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Using local gauge invariance in the form of the Ward-Takahashi identity and the fact that properly constructed
current operators must be free of kinematic singularities, it is shown that the magnetic moment µ and the
quadrupole moment Q of an elementary spin-1 particle with mass m and charge e are related by 2mµ+m2Q = e,
thus constraining the normalizations of the Sachs form factors. This relation holds true as a matter of course at
the tree level in the standard model, but we prove it remains true in general for dressed spin-1 states derived from
elementary fields. General expressions for spin-1 propagators and currents with arbitrary hadronic dressing are
given showing the result to be independent of any dressing effect or model approach.

I. INTRODUCTION

The electromagnetic structure of a massive spin-1 parti-
cle has been discussed for some time (see Refs. [1–7] and
references therein). The early work of Lee and Yang [1]
shows that at the tree level, the particle’s magnetic moment
µ and the quadrupole moment Q are given by (~ = c = 1)
µ = e(1 + κ)/2m and Q = −eκ/m2 in terms of one common
constant κ. Although usually not written in this manner, this
correlation may also be expressed independent of κ as

2mµ + m2Q = e , (1)

where m is the mass and e the charge. This relation is also
true for the canonical moments of the W± gauge boson in
electroweak gauge theory at the tree level where µ = e/m
and Q = −e/m2 [4], which corresponds to putting κ = 1 in
the Lee-Yang result. The same expressions have also been
obtained by Brodsky and Hiller [6] in the strong binding limit
based on a generalization of the Drell-Hearn-Gerasimov sum
rule [8, 9]. The experimental value of µ, in particular, of the
DELPHI Collaboration [10], quoted as the most recent one by
PDG [11], is also compatible with this standard-model result.
A more general electromagnetic structure allowing for the

quadrupole moment to be independent of charge and magnetic
moment was considered in Refs. [3–7, 12–14] (see also ref-
erences therein), thus exploiting the full multipole degrees of
freedom of a spin-1 object. With the usual parametrization
µ = e(1 + κ + λ)/2m and Q = −e(κ − λ)/m2 [4], resulting in

2mµ + m2Q = e (1 + 2λ) , (2)

the value of λ indicates the degree of independence of µ andQ.
The results tabulated in Ref. [7] obtained for the ρ meson by
various authors providing independent model determinations
of µ andQ correspond to values of λ ranging from 0.1 to about
0.5, at variance with the simple correlation (1).
In Sec. II, we consider here the ramifications of imposing

local gauge invariance on the structure of the electromagnetic
current operator of a spin-1 particle based on an elementary
field, and we will show in a model-independent manner that
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Eq. (1) is strictly valid (i.e., λ = 0) simply based on de-
manding a nonsingular current operator that must satisfy the
Ward-Takahashi identity [15–17] as a necessary and sufficient
condition for local gauge invariance. Concluding remarks are
provided in Sec. III.

II. SPIN-1 CURRENT

To be locally gauge invariant, the spin-1 current Jλµν must
reproduce the Ward-Takahashi identity (WTI) of the form

kµJλµν(q′, q) !
= e

[
P−1(q′) − P−1(q)

]λν
, (3)

where Pλν(q) is the propagator of the elementary spin-1 par-
ticle with four-momentum q and k = q′ − q is the (incoming)
photon four-momentum (see Fig. 1). We emphasize here that
except for the charge parameter e, the right-hand side of the
WTI contains no additional information about the particle’s
electromagnetic structure. Moreover, the WTI is an off-shell
relation at the operator level that necessarily requires a com-
mensurate off-shell structure for the associated current. The
WTI must be true irrespective of whether the spin-1 particle is
a stable particle or a resonancewith nonzerowidth. It alsomust
be true independent of the hadronic gauge one chooses for, in
general, the spin-1 propagator will be gauge dependent [17].
This gauge dependence will drop out when considering phys-
ical matrix elements, however, to be consistent, it must be
carried through at all intermediate steps.

As usual, we assume here the spin-1 particle to be stable,
described by a propagator Pλν(q) that has a physical pole with
unit residue at a real squared four-momentum q2 = m2. [More
general expressions will be discussed at the end of this note, in
Eqs. (13) and (16).] For a stable particle, the on-shell matrix
element of the inverse propagator vanishes, which will make
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FIG. 1. Depiction of electromagnetic current vertex for the ρmeson,
γ(k) + ρ(q) → ρ(q′), with associated four-momenta and Lorentz
indices. (Time runs from right to left.)
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the right-hand side of the WTI (3) vanish for q′2 = q2 = m2,
thus indicating a gauge-invariant conserved current.
The electromagnetic spin-1 current operator with form fac-

tors is usually written as (see, e.g., Refs. [6, 14])

Jλµν0 (q′, q) = −eG1(k2)(q′ + q)µgλν

− eG2(k2)
(
kλgµν − gλµkν

)
+ eG3(k2)(q′ + q)µ

kλkν

2m2 , (4)

where the form factorsG1,G2, andG3 are related to the charge,
magnetic, and quadrupole form factors. This current ansatz
comprises the most general Lorentz structure available for on-
shell matrix elements imposing time-reversal invariance and
current conservation. The four-momenta and Lorentz indices
appearing here are defined in Fig. 1 where the (charged) ρ
meson is used as a generic template for an elementary spin-1
particle.
Introducing Sachs form factors GC(k2), GM (k2), and

