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Using a confining, symmetry-preserving regularisation of a vector×vector contact interaction, we
compute the spectra of ground-state pseudoscalar and vector (fḡ) mesons, scalar and axial-vector
(fg) diquarks, and JP = 1/2+, 3/2+ (fgh) baryons, where f, g, h ∈ {u, d, s, c, b}. The diquark
correlations are essentially dynamical and play a key role in formulating and solving the three-
valence-quark baryon problems. The baryon spectrum obtained from this largely-algebraic approach
reproduces the 22 known experimental masses with an accuracy of 2.9(2.4)%. It also possesses the
richness of states typical of constituent-quark models, predicting many heavy-quark baryons not yet
observed. This study indicates that diquark correlations are an important component of all baryons;
and owing to the dynamical character of the diquarks, it is typically the lightest allowed diquark
correlation which defines the most important component of a baryon’s Faddeev amplitude.

I. INTRODUCTION

There are five flavours of quarks which live long enough
to produce measurable bound states; and contemporary
theory and phenomenological models predict the exis-
tence of bound systems with every allowed colour-singlet
(fḡ)-combination for mesons and (fgh)-combination for
baryons, where f, g, h ∈ {u, d, s, c, b}. In fact, the pre-
dicted meson and baryon spectra are so rich that, even
regarding ground-states in the JP -channels accessible to
constituent quark models, many bound-states are “miss-
ing”, i.e. have not been observed in experiment. (See, e.g.
the quark model review in Ref. [1].) This challenge has
been accepted, with an array of dedicated experiments
underway, at facilities worldwide, which seek to detect
the missing states [2–7].

Regarding computations of such spectra, the numerical
simulation of lattice-regularised quantum chromodynam-
ics (lQCD) provides the most direct connection with the
standard model of particle physics and many separate
efforts are underway. Some of the successes and chal-
lenges are described, e.g. in Refs. [8, 9]; and some recent
spectrum calculations are reported in Refs. [10–14].

The Dyson-Schwinger equations (DSEs) [15], a col-
lection of coupled integral equations that provide for a
symmetry-preserving treatment of the continuum bound-
state problem, have also been widely employed to com-
pute hadron spectra and interactions [16–19]. In this con-
nection, the last decade has seen marked improvements
in both (i) understanding the limitations and capacities
of the approach and (ii) the breadth and quality of the
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description of hadron properties, including the spectrum
of states [19–31].

Most recently, unified predictions for the spectra of
mesons and baryons in some of the low-lying flavour-
SU(Nf = 5) multiplets were delivered [32, 33] using the
rainbow-ladder (RL) truncation of the bound-state equa-
tions, which is the leading-order in a systematic scheme
[34–36]. Whilst the coverage is still not as extensive
as that provided by constituent-quark potential models,
whose applications are canvassed in, e.g. Refs. [37–44],
the systematic RL studies have the advantage of provid-
ing both (i) a unified, symmetry-preserving description
of mesons and baryons and (ii) a traceable connection
to quantum chromodynamics (QCD). In such continuum
studies, a next challenge is to proceed beyond the leading-
order truncation, an effort which is likely to benefit from
the use of high-performance computing.

Herein, on the other hand, we follow a different path
and adopt a largely algebraic approach. Namely, we
exploit the fact that the mass of any given hadron is
an integrated (long-wavelength) quantity and thus not
very sensitive to details of the system’s wave function.
This being so, then it ought to be possible to use a
vector×vector contact interaction to obtain both sound
predictions for the ground-state spectrum of SU(Nf = 5)
mesons and baryons, and reliable insights into aspects of
their structure. This has proven true for SU(Nf = 3)
systems [45–58] and for mesons with one or more heavy
quarks [59–62]. Hence, our goal is to minimally refine
the vector×vector contact interaction and therewith de-
liver a unified description of all mesons and baryons in
the ground-state multiplets of SU(Nf = 5), anticipating
that the framework’s simplicity will enable insights into
features of these systems that are obscured in approaches
that rely heavily on computer resources.

We describe our formulation of the contact interac-
tion in Sec. II, including a discussion of the regularisation
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procedure. In addition to the four current-quark masses
(isospin symmetry is assumed), four parameters occur in
using the interaction to compute meson properties and
we also explain how they are determined. The calculation
of meson properties is detailed in Sec. III.

In computing baryon spectra, we use a quark+diquark
approximation to the three-valence-quark problem and
hence require the masses and correlation amplitudes for
each diquark that can play a role. Their calculation is
explained in Sec. IV. The formulation and solution of
the baryon problem is discussed in Sec. V. It includes
results for the spectra of ground-state flavour-SU(5)
JP = 1/2+, 3/2+ baryons and their contact-interaction
Faddeev amplitudes, which are momentum-independent.

Section VI presents a summary and also a perspective
on extensions of this study, including new directions.

II. CONTACT INTERACTION

A. Two-Body Scattering Kernel

The key element in analyses of the continuum bound-
state problem for hadrons is the quark-quark scattering
kernel. In RL truncation that can be written (k = p1 −
p′1 = p′2 − p2):

K α1α′1,α2α′2
= Gµν(k)[iγµ]α1α′1

[iγν ]α2α′2
, (1a)

Gµν(k) = G̃(k2)Tµν(k) , (1b)

where k2Tµν(k) = k2δµν − kµkν . (Our Euclidean metric
and Dirac-matrix conventions are specified in Ref. [50],

Appendix A.) The defining quantity is G̃ ; and following
two decades of study, much has been learnt about its
pointwise behaviour using a combination of continuum
and lattice methods in QCD [63–65]. The qualitative
conclusion is that owing to the dynamical generation of a
gluon mass-scale in QCD [66–75], G̃ saturates at infrared
momenta; hence, one may write

G̃(k2)
k2'0
=

4παIR
m2
G

. (2)

In QCD, mG ≈ 0.5 GeV, αIR ≈ π [64, 65]. We keep
this value of mG in developing the contact-interaction
for use in RL truncation, but reduce αIR to a parameter.
The latter is necessary because the integrals that appear
in contact-interaction bound-state equations require ul-
traviolet regularisation and this spoils the intimate con-
nection between infrared and ultraviolet scales that is a
hallmark of QCD. In addition, since a contact interaction
cannot support relative momentum between bound-state
constituents, we simplify the tensor structure in Eqs. (1)
and define the contact-interaction RL kernel as follows:

K CI
α1α′1,α2α′2

=
4παIR
m2
G

[iγµ]α1α′1
[iγµ]α2α′2

. (3)

As just remarked, any use of Eq. (3) in a DSE will re-
quire imposition of an ultraviolet regularisation scheme,

which should be symmetry-preserving; and since the the-
ory is not renormalisable, the associated mass-scales,
Λuv, will be additional physical parameters. It is useful to
interpret any one of these scales as an upper bound on the
momentum domain within which the properties of the as-
sociated system are effectively momentum-independent,
e.g. the π-meson has a larger radius than the ηb; hence
one should expect to use 1/Λπuv > 1/Ληcuv. The implica-
tions of this approach will subsequently be elucidated.

We will also introduce an infrared regularisation scale,
Λir, when defining those integrals that contribute to the
bound-state problems [76]. Since chiral symmetry is dy-
namically broken in our approach, ensuring the absence
of infrared divergences, Λir is not a necessary part of the
contact-interaction’s definition. On the other hand, by
excising momenta less-than Λir, one achieves a rudimen-
tary expression of confinement via elimination of quark
production thresholds [17, 77, 78]. A natural choice for
this scale is Λir ∼ ΛQCD and we set Λir = 0.24 GeV.

B. Interaction Scales

In order to fix the parameters in our implementation of
Eq. (3) we focus on the masses and leptonic decay con-
stants of the following pseudoscalar mesons: π, K, ηc,
ηb; whose valence-quark content is ff̄ , f ∈ {l = u =
d, s, c, b}, where isospin symmetry is assumed.

The simplest DSE relevant to the associated bound-
state problems is the dressed-quark gap equation. In RL
truncation, using Eq. (3), it takes the following form:

S−1
f (p) = iγ · p+mf +

16π

3

αIR

m2
G

∫
d4q

(2π)4
γµSf (q)γµ ,

(4)

where mf is the quark’s current-mass. The integral is
quadratically divergent; but when it is regularised in a
Poincaré-invariant manner, the solution is

Sf (p)−1 = iγ · p+Mf , (5)

where Mf is momentum-independent and determined by

Mf = mf +Mf
4αIR

3πm2
G

[∫ ∞
0

ds s
1

s+M2
f

]
reg

. (6)

Following Ref. [76], we define the integral by writing

1

s+M2
=

∫ ∞
0

dτ e−τ(s+M2)

→
∫ τ2

ir

τ2
uv

dτ e−τ(s+M2) (7)

=
e−(s+M2)τ2

uv − e−(s+M2)τ2
ir

s+M2
, (8)

where τir,uv = 1/Λir,uv are, respectively, the infrared and
ultraviolet regulators described above. Consequently, the
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gap equation becomes

Mf = mf +Mf
4αIR

3πm2
G

Ciu
0 (M2

f ) , (9)

where

Ciu
0 (σ) =

∫ ∞
0

ds s

∫ τ2
ir

τ2
uv

dτ e−τ(s+σ)

= σ
[
Γ(−1, στ2

uv)− Γ(−1, στ2
ir)
]
, (10)

with Γ(α, y) being the incomplete gamma-function.
Using a contact interaction, the Bethe-Salpeter am-

plitude for a pseudoscalar meson constituted from a va-
lence f -quark and valence g-antiquark has the following
restricted form [45, 52]:

Γ0−(Q) = γ5

[
iE0− +

1

2MR
γ ·QF0−

]
, (11)

Here, Q is the bound-state’s total momentum, Q2 =
−m2

0− , m0− is the meson’s mass; and MR =
MfMg/[Mf +Mg], with Mf,g being the relevant dressed-
quark masses obtained from the contact-interaction gap
equations, described above.

