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Spin Foam Models (SFMs) are covariant formulations of Loop Quantum Gravity (LQG) in 4 dimensions.
This work studies the perturbations of SFMs on a flat background. It demonstrates for the first time that smooth
curved spacetime geometries satisfying Einstein equation can emerge from discrete SFMs under an appropriate
low energy limit, which corresponds to a semiclassical continuum limit of SFMs. In particular, we show that
the low energy excitations of SFMs on a flat background give all smooth solutions of linearized Einstein equa-
tions (spin-2 gravitons). This indicates that at the linearized level, classical Einstein gravity can arise as a low
energy effective theory from SFMs. Thus our result heightens the confidence that covariant LQG is a consistent
theory of quantum gravity. As a key technical tool, a regularization/deformation of the SFM is employed in the
derivation. The deformation parameter δ becomes a coupling constant of a higher curvature correction term to
Einstein gravity from SFM.

PACS numbers: 04.60.Pp

I. INTRODUCTION

The spin foam program is a covariant approach towards a
nonperturbative and background-independent quantum theory
of gravity [1–4]. Spin foam models (SFMs), therefore, pro-
vide a powerful formalism to analyze the dynamics of Loop
Quantum Gravity (LQG) [5–8]. As state-sum lattice mod-
els inspired by topological quantum field theory, SFMs are
a LQG analog of Feynman path integral description of quan-
tum gravity [9, 10]. In particular they describe the histories of
evolving quantum geometries of space [1, 11]. The study of
SFMs has uncovered many remarkable properties in the last
two decades. Amongst others, SFMs are finite in presence of
cosmological constant [12, 13] and have an interesting semi-
classical behavior that relates to General Relativity (GR) [14–
21]. Moreover, SFMs are well-behaved at curvature singular-
ities [22]. This enables us to study singularities in a concrete
quantum gravity model. The above properties make SFMs
stand out among lattice quantum gravity models.

The semiclassical consistency is one of the most crucial re-
quirements for a candidate quantum gravity theory. Recent
results show that SFMs give rise to discrete spacetime geome-
tries in a large spin limit (e.g. [14–16]). The discreteness of
the geometries is a consequence of the lattice dependence of
SFMs. If SFMs do indeed qualify as models of quantum grav-
ity, then there should also exist a continuum limit under which
smooth general relativity arises as an effective low energy the-
ory. The construction of such a limit has been a long standing
issue in SFMs [23–26].

In this paper, we show for the first time that smooth solu-
tions of 4-dimensional Einstein equation emerge from SFMs
under an appropriate semiclassical continuum limit (SCL).
The limit combines the large spin limit and lattice refinement
in a coherent manner; it also can be interpreted as a low energy
limit of SFMs. We focus on the perturbations of SFMs on a
flat background, and find the low energy excitations from the
SCL give all smooth solutions of linearized Einstein equation.
This work indicates that at the linearized level, classical Ein-
stein gravity can arise as a low energy effective theory from
SFMs.

This work can be also understood along the lines of the
emergent gravity program. An idea in this program is that
gravity, which is geometrical and smooth, might emerge as the
low energy excitations from fundamentally entangled qubits
(or generally qudits), which are algebraic and discrete [27–
32]. In this paper, we show that SFMs can be rewritten in
terms of spacetime tensor networks (TNs), whose fundamen-
tal degrees of freedom (DOFs) are entangled qudits at differ-
ent spacetime locations. Therefore, our results prove to be a
working example for the above idea.

The architecture and results of this paper are summarized
as follows: Section II reviews the definition of the SFM as a
state-sum, and its integral representation, which is useful in
the semiclassical analysis. In this section we relate SFM to
tensor networks whose fundamental degrees of freedom are
maximally entangled intertwiners.

Section III proposes a new treatment of the spin-sum in the
SFM, in which we applies the Poisson resummation to the
spin-sum and a regularization/deformation parametrized by
δ � 1. Several important roles played by δ is discussed in
this section.

Section IV points out that the deformation δ manifests the
higher curvature correction to Einstein gravity from SFM.
Section V reviews some key results in the large-J asymptotic
analysis of the SFM on simplicial complex, and sets up the
language for the following discussion. This section also con-
tains some new results which haven’t been in the literature:
in particular, the 1-to-1 correspondence in the Euclidean SFM
between a sector of large-J critical points to 4d simplicial ge-
ometries with orientations, and a cohomological argument for
lift ambiguities of critical points on simplicial complex.

Section VI sets up the scheme for our studies of perturba-
tions on the flat (discrete) spacetime, and shows that given
the background as a critical point corresponding to the simpli-
cial geometry with a global orientation, small perturbations in
SFM variables only reach critical points corresponding to per-
turbations of the background geometry with the same global
orientation.

Section VII derives equations of motion at the perturbative
level and identifies them as the Regge equation of discrete
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geometry and an upper bound of deficit angle by δ.
Section VIII defines the semiclassical continuum limit

(SCL) of SFMs. The SCL is defined with a sequence of re-
fined triangulations KN with the continuum limit N → ∞. A
sequence of SFMs are defined on the sequence KN and give
simplicial geometries as large-J critical points, All SFM quan-
tities, e.g. the spins J f = J f (N), the regulator δ = δ(N), the
critical points, etc, depend on N, and flow with N → ∞ in cer-
tain manner, which defines the SCL. The SCL relates the SFM
continuum limit to the continuum limit of Regge calculus.

Section IX applies the SCL to the SFM perturbations on the
flat geometry and finds the convergence to smooth solutions
of linearized Einstein equation. Demonstrating the conver-
gence employs the existing results of the continuum limit of
linearized Regge calculus in [33, 52], and the relation between
the SCL and Regge continuum limit.

