribution:

P(m∗) ≡ 0.95 (13)

For BH spins, closed-form expressions for the appropriate
mean values and variances are generally not available for
arbitrary selection biases V T ; however, to the extent that
that V T depends only weakly on BH spin, our model for
BH spins and misalignments [Eqs. (10,11)] implies that

χ ' αχ
αχ + βχ

(14a)

Σ2
χ '

αχβχ
(αχ + βχ)2(αχ + βχ + 1)

(14b)

χeff ' χcos θ (14c)

cos θ ' erf(
√

2/σ) + 2σ(e−2/σ2 − 1)/
√

2π

erf(
√

2/σ)
(14d)

for our fiducial case where both BH spins are drawn from
the same distributions; in these expressions, Σ2

χ refers to
the variance of the one-dimensional χ distribution, while
χ̄ refers to its mean.

F. Interpreting results: Posterior predictive
distributions and revised priors

If we ask any question about compact binary properties
x rather than model hyperparameters Λ, the only quan-
tity that appears in our posterior inferences p(Λ|{d}) in-
formed by our observations {d} is the posterior predictive
distribution pppd(x|{d}):

pppd(x|{d}) =

∫
dΛp(x|Λ)p(Λ|{dk}) (15)

The posterior predictive distribution (PPD) encodes our
best estimates of the properties of any randomly selected
future binary, based on observations to date and account-
ing for our initial prior knowledge about Λ. Unlike the
model parameters themselves, which may be highly de-
generate and lack physical meaning, the PPD provides
an unambiguous estimate for how likely different binary
parameters are, given our knowledge. Note that by de-
sign, the PPD is a probability distribution and, folding
in all uncertainties, does not have an error estimate.

As events accumulate, we can use posterior constraints
p(Λ|{d}k) on model hyperparameters Λ based on the
first k = 1 . . . N observations to provide a nuanced,
observationally-revised perspective on future measure-
ments k > N . These prior insights can be particularly
powerful when individual future measurements are only

pends on both a minimum mass mmin and a tapering mass scale
δm, but only a linear combination of them is easily observable;
see their Figure 5.

weakly informative about certain binary parameters like
the mass ratio or spin; see, e.g., [78, 79] for examples.

To be concrete, our usual population inferences are
performed using a single fiducial choice of reference
prior pref(x) = p(x|Λref): the posterior is p(x|dk,Λ∗) =
p(dk|x)p(x|Λ∗)/

∫
p(d|x)p(x|Λref). We exploit prior mea-

surements via

p(x|dk, {d}) =
p(dk|x)

∫
dΛp(x|Λ)p(Λ|{dk})∫

dxp(dk|x)
∫
dΛp(x|Λ)p(Λ|{dk})

(16)

In this expression, the numerator
∫
dΛp(x|Λ)p(Λ|{dk})

is the posterior predictive distribution described above.

III. CONTROLLED TESTS WITH SYNTHETIC
POPULATIONS AND MEASUREMENTS

To demonstrate our method can infer population pa-
rameters, we perform several validation studies using toy
models which mimic key features of real gravitational
wave observations. These completely controlled illustra-
tions also let us highlight what can be inferred and why
about the mass and spin distribution, within the con-
text of our approach. Finally, these examples allow us
to demonstrate how population inference can strongly
inform the interpretation of individual future GW obser-
vations.

A. BNS mass and (aligned) spin distribution

For each component of a binary neutron star, obser-
vations of galactic pulsars suggest that the component
masses are drawn from a Gaussian distribution with
mean 1.33M� and standard deviation 0.09M� [80]. Ob-
servations of pulsars and theoretical models of pulsar
spindown suggest that if both NS are not recycled, then
their dimensionless spins will be small (' O(0.05)). Un-
der the assumption that NS spins are parallel to their or-
bital angular momentum, we construct a synthetic pop-
ulation drawn from this phenomenolgoical model; con-
struct synthetic observations for each binary, recovering
13 synthetic sources based on a three-detector advanced
LIGO/Virgo network using a threshold set by the second-
most-sensitive detector’s recovered amplitude; perform
full GW inference on each source using RIFT [49]; and,
with the resulting posterior distributions, use the tech-
niques of Section II to infer the underlying NS mass and
spin distribution. In our reconstruction, we assume both
components of a NS binary are independently drawn from
a Gaussian distribution with unknown mean and vari-
ance; and with spins χi,z drawn from a Beta distribution
with unknown mean and variance, such that |χi,z| ≤ 0.05.

Figure 2 shows the synthetic measurements used as in-
puts in our calculation. These synthetic measurements
incorporate significant uncertainty in each source’s red-
shift, which contributes to the overall uncertainty in
each binary’s chirp mass. For each neutron star in
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our synthetic population, we use the APR4 equation of
state to calculate each neutron star’s tidal deformability
λi = λ(m|APR4). We generate and recover our syn-
thetic sources with IMRPhenomD NRTidal [81]. Fig-
ure 3 compares our recovered NS mass and spin distri-
bution. When inferring source parameters, our wave-
form model and parameter inferences include the ef-
fects of NS tides, treating each NS tidal deformability λi
as a free parameter. Despite considerable uncertainties
in each measurement, each BNS observation constraints
that binary’s chirp mass reasonably well, to an accuracy
σMc ' 0.05M�, dominated by uncertainty in source red-
shift. Because GW measurements are only weakly infor-
mative about the mass ratio, these measurements each
constrain the total mass to be m1 + m2 ' 26/5Mc to
an accuracy σMc

26/5; averaging all such observations,
we can deduce the mean NS mass m̄. With n = 13
such measurements, we expect to constrain the mean
mass of the population to a one-standard-deviation ac-

curacy
√
σ2
Mc

212/5/4 + σ2/
√
n ' 0.027M�, which com-

pares favorably to 0.02M�, the standard deviation of our
Bayesian estimate for m̄ . [A similar analysis shows that
we constrain the NS population standard deviation σm
almost entirely through these one-dimensional chirp mass
constraints.] Because GW measurements have a smaller
statistical uncertainty than the astrophysical population
width in total mass, the accuracy to which we constrain
the mean NS mass is dominated by a simple frequentist
error estimate (σ/

√
n), allowing us to reliably project the

information we’ll extract about NS masses from future
GW observations.