The amplitude is determined by the following equation:

Γ0−(Q) = −16π

3

αIR

m2
G

∫
d4t

(2π)4
γµSf (t+Q)Γ0−(Q)Sg(t)γµ .

(12)
From here, using the symmetry-preserving regularisation
scheme introduced in Refs. [45, 52], which requires, in the
spirit of dimensional regularisation,

0 =

∫ 1

0

dα
[
Ciu

0 (ωfg(α,Q
2)) + Ciu

1 (ωfg(α,Q
2))
]
, (13)

where Ciu
1 is given in Eqs. (A.1), (A.2) and

ωfg(α,Q
2) = M2

f α̂+ αM2
g + αα̂Q2 , (14)

α̂ = 1 − α, one arrives at the following explicit form of
the Bethe-Salpeter equation (BSE), Eq. (12):[

E0−(Q)
F0−(Q)

]
=

4αIR

3πm2
G

[
K0−

EE K0−

EF

K0−

FE K0−

FF

] [
E0−(Q)
F0−(Q)

]
, (15)

with the matrix elements {K0−

EE ,K0−

EF ,K0−

FE ,K0−

FF } de-
fined in Eqs. (A.4).

It is important to note that K0−

FE 6= 0 when chiral
symmetry is dynamically broken; hence, any internally-
consistent description of a pseudoscalar meson must re-
tain the state’s F0−(Q) (pseudovector) component. Mod-
els of the Nambu–Jona-Lasinio type that omit this com-
ponent do not have any connection with an underly-
ing theory whose dynamics is based on vector-boson ex-
change. Therefore, they cannot serve as a veracious
model of QCD in any energy range.

TABLE I. Couplings, ultraviolet cutoffs and current-quark
masses that provide a good description of pseudoscalar me-
son properties, along with the dressed-quark masses and se-
lected pseudoscalar meson properties they produce; all ob-
tained with mG = 0.5 GeV, Λir = 0.24 GeV. Empirically,
at the level we are working [1]: mπ = 0.14, fπ = 0.092;
mK = 0.50, fK = 0.11; mηc = 2.98, fηc = 0.24; mηb = 9.40.
The value of fηb is discussed in connection with Eq. (18). (Di-
mensioned quantities in GeV.)

quark αIR/π Λuv m M m0− f0−

l = u/d 0.36 0.91 0.007 0.37 0.14 0.10

s 0.36 0.91 0.17 0.53 0.50 0.11

c 0.054 1.88 1.24 1.60 2.98 0.24

b 0.012 3.50 4.66 4.83 9.40 0.41

Eq. (15) is an eigenvalue problem that has a solution
when Q2 = −m2

0− , at which point the eigenvector is
the meson’s Bethe-Salpeter amplitude. Working with
the on-shell solution, normalised canonically according
to Eqs. (A.5), (A.6), the pseudoscalar meson’s leptonic
decay constant is given by:

f0− =
Nc
4π2

1

MR

[
E0−K0−

FE + F0−K0−

FF

]
Q2=−m2

0−
. (16)

Light-quark systems were analysed in Refs. [47, 52],
with the results listed in Table I. Notably, the fitted value
of ms/ml = 24 is compatible with estimates in QCD [1],
even though our individual current-masses are too large
by a factor of . 2 owing to the contact-interaction’s defi-
ciencies in connection with ultraviolet quantities. More-
over, the result Ms/Ml = 1.4 for the dressed-quark
masses is typical of efficacious DSE studies in the light-
quark sector [79, 80].

Moving to heavy-quark systems, we allow Λ0−

uv to vary
with the meson’s mass and fix the associated coupling by
requiring

αIR(Λ0−

uv )[Λ0−

uv ]2 ln
Λ0−

uv

Λir
= αIR(Λπuv)[Λπuv]2 ln

Λπuv

Λir
. (17)

(Similar expedients were adopted in Refs. [59, 61].) This
identity serves to limit the number of parameters, so that
in fitting the ηc,b quantities in Table I we had only two
parameters for each case: mc,b, Λ

ηc,b
uv . Regarding the ηb-

meson, a lQCD calculation reports fηb = 0.472(4) [81].
However, this is larger than the result for fΥ = 0.459(22)
[82]; hence, it is contrary to the experimental pattern:
fπ < fρ, fηc < fJ/ψ. We therefore choose to constrain
mb, Ληbuv via known experimental results [1]:

fηb = fΥ[fηc/fJ/ψ] = 0.41(2) . (18)

It is worth remarking here that our fitted values of mc,
mb−mc are commensurate with QCD estimates and the
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computed results for Mc,b are aligned with typical values
of the heavy-quark pole masses [1].

Another useful feature of Eq. (17) is that it enables us
to implement an important physical constraint, viz. any
increase in the momentum-space extent of a hadron wave
function must be accompanied by a commensurate de-
crease in the effective coupling between the constituents
so as to avoid critical over-binding. Our analysis yields

Λuv(s = m2
0−)

m0−≥mK
= 0.83 ln[2.79 + s/(4.66Λir)

2] ;
(19)

and via Eq. (17), an evolution of the quark-antiquark cou-
pling that is well approximated by

αIR(s)
m0−≥mK

=
0.047αIR(m2

K)

ln[1.04 + s/(21.77Λir)2]
. (20)

The origin of these outcomes is plain: the decay-constant
integral diverges logarithmically with increasing Λuv; and
αIR flows to compensate for analogous behaviour in the
Bethe-Salpeter kernel and thereby maintain the given
meson’s mass.

III. MESON SPECTRUM

It is now possible to compute the masses, Bethe-
Salpeter amplitudes and leptonic decay constants of
a wide array of ground-state pseudoscalar and vector
mesons with valence-quark content (fḡ).

The BSE for such pseudoscalar mesons is given in
Eq. (15), with the associated leptonic decay constant
computed from Eq. (16). Turning to (fḡ) vector mesons,
the most general form of the Bethe-Salpeter amplitude
supported by a RL analysis of the contact interaction is

Γ1−

µ (Q) = γ⊥µ E1−(Q) , (21)

where Q · γ⊥µ = 0. This dimensionless constant, E1−(Q),
is determined by solving the BSE obtained via straight-
forward generalisation of Eqs. (18) - (20) in Ref. [50]. The
associated leptonic decay constant is computed from

f1− m1− =
3

4π2

∫ 1

0

dα [MfMg − αα̂Q2 − ωfg(α,Q2)]

× C iu

1 (ωfg(α,Q
2))E1−(Q) , (22)

where C iu

1 is defined in Appendix A.
Our computed results are gathered in Table II. For

those systems with mass m0− ≥ mK we fix Λuv(m2
0−),

αIR(m2
0−) using Eqs. (17), (20); hence, every contact-

interaction result in the table is a prediction except those
in the four rows with underlined entries. Notably, the
F0− (pseudovector) component of each pseudoscalar me-
son is nonzero: on average, it is 15(6)% of the E0− (pseu-
doscalar) piece. Hence, the pseudovector component is
quantitatively important in all cases.

TABLE II. Computed Bethe-Salpeter amplitudes, masses
and decay constants of pseudoscalar and vector mesons. The
underlined entries, repeated from Table I, were used to fit
the interaction strength, current-quark masses and ultravio-
let cutoffs. Empirical masses, where known, are taken from
Ref. [1] ; mB∗c is from Ref. [14]; and for those decay constants
not known experimentally, we typically quote lQCD results
[81–86]. For masses, the mean relative-difference between
our results and experiment/lQCD is 5(5)% (omitting the
light-quark vector mesons, this improves to 2.5(1.9)%); and
for the leptonic decay constants, the mean-absolute-relative-
difference between the entries in columns 4 and 6 is 18(9)%.
The text elucidates these outcomes. (Dimensioned quantities
in GeV.)

meson, M EM FM mCI
M fCI

M m
e/l
M f

e/l
M

π 3.59 0.47 0.14 0.10 0.14 0.092

K 3.82 0.56 0.50 0.11 0.50 0.11

ρ 1.53 0.93 0.13 0.78 0.15

K∗ 1.63 1.03 0.12 0.89 0.16

φ 1.74 1.13 0.12 1.02 0.17

D 3.11 0.36 1.92 0.16 1.87 0.15(1)

Ds 3.25 0.49 2.01 0.17 1.97 0.18

D∗ 1.21 2.14 0.15 2.01 0.17(1)

D∗s 1.23 2.23 0.16 2.11 0.19

ηc 3.28 0.73 2.98 0.24 2.98 0.24

J/ψ 1.21 3.19 0.20 3.10 0.29

B 1.67 0.095 5.41 0.17 5.30 0.14(2)

B∗ 0.70 5.46 0.16 5.33 0.12

Bs 1.79 0.14 5.50 0.18 5.37 0.16

B∗s 0.71 5.56 0.16 5.42 0.15(1)

Bc 3.38 0.61 6.28 0.27 6.28 0.35

B∗c 1.37 6.38 0.23 6.33 0.30(1)

ηb 3.18 0.81 9.40 0.41 9.40 0.41(2)

