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A moderately strong vector repulsion between quarks in dense quark matter is needed to explain
how a quark core can support neutron stars heavier than two solar masses. We study this repulsion,
parametrized by a four-fermion interaction with coupling gV , in terms of non-perturbative gluon
exchange in QCD in the Landau gauge. Matching the energy of quark matter, gV n2

q (where nq is
the number density of quarks) with the quark exchange energy calculated in QCD with a gluon
propagator parametrized by a finite gluon mass mg and a frozen coupling αs, at moderate quark
densities, we find that gluon masses mg in the range 200 - 600 MeV and αs = 2 - 6 lead to a gV
consistent with neutron star phenomenology. Estimating the effects of quark masses and a color-
flavor-locked (CFL) pairing gap, we find that gV can be well approximated by a flavor-symmetric,
decreasing function of density. We briefly discuss similar matchings for the isovector repulsion and
for the pairing attraction.

I. INTRODUCTION

Quarks are active degrees of freedom in the deep inte-
rior of massive neutron stars. For a comprehensive review
of quark matter and the QCD phase diagram, see [1, 2]
and references therein. In Refs. [3–5], we constructed a
family of quark-hadron equations of state in which mat-
ter is described at densities up to about twice nuclear
saturation density, n0 ≈ 0.16 baryons per fm3 by inter-
acting nucleons, and at higher densities, nB & 5-10 n0,
by interacting quark matter with a highly constrained
interpolation of the equation of state between the two
regimes. This equation of state describes neutron star
properties quite consistent with recent LIGO inferences
from the binary neutron star merger, GW170817 [6]. Ver-
sion QHC18 of this equation of state at zero temperature
is reviewed in [1], and the latest version, QHC19, was re-
cently made available [7, 8].

We describe quark matter in terms of a Nambu–
Jona-Lasinio (NJL) model with point interactions in the
scalar, diquark, and vector-isoscalar channels, with a La-
grangian schematically of the form [10, 11]

Lint = G(q̄q)2 +H(q̄q̄)(qq)− gV (q̄γµq)2, (1)

where the vector repulsion in the isoscalar channel [12] is
needed for quark matter to support heavy neutron stars.
The resultant energy density from the vector repulsion is
gV n

2
q, where nq = 3nB is the quark number density.

While the scalar coupling G and the ultraviolet cutoff
ΛNJL of the NJL model can be directly related to phys-
ical observables such as the properties of pseudoscalar
mesons, the vector repulsion at present is constrained
only by comparing the equation of state of matter with
observations of neutron stars. As we have found in our
QHC19 equation of state, to support neutron stars of
masses above two solar masses (including the recently

measured neutron star mass, 2.17 ± 0.1 solar masses in
the pulsar PSR J0740+6620 [9]) requires that gV be well
in the range 0.6-1.3 G0, and H in the range 1.35-1.65 G0

[7], where G0 = 1.835Λ−2
NJL with ΛNJL = 631.4 MeV, is

the scalar coupling in the vacuum obtained by a fitting
of pion observables [10, 11]. Our aim in this paper is
to explore further understanding the structure of Eq. (1)
in terms of QCD, and the strength of the vector repul-
sion in particular. A simple Fierz transformation of the
color-current – color-current interaction, ∼ (q̄γµλ

αq)2,
leads to NJL couplings (1) with the ratios gV 0/G0 = 1/2
and H0/G0 = 3/4 (see Appendix A) [11] where the “0”
continues to indicate vacuum values. But in the fully in-
teracting system, these ratios need not hold; as in QHC18
and QHC19 we focus on more general in-medium values
of gV and H, studying here the density dependence of gV
in particular.