The measurement accuracy for GW measurements of
BNS has been long-known [54], and their implications for
astrophysics (e.g., mass and BNS spin distributions) has
been immediately apparent; see, e.g., [82–84] and refer-
ences therein. We provide the first end-to-end demon-
stration of how well binary NS population parameters
can be measured, using a detailed waveform model and
at a level where waveform systematics should not dra-
matically impact the mass, spin, or tidal parameter in-
ferences being performed. By contrast, many previous
studies focusing on NS tidal deformation have demon-
strated that waveform systematics could bias inferences
[85–87], if not controlled. Only recently have systematic
errors between waveform models diminished enough to
enable consistent infererence; see, e.g., [88].

Reliable population inference allows us to draw in-
formed conclusions about future measurements, using
previous observations as prior input. Particularly for
cases like NS binaries where individual measurements
can be weakly-informative and produce highly-correlated
constraints on NS parameters, these prior inputs en-
able much sharper constraints on astrophysical param-
eters. As a concrete example, Figure 4 shows inferences
about one parameter (Λ̃ = 16

13 [(m1 +12m2)m4
1λ1 +(m2 +

12m1)m4
2λ2]/(m1 +m2)5) of one of our synthetic NS bi-

naries, where the inferences are performed in isolation

FIG. 2. Source information for our synthetic BNS pop-
ulation: For each synthetic signal used in the BNS popu-
lation reconstruction calculation described in Section III A,
these two panels show the true injected source-frame parame-
ters (as crosses) and posterior distributions (contours of their
95% highest posterior density regions). Each color corre-
sponds to a different source. Source parameters have been
inferred using full Bayesian parameter inference via RIFT, as
described in the text.

(blue line) and using information obtained from all other
NS observations in our sample about NS masses and
spins (but not tides Λ̃, which are presumed arbitrary and
spin). Because our other measurements have allowed us
to strongly constrain the NS population’s mass and spin
distribution, we can exploit correlations between our in-
ferences about these parameters and the NS tidal de-
formability to more tightly constrain this parameter. In
this way, even though only the strongest few GW mea-
surements will provide most of the information about NS
tides and the nuclear EOS, by exploiting population mea-
surements we expect to more efficiently draw conclusions
using all available information about the NS population.
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FIG. 3. Recovered properties of NS mass and spin dis-
tribution: For the synthetic population of BNS sources illus-
trated in Figure 2, this figure shows the recovered mass distri-
bution (top figure) and spin distribution parameters (bottom
figure) derived using the Gaussian mass and β-distribution
spin model described in the text. The solid line indicates the
median distribution; the shaded regions indicate the 68% and
95% credible intervals. Red dashed lines denote the true un-
derlying distribution. In the case of spin, note that the truth
is a delta function at zero, so it would require an infinite num-
ber of detections to fall within the constraints on this plot.

B. BBH mass and (precessing) spin distribution

To assess our ability to simultaneously constrain both
the mass and spin distribution of binary black holes using
GW observations, we constructed a synthetic population
drawn from our fiducial BBH population model, with
parameters as described in Table I. Following the proce-
dure described in Appendix B, we drew freely from this
population, then selected a subsample based on their rel-
ative probability of detection, producing 25 events based
on 300 days of synthetic observation at O1 sensitivity.
For both the synthetic population and sensitivity model,
we approximate V T by neglecting any effects of spin, as

FIG. 4. Population measurement enables sharper con-
straints on NS tides: Cumulative posterior distribution
of Λ̃ for one of the synthetic sources in our BNS population
model. Blue curve shows a single-event analysis, not exploit-
ing information about the mass and spin distribution from
other events; red curve shows an analysis based on Eq. (16)
that employs our best estimate for the underlying mass and
spin distribution, as constrained from the population of events
in our BNS synthetic sample.

a self-consistent leading-order approximation. For each
event, we generated 1000 fair draws from a synthetic pos-
terior distribution, using the procedure described in Ap-
pendix A. These synthetic or “mock” posterior distribu-
tions mimic the effectcs of full GW parameter inference,
but by construction only explicitly constrain the binary
chirp mass; mass ratio; and effective spin χeff of each
event. Figure 5 shows the specific source population and
synthetic posteriors used in this analysis. Using these
synthetic posterior distributions, we apply the popula-
tion inference procedure described in Section II to pro-
duce our best estimates for the population parameters
responsible for our synthetic observations. As summa-
rized in Table I, our model has parameters

Λ ≡ (R, αm,mmin,mmax, αχ, βχ, σχ). (17)

To be consistent with the priors adopted in other work
[5], we express our results after reweighting to correspond
to a Jeffries prior on the rate (π(R) ∝ R−1/2). Even with
only 25 events drawn from a preferentially low-spin pop-
ulation, our calculations show that GW measurements
should strongly constrain the mass and spin distribution
of binary black holes

Figure 6 shows how well we can determine the merger
rate versus binary masses, such as the primary mass.
Notably and in good agreement with previous work, we
find we can strongly constrain the maximum detectable
mass in the population [21, 32]. Following the discus-
sion Section II E, however, we emphasize that while the
maximum detectable mass – demarcated by a sharp cut-
off in the observed population – is well-constrained, the
parameters R, mmax, αm have a degeneracy: as shown
in Figure 6, a population with extremely few but very
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Quantity R αm mmin mmax αχ βχ σχ
Gpc−3yr M� M�

Synthetic population 100 0.8 5 40 1.1 5.5 0.4

Prior range [10−1, 106] [−5, 5] [5,5] [30, 195] [10−4, 104] [10−4, 104] [10−2, 102]

Prior distribution log-uniform uniform uniform uniform log-uniform log-uniform log-uniform

TABLE I. Synthetic BBH population model: This table shows the parameters of the population model family we adopt to
generate and recover a synthetic binary black hole population as described in Section III B. The population is characterized by
an overall BBH merger rateR; a power law slope αm for the primary mass, between mmin and mmax; a Beta distribution for spin
magnitude, characterized by the two parameters α, β [Eq (10)]; and a characteristic misalignment σχ for the angle between BH
spins and the orbital angular momentum at our reference frequency [Eq. (11)]. This analysis also fixes the maximum allowed
total mass Mmax (i.e., m1 + m2 ≤ Mmax) to 200M�. In this model, both black hole spins are assumed drawn independently
from the same distribution. The second row shows the values of these parameters used to generate our synthetic population.
The third row shows the range of parameter space we explore when attempting to reproduce our data. The fourth row shows
the prior distribution adopted for each parameter, all assumed a priori independent; in this row, “log uniform” implies the prior
distribution for any variable x is uniform as a function of log x (i.e., p(x) ∝ 1/x). Note that for simplicity we have assumed the
minimum mass is known.