GQ(k2) describing charge, magnetic moment, and quadrupole
moment, respectively, by [6, 14]
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where η = −k2/4m2, their normalizations are given by

eGC(0) = e (charge e) , (6a)
eGM (0) = 2mµ (magnetic moment µ) , (6b)
eGQ(0) = m2Q (quadrupole moment Q) , (6c)

which introduce the three electromagnetic multipole moments
of the spin-1 particle. The corresponding normalizations of
the form factors Gi (i = 1, 2, 3) then are found as

G1(0) = GC(0) = 1 , (7a)

G2(0) = GM (0) =
2m
e
µ , (7b)

G3(0) = −GC(0) + GM (0) + GQ(0)

= −1 +
2m
e
µ +

m2

e
Q . (7c)

It is evident here in the last equation that G3(0) = 0 is equiv-
alent to the validity of Eq. (1) and, indeed, we will show here
that the vanishing of G3(0) is a necessary condition for a well-
defined current that satisfies the WTI (3).
The four-divergence of the current (4),

kµJλµν0 = e(q′2 − q2)

[
−G1(k2)gλν + G3(k2)

kλkν

2m2

]
, (8)

vanishes for q′2 = q2 = m2 and thus indeed provides a con-
served current. However, this is not the correct form of the
WTI for an elementary particle. Clearly, to reproduce the
WTI of the generic form (3), one must be able to separate

the four-divergence expression into a difference of two terms,
individually depending on q′ and q, respectively, without any
k2 dependence. This is simply not possible with form factors
depending on k2.

To resolve the discrepancy, one must move the electro-
magnetic form factors to manifestly transverse terms, without
changing the on-shell limit, similar to the treatment of currents
for spin-0 and spin-1/2 in Ref. [18]. To this end, we may add
an off-shell term to the current (4) according to

Jλµν1 = Jλµν0 + ekµ(q′2 − q2)

(
G1 − 1

k2 gλν −
G3

k2
kλkν

2m2

)
(9)

that clearly is irrelevant for any physical matrix element and
thus will not change the electromagnetic form-factor content
of the current as defined by Eq. (4). However, this modifica-
tion is absolutely essential for considerations of local gauge
invariance in view of the fact that the Ward-Takahashi identity
itself is an off-shell relation. For the modified current,

Jλµν1 (q′, q) = −e(q′ + q)µgλν − eG2(kλgνµ − kνgµλ)

− e
(

G1 − 1
k2 gλν −

G3

k2
kλkν

2m2

)
×

[
(q′ + q)µk2 − kµ(q′2 − q2)

]
, (10)

the form-factor dependence does not appear in the four-
divergence,

kµJλµν1 (q′, q) = −gλνe
[
(q′2 − m2) − (q2 − m2)

]
, (11)

which has the correct structure of the WTI (3) and vanishes
for on-shell hadrons.

It should be emphasized here that the additional off-shell
term in Eq. (9) is unique because the resulting current expres-
sion (10) is comprised of the only three linearly-independent,
time-reversal-invariant transverse operators available for spin
1 that survive on shell.1 In other words, given Jλµν0 of Eq. (4),
one cannot construct an alternative subtraction curent that re-
produces the WTI.

While the form (11) of the WTI is only true for stable
particles, without any explicit hadronic dressing effects, it is
sufficient for the present purpose for it illustrates the basic
mechanism how the dependence on electromagnetic form fac-
tors is eliminated from the WTI.

The assertion that Eq. (1) is true in general now simply
follows from noting that the operator structure of an electro-
magnetic current must be free of kinematic singularities. We
may demand, therefore, that the additional current in Eq. (9)
and thus the transverse term in the modified current (10) be
well defined for all values of q′ and q. In particular, it may not
have singularities at the photon point, k2 = 0, which immedi-
ately provides the necessary conditions

G1(0) = 1 and G3(0) = 0 (12)

1 There exists a fourth independent transverse operator, but since its on-shell
matrix element vanishes, its coefficient function cannot be associated with
a physical form factor and it can be put to zero without lack of generality.
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to make (G1 − 1)/k2 and G3/k2 well behaved. The first con-
dition is trivially true because of the normalization (7a). The
second condition then makes the right-hand side of Eq. (7c)
vanish, which is equivalent to (1), and thus proves the point
that the validity of Eq. (1) is not limited to the assumptions
of the original Lee-Yang approach [1], but remains true in
general.