Since gV has dimensions of mass−2, at asymptotically
large densities, where the only energy scale is the quark
Fermi momentum pF , gV should behave as ∼ αs/p

2
F ,

where αs is the QCD running coupling constant. On the
other hand, in the highly non-perturbative vacuum at
zero baryon density, the relevant scale is ΛQCD, and we
expect gV ∼ αs/Λ2

QCD. Thus, the matter density depen-
dence of gV can be ignored only when pF � ΛQCD, pro-
vided that αs also freezes at low energy [13]. To smoothly
connect gV at low density with that at high density, we
adopt a model of massive gluons [14, 15] which includes
non-perturbative generation of the gluon massmg as well
as the freezing of αs in the Landau gauge at low energies.
This approach is step towards conceptually connecting
the NJL model and perturbative QCD [16–18]. As we
estimate, a gluon mass mg ∼ 0.4 GeV, and a moderately
strong quark-gluon coupling αs ∼ 3 at 5n0 (or similar
values, shown in Fig. 3 below, with αs/m2

g roughly con-
stant) can produce a strong enough gV ∼ G0 to allow
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quark matter to support neutron stars above two solar
masses.

At high density, where the matter tends to have equal
population of up-, down-, and strange-quarks, flavor-
singlet channels are much more important than non-
singlet flavor channels. This allows us to focus on the
flavor-singlet scalar and vector couplings as well as CFL-
type diquark pairing [19], favored for equal flavor pop-
ulation. Flavor non-singlet interactions are nonetheless
important at low densities (see Appendix B).

This paper is organized as follows. In Sec. II, we
present the single gluon exchange energy calculation
starting with free quark and gluon Green’s functions, at
first using the two-loop running coupling constant in per-
turbative QCD. The Landau pole in the running coupling
leads to a strongly divergent result at a density . 5n0.
To avoid such a divergence, we consider, in Sec. III, a
range of αs and gluon masses, mg, as estimated non-
perturbatively below the one GeV scale, and comment
on the connection to the QHC19 neutron star equation
of state, constrained by neutron star observations, to sub-
GeV theories of αs and massive gluons. We also provide
an approximate density-dependent parametrization of gV
connecting the low density and high density limits. Next
in Sec. IV we estimate effects on gV of a finite quark
mass, Mq, arising from chiral condensation in the quark
sector, and in Sec. V effects of diquark pairing. As we
show, a quark mass term tends to enhance gV , while di-
quark pairing decreases it; both effects are suppressed by
a gluon mass, and as a result a flavor-independent gV is
a good approximation in the NJL model. We summa-
rize our discussion in Sec. VI. In Appendix A, we show
how the color current-current interactions can be rear-
ranged via the Fierz transformation. In Appendix B,
we consider effective vector-isovector couplings, possibly
important at intermediate and low densities, and in Ap-
pendix C, we estimate the value of H from the N -∆ mass
splitting.

Throughout we work in natural units ~ = c = 1
with the metric gµν = diag(1,−1,−1,−1), and focus on
zero temperature with Nf = Nc = 3 and equal quark
masses, unless stated otherwise. We use the notation∫
p

=
∫
d4p/(2π)4.

II. WEAK COUPLING LIMIT

The quark-gluon interaction to leading order in αs
leads to the energy-density shift of the quark matter

EQCD = − iπαs
2

∫
d4x 〈Jαµ (x)Aµα(x)Jβν (0)Aνβ(0)〉, (2)

where the expectation value is in a Fermi gas, x = (t,x),
and t is integrated from 0 to −i/T (with T the temper-
ature). The currents are Jαµ (x) ≡ q̄(x)γµλ

αq(x), where
the λα are the color SU(3) Gell-Mann matrices normal-
ized to trλαλβ = 2δαβ .

In the weak coupling limit, neglecting diquark pairing,
Eq. (2) becomes the Fock term in terms of the two-quark
interaction

EQCD ≈
παs

2

∫
p,p′

Tr [S(p)λαγ
µS(p′)λβγ

ν ]Dαβ
µν (p− p′).

(3)

Here the trace Tr runs over flavor, color, and Dirac in-
dices, and the integrations over frequencies p0 and p′0 are
understood as the fermion Matsubara frequency summa-
tions,

∫
dp0f(p0)→ 2πiT

∑
n f(iωn), where ωn = 2πTn,

with n = ±1/2,±3/2, . . . . The time-ordered quark
Green’s function is

Sabij (x− y) = −i〈T qai (x)q̄bj(y)〉 (4)

and is denoted by S(p) in momentum space; here a, b are
color indices and i, j flavor indices. The gluon Green’s
function is

Dαβ
µν (x− y) = −i〈T Aαµ(x)Aβν (y)〉. (5)

With no medium modification of the gluons, D in the
Landau gauge takes the form in the momentum space,

Dαβ
µν (q) = −δαβ

(
gµν −

qµqν
q2

)
D(q). (6)

The full calculation of the energy leads to divergent Dirac
sea contributions involving antiparticles. Only the gµν
term in Dαβ

µν (q) contributes to the particle-particle ex-
change (Fock) energy, and we keep only this term.