FIG. 5. Source information for our synthetic BBH
population: For each synthetic signal used in the BH pop-
ulation reconstruction calculation described in Section III B,
these two panels show the true injected source-frame parame-
ters (as crosses) and posterior distributions (contours of their
95% highest posterior density regions). Each color corre-
sponds to a different source.

massive BHs is hard to rule out, enabling larger mmax

to be consistent with our synthetic observations. Ad-
ditionally and for the first time, we demonstrate how
to self-consistently compute both the overall event rate
distribution, including Poisson error, while simultane-
ously constraining the mass distribution. Previous inves-
tigations have used specially-devised calculations which
marginalize over the event rate distribution, producing
results that (for a suitable Jeffries prior) are consistent
with our results for the marginal mass distribution. As
desmonstrated in Figure 6, to produce a self-consistent
rate distribution, due to strong correlations between the
event rate and mass distribution, we must simultaneously
measure the mass-dependent merger rate in the local uni-
verse. Because the correlation between the event rate
and mass distribution arises through the expected num-
ber of events, we can provide a simple analytic model for
the correlation between the mass distribution and event
rate, as described in Appendix C.

With 25 events, our population model has enough in-
formation to produce strong constraints on the under-
lying phenomenological distributions, even for parame-
ters like spin which are weakly constrained by individual
measurements. Figure 7 illustrates how informative these
constraints can be about the spin distribution. This fig-
ure compares the true marginal distribution of q, χeff for
the BH-BH population to our best (posterior predictive)
estimate of that distribution. Even with only a few tens
of detections, the estimate traces the general structure of
the true distribution. In particular, we can clearly and
unambiguously identify that a bias in the χeff distribution
towards positive values, suggesting an underlying ten-
dency towards alignment. Of course, our synthetic obser-
vations were intentionally drawn from the model family
we use to fit it; in general, the underlying astrophysical
distribution may have a form outside the model family we
adopt, introducing small biases into our interpretation.
Nonetheless, our analysis substantially generalizes pre-
vious proof-of-concept demonstrations on how well BH
measurements can measure BH spin distributions, not
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being limited to a single spin magnitude, a discrete and
restrictive family of orientation distributions, or similar
strong prior adopted in previous investigations [36, 39].

Even with only 25 events, we strongly constrain the
BH spin distribution, both in magnitude and orienta-
tion (Figure 8). As described in Appendix C in greater
quantitative detail, these two constraints are easily un-
derstood. For this synthetic analysis, the upper limit
on spin follows from the χeff distribution of recovered
sources. Since our synthetic observations included no
events with large χeff , we can be confident BH spins are
not extremely large, since by chance we ought to have
found one large value of χeff out of 25, even allowing
for uncertainty in how they’re oriented. Similarly, be-
cause our synthetic population is preferentially aligned
(σ = 0.4), the recovered population shown in Figure 2 has
a χeff distribution biased towards positive values. Using
Eq. (14) for χeff , the bias in χeff inevitably implies cos θ
is preferentially positive and, as described in Appendix
C, allows us to limit σ.

In this analysis, we employ conservative synthetic pos-
teriors which assume only the chirp mass, mass ratio,
and effective spin can be constrained with GW measure-
ments. Precessing, coalescing binaries can produce a rich
symphony of gravitational waves just prior to and during
merger, reflecting complex binary dynamics and strong-
field multimodal radiation. Given the high expected
event rate in ongoing gravitational wave surveys, we ex-
pect that future observations will provide clear exam-
ples of precessional dynamics, if nature produces them,
and that these measurements will allow us to much more
sharply constrain the BH spin distribution. However, for
massive BH binaries, model systematics complicate at-
tempts to measure BH parameters, including spin. We
will conduct full end-to-end calculations with synthetic
data and state of the art models in future work.

IV. ANALYSIS OF REPORTED
OBSERVATIONAL RESULTS

To date, five confident binary black hole (BBH) merg-
ers have been reported: GW150914 [89], GW151226 [77],
GW170104 [90], GW170608 [91], and GW170814 [92]
– the latter discovered jointly with the Advanced
Virgo instrument [3], Additionally, an astrophysically
plausible candidate BBH signal has been reported
(LVT151012) [5]. In this section, we describe inferences
about the binary black hole population based on reported
events, deduced from these reported observations and a
simplified model for the network’s search sensitivity. For
O1 events, most notably for GW151226, we use full pos-
terior inferences derived from GW data, provided by the
LIGO Scientific Collaboration. For O2 events, in lieu of
full posterior inferences, we use the procedure described
in Appendix A to generate synthetic posterior distribu-
tions which closely resemble the reported parameter es-
timates for mass and χeff . For simplicity and to enable

a concrete illustration of our method using real data, we
will produce estimates under the (unwarranted) assump-
tion that reported O2 results available to date represent
a comprehensive and fair sample of binary black holes
seen during LIGO’s O2 observing run. In these esti-
mates, we assume O1 and O2 share a common sensitive
volume V as estimated in Section II C, with observing
duration TO1 = 48.6 days [5] and TO2 = 117 days [93].
Keeping in mind model systematics like the omission of
a salient feature in the mass distribution can demonstra-
bly strongly bias recovered model parameters [21, 22], as
well as sample incompleteness for our O2-scale analysis,
in Table II we provide our inferences about the O1 and
O2 population within the context of the fiducial BBH
population model described in Section III B. For O2 in
particular, we emphasize the simplified V T and non-final
sample used in that analysis, which is provided solely for
illustration and to connect to previously-published inves-
tigations about O2-scale events [16, 21, 33]; applying our
methods to final O2 results with real samples and care-
fully calibrated V T could produce substantially different
astrophysical conclusions.