Υ 1.50 9.49 0.38 9.46 0.46

To aid with understanding the comparisons in Table II,
we also depict them in Fig. 1. Considering the upper
panel, it is evident that our treatment of the contact
interaction delivers good estimates for the masses of reg-
ular ground-state flavour-SU(5) mesons: aspects of its
symmetry-preserving formulation lead to an overestimate
in each case,1 but the mean relative-difference between
theory and experiment/lQCD is just 5(5)%. (Further
to footnote 1, omitting the light-quark vector mesons,

1 A detailed explanation may be found in Ref. [46], Sec. II and
Ref. [52], Appendix A. Stated simply, internally-consistent im-
plementation of a symmetry-preserving regularization scheme
for a nonrenormalizable interaction comes at a cost. For vec-
tor mesons, it alters the scattering kernel in a way that ensures
the Ward-Takahashi identity is satisfied, but inflates the mass of
the associated vector meson. The effect diminishes with the ratio
of emergent to explicit mass in the system being considered.
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FIG. 1. Upper panel. Comparison between contact-interac-
tion predictions for meson masses and experiment [1]. (mB∗c
is from Ref. [14].) Lower panel. Contact-interaction predic-
tions for meson leptonic decay constants and experiment [1],
where known, and lQCD otherwise [81–86]. In both panels,
contact-interaction predictions are depicted as (black) circles
and comparison values by (green) bars.

this improves to 2.5(1.9)%.) Furthermore, the computed
masses fit neatly within a pattern prescribed by equal
spacing rules (ESRs) [31–33, 87, 88], e.g.

mK∗ = [mφ +mρ]/2 , (23a)

mB∗s
−mB∗ = mBs

−mB (23b)

= mD∗s
−mD∗ (23c)

= mDs −mD , (23d)

mB∗c
−mB∗s

≈ mBc
−mBs

, (23e)

[mΥ −mJ/ψ]/2 ≈ [mηb −mηc ]/2 (23f)

≈ mB∗s
−mD∗s

= mBs
−mDs

. (23g)

The comparison between our contact-interaction pre-
dictions for meson leptonic decay constants and experi-
ment/lQCD is depicted in the lower panel of Fig. 1. Phys-
ically, a meson’s leptonic decay constant is sensitive to ul-
traviolet physics (the constituents annihilate at a single
point in spacetime). This is expressed in the QCD ex-
pression for the decay constant through the appearance of
a logarithmic ultraviolet divergence, which is controlled

by the dressed-quark wave-function renormalisation con-
stant [89, 90]. Given these features, it is not surprising
that the cutoff-regularised contact-interaction provides
a poorer description of decay constants than it does of
masses. Nevertheless, the picture is tolerable: general
trends are reproduced and the mean-absolute-relative-
difference between the entries in columns 4 and 6 of Ta-
ble II is 18(9)%.2 Owing to peculiarities of the contact-
interaction’s symmetry-preserving formulation [46], the
description is better for pseudoscalar mesons than for
vector mesons. Notwithstanding these observations, ana-
logues of Eqs. (23) are applicable, e.g.

fK∗ ≈ [fφ + fρ]/2 , (24a)

fB∗s − fB∗ ≈ fD∗s − fD∗ (24b)

fBs
− fB ≈ fDs

− fD , (24c)

fB∗c − fB∗s ≈ fBc
− fBs

, (24d)

[fΥ − fJ/ψ]/2 ≈ [fηb − fηc ]/2 (24e)

≈ fBs
− fDs

. (24f)

IV. SPECTRUM OF DIQUARK
CORRELATIONS

In solving for the spectrum of flavour-SU(5) ground-
state baryons, we use a quark-diquark approximation
to the Faddeev equation.3 It is therefore necessary to
know the masses and amplitudes for all diquark correla-
tions that can exist in these systems. Fortunately, hav-
ing solved for the spectrum of flavour-SU(5) mesons, it
is straightforward to compute these diquark quantities
because the RL BSE for a JP diquark is obtained di-
rectly from that for a J−P meson simply by multiplying
the meson kernel by a factor of 1/2 [93]. (The flipping
of the sign in parity occurs because parity is opposite
for fermions and antifermions.) For instance, the Bethe-
Salpeter equation for a scalar [fg] diquark is

ΓC[fg](Q) = −1

2

16π

3

αIR

m2
G

×
∫

d4t

(2π)4
γµSf (t+Q)ΓC[fg](Q)Sg(t)γµ , (25)

2 If Eqs. (17), (20) are not implemented, the description of the
decay constants is bad. A hint for this is found in a comparison
between the CI-calculated trend for fρ, fK∗ , fφ and experiment.
If further improvement were desired, then it could be be achieved
by additional tuning of Eq. (17), including extending its impact
to the light-quark sector.

3 It is worth reiterating that the diquarks described herein are
fully dynamical and appear in a Faddeev kernel which requires
their continual breakup and reformation. Consequently, they
are vastly different from the static, pointlike diquarks introduced
originally [91] in an attempt to solve the so-called “missing res-
onance” problem [92].
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TABLE III. Computed masses and amplitudes for the di-
quark correlations: [fg] indicates a JP = 0+ diquark, an-
tisymmetric under f ↔ g; and {fg} indicates a JP = 1+

diquark, symmetric under f ↔ g. (Masses listed in GeV.)

diquark mass E F

[ud] 0.77 2.74 0.31

[us] 0.93 2.88 0.39

[uc] 2.15 1.97 0.22

[sc] 2.26 1.99 0.29

[ub] 5.51 1.05 0.059

[sb] 5.60 1.05 0.083

[cb] 6.48 1.42 0.25

{uu} 1.06 1.31

{us} 1.16 1.36

{ss} 1.26 1.43

{uc} 2.24 0.89

{sc} 2.34 0.87

{cc} 3.30 0.69

{ub} 5.53 0.51

{sb} 5.62 0.50

{cb} 6.50 0.62

{bb} 9.68 0.48

where the correlation amplitude is Γ[fg](Q) and

ΓC[fg](Q) := Γ[fg](Q)C† (26a)

= γ5

[
iE[fg](Q) +

1

2MR
γ ·QF[fg](Q)

]
, (26b)

with C = γ2γ4 being the charge-conjugation matrix.
The canonical normalisation conditions are similarly
amended, with the multiplicative factor being 2/3 in this
case (see, e.g. Eqs. (24), (25) in Ref. [50]).

Following the approach indicated above and using the
parameters determined in Sec. III, one obtains the di-
quark masses and amplitudes listed in Table III.4 Evi-
dently, the antisymmetric combination of any two quark
flavours (scalar diquark) is always lighter than the sym-
metric combination (JP = 1+ axial-vector diquark, de-
noted {fg}) and the pattern of masses can be understood
in terms of equal spacing rules, just as was the case for
mesons.

It is pertinent to remark here that RL truncation gen-
erates asymptotic diquark states. Such states are not
observed and their appearance is an artefact of the trun-
cation. Higher-order terms in the quark-quark scat-
tering kernel, whose analogue in the quark-antiquark

4 In the Bethe-Salpeter equation for a given JP diquark correlation
we employ the values of αIR, Λuv associated with its J−P me-
son partner, a scheme consistent with RL studies using realistic
interactions [94, 95].
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FIG. 2. Comparison between computed masses of diquark
correlations and their symmetry-related meson counterparts:
diquarks – (black) stars and mesons – (green) bars.

channel do not materially affect the properties of vector
and flavour non-singlet pseudoscalar mesons, ensure that
QCD’s quark-quark scattering matrix does not exhibit
singularities which correspond to asymptotic diquark
states [96, 97]. Studies with kernels that exclude diquark
bound states nevertheless support a physical interpreta-
tion of the masses, m(fg)JP , obtained using the rainbow-

ladder truncation, viz. the quantity `(fg)JP := 1/m(fg)JP

may be interpreted as a range over which the diquark
correlation can propagate before fragmentation.

In Fig. 2 we compare the diquark masses with those
of their partner mesons: the level ordering of diquark
correlations is precisely the same as that for mesons and
the meson mass bounds the partner diquark’s mass from
below. Moreover, in all cases, except the l, s scalar di-
quarks, the mass of the diquark’s partner meson is a
fair guide to the diquark’s mass: the mean difference is
0.13(6) GeV.

The light-quark scalar diquark channels are atypical
owing to dynamical chiral symmetry breaking and the
Nambu-Goldstone boson character of the partner pseu-
doscalar mesons. Notably, in a two-color version of QCD,
the scalar diquark is also a Nambu-Goldstone mode
[98, 99], a long-known result of Pauli-Gürsey symmetry
[100, 101]. A memory of the symmetry persists in the
three-color theory and is evident here in low masses for
the l, s scalar diquarks, even though they are nevertheless
split widely from the true Nambu-Goldstone mesons.

In constructing baryon Faddeev equations, the canon-
ically normalised diquark Bethe-Salpeter amplitudes are
crucial because they determine the strength of the cor-
relation within a given baryon. We list them in Ta-
ble III. Notably, the leading amplitudes associated with
flavour-antisymmetric correlations are a factor of 2.2(1)
larger than their flavour-symmetric counterparts. This
serves to amplify the preference for the lighter flavour-
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FIG. 3. Poincaré covariant Faddeev equation: a lin-
ear integral equation for the matrix-valued function Ψ, be-
ing the Faddeev amplitude for a baryon of total momentum
P = pd + pq, which expresses the relative momentum corre-
lation between the dressed-quarks and -nonpointlike-diquarks
within the baryon. The shaded rectangle demarcates the ker-
nel of the Faddeev equation: single line, dressed-quark prop-
agator (Sec. II B); Γ, diquark correlation amplitude (Sec. IV);
and double line, diquark propagator (Eqs. (30), (33)).

antisymmetric correlations in a given JP = 1/2+ baryon
because it is the amplitude-squared which appears in the
Faddeev equations. As we shall see, this preference can
be overcome in 1/2+ baryons whose valence-quarks pos-
sess very different masses. (The JP = 3/2+ baryons
considered herein possess flavour-exchange symmetries
which prevent the presence of 0+ [fg] correlations.)