The traces in Eqs. (3) can be re-organized, via a Fierz
transformation (see Appendix A), into traces over quark
Green’s functions in the quark-antiquark channels. The
NJL model contains two such channels: the scalar q̄q
channel – which is used to characterize the spontaneous
chiral symmetry breaking – and the vector-isoscalar q̄γµq
channel. The energies corresponding to the scalar and
vector channels, after the Fierz expansion of Eqs. (3),
denoted by Es

QCD and Ev
QCD, are

Es
QCD = −8παs

27

∫
p,p′

TrS(p)TrS(p′)D(p− p′), (7)

Ev
QCD =

4παs
27

∫
p,p′

Tr[S(p)γµ]Tr[S(p′)γµ]D(p− p′).

(8)

We first outline how these results are related to the
effective G and gV in the NJL model. Since the detailed
relation depends on the gluon propagator, we first illus-
trate the results in the two limiting extremes, low and
high density. Owing to the non-perturbative infrared cut-
off of order ΛQCD, the gluon propagator has a finite limit
D(q → 0) at low energy; thus at low densities we have

Es,v
QCD = Cs,vαsD(0)

(∫
p

Tr [S(p)Γs,v]

)2

, (9)

where Cs = −8π/27 = −2Cv and Γs = 1, and pro-
vided that

∫
p
Tr[S(p)γj ] = 0, Γv = γ0. In this form
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one can readily identify the NJL couplings as G = 2gV =
CsαsD(0).

At higher densities we must keep the momentum de-
pendence of the gluon propagators. For example, with
massless free quark and gluon propagators,

S0,ab
ij (p) = δabδij

γµp
µ

(p0 + µ)2 − p2
, (10)

D0(p) =
1

p2
, (11)

where µ is the quark chemical potential, we find the per-
turbative result,1

Ev
QCD = 24παs

(∫
d3p

(2π)3

f(|p| − µ)

|p|

)2

, (12)

where f(z) = [exp(z/T ) + 1]−1 is the Fermi distribution
function; at zero temperature (12) reduces to

Ev
QCD =

3αsp
4
F

2π3
. (13)

This result is identical to the exchange energy of a highly
relativistic electron gas to within flavor and color fac-
tors.2,3

The vector repulsion contributes an energy density in
the NJL model [7]

Ev
NJL = gV n

2
q, (15)

which we identify with Ev
QCD in the matching density

region ∼ 5-20 n0 corresponding to pF ∼ 0.4-0.6 GeV, one
finds

gV =
παs
6p2
F

. (16)

The solid line in Fig. 1 shows gV obtained using (16)
and the two-loop running coupling constant αs(µq):

αs(µq) =
4π

9 ln µ̃2

(
1− 64 ln ln µ̃2

81 ln µ̃2

)
, (17)

1 While the full trace in Eq. (3) contains contributions from both
particles and antiparticles, we focus only on modifications due
to non-zero particle densities here.

2 Equation (12) includes the interactions between quark number
densities q̄γ0q, as well as those between spatial currents, q̄γjq.
These contributions yield the matrix element, for on-shell mo-
menta,

Tr[S(p)γµ]Tr[S(p′)γµ] ∝
|p||p′| − p · p′

2|p||p′|
, (14)

whose numerator cancels the pole from the massless gluon prop-
agator, giving Eq.(12).

3 In deriving Ev
QCD in Eq. (12) from Eq. (9) with a momentum-

dependent gluon propagator, the correlation functions 〈q̄~γq〉 are
as important as 〈q̄γ0q〉; the former is not included in the NJL
mean field description. Such deficiency in the NJL model can
be compensated by absorbing the contribution from 〈q̄~γq〉 into
the density dependence of gV itself; in this way, we can directly
compare the NJL gV with the current definition of gV in terms
of QCD parameters.