Figure 9 shows our best estimates for the merger rate
of BH-BH binaries of different mass, inferred within the
context of the model described in Table I and demon-
strated on synthetic data in Section III B. Naturally,
we estimate an overall BH-BH merger rate and mass
distribution consistent with previously reported results
[5]. Using a Jeffries’ prior for the merger rate, we find
R = 122+291

−96 Gpc−3yr−1 based on O1. For O2, we find
uncertainty in the event rate is reduced by roughly a fac-
tor of two, both through reduced Poisson error (e.g., six
instead of three events) and through sharper constraints
on the mass distribution (e.g., reducing prospects for a
large maximum mass). Our result for O1 is more conser-
vative (wider) than the power-law result reported previ-
ously in Abbott et al [5], 97+135

−67 Gpc−3yr−1, because we
employ a more flexible model and therefore incorporate
more model systematics, notably including the correla-
tion between event rate and mass spectrum and also the
impact of the upper mass cutoff. Conversely, if we employ
consistent assumptions, we arrive at the same answers
previously reported for O1 [5]. As we adopt a merger
rate model that reduces to previously investigated power
laws, by design we reproduce the analysis reported in
[21]: the events reported during O2 suggest the absence
of very massive BHs in the observable population.2 For
this reason our inferences about the mass spectrum ex-
ponent αm are considerably wider than prior work which
does not take a possible upper mass cutoff into account.
Even with the small sample publicly reported so far, our
analysis corroborates the analysis in [21] that O2-scale
GW measurements could be weakly informative about

2 While our assumptions about the mass distribution model have
modestly changed relative to Fishbach et al [21], we reproduce
their results when adopting the same inputs and mass model.
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FIG. 6. Inferred merger rate versus mass: This figure shows how our estimated merger rate versus mass compares with
the known distribution used to generate our synthetic source population. For a more thorough statistical test, see the P–P
plots in Appendix D. Top Left : This group of figures represents the one- and two-dimensional marginal posterior distributions
for R, αm, and mmax, with the true values overlayed as blue crosshairs. Top Right : This group of figures represents the one-
and two-dimensional marginal posterior distributions for m∗

1, Rp(m∗
1), and Rp(15M�), with the true values overlayed as blue

crosshairs. Bottom left : In this figure, the red dashed line shows the characteristic merger rate associated with a given mass
scale (m1Rp(m1)) versus primary mass m1. The black line shows the median inferred value, and the two gray shaded regions
show the symmetric 68% and 95% credible regions. Bottom right : The solid lines in this figure shows our posterior predictive
distribution p(mi|D): the best estimate for the probability of a future event being detected having masses mi. In this figure,
blue and green correspond to the primary and secondary masses. For comparison, the dotted lines show the true astrophysical
distribution.

the maximum mass of coalescing BHs.

As demonstrated in several previous investigations
[16, 33], we know that BHs in merging binaries likely have
low typical spin. For example, based on the distribution
of χeff , Farr et al [33] argued that several members of a
discrete array of candidate spin orientations (aligned or
isotropic) and magnitude distributions are inconsistent
with observations to date, and that BH spins were likely

randomly oriented or small. Later, Wysocki and col-
laborators [16] demonstrated that, if binary black holes
arose from isolated binaries whose spins were weakly mis-
aligned by SN natal kicks, then only relatively small BH
natal spins were consistent with observations available
at the time. With more events available to our analy-
sis, and using much more flexible models, we can draw
sharper and more generic conclusions about the BH spin
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R αm mmax E[χ] Std[χ] log10 σχ χeff χ

Gpc−3 yr−1 M�

O1 122+291
−96 2.8+1.4

−2.5 70+110
−30 0.28+0.31

−0.15 0.02+0.25
−0.02 0.1–9.5 0.00+0.24

−0.24 0.03–0.68

O2* — 1.9+1.5
−2.0 39+98

−6 0.24+0.21
−0.12 0.01+0.19

−0.01 0.3–9.4 0.00+0.19
−0.19 0.04–0.49

TABLE II. Inferences about astrophysical binary BH model parameters: This table provides 90% credible intervals
for the underlying parameters of our fiducial BBH population model, applied to O1 and reported O2 observations as described
in the text. Parameters with clear unimodal structure are represented by their median and the widths of their 90% symmetric
probability confidence interval, whereas we only report the 90% upper and lower limits for more poorly constrained parameters.
For the spin magnitude distribution, rather than show the (highly correlated) credible intervals for the underlying sampling
variables αχ, βχ, we instead show credible intervals for the mean value of χ and the standard deviation of χ. We also show
the posterior predictive range of spin magnitudes χ and effective spins χeff . We apply an asterisk (O2*) to all O2 results, to
highlight the non-final sample, simplified sensitivity model V T , and mocked-up posteriors used in this proof-of-concept analysis.

FIG. 7. Recovering the true mass ratio and χeff distri-
bution: A comparison between the underlying truth (black
solid contours) and the inferred posterior predictive (red
dashed contours) for the q, χeff marginal distribution. The
inner (outer) contour for each denotes the 50% (90%) highest
probability density credible region.

distribution, even using only 6 reported events. First
and foremost, exactly as seen with synthetic data, the
absence of large χeff allows us to with increasing confi-
dence bound above the fraction of BHs in merging bina-
ries that have large spin. Too, because collectively the
observed population distribution of χeff remains nearly
symmetrically distributed around zero, we can with in-
creasing confidence bound the fraction of binaries that
are preferentially aligned and with modest spin. With at
least one BH known to have spin (GW151226) and for
simplicitly assuming the BH spin and mass distribution
are uncorrelated, we are led to weakly disfavor scenarios
where BHs are preferentially aligned (i.e., small σ is dis-
favored). We emphasize, however, that this conclusion
is driven by the absence of strong support for any spin
in all but one binary (GW151226). We would arrive at
the same nominal conclusion for a comparable number
of random draws from a binary population model with
perfectly aligned binaries with small BH spins. Future