V. BARYON SPECTRUM

A. Structure of Faddeev Amplitudes

We use the Faddeev equation depicted in Fig. 3 to com-
pute the spectrum of ground-state flavour-SU(5) JP =
1/2+, 3/2+ baryons, following the patterns of analysis de-
scribed in Ref. [50]. Note, then, that a spin-1/2 baryon
may be represented by a Faddeev amplitude [102]

Ψ = Ψ1 + Ψ2 + Ψ3 , (27)

where the subscript identifies the bystander quark and,
e.g. Ψ1,2 are obtained from Ψ3 by a cyclic permutation
of all the quark labels. We employ the simplest realistic
representation of Ψ, so that any member of the flavour-
SU(5) multiplet which generalises the SU(3)-octet of
baryons is composed from a sum of scalar and axial-
vector diquark correlations:

Ψ3(pj , αj , ϕj) = N 0+

Ψ3
+N 1+

Ψ3
, (28)

with (pj , αj , ϕj) the momentum, spin and flavour la-
bels of the quarks constituting the bound state, and
P = (p1 + p2) + p3 = pd + pq the system’s total mo-
mentum. (N.B. Negative-parity diquark correlations play
no material role in positive-parity ground-state baryons
[28, 30, 31, 57].)

Using the flavour-matrices defined in Eqs. (B.2), the

scalar diquark piece in Eq. (28) can be written

N 0+

Ψ3
(pj , αj , ϕj) =∑

[ϕ1ϕ2]ϕ3∈Ψ

[
t[ϕ1ϕ2] Γ0+

[ϕ1ϕ2](
1

2
p[12];K)

]ϕ1ϕ2

α1α2

×∆0+

[ϕ1ϕ2](K) [SΨ(`;P )uΨ(P )]ϕ3
α3
, (29)

where: K = p1 + p2 =: p{12}, p[12] = p1 − p2, ` :=
(−p{12} + 2p3)/3;

∆0+

[ϕ1ϕ2](K) =
1

K2 +m2
[ϕ1ϕ2]

(30)

is a propagator for the scalar diquark formed from quarks
1 and 2, with m[ϕ1ϕ2] being the associated mass-scale and

Γ0+

[ϕ1ϕ2] the canonically-normalised Bethe-Salpeter am-

plitude describing the correlation strength between the
quarks, all computed in Sec. IV; S , a 4× 4 Dirac matrix,
describes the relative quark-diquark momentum correla-
tion within the baryon; and the spinor satisfies

(iγ · P +MΨ)uΨ(P ) = 0 = ūΨ(P ) (iγ · P +MΨ) , (31)

with MΨ the baryon mass obtained by solving the Fad-
deev equation. The flavour structure of 1/2+ baryons is
expressed in Eqs. (B.5).

The axial-vector part of Eq. (28) is

N 1+

Ψ3
(pj , αj , ϕj) =∑

{ϕ1ϕ2}ϕ3∈Ψ

[
t{ϕ1ϕ2} Γ1+

µ{ϕ1ϕ2}(
1

2
p[12];K)

]ϕ1ϕ2

α1α2

×∆
{ϕ1ϕ2}
1+µν (K) [AΨ

ν (`;P )uΨ(P )]ϕ3
α3
, (32)

where

∆
{ϕ1ϕ2}
1+µν (K) =

1

K2 +m2
{ϕ1ϕ2}

(
δµν +

KµKν

m2
{ϕ1ϕ2}

)
, (33)

is a propagator for the axial-vector diquark formed from
quarks 1 and 2 and the other elements in Eq. (32) are
obvious analogues of those in Eq. (29).

Regarding baryons in the flavour-SU(5) generalisation
of the usual decuplet, one may write

Ψ∧3 (pi, αi, ϕi) = D1+

Ψ∧3
(pj , αj , ϕj), (34)

with

D1+

Ψ∧3
(pj , αj , ϕj) =∑

{ϕ1ϕ2}ϕ3∈Ψ∧

[
t{ϕ1ϕ2} Γ1+

µ{ϕ1ϕ2}(
1

2
p[12];K)

]ϕ1ϕ2

α1α2

×∆
{ϕ1ϕ2}
1+µν (K) [DΨ∧

νρ (`;P )uΨ∧

ρ (P )]ϕ3
α3
, (35)

where uΨ∧

ρ (P ) is a Rarita-Schwinger spinor and, as with

1/2+ baryons, in constructing the Faddeev equations we
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TABLE IV. Computed mass and Faddeev amplitude for each ground-state flavour-SU(5) JP = 1/2+ baryon: the last column
highlights the baryon’s dominant spin-flavour correlation. Empirical mass values are taken from Ref. [1]; where they are absent,
lQCD results are listed [10, 14] and indicated by “∗”. The mean-absolute-relative-difference between our mass predictions and
experiment/lQCD is 3.1(2.2)%. The parenthesised label beside a baryon’s name indicates the equation which specifies the
associated Faddeev amplitude’s spin-flavour vector. The subscript on the axial-vector entry specifies the Dirac structure in
Eq. (37b). (Mass in GeV.)

Baryon Me/l MCI sr1 sr2 ar21 ar22 ar31 ar32 dom. corr.

p (B.5a) 0.94 0.94 0.89 −0.35 −0.14 0.25 0.098 [ud]u

Λ (B.5b) 1.12 1.06 0.67 0.59 −0.42 −0.16 [ud]s

Σ (B.5c) 1.19 1.20 0.87 −0.42 0.004 0.25 0.071 [us]u

Ξ (B.5d) 1.32 1.24 0.90 −0.29 −0.028 0.31 0.11 [us]s

Λc (B.5e) 2.29 2.50 0.21 0.86 −0.35 −0.32 [uc]d− [dc]u

Σc (B.5f) 2.45 2.53 0.48 −0.21 0.84 0.090 0.064 {uu}c
Ξc (B.5g) 2.47 2.66 0.22 0.84 −0.36 −0.34 [uc]s− [sc]u

Ξ′c (B.5h) 2.58 2.68 0.50 −0.22 0.83 0.093 0.061 {us}c
Ωc (B.5i) 2.70 2.83 0.51 −0.22 0.82 0.097 0.058 {ss}c
Λb (B.5j) 5.62 5.74 0.13 0.93 −0.31 −0.13 [ub]d− [db]u

Σb (B.5k) 5.81 5.85 0.30 −0.12 0.94 0.041 0.087 {uu}b
Ξb (B.5l) 5.79 5.88 0.13 0.93 −0.31 −0.13 [ub]s− [sb]u

Ξ′b (B.5m) 5.94 5.99 0.33 −0.12 0.93 0.045 0.099 {us}b
Ωb (B.5n) 6.05 6.12 0.37 −0.12 0.91 0.049 0.12 {ss}b
Ξcc (B.5o) 3.62 3.72 0.90 −0.32 0.26 0.097 0.057 [uc]c

Ξcb (B.5p) 6.94∗ 7.10 0.12 −0.73 0.62 −0.27 [cb]u

Ξ′cb (B.5q) 6.97∗ 7.03 0.90 0.13 0.24 −0.33 0.012 [uc]b+ [ub]c

Ξbb (B.5r) 10.14∗ 10.37 0.87 −0.33 0.35 0.043 0.057 [ub]b

Ωcc (B.5s) 3.74∗ 3.90 0.88 −0.33 0.30 0.15 0.074 [sc]c

Ωcb (B.5t) 7.00∗ 7.22 0.068 −0.79 0.49 −0.37 [cb]s

Ω′cb (B.5u) 7.03∗ 7.15 0.85 −0.32 −0.099 0.18 0.35 [sc]b+ [sb]c

Ωbb (B.5v) 10.27∗ 10.48 0.85 −0.36 0.37 0.065 0.085 [sb]b

Ωccb (B.5w) 8.01∗ 8.19 0.39 −0.18 0.90 0.070 0.071 {cc}b
Ωcbb (B.5x) 11.20∗ 11.37 0.81 −0.38 0.39 0.16 0.14 [cb]b

focus on that member of each isospin multiplet which has
maximum electric charge, viz. the 20 states in Eqs. (B.7).

Fig. 3 shows that the Faddeev kernels involve diquark
breakup and reformation via exchange of a dressed-
quark. In order to present the most transparent anal-
ysis possible, we follow Refs. [47, 50, 57] and introduce a
simplification, viz. in the Faddeev equation for a baryon
of type B, the quark exchanged between the diquarks is
represented as

Sf (k)→ g2
B

Mf
, (36)

where f = l, s, c, b is the quark’s flavour and gB is a cou-
pling constant. This is a variant of the “static approx-
imation,” which itself was introduced in Ref. [103]. It
has a marked impact on the Faddeev amplitudes, forcing
them to be momentum-independent, just like the diquark
Bethe-Salpeter amplitudes, but calculations reveal that
it has little impact on the computed masses [56]. We
treat g2≡1/2+ , g4≡3/2+ as parameters, choosing them be-

low so as to obtain a desired mass for the lightest state
in each JP sector.