Figure 1. The dashed line indicates the single gluon exchange
result for gV in perturbative QCD as a function of the quark
matter Fermi momentum, pF . The horizontal shaded region
shows the range of gV in QHC19 [7], while the vertical shaded
region shows the baryon density ∼ 5-20n0. The solid line
indicates the result for αs frozen at 3.0 at low energies [13].

with µ̃ ≡ µq/ΛQCD and ΛQCD = 340 MeV [13]. The
shaded horizontal band indicates the range of (constant)
gV in QHC19 [7]. Although gV in Fig. 1 approaches the
needed range below 20n0, the factor p−2

F and the running
αs near the Landau pole at ΛQCD already causes strongly
divergent behavior of gV even at 5n0 (corresponding to
pF ∼ 400 MeV), in contrast to the simple treatment in
NJL of gV as constant in this regime. However, extending
the pQCD calculation down to ΛQCD is not reliable. The
solid line in Fig. 1 shows gV for αs frozen at 3.0 at low
energies [13]. Although the divergence from the Landau
pole is removed in this case, gV still increases rapidly at
low energy.

III. NON-PERTURBATIVE αs AND MASSIVE
GLUONS BELOW ONE GeV

We now examine the consequences of the non-
perturbative behavior of the strong coupling constant αs
and the gluon propagator below the 1 GeV scale. For
reviews, see Refs. [13, 15] and references therein. In
various non-perturbative approaches for the gluon sector
(lattice gauge theory, Schwinger-Dyson equations, and
gauge/gravity duality) under gauge fixing, αs is of order
unity below one GeV (with freezing or decoupling behav-
iors in the deep infrared limit, q → 0). Here we focus on
gluons dynamically acquiring a mass, favored by the lat-
tice results (and corresponding to the decoupling solution
of the gluon Schwinger-Dyson equations in the Landau
gauge),

D(p) =
1

p2 −m2
g

. (18)

Estimates of mg tend to lie in the range ∼ 500±200 MeV
[14, 15]. The present use of a massive gluon propagator
is conceptually different from using in-medium generated
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Figure 2. (Color online) The vector coefficient gV as a func-
tion of quark Fermi momentum generated by a frozen αs =3
below 1 GeV and different gluon masses mg.

masses of the gluon field, as in quasiparticle models, e.g.,
[20] and references therein; the massive gluon here orig-
inates from non-perturbative physics and exists even in
the vacuum. Equation (18) regulates the divergent be-
havior of gV as pF → 0 in Fig. 1 and leads to

Ev
QCD(mg) = Ev

QCD(0) + δEv
QCD(mg), (19)

where (as in derivation of Eq. (12), Ev
QCD(0) results from

a cancellation between the massive gluon propagator with
a part of quark matrix elements, while the remaining
terms are proportional to m2

g)

δEv
QCD(mg) = −

3αsm
2
g

2π3

∫ pF

0

∫ pF

0

dp dp′ ln

(
1 +

4pp′

m2
g

)
=

3αsm
4
g

8π3
K(x), (20)

where z ≡ (2pF /mg)
2 and K(z) ≡ 2z − (1 + z) ln(1 +

z) + Li2(−z) with Li2(−z) ≡
∑∞
`=1(−z)`/`2 the polylog-

arithm function with n = 2. Thus one finds,

Ev
QCD(mg) =

3αsp
4
F

2π3

(
1 +

K(z)

z2

)
. (21)

Note that for positive z, 0 ≤ 1 + K(z)/z2 < 1, imply-
ing that the finite gluon mass softens the repulsion while
keeping the total vector energy positive.

Matching Eq. (15) with Eqs. (16) and (21) one finds

gV (pF ; z � 1) → παs
6p2
F

,

gV (pF ; z � 1) → 4παs
27m2

g

. (22)

Figure 2 shows gV for different gluon masses mg with
a typical value of the frozen αs = 3.0 at low energies
. 1 GeV [13]. In the infrared gV is regulated by the
gluon mass, mg, so that there is no divergent behavior at
pF = 0.