FIG. 8. Inferred spin distribution derived from syn-
thetic BBH observations: The top panel shows our infer-
ences about the total BH spin; the bottom panel show our
inferences about BH spin-orbit misalignment. In both pan-
els, the red dashed lines show the underlying distribution,
while the black solid lines and shaded regions show the me-
dian recovered parameter distribution. To a first approxima-
tion, the constraints on spin magnitude and misalignment are
as needed for the population model to reproduce the mass
and χeff distribution of the underlying population as shown
in Figure 7.
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FIG. 9. Inferences about astrophysical binary BH mass distribution: Inferences about the merger rate versus mass
of coalescing BH-BH binaries, using only O1 observations (dashed orange) and using O1 and reported O2 observations (solid

purple), for simplicity assuming the latter represent a comprehensive and fair sample. We apply an asterisk (O2*) to all O2
results, to highlight the non-final sample, simplified sensitivity model V T , and mocked-up posteriors used in this proof-of-
concept analysis. The panels in this figure follow the format of Figure 6 for representing one- and two-dimensional marginal
posterior distributions.

FIG. 10. Inferences about astrophysical binary BH spin distribution: Left : Our best estimates for the binary BH spin
magnitude distribution (PPD) based on O1 (dashed orange) and O2 (solid purple) observations. We apply an asterisk (O2*)
to all O2 results, to highlight the non-final sample, simplified sensitivity model V T , and mocked-up posteriors used in this
proof-of-concept analysis. Due to the low characteristic spin and within the context of the information used in this analysis,
these observations remain uninformative about BH spin-orbit orientations. Right : Our best estimates for the binary BH spin
distribution, as expressed using our model hyperparameters, for O1 and O2.
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and more informative observations of BH binaries could
significantly alter this conclusion.

V. DISCUSSION

In this work, we present concrete examples for how
well just a handful of GW measurements can improve
our phenomenology of the BH mass and spin distribu-
tion. Our examples include real observational data from
LIGO’s O1 and (an incomplete sample from) O2 observ-
ing run, suggesting current observations could be on the
cusp of constraining BH spins and maximum masses. We
provide simple estimates to understand how well these
parameters have been constrained, allowing the reader
to extrapolate to larger sample sizes. For example, in
the absence of positive support for spin, the upper limit
on BH spin will decrease rapidly, allowing us to place
strong upper limits for (or enable discovery of) BH natal
spin.

Because each empirical marginal distribution possesses
an infinite number of degrees of freedom, any phenomeno-
logical parameterization such as our own can quickly be
exhausted by the data [23], particularly when the pop-
ulation must reproduce multiple observational features.
In the short run, therefore, we anticipate a fully generic
and regularized infinite-dimensional approach will soon
be required to adequately reproduce the thousands of
events that even the current generation of instruments
will discover. A fully generic approach, however, can
be easily misled, not least because GW measurements
are subject to many subtle strong-field systematics due
to model incompleteness. For example, a waveform ap-
proximation widely used for rapid parameter inference
of binary black holes (IMRPv2 [94]) omits astrophysi-
cally critical degreees of freedom – the calculation allows
for only one precessing spin instead of the two necessary
to fully describe the dynamics – and demonstrably has
systematic errors large enough to shift posterior distri-
butions for O3-scale events by an appreciable fraction
of their statistically-expected extent [49, 79]. To illus-
trate the pernicious impact of these systematic biases,
we can consider a simple order-of-magnitude estimate:
a single quantity, with intrinsic Gaussian distribution
of mean µ and width σ, being observed multiple times
by an apparatus with a (Gaussian, random) measure-
ment error ∆x and bias δx. The bias will be important
when it influences our best estimate of the average (i.e.,

when δx >∼
√
σ2 + ∆x2/

√
N). Applying this order-of-

magnitude approach to GW measurements, we expect
that after only a few tens of binary mergers, these mod-
eling systematics will progressively contaminate the in-
terpretation of coalescing binaries, as posterior biases in
each event become reflected in biases in the inferred pop-
ulation distribution. Waveform systematics will be even
more important because BH spins appear to be small:
greater accuracy is needed to seperate the secular effects
of spin. In this work, when carrying out full parame-

ter inference, we use the newly-developed RIFT param-
eter inference engine [49] to produce posteriors. We will
discuss the impact of waveform systematics on BH spin
misalignment measurements in future work.

VI. CONCLUSIONS

We have introduced a flexible, ready-to-use, and self-
consistent parametric method to estimate the compact
binary merger rate as a function of binary parame-
ters, specifically emphasizing mass and spin. Unlike
prior work, our procedure self-consistently estimates the
merger rate and binary parameter distribution, account-
ing for statistical sampling error, measurement error, and
selection bias. Using this procedure, we show by example
that only a handful of NS-NS and BH-BH measurements
can enable strong constraints on their respective popula-
tions via GW observations alone. Even in the astrophysi-
cally likely scenario of small BH spin, we emphasize that
just a few measurements will enable sharp constraints
on the BH spin distribution. Interpreting current ob-
servations, we show that GW measurements are already
beginning to place astrophysically interesting constraints
on the spin of BHs. We reproduce prior results about the
lack reported BHs at high mass and its implications for
the BH mass spectrum. Finally, particularly in our ap-
pendix, we explain how to extrapolate towards the mea-
surement prospects available in the very near future.

The procedure described here assumes all sources have
been unambiguously resolved from observational data,
omitting any treatment of source significance aside from
a naive selection bias. Farr et al [95] demonstrated and
popularized an approach to self-consistently perform the
detection and population inference process, estimating
the foreground and background distributions simultane-
ously; see also [96–98]. Recently, Gaebel and collabora-
tors [99] developed a concrete procedure to apply this
technique to gravitational wave observations. Owing to
many deep similarities between our strategies, we antici-
pate we will shortly incorporate this techique in our own
analysis.

The approach described here also employs several
strong assumptions about the (lack of) correlations be-
tween model parameters. For example, our fiducial BH
model assumes the mass-dependent BH merger rate is
independent of redshift; that BH masses and spins are
completely independent; and that BH spin misalignment
and spin magnitudes are likewise uncorrelated. We will
explore more physically-motivated correlations in future
work.