The general forms of the matrices SΨ(`;P ), AΨ
ν (`;P )

andDΨ∧

νρ (`;P ) in Eqs. (29), (32), (35), respectively, which
describe the momentum-space correlations between the
quarks and diquarks in the baryons considered herein,
are described in Refs. [104, 105]. However, they simplify
dramatically when Eq. (36) is used:

SΨ(P ) = sΨ(P ) ID , (37a)

AΨ
µ (P ) = aΨ

1 (P ) iγ5γµ + aΨ
2 (P )γ5P̂µ , (37b)

DΨ∧

νρ (`;P ) = aΨ∧(P ) δνρ . (37c)

B. Faddeev Equations

Specific examples of the Faddeev equations obtained
from Fig. 3 for the various light-quark systems, along
with their derivations, can be found in Ref. [50]. There-
fore, herein we only include equations for Ξ+

c , Ξ′+c , Ξ∗+c
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FIG. 4. Comparison between computed masses of ground-state flavour-SU(5) JP = 1/2+ baryons and either experiment (first
15) [1] or lQCD (last 9) [10, 14]: our results – (black) circles; and reference values – (green) bars.

because these three are sufficient to reconstruct all re-
maining Faddeev equations that are required to com-
plete the spectrum calculations: one need only adjust
the quark flavour labels. The equations are given in Ap-
pendix C. It will be noted therefrom that we use the reg-
ularisation scheme explained in Sec. II B, choosing Λuv to
be the scale associated with the lightest diquark in the
system, which is always the smallest value and hence the
dominant regularising influence.

C. Computed Masses and Amplitudes

Eq. (36) introduces two parameters: g2 in the JP =
1/2+ sector and g4 in the JP = 3/2+ sector. In this
analysis, we fix these quantities by requiring that the
relevant Faddeev equations return the empirical masses
of the nucleon and ∆-baryon:

g2 = 1.42 , g4 = 1.96 . (38)

It should be recalled that in choosing the couplings this
way, various effects of resonant (meson cloud) contribu-
tions to hadron static properties are implicitly included
[106], and we capitalise on this feature herein. However,
some features are also omitted, e.g. baryons computed
using the kernel in Fig. 3 do not have widths, which are
an essential physical consequence of meson-baryon final-
state interactions (MB FSIs). The operating conjecture
for RL truncation is that the impact of MB FSIs on a
baryon’s Breit-Wigner mass is captured by the choice
of interaction scale, even though a width is not gener-
ated. This should be reasonable for states whose width

is a small fraction of their mass. In practice, the conjec-
ture appears to be correct, at least for the ground-state
JP = 1/2+, 3/2+ systems [33].

1. JP = 1/2+

With every element now specified, it is straightfor-
ward to solve the algebraic Faddeev equations and obtain
the masses and amplitudes for all ground-state flavour-
SU(5) JP = 1/2+, 3/2+ baryons. Our results for the
1/2+ systems are listed in Table IV. We use a com-
pact notation, based on the following observations. For
any given JP = 1/2+ baryon, the spin-flavour structure
is described by a three-entry column-vector. The top
row (r1) reflects the strength of a scalar diquark in the
baryon’s Faddeev amplitude, the bottom row indicates
that of an axial-vector diquark strength (r3), and the
middle entry (r2) is either scalar or axial-vector, depend-
ing on the baryon. Table IV therefore includes a super-
script to mark the row number in the appropriate line of
Eqs. (B.5).

Our computed JP = 1/2+ masses are compared with
empirical/lQCD values in Fig. 4. The mean-absolute-
relative-difference is 3.1(2.2)%. This compares well with
the fully-covariant three-body calculation described in
Ref. [33], for which the analogous difference is 5.2(2.8)%.
Of course, that study is more sophisticated: it did not
use a quark-diquark approximation; instead, the Fad-
deev equations were solved in a fully-consistent RL trun-
cation. Moreover, the baryon spectra in Ref. [33] are
ab initio predictions, whereas we used a parameter (g2
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in Eqs. (36), (38)) to readjust the scale of the JP =
1/2+ spectrum so that the proton mass matches experi-
ment. Notwithstanding these things, the agreement with
Ref. [33] indicates both that we have implemented a phe-
nomenologically efficacious formulation of the contact in-
teraction and that equal spacing rules must provide a
good first approximation to our contact-interaction spec-
trum of JP = 1/2+ baryons.

Table IV also lists the contact-interaction quark-
diquark Faddeev amplitudes for each baryon, which ex-
press structural characteristics of the associated bound-
state. The calculated results owe their values to both
the fully-dynamical character of the diquark correlations,
predicted by realistic analyses of the quark-quark scat-
tering problem, and the nature of the Faddeev kernel,
which ensures, through continual rearrangement, that ev-
ery valence-quark participates actively in all diquark cor-
relations to the fullest extent allowed by kinematics and
symmetries. Hence, the structure should be qualitatively
independent of the quark-quark interaction’s pointwise
behaviour. This expectation is supported by studies of
ground-state u, d, s octet and decuplet systems, in which
the contact-interaction amplitudes have proven to be a
reliable harbinger of the results obtained using more so-
phisticated kernels in Fig. 3 [31].

It is reasonable, therefore, to emphasise the follow-
ing structural features of the ground-state flavour-SU(5)
JP = 1/2+ baryons drawn from Table IV.

a: The lightest allowed diquark correlation typically de-
fines the most important component of a baryon’s
Faddeev amplitude, e.g. the scalar [uc] diquark
dominates in the Ξcc and the [ub] is dominant in
the Ξbb. This remains true even if an axial-vector
diquark is the lightest channel available, e.g. {uu}
is dominant in the Σc.

b: Dominance of the lightest diquark correlation can be
overcome in flavour channels for which the spin-
flavour structure of the bound-state and the quark-
exchange character of the kernel in Fig. 3 lead dy-
namically to a preference for mixed-flavour corre-
lations, e.g. since the [us]c combination in the Ξc
cannot reproduce itself, its strength may be fed into
the [uc]s − [sc]u correlation. (See Appendix C 1.)
The eventual outcome depends on the mass-scales
of the kernel participants and how they affect re-
arrangment processes in the Faddeev kernel, e.g.
compare Ξb with Ξcb.

These findings add to the argument against treatments
of the three-body problem which assume that baryons
can be described as effectively two-body in nature, e.g.
as being built from a constituent-quark and static/frozen
constituent-diquark. We verify that diquark correlations
in QCD are essentially dynamical, and their breakup and
reformation play a crucial role in defining baryon struc-
ture. This is true for light-quark baryons, for which
lQCD confirms that the spectrum possesses a richness

TABLE V. Computed mass and Faddeev amplitude for each
ground-state flavour-SU(5) JP = 3/2+ baryon: the last col-
umn highlights the baryon’s dominant spin-flavour correla-
tion. Empirical mass values are taken from Ref. [1]; where
they are absent, lQCD results are listed [10, 14] and indi-
cated by “∗”. The mean-absolute-relative-difference between
our mass predictions and experiment/lQCD is 1.8(1.0)%. The
parenthesised label beside a baryon’s name indicates the equa-
tion which specifies the associated Faddeev amplitude’s spin-
flavour vector. (Mass in GeV.)

Baryon Me/l MCI fff other dom. corr.

∆ (B.7a) 1.23 1.23 1 {uu}u
Σ∗ (B.7b) 1.38 1.37 0.60 0.80 {us}u
Ξ∗ (B.7c) 1.53 1.49 0.85 0.52 {us}s
Ω (B.7d) 1.67 1.62 1 {ss}s
Σ∗c (B.7e) 2.52 2.56 0.64 0.77 {uc}u
Ξ∗c (B.7f) 2.66 2.70 0.63 0.77 {uc}s+ {sc}u
Ω∗c (B.7g) 2.77 2.85 0.62 0.79 {sc}s
Σ∗b (B.7h) 5.83 5.84 0.71 0.71 {uu}b ≈ {ub}u
Ξ∗b (B.7i) 5.95 5.98 0.67 0.74 {ub}s+ {sb}u
Ω∗b (B.7j) 6.09∗ 6.11 0.63 0.78 {sb}s
Ξ∗cc (B.7k) 3.69∗ 3.75 0.98 0.20 {uc}c
Ξ∗cb (B.7l) 6.99∗ 7.07 0.21 0.98 {uc}b+ {ub}c
Ξ∗bb (B.7m) 10.18∗10.34 1.00 0.078 {ub}b
Ω∗cc (B.7n) 3.82∗ 3.94 0.96 0.28 {sc}c
Ω∗cb (B.7o) 7.06∗ 7.21 0.31 0.95 {sc}b+ {sb}c
Ω∗bb (B.7p) 10.27∗10.47 0.99 0.12 {sb}b
Ω∗ccc (B.7q) 4.80∗ 5.00 1 {cc}c
Ω∗ccb (B.7r) 8.04∗ 8.19 0.65 0.76 {cb}c
Ω∗cbb (B.7s) 11.23∗11.38 0.96 0.28 {cb}b
Ω∗bbb (B.7t) 14.37∗14.57 1 {bb}b

that cannot be explained by a two-body model [107]. Fur-
thermore, the consequences extend to baryons involving
one or more heavy quarks, challenging both (i) the treat-
ment of singly-heavy baryons (qq′Q, q, q′ ∈ {u, d, s}, Q ∈
{c, b}) as two-body light-diquark+heavy-quark (qq′+Q)
bound-states (see, e.g. Ref. [108, 109]) and (ii) analyses
of doubly-heavy baryons (qQQ′) which assume such sys-
tems can be considered as two-body light-quark+heavy-
diquark bound-states, q + QQ′ (e.g. Refs. [110–112]).
These observations also have implications for few-body
studies of the tetra- and penta-quark problems.