Figure 3 gives contour plots of the resulting vector co-
efficient gV for given different αs and gluon mass mg, at

Figure 3. (Color online) The vector coefficient gV generated
by different constant αs and gluon masses mg, at pF = 400
MeV (∼ 5n0). The central cross indicates αs = 3 and mg=
400 MeV.

5n0 and 20n0. For the resulting gV /G0 to be in the in-
terval 0.6-1.3 at 5n0 with mg = 400 MeV, one needs a
strong αs ∼ 2-4, within the range of possible quark-gluon
coupling strengths at low energies [13]. Future theories of
the quark-gluon vertex αs together with detailed forms
of gluon correlation functions below one GeV will be of
interest as they can be directly related to effective quark
models constrained by neutron star observations.

In the density range ∼ 5n0 in a neutron star, where
the quark Fermi momentum lies well below one GeV, it
is reasonable to assume an approximately constant αs
and mg. The two limiting results, Eq. (22), thus suggest
an approximate density-dependent parametrization of gV
based on explicit single-gluon exchange

gV (pF ;mg) '
4παs/3

9m2
g + 8p2

F

. (23)

This parametrization is useful for including the density
dependence of gV in the quark-hadron crossover equa-
tions of state.

IV. EFFECT OF FINITE QUARK MASS

At high densities quark matter contains both a weak
chiral condensate, ∼ 〈q̄q〉 as well as a diquark condensate
∼ 〈qq〉, as a consequence of the six-quark Kobayashi-
Maskawa-’t Hooft (KMT) effective interaction [21]. The
quark effective mass, Mq ∼ 〈q̄q〉, is dynamically gener-
ated by the chiral condensate; in the NJL model, Mq is
the mean-field self-energy generated by the effective lo-
cal four-quark interaction. At densities & 5n0, the chiral
condensate enhanced by the KMT interaction could re-
sult in an effective mass Mq ∼ 50-70 MeV for the light
quarks, and ∼ 250-300 MeV for the s quark [1]. These
masses are not small compared to the quark Fermi mo-
mentum at these densities, and must be taken into ac-
count in the exchange energy calculation.



5

Here we calculate the effects ofMq on gV only by mod-
ifying the quark propagators in Eq. (9), and not further
correcting the vertices. We recognize that this is not a
self-consistent calculation; rather we aim here to get a
sense of the effects of a finite quark mass on the the vec-
tor channel of the matrix element (2), which is connected
to perturbative QCD at asymptotic density. We take the
quark Green’s function to be

Sabij (p) = δabδij
γµp

µ +Mq

(p0 + µ)2 − p2 −M2
q

, (24)

and assume the same effective mass Mq for all flavors.

With this S, we obtain after some algebra, with εp =

(|p|2 +M2
q )1/2,

Ev
QCD = 24παs

[(∫
d3p

(2π)3

f(εp − µ)

εp

)2

− (2M2
q −m2

g)

∫
d3p d3p′

(2π)6

1

εpεp′
· f(εp − µq)f(εp′ − µq)

(εp − εp′)2 − |p− p′|2 −m2
g

]
.

(25)

Figure 4. (Color online) Vector repulsion coefficient gV for
different values of Mq with mg = 400 MeV and αs = 3.

The asymptotic forms of Eq. (25) for pF � Mq and
mg, and for pF � Mq and mg can be readily found,
with the result that g

V
(pF ;mg,Mq) agrees in these limits

with Eq. (22). In particular, gV is independent of Mq at
pF = 0 as long as mg is finite. The combined effects
of Mq and mg are shown in Fig. 4, which compares g

V

at several different values of Mq and mg = 400 MeV.
We find that the effect of Mq on g

V
is almost negligible.

Thus the assumption that g
V

is flavor independent is
reasonable, despite flavor symmetry being significantly
broken by the strange quark mass; the parametrization
(23) is approximately useful independent of flavor.