In the long run, phenomenology is only as sound as the
underlying parameterization. Previous analyses have re-
peatedly shown that adopting an overly restrictive model
will produce biased results, as demonstrated by Fish-
bach et al (with the maximum mass) [21] and Talbot
et al [22] (with the shape of the maximum mass cut-
off). With sufficient data, a suitably regularized infinite-
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dimensional parameterization will make unintended sys-
tematic biases less frequent. Mature methods for infinite-
dimensional or nonparametric inference exist [100–102],
beginning with simple infinite-dimensional parameteriza-
tions plus smoothing priors or with Gaussian processes
[103]. Early investigations have applied nonparametric
methods to GW population estimates [29, 30]. However,
because the GW signal is so rich, many parameters can
be measured for each event, several of which are believed
to be correlated in most astrophysical formation scenar-
ios. These correlations should be more sharply identified
with strong theoretical priors for the immediate future.

Finally, several technical improvements can make this
approach faster and more robust. For example, we can
perform inference on all events simultaneously, using di-
rect estimates of the likelihood `(λ) naturally reported
by RIFT, to insure any population inferences aren’t lim-
ited by the compact support of fiducial priors. Using
accelerated general-purpose inference engines, we expect
to dramatically accelerate the speed with which our pop-
ulation inferences are provided, with a long-term goal of
enabling low-latency population-informed identification
and classification of candidate sources.
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Appendix A: Mock posterior populations precessing
binaries: Aligned Fisher matrix approach

We test our code using synthetic or “mock” posterior
distributions for binary black hole parameters, designed
to mimic the results of full end-to-end Bayesian infer-
nece on synthetic data. For the mock BBH posterior
distributions constructed in this work, we adopt a very
simple approximation, motivated by decades of experi-
ence suggesting that for short BBH signals the likelihood
for gravitational wave signals is nearly Gaussian in three
coordinates (Mc, η, χeff) and does not strongly constrain
any other degrees of freedom. Specifically, if λ0 are the

true binary parameters and ρ is the true network sig-
nal amplitude; if Γab = 〈∂ah|∂bh〉 is the Fisher matrix
for the binary parameters λ, evaluated at λ = λ0 and
for a signal amplitude ρ using a fiducial detector power
spetcrum; and if p(λ) is the prior distribution on λ, then
we approximate the posterior distribution by a distribu-
tion proportional to

e−Γab(λ−λ∗)a(λ−λ∗)bpref(λ) (A1)

where λ∗ is a fixed random realization from a normal dis-
tribution with mean λ0 and covariance matrix Γ−1. We
generate samples from this distribution via Monte Carlo
techniques. We evaluate the approximate Fisher matrix
Γ using the effective Fisher technique [55, 82, 104], ap-
plied to a nonprecessing binary waveform model assigned
the same values of Mc, η, χeff (i.e., via χ1,z = χ2,z =
χeff).

This approximate posterior distribution has several
distinct advantages. First and foremost, it captures
in Γab the strong, parameter-dependent, and well-
understood correlations between the variables that most
significantly impact the GW inspiral signal, while simul-
taneously populating all intrinsic binary parameters. For
example, it captures the shape of the posterior distribu-
tion in mass ratio and spin while correctly accounting for
parameter boundary effects, as described in [105]. Sec-
ond, it accounts via λ∗ for the effect of random noise
realizations, which impact the best-fitting parameters as-
sociated with each set of synthetic data. By including an
explicit prior pref(λ), it allows us to carefully adopt fidu-
cial prior assumptions, which have a substantial impact
on inferred binary masses and spins.

A ready-to-use implementation of this algorithm is
available.3

For simplicity, in this implementation, no cosmological
effects are applied. If used unaltered, this approximate
posterior applies either if cosmological redshift effects are
small compared to the width of the distribution in mass
(i.e., bias small compared to the statistical uncertainty)
or if these ambiguity distributions are used to approxi-
mate the source-frame ambiguity function. Cosmological
effects dominate the accuracy to which a binary neutron
star’s chirp mass can be measured; to be used in such
a scenario, this approximation must be refined to reflect
the significant impact of the sources’ unknown redshift.

Appendix B: Mock populations

To generate a synthetic population of events, we em-
ploy the following procedure. Using O1 sensitivity, and a
detection criterion of ρ > 8 in a single IFO, we used our
estimate of V and a fiducial observation time T to com-
pute the expected number of events µ. Using the poisson

3 See https://git.ligo.org/daniel.wysocki/synthetic-PE-posteriors.
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distribution, we select a total number of events N to ob-
serve. We assumed each detected binary had a network
SNR drawn from a powerlaw p(ρnetwork) ∝ ρ−4

network, with
a lower cutoff of 12 (roughly corresponds to 8 in two de-
tectors).

Appendix C: Overview of key phenomenological
constraints

1. How well can we measure distribution
hyperparameters?

Classical frequentist statistical methods provide a
quick way to assess how rapidly observations will con-
strain model hyperparameters. For example, the sam-
ple mean of maximum likelihood estimators converges
rapidly to the true mean, and (to a first approximation)
the sample variance is approximately χ2 distributed.
Thus, by adopting the mean and variance of our un-
derlying distributions as coordinates on the space Λ of
hyperparameters, we can estimate how efficiently obser-
vations will constrain them. For example, if we account
for measurement error, we can measure the mean spin

to an accuracy
√
V (χ) + σ2

χ/
√
N where V (χ) is the vari-

ance of the spin magnitude distribution and σχ is the
typical spin measurement accuracy for the mass range of
interest (typically O(0.3)). Because of sharp cutoffs, the
maximum and minimum mass have a qualitatively dif-
ferent behavior; see, e.g., [106]. Both the maximum and
minimum mass are best estimated using the most ex-
treme individual event, with an accuracy converging as
1/N . In our context – the power law mass distribution –
the accuracy with which these maximum masses can be
determined scales directly with the number of events in
a given region. We therefore expect the maximum mass
can be determined to an accuracy of order mmax/N ; the
appropriate scale factor can calibrated to detailed anal-
yses of the kind performed in Section III. Similarly, as
described below in Appendix C 2, we can use the ob-
served range of χeff to constrain spin magnitudes and
misalignments.