A. Fully dressed spin-1 current

We complete the presentation here by showing that even
allowing for arbitrary dressing effects will not alter this con-
clusion.
Without going into details, the most general fully dressed

spin-1 propagator may be written in terms of two (in general,
complex) scalar dressing functions as

Pλν(q) =
−gλν +

qλqν

m2 N(q2)

q2 − m2 − Σ(q2)
. (13)

Here, N(q2) is a gauge-dependent function that is irrelevant
for physical matrix elements. The selfenergy function Σ(q2),
on the other hand, determines all physically relevant dressing
effects. To make m the physical mass, it is assumed here that
the selfenergy vanishes at q2 = m2 , but this can be arranged
easily. The inverse of the propagator, as it appears in the
generic WTI (3), reads(

P−1(q)
)λν
= −gλνD(q2) + qλqνC(q2) (14)

where

D(q2) = q2 − m2 − Σ(q2) (15)

is a short-hand notation for the denominator of the propagator
(13). The function C(q2) contains N(q2) and thus is gauge
dependent; its details can easily be worked out by explicitly
constructing the inverse (14), but since they are not relevant,
they will be omitted here.
The fully dressed current compatible with the propagator

(13) then is obtained by applying the gauge derivative [18, 19]
to the inverse propagator (14) resulting in

Jλµν(q′, q) = Jλµν1 (q′, q)
D(q′2) − D(q2)

q′2 − q2 + Jλµνgauge(q
′, q) ,

(16)

with a gauge-dependent current piece that reads

Jλµνgauge(q
′, q) = eq′λgµνC(q′2) + egλµqνC(q2)

+ eq′λ(q′ + q)µqν
C(q′2) − C(q2)

q′2 − q2 , (17)

whose on-shell matrix elements vanish. The 0/0 situations
arising here at q′2 = q2 from the finite-difference derivatives
of the denominator function D in (16) and of the function C in

(17) are well behaved and nonsingular. For a stable particle, in
particular, the on-shell value of the finite-difference derivative
of D is directly related to the unit residue of the propagator
and thus unity as well. Hence, the on-shell matrix elements of
the current Jλµν with full hadronic dressing, of the modified
undressed current Jλµν1 , and of the usual current expression
Jλµν0 of Eq. (4) are identical. The normalizations in Eqs. (6)
and (7), therefore, are not affected by hadronic dressing.

Evaluating now the four-divergences of the gauge-dependent
current contribution,

kµJλµνgauge(q
′, q) = e

[
q′λq′νC(q′2) − qλqνC(q2)

]
, (18)

and of the entire dressed current,

kµJλµν(q′, q) = −gλνe
[
D(q′2) − D(q2)

]
+ kµJλµνgauge(q

′, q) ,
(19)

we indeed obtain the WTI (3) in terms of the fully dressed
inverse propagator (14). The dressed current (16), therefore, is
locally gauge invariant. Moreover, for a stable spin-1 particle,
the physical on-shell matrix element of the four-divergence
(19) vanishes, thus providing a conserved current.

All electromagnetic form factors appear here only in Jλµν1
in Eq. (16) in manifestly transverse contribution, as detailed in
Eq. (10). Hence, the demand that these contributions should
be well behaved and free of kinematic singularities carries over
directly to the present case with full hadronic dressing. The
conditions (12), therefore, are valid here as well, independent
of the details of dressing effects.

III. CONCLUSION AND DISCUSSION

We may thus conclude that the relationship (1) linking the
three multipole moments of an elementary spin-1 particle
holds true in general and that it is model independent. While
this correlation is trivially satisfied by the canonical moment
values (i.e., µ = e/m, Q = −e/m2) discussed in the first para-
graph of the Introduction, the relationship as such does not
make any demand on individual values other than that they
must be linked to satisfy (1). This correlation is important
not just on general theoretical grounds because it reduces the
multipole degrees of freedom, but since it imposes restrictions
on approximations in model treatments of the moments, it will
also allow for more realistic assessments of the reliability of
various approaches. Other than possessing spin 1, the deriva-
tion makes no special demands on the nature of the particle
as long as its description is based on an elementary field. It
therefore applies to the W± gauge bosons of electroweak the-
ory as well as to strongly interacting spin-1 particles like the
ρ meson, etc.
However, the present considerations do not apply to

hadronic spin-1 bound states like the deuteron because the
requirement of the WTI (3) as a necessary and sufficient state-
ment of local gauge invariance only applies to elementary
particles. For hadronic bound states, in principle, their electro-
magnetic structures can be described microscopically in terms
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of how their (observable) hadronic constituents couple to the
electromagnetic field. Comprehensive gauge-invariance con-
siderations for hadronic spin-1 bound states like the deuteron,
therefore, would need to consider also the possibility of asymp-
totically free constituent particles, including their final-state
interactions. A somewhat simplified (incomplete) description
along such lines can be found in Ref. [12]. Hence, utilizing
the current (4) for the deuteron [12–14] provides an effective
description of its electromagnetic spin-1 properties, with a
conserved current because the four-divergence (8) vanishes on
shell, however, there is no associated “deuteron propagator”
to satisfy the WTI (3) independent of its effective electromag-
netic properties.
Finally, we mention without further discussion that in the

elementary-particle case, the respective expressions for the

dressed propagator, Eq. (13), and the dressed current, Eq. (16),
remain valid even if the spin-1 particle is a resonance, with
nonzero width described by the imaginary part of the dressing
function Σ. The mass m and the moments µ and Q then are
parameters tied together by the normalizations (7), but they
will not necessarily retain their usual physical meanings if the
width is too large.
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