V. EFFECT OF DIQUARK PAIRING

We next consider the effects on Ev
QCD of scalar color-

flavor-locked pairing among quarks through modification
of the normal quark Green’s function S in Eq. (9).4 In
the CFL phase it is convenient to expand the quark field
(with SU(3) flavor and SU(3) color indices), as qia =∑8
A=0 λ

A
iaqA/

√
2, in term of the Gell-Mann matrices, λA

(A = 1, 2, ..., 8), and λ0 = 1
√

2/3. In this basis, the
normal quark propagator becomes diagonal

Sabij (x− y) =
∑
A

1

2
λAiaλ

A
bjSA(x− y). (26)

With CFL pairing, the SA=1,...,8 describe eight paired
quark quasiparticles with the same gap ∆A=1,...,8(p) =
∆(p), and one quasiparticle S0 with double the gap
∆0(p) = 2∆(p).

For massless quarks (εp = |p|), one finds

Ev
QCD =

4παs
27

∑
A,B

∫
pp′

tr[SA(p)γµ]tr[SB(p′)γµ]
1

(p− p′)2 −m2
g

, (27)

=
αs

54π3

∑
A,B

∫ ∞
0

dp dp′ v2
Apv

2
Bp′

[
4pp′ − JAB(p, p′,mg) ln

∣∣∣∣1 +
4pp′

JAB(p, p′,mg)

∣∣∣∣] , (28)

4 The anomalous Green’s function, Fabij (x − y) =

−i〈T qai (x)(qTC)jb(y)〉, leads as well to the familiar energy
shift Epair

QCD proportional to the square of the pairing gap, an
effect related to inferring the in-medium modification of H.



6

Figure 5. The parametrization (30) of the momentum de-
pendence gap ∆(p) for µ = 500 MeV, b = 1.0, ∆(µ) = 50
MeV, and ζ = 1.0.

with v2
Ap = 1

2

(
1− (εp − µ)/EAp

)
, EAp = [(εp − µ)2 +

∆2
A]1/2, and JAB(p, p′,mg) = m2

g+(p−p′)2−(EAp −EBp′)2.
Generalization to the case with finite quark mass Mq

is straightforward. Note that the total quark density is
given by

nq = 2
∑
A

∫
d3p

(2π)3
v2
Ap. (29)

The integral in Eq. (28) converges only with a mo-
mentum dependent gap. Following the numerical study
in Ref. [22, 23], we approximate the spatial momentum
dependence of ∆ by

∆(p) =
∆(µ)

(1 + b(p− µ)2/µ2)ζ
; (30)

the constant b > 0 parametrizes how fast ∆(p) falls off
away from the Fermi surface, and the exponent ζ > 0
parametrizes the behavior of ∆(p) at high momenta (see
Fig. 5). In the weak coupling limit, ζ = 1 + O(αs)

and ∆ ∼ µg−5e−3π2/
√

2g [25, 26]. Here we simply vary
the gap in the range, ∆(µ) = 100-300 MeV, consistent
with the QHC19 equation of state. This range of CFL
gaps results from the phenomenologically derived pair-
ing strength [7] H ∼ 1.5G0 being notably larger than the
conventional Fierz value 3/4 G in the NJL model; the
latter yields the more commonly discussed range of gaps,
∼10-100 MeV [19]. See particularly Fig. 33 of Ref. [1],
and Appendix C, which argues that the level splitting
between N and ∆ in the NJL model favors H & 1.4G.
Such larger pairing strengths are reasonable, since with
decreasing density one expects two (and three) quark cor-
relations to build up in quark matter, eventually leading
to well-defined nucleons at lower densities. Indeed, before
diquarks are confined into nucleons, the size of diquarks
is expected to be ∼ 1 fm, consistent with a gap ∼ 200
MeV.

As we see, a gap decreases gV at all densities, and the
dependence of the gap is significant for massless gluons.

Figure 6. (Color online) The vector repulsion coefficient
gV for different ∆(µ) with mg = 400 MeV and αs = 3. The
curves show how inclusion of pairing in the presence of a mas-
sive gluon has only a small effect on gV .

For gluon masses mg ∼ 400 MeV, however, even a large
variation of ∆ from 0 to 300 MeV does not change the
qualitative behavior of gV . In comparison with the effects
of Mq, a large gap ∆(µ) = 200 MeV (as in QHC19) still
has a sizable impact: at 5n0, a 200 MeV CFL gap reduces
gV from ∼ 0.9G0 to ∼ 0.55G0, even withmg = 400 MeV.