2. JP = 3/2+

Our results for ground-state flavour-SU(5) JP = 3/2+

baryons are listed in Table V. In this case, the allowed
spin-flavour combinations are simple. Hence, we use only
three columns to represent the Faddeev amplitude: rows
with only one amplitude-entry describe baryons consti-
tuted from three valence-quarks of identical flavour, in
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FIG. 5. Comparison between computed masses of ground-state flavour-SU(5) JP = 3/2+ baryons and either experiment (first
9) [1] or lQCD (last 11) [10, 14]: our results – (black) circles; and reference values – (green) bars.

which case the value is always unity; and rows with
two such entries possess at least one unmatched valence-
quark amongst the three.

The computed JP = 3/2+ masses are compared with
empirical/lQCD values in Fig. 5: the mean-absolute-
relative-difference is 1.8(1.0)%. Once again, this com-
pares well with the fully-covariant three-body calcula-
tion described in Ref. [33], for which the analogous dif-
ference is 2.6(1.6)%. Of course, here we used a pa-
rameter (g4 in Eqs. (36), (38)) to readjust the scale of
the JP = 3/2+ spectrum so that the ∆-baryons’s mass
matches experiment. Nevertheless, as before, the agree-
ment with Ref. [33] highlights both the utility of our for-
mulation of the contact interaction and the validity of
equal spacing rules as a first approximation to the spec-
trum of JP = 3/2+ baryons.

Table V also lists the contact-interaction quark-
diquark Faddeev amplitudes for each baryon, which ex-
press structural characteristics of the associated bound-
state. As in Sec. V C 1, the calculated results owe their
values to both the fully-dynamical character of the di-
quark correlations and the nature of the Faddeev ker-
nel, which together ensure a continual shuffling of each
dressed-quark into and out of diquark correlations. The
structure of this kernel for JP = 3/2+ baryons is exem-
plified by that sketched for the Ξ∗c in Appendix C 3. Its
form makes clear that in all cases involving more than
one quark flavour, the diquark combination with maxi-
mal flavour shuffling is favoured because it is fed by twice
as many exchange processes as the less-mixed correlation.
The Σ∗b is the only case in which this outcome is avoided
as a consequence of the enormous mass-splitting between

the u- and b-quarks, which dramatically suppresses the
kernel contribution

u{bu} b-exchange→ {ub}u , (39)

thereby producing a roughly-symmetric, anti-diagonal
kernel and hence a solution with near equality between
the two possible diquark combinations.

VI. SUMMARY AND OUTLOOK

We employed a confining, symmetry-preserving treat-
ment of a vector× vector contact-interaction to calcu-
late spectra of ground-state pseudoscalar and vector (fḡ)
mesons, scalar and axial-vector (fg) diquarks, and JP =
1/2+, 3/2+ (fgh) baryons, where f, g, h ∈ {u, d, s, c, b}.
A physically-motivated refinement of earlier formula-
tions, based on feedback between pseudoscalar-meson
masses, m0− , and leptonic decay constants, leading to
a logarithmic evolution of the interaction strength with
m0− , was necessary to extend applicability of the contact-
interaction to systems involving heavy quarks (Sec. II B).
The calculated meson spectrum agrees well with experi-
ment (Sec. III): the mean-relative-difference for 15 states
is 5(5)%; and for these same states, the leptonic decay
constants are reproduced with an accuracy of 18(9)%.

Diquark masses and correlation strengths are required
as input to our baryon Faddeev equations; and a straight-
forward relationship between quark-quark and quark-
antiquark scattering means that these quantities are
readily obtained via a single, simple modification of the



12

meson Bethe-Salpeter equations. It follows that for ev-
ery J−P multiplet of degenerate mesons there is an as-
sociated JP diquark multiplet (with, perhaps, just one
member). The level ordering of the JP diquark corre-
lations matches that of the J−P meson partners, with
the meson masses bounding the partner diquark masses
from below (Sec. IV): ignoring diquarks partnered with
Nambu-Goldstone modes, the splitting is 0.13(6) GeV.

In proceeding to solve the baryon Faddeev equations,
we used a static approximation to the quark exchange
kernel. This produces Faddeev amplitudes that are
momentum-independent and thereby ensures a level of
consistency with the two-body bound-state amplitudes
generated by the contact-interaction. Our implemen-
tation of the static approximation introduced two pa-
rameters. Choosing them to ensure that the masses
of the lightest JP = 1/2+, 3/2+ baryons agreed with
experiment, we arrived at predictions for the masses
of 42 ground-state flavour-SU(5) JP = 1/2+, 3/2+

baryons which compare well with measurements (22
states known) or lQCD results (20 states): the mean-
absolute-relative difference is 2.5(1.1)% (Figs. 4, 5).

The framework employed herein is distinguished by its
simplicity, with analyses and calculations being largely
algebraic. It is also marked by its effectiveness. There
are six parameters: four used to define the interaction
and its scale dependence through analysis of π, K, ηc, ηb
properties; and two introduced to boost attraction in the
baryon Faddeev equations. Thus defined, the contact-
interaction delivers predictions for 72 distinct quantities;
and when one compares with independent determina-
tions, the mean-absolute-relative difference is 6(8)%.

Such quantitative success suggests that serious con-
sideration should be given to the qualitative conclusions
supported by our analysis. Of primary significance is the
demonstration that diquark correlations play an impor-
tant role in all baryons studied. Crucially, these diquark
correlations are not frozen degrees-of-freedom within a
baryon. Instead, they are dynamically composite, an as-
pect which entails that it is the lightest allowed diquark
correlation which typically defines the most important
component of a baryon’s Faddeev amplitude. This re-
mains true even if the (bad) axial-vector diquark is the
lightest channel available. The dominance of the light-
est correlation can only be overwhelmed if the baryon’s
spin-flavour structure is such that the dynamical diquark
breakup and reformation processes driven by the Faddeev
kernel lead to a preference for mixed-flavour correlations.

It is straightforward to generalise our analysis to
negative-parity baryon ground-states and we anticipate
that the picture drawn therefrom would be qualitatively
sound [30, 57]. An extension to the first positive-parity
excitations of the baryons considered herein is also possi-
ble, but one is forced into contrivance when trying to de-
scribe baryons with zeros in their Faddeev amplitudes us-
ing an interaction that favours momentum-independent
solutions [19, 25, 30, 57]. Additionally, given that novel
gluon-quark/gluon-antiquark correlations might play a

part in explaining hybrid mesons [113], a new and worth-
while direction would be to adapt the framework de-
scribed herein to the challenge of understanding tetra-
and penta-quark states, in which dynamical diquark-
correlations may also be expected to play a material role.

In all cases, too, it is sensible to check conclusions
reached using the contact-interaction against those ob-
tained with realistic momentum-dependent kernels for
the three-valence-body bound-state problem. As already
noted, this task has been undertaken for many flavour-
SU(3) baryons using the quark-diquark approximation
[30, 31], although the diquark-content predictions have
not been fully tested. Such analyses should be completed
and also extended to flavour-SU(5).

Direct solutions of the three-body problem, eschew-
ing the quark-diquark approximation and using a well-
constrained rainbow-ladder kernel, have been employed
to produce the spectrum of ground-state flavour-SU(5)
(fgh) baryons, their first positive-parity excitations and
parity partners [33]. The solutions could profitably be
used to explore for signals indicating the appearance
of diquark correlations. It is also reasonable to pur-
sue extensions of these direct studies with kernels im-
proved by incorporating nonperturbative effects of dy-
namical chiral symmetry breaking, which are potentially
important to the emergence of strong diquark correla-
tions. Such efforts are likely to benefit from the use of
high-performance computing.
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Appendix A: Collected Formulae

Eq. (9) is the first of a number of integrals appearing
in our analysis whose regularised values are expressed in
terms of incomplete gamma-functions. We gather the
expressions here (n = 0, 1, 2):

Ciu
n (σ) = σCiu

n (σ) , (A.1)

with

Ciu

0 (σ) = Γ(−1, στ2
ir)− Γ(−1, στ2

uv) , (A.2a)

Ciu

1 (σ) = − d

dσ
Ciu

0 (σ) = Γ(0, στ2
ir)− Γ(0, στ2

uv) , (A.2b)

Ciu

2 (σ) = σ
d2

dσ2
Ciu

0 (σ) = Γ(1, στ2
ir)− Γ(1, στ2

uv) , (A.2c)

or, more simply still,

Ciu

n (σ) = Γ(n− 1, στ2
ir)− Γ(n− 1, στ2

uv) . (A.3)

These expressions are used, e.g. to express the Bethe-
Salpeter kernel for pseudoscalar mesons in Eq. (15):

K0−

EE =

∫ 1

0

dα

{
Ciu

0 (ωfg(α,Q
2))

+

[
MfMg − αα̂Q2 − ωfg(α,Q2)

]
×Ciu

1 (ωfg(α,Q
2))

}
, (A.4a)

K0−

EF =
Q2

2Mfg

∫ 1

0

dα

[
α̂Mf + αMg

]
×Ciu

1 (ωfg(α,Q
2)), (A.4b)

K0−

FE =
2M2

fg

Q2
K0−

EF , (A.4c)

K0−

FF = −1

2

∫ 1

0

dα

[
MfMg + α̂M2

f + αM2
g

]
×Ciu

1 (ωfg(α,Q
2)) . (A.4d)

It is worth reiterating here that Eq. (15) is an eigen-
value problem that has a solution for Q2 = −m2

0− , at
which point the eigenvector is the meson’s Bethe-Salpeter
amplitude. In the computation of observables one must
employ the canonically normalised amplitude, viz. the
amplitude rescaled such that