While providing a useful order-of-magnitude estimate
into how well we can measure distribution parameters,
the simple estimates above become cumbersome when
trying to capture correlations between our phenomeno-
logical parameters, notably the event rate and mass dis-
tribution. Following [23], we assess how well we can dis-
tinguish model hyperparameters from the (expected) log-
likelihood as a function of model hyperparameters Λ of

〈lnL〉 = −µ∗ + µ∗

〈
ln

∫
dλp(d|λ)Rp(λ|Λ)

〉
∗

(C1)

where the expectation is performed relative to some ref-
erence model characterized by parameters Λ∗ such that
p∗(λ) ≡ p(λ|Λ∗) and µ∗ = µ(Λ∗). Rather than work in
full generality, we perform a Taylor series expansion of

the likelihood around the local maximum, characterizing
the second order term by its inverse covariance or Fisher
matrix Γab

〈lnL〉 ' lnL∗ −
1

2
Γαβ(Λ− Λ∗)α(Λ− Λ∗)β (C2)

If γk are eigenvalues of Γ, then hyperparameters can be
measured to an accuracy 1/

√
γk, which scales as 1/

√
N

for N the number of observed events.
We first illustrate this technique in the idealized case

of zero measurement error, following previous work
[23] which characterized differences between two dis-
tributions q, p using the KL divergence DKL(p|q) ≡∫
p(x) ln[p(x)/q(x)]dx. The marginalized log likelihood

only depends on model hyperparameters Λ through the
KL divergence between our proposed model µ, p (which
depends on Λ) and the reference model µ∗, p∗ (which does
not):

〈lnL〉 = −DKL(µ∗|µ)− µ∗DKL(p∗|p) + constant(C3)

As a result, the Fisher matrix has two model-dependent
terms, each reflecting second derivatives of DKL with
respect to model parameters:

Γ
(zero)
αβ = Γ

(µ)
α,β + µ∗Γ

(p)
αβ (C4)

where the first terrm arises from differences in the ob-
served number; the second term reflects differences in
shape; and where we use the fact that DKL has a local
minimum (of 0) when the two distributions are equal
to eliminate cross terms. Thus, we can evaluate the
Fisher matrix simply by computing KL divergences and
carrying out the necessary derivatives. For example,
for the mass powerlaw model with fixed mass range,
p(m|α) = C(α,m+,m−)m−α1 /(m1 −m−), the KL diver-
gence DKL(p∗, p) becomes

DKL(α∗|α) ≡
∫
p(x|α∗) ln p(x|α∗)/p(x|α) (C5)

= (α− α∗)〈lnx〉α∗
+ lnC(α∗)/C(α) (C6)

where the conditional average is 〈f〉α ≡
∫
dxf(x)p(x|α).

In this expression, only the last term − lnC(α) does not
cancel in ∂2

αDKL(α∗|α).
Again using the same concrete power-law example, we

next use this technique to show how, because µ [Eq.
(6)] and the mass distribution can be independently con-
strained, the “overall event rate” R and the mass distri-
bution are correlated. Representing µ = eX , the second
derivative of DKL(µ∗|µ) becomes [23]

DKL '
1

2
µ∗(∂aX)(∂bX)(Λ− Λ∗)a(Λ− Λ∗)b (C7)

For the power-law model described above, the only
two derivatives needed are ∂lnRX = 1 and ∂αX =
∂α ln 〈V T 〉α, the latter of which can be well-
approximated by −1. This term introduces correlations
between the rate variable (lnR) and shape (α). Con-
versely, using coordinates µ, α to characterize the ob-
served population, by construction our inferred posterior
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distribution on the total number and mass distribution
are uncorrelated.

Roughly speaking, the effects of measurement error
add in quadrature in the Fisher matrix:

Γ = Γ(zero) + Γ(measure) (C8)

We can therefore refine the estimates provided above to
incorporate simple estimates of GW measurement errors
and their correlations. For the simple powerlaw estimate
described above, however, these measurement errors are
relatively small compared to the range of the distribution,
unless α is very large.

In the above order-of-magnitude discussion, we have
not accounted for parameter-dependent selection bias.
To a good first approximation, GW selection bias enters
only through the masses, roughly as the (chirp) mass to a
power. We can therefore treat the observed population as
a (different) power law, which observations constrain to
an accuracy loosely characterized by the analysis above.

Therefore, for the power-law mass distribution, we ex-
pect the posterior distribution of (log) rate and powerlaw
exponent will be correlated and follow a Gaussian distri-
bution characterized by the inverse covariance

Γ ' µ

[
1 −1

−1 1 + 2∂2
α lnC(α)

]
(C9)

relative to the coordinates (lnR, α), if we adopt a uni-
form prior on α and lnR. This expression captures the
correlations between rate and mass ratio seen in our in-
ferences, when only varying the total event rate and mass
ratio.

2. Semianalytic model for constraints on the spin
magnitude and misalignment distribution

In this paper, for the purposes of illustration and as
a leading-order approximation suitable for the BH-BH
binaries reported to date, we adopt two simplifying ap-
proximations: that the sensitive volume depends weakly
on spin; that GW measurements will only constrain χeff ;
and that the underlying mass and spin distributions of
BH-BH binaries are uncorrelated. In this framework of
approximations, only χeff measurements and hence the
underlying χeff distribution of the population determines
how well we can distinguish between population models
via spin measurements. Within this framework, we can
simply and largely analytically estimate how much in-
formation we gain about the BH spin distribution from
repeated measurements.