The gluon propagator is also modified in a dense quark
medium by Landau damping [24–26], and the Debye
screening mass in the longitudinal sector, and in the pres-
ence of diquark pairing by Meissner masses in the trans-
verse sector [27, 28], of order

√
αs µ. The interplay of

these modifications of the gluon propagator in the quark
matter in neutron stars, and their effects on neutron star
properties is an open question worthy of future research.

VI. CONCLUSION

We have computed the vector repulsion coefficient gV
from the explicit gluon exchange energy in quark matter,
modifying the quark and gluon Green’s functions to ac-
count for a non-perturbative gluon mass mg, chiral con-
densate and diquark pairing, and included as well a possi-
ble infrared-finite αs. In the density range ∼ 5-20n0 with
reasonable parameters for αs, gluon mass, quark mass
and pairing gap, we can begin to understand the origin
of a gV of order ∼ 0.6-1.3G. The parameters we have
chosen, despite their uncertainties, lie within estimates
from a variety of models and theoretical frameworks of
sub-GeV QCD. Among the non-perturbative effects we
have considered, the resulting gV is most sensitive to αs
and mg, while Mq and ∆ induce only relatively small
changes owing to suppression by a gluon mass. Thus,
the parametrization (23) should be a good approximate
description of the density dependence of gV , to be in-
cluded in the equation of state for neutron star matter
with a strongly interacting quark phase.

Many open questions remain. The vector repulsion
between quarks at densities & 5n0 may also come from
non-perturbative QCD beyond the single gluon-exchange
contribution treated in this paper; such uncertainty is not
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under control at present. As αs could range anywhere
from 0 to 10 (or even be divergent at low momentum
scales), the assumption that the vector repulsion is dom-
inated by a single gluon exchange with a fixed αs and
mg is overly simplified. Our treatment can be improved
and extended in several directions. The first would be
inclusion of more realistic quark and gluon propagators,
including possible momentum dependence of masses and
differences between transverse and longitudinal gluons.
The second would be to include the non-perturbative run-
ning of αs. Including the density dependence of gV , as
in the parametrization (23), can have a significant effect
on model studies of quark matter. In particular, cor-
rections to the contributions from the light and heavy
quarks could shift the phase boundaries and modify the
equation of state. Including the density dependence of
the diquark coupling, H, would have similar effect.

We note that relating the effective QCD vector cou-
plings gV and gατ (Appendix B) in the NJL model
of dense matter (an effective field theory for quarks)
to nucleon-meson models (effective field theories for
hadrons) would provide a further probe of quark-hadron
continuity [21, 29]. If the transition from nuclear to quark
matter is essentially smooth, one expects the vector re-
pulsion from hadronic to quark matter to be similarly
smooth, since in the quark-hadron continuity picture, the
spectrum of light gluonic excitations is tightly connected
to that of hadronic vector mesons [30], while quarks are
mapped to the baryons in nuclear matter. Low energy
quark-gluon matter treated in this way becomes an ex-
tension of the baryon-meson picture of nuclear matter,
plausibly enabling a relatively smooth crossover and in
turn mapping gV and gατ from the hadronic to quark
phases.5
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Appendix A: Fierz transformation

The Fierz transformation is a re-arrangement of
fermion operator products in the Dirac, flavor and color
space using index-exchanging properties of the gamma
and SU(N) generator matrices. In the quark-antiquark
channel, re-arrangement of the Dirac indices read

(γµ)mn(γµ)m′n′ = 1mn′1m′n + (iγ5)mn′(iγ5)mn′

−1

2
(γµ)mn′(γµ)m′n

−1

2
(γµγ5)mn′(γµγ5)m′n, (A1)

and those of the the flavor and color indices (Nf = Nc =
3) read

1ij1kl =
1

3
1il1kj +

1

2
(τa)il(τa)kj ,

λabα λ
a′b′

α =
16

9
1ab′1a′b −

1

3
λab

′

α λa
′b
α . (A2)