1 =
d

dQ2
Π0−(Z,Q)

∣∣∣∣
Z=Q

, (A.5)

where

Π0−(Z,Q) = 6trD

∫
d4t

(2π)4
Γ0−(−Z)

×Sf (t+Q) Γ0−(Z)Sg(t) . (A.6)

Appendix B: Elements in the Faddeev Equations

It is useful to define a collection of flavour matrices
to assist with explicating the structure of the diquark
pieces in Eq. (28). To do so, we realise the fundamental
representation of flavour-SU(5) as follows:

u =


1

0

0

0

0

 , d =


0

1

0

0

0

 , s =


0

0

1

0

0

 ,

c =


0

0

0

1

0

 , b =


0

0

0

0

1

 ;

(B.1)

These states can be combined into diquark correlations
using the following 5× 5 matrices, where here we distin-
guish between u- and d-quarks:

t1=[ud] =


0 1 0 0 0

−1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 ,

t2=[us] =


0 0 1 0 0

0 0 0 0 0

−1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 , (B.2a)

t3=[uc] =


0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

−1 0 0 0 0

0 0 0 0 0

 ,

with t4=[ub], t5=[ds], t6=[dc], t7=[db], t8=[sc], t9=[sb],
t10=[cb] obvious by analogy; and

t11={uu} =



√
2 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 ,

t12={ud} =


0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 , (B.3a)
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t13={us} =


0 0 1 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 ,

with t14={uc}, t15={ub}, t16={dd}, t17={ds}, t18={dc},
t19={db}, t20={ss}, t21={sc}, t22={sb}, t23={cc}, t24={cb},
t25={bb} also clear by analogy.

Now with the dressed-quark propagators collected into
a diagonal flavour-matrix:

S(p) =


Su(p) 0 0 0 0

0 Sd(p) 0 0 0

0 0 Ss(p) 0 0

0 0 0 Sc(p) 0

0 0 0 0 Sb(p)

 , (B.4)

then, e.g. the 0+ [ub] diquark is represented by the
flavour-matrix t4=[ub] and its contribution to a Bethe-
Salpeter or Faddeev kernel is obtained through the ma-
trix product S(p1)t4ST(p2) , where (·)T indicates matrix
transpose. It follows that the baryons considered herein
have the spin-flavour structures listed below.5

1. 1/2+ Spin-Flavour Combinations

In the isospin-symmetry limit, using the quark-diquark
approximation, the Faddeev equation in Fig. 3 supports
the following 24 distinct flavour-SU(5) combinations for
1/2+ baryons.

up =

 [ud]u

{uu}d
{ud}u

↔
 s1

a11

a12

 , (B.5a)

uΛ =
1√
2


√

2[ud]s

[us]d− [ds]u

{us}d− {ds}u

↔
 s1

s [2,5]

a [13,17]

 , (B.5b)

uΣ+ =

 [us]u

{uu}s
{us}u

↔
 s2

a11

a13

 , (B.5c)

uΞ0 =

 [us]s

{us}s
{ss}u

↔
 s2

a13

a20

 , (B.5d)

uΛ+
c

=
1√
2


√

2[ud]c

[uc]d− [dc]u

{uc}d− {dc}u

↔
 s1

s [3,6]

a [14,18]

 , (B.5e)

5 We capitalise on isospin symmetry, i.e. all diquarks and baryons
in an isospin multiplet are degenerate; and, hence, solve only
for the baryon within a given isospin multiplet whose flavour
structure is simplest.

uΣ++
c

=

 [uc]u

{uu}c
{uc}u

↔
 s3

a11

a14

 , (B.5f)

uΞ+
c

=
1√
2


√

2[us]c

[uc]s− [sc]u

{uc}s− {sc}u

↔
 s2

s [3,8]

a [14,21]

 , (B.5g)

uΞ′+c
=

1√
2

 [uc]s+ [sc]u√
2{us}c

{uc}s+ {sc}u

↔
 s{3,8}

a13

a{14,21}

 , (B.5h)

uΩ0
c

=

 [sc]s

{ss}c
{sc}s

 ,↔
 s8

a20

a21

 , (B.5i)

uΛ0
b

=
1√
2


√

2[ud]b

[ub]d− [db]u

{ub}d− {db}u

↔
 s1

s [4,7]

a [15,19]

 , (B.5j)

uΣ+
b

=

 [ub]u

{uu}b
{ub}u

↔
 s4

a11

a15

 , (B.5k)

uΞ0
b

=
1√
2


√

2[us]b

[ub]s− [sb]u

{ub}s− {sb}u

↔
 s2

s [4,9]

a [15,22]

 , (B.5l)

uΞ′0b
=

1√
2

 [ub]s+ [sb]u√
2{us}b

{ub}s+ {sb}u

↔
 s{4,9}

a13

a{15,22}

 ,
(B.5m)

uΩ−b
=

 [sb]s

{ss}b
{sb}s

↔
 s9

a20

a22

 , (B.5n)

uΞ++
cc

=

 [uc]c

{uc}c
{cc}u

↔
 s3

a14

a23

 , (B.5o)

uΞ+
cb

=
1√
2

 [uc]b− [ub]c√
2[cb]u

{uc}b− {ub}c

↔
 s [3,4]

s10

a [14,15]

 , (B.5p)

uΞ′+cb
=

1√
2

 [uc]b+ [ub]c

{uc}b+ {ub}c√
2{cb}u

↔
 s{3,4}

a{14,15}

a24

 , (B.5q)

uΞ0
bb

=

 [ub]b

{ub}b
{bb}u

↔
 s4

a15

a25

 , (B.5r)

uΩ+
cc

=

 [sc]c

{sc}c
{cc}s

↔
 s8

a21

a23

 , (B.5s)
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uΩ0
cb

=
1√
2

 [sc]b− [sb]c√
2[cb]s

{sc}b− {sb}c

↔
 s [8,9]

s10

a [21,22]

 , (B.5t)

uΩ′0cb
=

1√
2

 [sc]b+ [sb]c

{sc}b+ {sb}c√
2{cb}s

↔
 s{8,9}

a{21,22}

a24

 , (B.5u)

uΩ−bb
=

 [sb]b

{sb}b
{bb}s

↔
 s9

a22

a25

 , (B.5v)

uΩ+
ccb

=

 [cb]c

{cc}b
{cb}c

↔
 s10

a23

a24

 , (B.5w)

uΩ0
cbb

=

 [cb]b

{cb}b
{bb}c

↔
 s10

a24

a25

 . (B.5x)

Sec. IV reveals that the antisymmetric combination of
any two quark flavours is always lighter than the sym-
metric combination. Consequently, in the absence of ad-
ditional contributions to the Faddeev kernel, one should
expect

MΛ0 < MΣ0 , (B.6a)

MΞc < MΞ′c
, (B.6b)

MΞb
< MΞ′b

. (B.6c)

Moreover, the level ordering pattern should reverse for
(MΞcb

,MΞ′cb
) and (MΩcb

,MΩ′cb
) because the 0+ [cb] di-

quark correlation is ≈ 1 GeV more massive than the [l, b],
[s, b] diquarks, it is forbidden in the Ξ′,Ω′ states, and a
heavy-quark must be exchanged to populate the lighter
diquark sector from the [cb].

2. 3/2+ Spin-Flavour Combinations

In the isospin-symmetry limit, using the quark-diquark
approximation, the Faddeev equation in Fig. 3 supports
the following 20 distinct flavour-SU(5) combinations for
3/2+ baryons.

u∆ =
[
{uu}u

]
↔
[

a11
]
, (B.7a)

uΣ∗ =

[
{uu}s
{us}u

]
↔

[
a11

a13

]
, (B.7b)

uΞ∗ =

[
{us}s
{ss}u

]
↔

[
a13

a20

]
, (B.7c)

uΩ =
[
{ss}s

]
↔
[

a20
]
, (B.7d)

uΣ∗++
c

=

[
{uu}c
{uc}u

]
↔

[
a11

a14

]
, (B.7e)

uΞ∗+c
=

1√
2

[ √
2{us}c

{uc}s+ {sc}u

]
↔

[
a13

a{14,21}

]
, (B.7f)

uΩ∗0c
=

[
{ss}c
{sc}s

]
↔

[
a20

a21

]
, (B.7g)

uΣ∗+b
=

[
{uu}b
{ub}u

]
↔

[
a11

a15

]
, (B.7h)

uΞ∗0b
=

1√
2

[ √
2{us}b

{ub}s+ {sb}u

]
↔

[
a13

a{15,22}

]
, (B.7i)

uΩ∗−b
=

[
{ss}b
{sb}s

]
↔

[
a20

a22

]
, (B.7j)

uΞ∗++
cc

=

[
{uc}c
{cc}u

]
↔

[
a15

a25

]
, (B.7k)

uΞ∗+cb
=

1√
2

[
{uc}b+{ub}c√

2{cb}u

]
↔

[
a{14,15}

a24

]
, (B.7l)

uΞ∗0bb
=

[
{ub}b
{bb}u

]
↔

[
a14

a23

]
, (B.7m)

uΩ∗+cc
=

[
{sc}c
{cc}s

]
↔

[
a21

a23

]
, (B.7n)

uΩ∗0cb
=

1√
2

[
{sc}b+{sb}c√

2{cb}s

]
↔

[
a{21,22}

a24

]
, (B.7o)

uΩ∗−bb
=

[
{sb}b
{bb}s

]
↔

[
a22

a25

]
, (B.7p)

uΩ∗++
ccc

=
[
{cc}c

]
↔
[

a23
]
, (B.7q)

uΩ∗+ccb
=

[
{cc}b
{cb}c

]
↔

[
a23

a24

]
, (B.7r)

uΩ∗0cbb
=

[
{cb}b
{bb}c

]
↔

[
a24

a25

]
, (B.7s)

uΩ∗−bbb
=
[
{bb}b

]
↔
[

a25
]
. (B.7t)

Evidently, only JP = 1+ appear in these flavour-SU(5)
generalisations of the baryon decuplet.