In our synthetic model (and nature) where BH spins
appear to be small, the first few measurements will prin-
cipally inform our upper limit on the BH spin distribu-
tion, via the absence of observations consistent with large
χeff . For example, in our synthetic model, the 90% uper
limit expected in 25 events is χeff < 0.31; for our inferred
posterior predictive distribution based on all published

events, it is 0.19. In Figure 11, we use a simple toy
model to illustrate how upper limits loosely inform our
estimates of the BH spin distribution. In this model, we
assume each BH in a binary has a random spin magni-
tude drawn from a uniform and distribution betwen 0 and
χmax, randomly (isotropically) oriented, for binaries with
a random mass ratio uniformly drawn between 0.1 and 1.
This figure shows the cumulative distribution of χeff im-
plied by these assumptions, for different choices of χmax.
[These cumulative distributions are well-approximated
by analytic expressions for the cumulative distribution of
χ1,z and χeff under these assumptions; see [49] for con-
crete expressions.] For comparison, the vertical shaded
regions show the largest values of χeff which have sig-
nificant support in our synthetic sample (χeff

<∼ 0.5),
consistent with the largest plausible spins reported for
O1 and O2 events. The lack of support for large χeff in
any observation to date strongly suggests that BH spins
cannot be large. Conversely, an observation of a binary
with χeff bounded below by ε (e.g., GW151226) implies
that a significant fraction of BH spins must be greater
than of order ε.

We emphasize that we provide these estimates (and
perform our calculation within these underlying approx-
imations) to produce a conservative, well-understood
benchmark for how well the BH spin distribution can
be constrained with present and future GW measure-
ments. Real GW measurements, particularly of low-mass
or closer and therefore higher-amplitude BH-BH mergers,
will provide additional direct constraints on the other
spin degrees of freedom.

Appendix D: End-to-end tests of population
hyperparameter recovery: P–P plots

A standard technique to test Bayesian parameter in-
ference codes is a probability-probability or P–P plot.
We employ this test both on our population inference
engine and on the procedure for making synthetic obser-
vations. For our population inference code, we generate
k = 1 . . . 1000 synthetic BBH populations, each a fair
draw from a set of population hyperparameters control-
ling the rate, mass and spin distribution. For each syn-
thetic population, we generate one random observing run
with O1 LIGO sensitivity and T = 300days coincident
observing time, by computing the expected number of de-
tections µ (Eq. 6) and taking one random Poisson draw
p(nk) ∝ e−µµnk/nk!. We take nk detection-weighted bi-
naries, generating parameter estimates according to the
procedure in Appendix B. We then apply our population
parameter inference code to generate posterior distribu-
tions on the population hyperparameters Λ, and from
that 1-D marginal cumulative distributions P̂k,i(Λi), for
each parameter Λi. It should be noted here that we
used as our prior the same distribution that these pop-
ulation hyperparameters were drawn from, as anything
else would produce biases. Using the true hyperparam-
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FIG. 11. Why χeff measurements constrain the max-
imum spin: CDF for χeff for toy models with isotropic
spins and uniform spin magnitude distributions limited by
0.1, 0.2, 0.3 . . .. In the top panel, the vertical lines, corre-
sponding to 0.51/3 and 0.51/25, indicate the locus of points
in each CDF we can begin to constrain with the absence of
events above X with 3 and 25 events, respectively. In the bot-
tom panel, the lines have been changed to 0.91/3 and 0.91/25,
respectively.

eter values Λ∗k,i, we generate a single number for each

hyperparameter P̂k,i(Λ
∗
k,i). A P–P plot is the cumulative

distribution of these P̂k,i(Λ
∗
k,i). If the code is behaving

correctly, these should be uniformly distributed from 0 to
1: the plot should be diagonal. The top panel of Figure
12 shows the P–P plots for each of our model hyperpa-
rameters.

In addition to our population inference code, we made
P–P plots for our synthetic parameter estimation code,
described in Appendix B, as our population inference
tests make use of it. Here we generated k = 1 . . . 1000
synthetic BBH signals, drawing true values from the prior
we used for measuring the posteriors. We repeated the
same process just described, making posterior distribu-
tions on the intrinsic parameters λ, and evaluating the
marginal CDF’s at the true values λ∗k. P–P plots for some
representations of the intrinsic parameters are shown in
the bottom panel of Figure 12.

FIG. 12. P–P plots for hyperparameter recovery. Top (bot-
tom) panel shows the P–P plot for population (single syn-
thetic event) inferences.
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[47] É. Racine, Phys. Rev. D 78, 044021 (2008),



20

arXiv:0803.1820 [gr-qc].
[48] P. Ajith, M. Hannam, S. Husa, Y. Chen, B. Brügmann,
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F. Ohme, G. Pratten, and M. Pürrer, Phys. Rev. Lett.
113, 151101 (2014), arXiv:1308.3271 [gr-qc].

[95] W. M. Farr, J. R. Gair, I. Mandel, and C. Cutler,
Phys. Rev. D 91, 023005 (2015), arXiv:1302.5341 [astro-
ph.IM].

[96] T. J. Loredo, in American Institute of Physics Confer-

ence Series, American Institute of Physics Conference
Series, Vol. 735, edited by R. Fischer, R. Preuss, and
U. V. Toussaint (2004) pp. 195–206, astro-ph/0409387.

[97] J. Buchner, A. Georgakakis, K. Nandra, M. Brightman,
M.-L. Menzel, Z. Liu, L.-T. Hsu, M. Salvato, C. Rangel,
J. Aird, A. Merloni, and N. Ross, ApJ 802, 89 (2015),
arXiv:1501.02805 [astro-ph.HE].

[98] C. Messenger and J. Veitch, New Journal of Physics 15,
053027 (2013), arXiv:1206.3461 [astro-ph.IM].

[99] S. Gaebel, J. Veitch, W. Farr, and T. Dent, (2018).
[100] A. Gelman and J. Carlin, Bayesian Data Analysis, 3rd

ed (2013).
[101] P. Orbanz and Y. Teh (2010).
[102] S. Ghosal and A. van der Vaart, Fundamentals of non-

parametric Bayesian Inference.
[103] C. Rasmussen and C. Williams, Gaussian Processes for

Machine Learning (The MIT Press, 2006).
[104] H.-S. Cho and C.-H. Lee, Classical and Quantum Grav-

ity 31, 235009 (2014), arXiv:1403.4681 [gr-qc].
[105] K. K. Y. Ng, S. Vitale, A. Zimmerman, K. Chatziioan-

nou, D. Gerosa, and C.-J. Haster, Phys. Rev. D 98,
083007 (2018), arXiv:1805.03046 [gr-qc].

[106] S.-i. Amari and H. Nagaoka, Methods of information
geometry, Vol. 191 (American Mathematical Soc., 2007).