In the quark-quark channel,

(γµ)mn(γµ)m′n′ = (iγ5C)mm′(iγ5C)nn′ + Cmm′Cnn′

−1

2
(γµγ5C)mm′(γµγ

5C)nn′

−1

2
(γµC)mm′(γµC)nn′ , (A3)

and

1ij1kl =
1

2
(τS)ik(τS)lj +

1

2
(τA)ik(τA)lj ,

λabα λ
cd
α =

2

3
λSacλ

S
bd −

4

3
λAacλ

A
bd, (A4)

where S and A stand for symmetric and antisymmetric
indices, and the τα=1,...,8 are the eight Gell-Mann fla-
vor matrices. Using these relations, one can transform a
single trace into products of two traces, as done in e.g.
Eq. (9):

Tr[S(p)ΓIS(p′)ΓI ] =
∑
M

gMTr[S(p)ΓM ]Tr[S(p′)ΓM ],

(A5)

where ΓI are Dirac, flavor and color matrices.

Appendix B: The vector-isovector interaction

The discussion in the main body of the text fo-
cusses on the flavor symmetric case, where in the ab-
sence of pairing the vector component of single gluon
exchange contributes only to the isoscalar channel. (In



8

the CFL phase, one finds non-vanishing contributions in
the flavor-color vector channel (q̄γµτaλAq)

2 as well.) For
realistic constituent quark masses, however, the vector-
isovector channel (denoted by τ), corresponding to the
interaction (q̄γµταq)

2, also contributes to the single gluon
exchange energy,

Ev,τ
QCD =

2παs
9

∫
p,p′

Tr[S(p)γµτα]Tr[S(p′)γµτα]D(p− p′).

(B1)

In particular, the α = 3 and 8 terms yield the exchange
energy at low density of the form,

g(3)
τ (nu − nd)2 +

g
(8)
τ

3
(nu + nd − 2ns)

2. (B2)

This vector-isovector energy is analogous to the neutron-
proton symmetry energy in nuclear matter. For single
gluon exchange, g(3)

τ = g
(8)
τ = 3

2gV , indicating an vector-
isovector energy comparable to the vector-isoscalar en-
ergy for significant differences in flavor densities. It is
an interesting future problem to estimate the in-medium
values of g(3,8)

τ as well as gV by matching with, e.g., the
chiral nucleon-meson model [33].

Appendix C: Estimating H from the N − ∆ mass
splitting

Another important ingredient in the QHC19 equation
of state is the parameterH that quantifies the strength of
attractive diquark correlations. At high density diquark
correlations are the driving force of color superconduc-
tivity, while at low density the correlations appear in the
context of hadron mass splittings, e.g., the N -∆ splitting,

m∆−mN ' 293 MeV. The density nB ∼ 5n0 ' 0.8 fm−3

is roughly that inside of baryons, and so suggests the pos-
sibility of inferring the value of H at nB ∼ 5n0 from the
N -∆ splitting.

This splitting has been derived by Ishii et al. [34], by
solving the Faddeev equations of three-quark systems
within the NJL model. They included effective four-
quark interactions in the isoscalar scalar and isovector
axial-vector diquark channels, which in our notation are:

LS = H
∑

A=2,5,7

(
ψ̄iγ5τ2λAψC

) (
ψ̄Ciγ5τ2λAψ

)
, (C1)

LA = H ′
∑

A=2,5,7

(
ψ̄γµτ2~τλAψC

) (
ψ̄Cγ

µτ2~τλAψ
)
.(C2)

Reference [34] finds the approximate formulae

MN ' 1.70− 0.21r′H − 0.33rH [GeV] , (C3)
M∆ ' 1.52− 0.22r′H [GeV] . (C4)

where rH = H/G0 and r′H = H ′/G0. The absolute val-
ues of these masses are not quite trustworthy as they
are sensitive to the physics beyond the NJL model, e.g.,
confinement. In the mass splitting such uncertainties are
largely cancelled and the physics of short-range correla-
tions become dominant. Using the empirical M∆ −MN

we find

−0.01r′H + 0.33rH ' 0.47 [GeV] . (C5)

Provided r′H ≥ 0 as expected from typical models, we
arrive at

H/G0 & 1.4, (C6)

consistent with the range in QHC19, H/G0 =1.35 -1.65.
More comprehensive studies will be given elsewhere [35].
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