Appendix C: Selected Faddeev Equations

1. Ξ+
c Baryon

With the c-quark as a label, there are two SU(3)
subgroups of a mixed-symmetric-20 representation of
flavour-SU(4): one is antisymmetric under the inter-
change of the lighter quarks (antitriplet); and the other
is symmetric (sextet). Both the antitriplet and sextet
flavour combinations can be realised in the JP = 1/2+

sector: the Ξ+
c is the antitriplet member, antisymmetric
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under u ↔ s, as expressed via Eq. (B.5g). Using this
knowledge, one can employ a procedure similar to that
used for the Λ-baryon in Ref. [50], and proceed from Fig. 3
to the following algebraic equation:

uΞ+
c

= K Ξ+
c
uΞ+

c
, (C.1)

where uΞ+
c

is given in Eq. (B.5g) and

K Ξ+
c

=


0

K3
2 +K8

2√
2

−K
14
2 +K21

2√
2

K2
3 +K2

8√
2

−K
8
3 +K3

8

2
−K

21
3 +K14

8

2

−K
2
14 +K2

21√
2

−K
8
14 +K3

21

2
−K

21
14 +K14

21

2


(C.2)

with, e.g.

K3
2 = −4

∫
d4q

(2π)4
Γ3(l)ST

u Γ̄2(−k)Ss(q)∆3(l) , (C.3a)

K2
3 = −4

∫
d4q

(2π)4
Γ2(l)ST

u Γ̄3(−k)Sc(q)∆2(l) . (C.3b)

The other elements of K Ξ+
c

have similar structures, de-
termined by the Faddeev kernel in Fig. 3, where each
amplitude and propagator is connected with a particu-
lar diquark or quark according to the definitions in Ap-
pendix B, e.g.: Γ2 is the correlation amplitude for the
[us] diquark; Γ3 the amplitude for the [uc] diquark, with
∆3 the associated propagator; and Su,s are propagators
for the quarks with flavour f = u, s.

It is important to observe that [K Ξ+
c

]11 ≡ 0. Hence,

the [us]c component of the Ξ+
c spin-flavour wave func-

tion is not “self-supporting”. Instead, it must be “fed”
by other combinations. This is a general consequence
of Fig. 3, i.e. the outcome is not specific to the contact
interaction.

Taking account of Eq. (37b), viz. axial-vector diquarks
have two Dirac structures, Eq. (C.2) expands to a 4 × 4
matrix because, e.g.

K14
2 = (K14

2:1,K14
2:2) . (C.4)

Now using the regularisation procedure described in
Sec. II B, all elements in the kernel matrix can be com-
puted explicitly. Defining

cfΞc
=

g2
Ξc

4π2Mf
, σf,iΞc

= σ(α,M2
f ,m

2
i ,m

2
Ξc

) , (C.5)

where gΞc
= g2 in Eq. (38),

σ(α,M2
f ,m

2
i ,M

2
Ξc

)

= (1− α)M2
f + αm2

i − α(1− α)M2
Ξc
, (C.6)

with f being a quark flavour label and i a diquark enu-
meration label, so that mi is the mass of the associated
correlation, then the first row is:

K3
2 =

cuΞc

4MR2MR3

∫ 1

0

dα C1(σs,3Ξc
)

× [2E2MR2
− F2MΞc

(1− α)]

× [2E3MR3
− F3MΞc

(1− α)]

× [Ms + αMΞc
] , (C.7a)

K8
2 =

csΞc

4MR2MR8

∫ 1

0

dα C1(σu,8Ξc
)

× [2E2MR2
− F2MΞc

(1− α)]

× [2E8MR8
− F8MΞc

(1− α)]

× [Mu + αMΞc
] , (C.7b)

K14
2:1 =

cuΞc
E14

2MR2m
2
14

∫ 1

0

dα C1(σs,14
Ξc

)

[
2E2MR2

(3Msm
2
14

+MΞc
[m2

14 + 2M2
Ξc

(1− α)2]α)

− F2MΞc
(1− α)[Ms(m

2
14

+ 2M2
Ξc

(1− α)2) + 3m2
14MΞc

α]

]
, (C.7c)

K14
2:2 =

cuΞc
E14

2MR2m
2
14

∫ 1

0

dα C1(σs,14
Ξc

)[2E2MR2

+ F2MΞc
(1− α)]

× [m2
14 −M2

Ξc
(1− α)2][Ms − αMΞc

] , (C.7d)

K21
2:1 =

csΞc
E21

2MR2
m2

21

∫ 1

0

dα C1(σu,21
Ξc

)

[
2E2MR2

(3Mum
2
21

+MΞc
[m2

21 + 2M2
Ξc

(1− α)2]α)

− F2MΞc
(1− α)[Mu(m2

21

+ 2M2
Ξc

(1− α)2) + 3m2
21MΞc

α]

]
, (C.7e)

K21
2:2 =

cuΞc
E14

2MR2m
2
14

∫ 1

0

dα C1(σs,14
Ξc

)[2E2MR2

+ F2MΞc
(1− α)]

× [m2
14 −M2

Ξc
(1− α)2][Ms − αMΞc

] , (C.7f)

where, e.g. MR2
= MuMs/(Mu+Ms), because “2” labels

the [us] diquark, E2, F2 are the [us]-diquark amplitudes
in Table III, Row 2. All other symbols are understood
analogously.

The other elements of K Ξ+
c

are all defined by expres-

sions like Eqs. (C.3) and straightforward application of
our regularisation procedure completes the array with
expression like Eqs. (C.7).

2. Ξ′+c Baryon

Ξ′+c is the sextet partner of the Ξ+
c in the mixed-

symmetric-20, i.e. the Ξ′+c spin-flavour wave function is
symmetric under u ↔ s, viz. Eq. (B.7f). In this case,
Fig. 3 yields the following equation:

uΞ′+c
= K Ξ′+c

uΞ′+c
, (C.8)
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where uΞ′+c
is given in Eq. (B.5h) and

K Ξ′+c
=


K8

3 +K3
8

2
−K

13
3 +K13

8√
2

K21
3 +K14

8

2

−K
3
13 +K8

13√
2

0
K14

13 +K21
13√

2
K8

14 +K3
21

2

K13
14 +K13

21√
2

K21
14 +K14

21

2


(C.9)

Explicit forms for the entries in K Ξ′+c
are readily ob-

tained using the procedures indicated above; and they
have forms similar to those in Eqs. (C.7).

Here, since [K Ξ′+c
]22 ≡ 0, the {us}c component of the

Ξ′+c spin-flavour wave function is not “self-supporting”.
On the other hand, it is the lightest possible diquark com-
ponent of the bound-state and all feeder processes involve
light-quark exchange. Since the opposite is true for the
other two correlations, viz. [uc]s + [sc]u, {uc}s + {sc}u,
then {us}c can dominate in the Ξ′+c . The contrast be-
tween this outcome for the Ξ′+c and that described above
for the Ξ+

c may be attributed to the different u↔ s sym-
metries of the systems, which can change constructive
into destructive interference.

3. Ξ∗c Baryon

Ξ∗c is a member of the symmetric-20 representation of
flavour-SU(4), in consequence of which its spin-flavour
wave function must be symmetric under u ↔ s, viz.
Eq. (B.7f). In this case, Fig. 3 yields an algebraic equa-
tion of the following form:

uΞ∗+c
= K Ξ∗+c

uΞ∗+c
, (C.10)

where

K Ξ∗+c
=


0

K 14
13 + K 21

13√
2

K 13
14 + K 13

21√
2

K 21
14 + K 14

21

2

 . (C.11)

As usual, explicit expressions for the entries in K can be
obtained using the procedures indicated above and they
have forms similar to those in Eqs. (C.7).

Evidently, [K]11 ≡ 0 for the Ξ∗+c . Consequently, it is
again the {us}c component of the Ξ∗+c spin-flavour wave
function that is not “self-supporting”. Instead, {us}c
feeds the compound {uc}s+{sc}u correlation, which also
supports itself and is therefore dominant.
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[97] M. S. Bhagwat, A. Höll, A. Krassnigg, C. D. Roberts

and P. C. Tandy, Phys. Rev. C 70, 035205 (2004).
[98] C. D. Roberts, in Como 1996, Quark confinement

and the hadron spectrum II (World Scientific, Singa-
pore, 1996), chap. Confinement, diquarks and Gold-
stone’s theorem, pp. 224–230, Eds. N. Brambilla and
G. M. Prosperi; [nucl-th/9609039].

[99] J. C. R. Bloch, C. D. Roberts and S. M. Schmidt, Phys.
Rev. C 60, 065208 (1999).

[100] W. Pauli, Nuovo Cim. 6, 204 (1957).
[101] F. Gürsey, Nuovo Cim. 7, 411 (1958).
[102] R. T. Cahill, C. D. Roberts and J. Praschifka, Austral.

J. Phys. 42, 129 (1989).
[103] A. Buck, R. Alkofer and H. Reinhardt, Phys. Lett. B

286, 29 (1992).
[104] M. Oettel, G. Hellstern, R. Alkofer and H. Reinhardt,

Phys. Rev. C 58, 2459 (1998).



19
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