Finally, Section X concludes and remarks on a few future
perspectives.

II. SPIN FOAM MODELS:

SFMs are defined over 4-dimensional (4d) simplicial tri-
angulations K , which are obtained by gluing 4-simplices σ
along their common tetrahedra τ quite similar to the gluing
of tetrahedra in 3d triangulation or triangles in 2d triangula-
tion. Thus a triangulation K consists of simplices σ, tetrahe-
dra τ (boundaries of σs), triangles f (boundaries of τs), edges
(boundaries of f s) and vertices. Our analysis focuses on K
adapted to a hypercubic lattice in R4 in such a way that each
hypercube is triangulated identically by 24 4-simplices (see
FIG.1(b)). The same triangulation has been employed in e.g.
[33, 34] to study perturbations on a flat background. Here K
is a finite lattice with boundary in a region of R4.

A SFM is obtained by associating a state sum,

Z(K) =
∑
~J,~i

∏
f

A f (J f )
∏
σ

Aσ(J f , iτ), (1)

to K and can be interpreted as the path integral of a triangu-
lated manifold (here R4). In the above state sum, each trian-
gle f is colored by an SU(2) representation J f ∈ Z+/2 and
each tetrahedron τ is colored by an SU(2) intertwiner (invari-
ant tensor) iτ. They are quantum numbers labelling histories
of LQG quantum geometry states, which are the intermediate
states of the path integral. J f , iτ can be related to the area of
f and the shape of τ in the semiclassical interpretation [35–
37]. The dynamics of the model is captured in the 4-simplex
amplitudes Aσ(J f , iτ) ∈ C associated to each σ. In particu-
lar, Aσ(J f , iτ) ∈ C describes the local transition between the
quantum geometry states labelled by {J f , iτ} for f , τ on the
boundary of σ. The weights of the spin sum A f (J f ) is the face
amplitudes.

The amplitudes Aσ(J f , iτ) depend linearly on the intertwin-
ers iτ and thus are rank-5 tensors on intertwiner spaces. The
4-simplices inK are glued by identifying a pair of τs in σ and
σ′. This implies that

∑
~i Aσ is equivalent to the inner products

between the tensors |Aσ〉 at all σs and the maximally entan-
gled states |τ〉 =

∑
iτ |iτ〉 ⊗ |iτ〉, where iτ are shared by pairs of

σs. This yields a spacetime tensor network (TN) (FIG.1(a))

TN(K , ~J) := ⊗τ〈τ| ⊗σ |Aσ(J f )〉. (2)

Note that the entangled intertwiners (the qudits) are the fun-
damental DOFs of the TN. Moreover the state sum Z(K)
can now be expressed in terms of these TN, that is, Z(K) =∑

~J TN(K , ~J)
∏

f A f (J f ). More details on SFM and TN are
given in Appendix A.

The following demonstrates that smooth Einstein solutions
can emerge from the fundamentally entangled intertwiners.
Thus it realizes the idea of emergent gravity from entangled
qubits. In order to show this, we employ the integral represen-
tation of Z(K) [15, 17, 38]:

Z(K) =
∑
~J

∏
f

A f (J f )
∫

[dX] e
∑

f J f F f [X]. (3)

Here F f is a function that only depends on a set of spinfoam
variables

X ≡ (g±στ, ξτ f ), (4)

which includes (g+
στ, g

−
στ) ∈Spin(4) at pairs of (σ, τ) with τ ⊂

σ, and ξe f ∈ CP
1 at pairs of (τ, f ) with f ⊂ τ. The details of

A f and F f depend on the specific SFM. A f is often chosen as
(2J f + 1)α f . Here for the purpose of large-J analysis, we set
A f as (2J f )α f .

Here, we focus on the Euclidean Engle-Pereira-Rovelli-
Livine/Freidel-Krasnov (EPRL/FK) model (γ < 1) [39, 40]
where

F f =
∑
σ, f⊂σ

[
(1 − γ) ln

〈
ξτ f

∣∣∣(g−στ)−1g−στ′
∣∣∣ξτ′ f 〉

+(1 + γ) ln
〈
ξτ f

∣∣∣(g+
στ)
−1g+

στ′

∣∣∣ξτ′ f 〉 ]
, (5)

but our results can be generalized to other SFMs, e.g., [18, 41,
42].
γ = p/q (p, q ∈ Z+). J ∈ qZ when p + q is odd J ∈ qZ), and

J ∈ qZ/2 when p + q is even. We assume even p + q in the
following computation. One may replace q → 2q to obtain
results for odd p + q.

The integrand in Eq.(3) is manifest periodic by F f ∼ F f +

4πi/q. So we set Im(F f ) ∈ [−2π/q, 2π/q]. It also has a dis-
crete symmetry g+

στ → ±g+
στ and independently g−στ → ±g−στ.

The transformation simultaneously shift F f → F f + πi(1 ± γ)
for all f ⊂ τ, and gives a factor e2πi

∑
f⊂τ J±f (J±f =

1±γ
2 J f ∈ Z/2).

This factor equals 1 because
∑

~J is constrainted by
∑

f⊂τ J±f ∈
Z: ∑

~J

=
∏
f ,τ,±

∑
J f ∈N/2

∑
n±τ ∈Z

δn±τ ,
∑

f⊂τ J±f

=
1

2Nτ

∏
f ,τ,±

∑
J f ∈N/2

∑
m±τ ∈0,1

e2πim±τ
∑

f⊂τ J±f . (6)

where Nτ is the number of τ ⊂ K . Although the integral
vanishes for ~J violating this constraint, it is useful to explicitly
impose this constraint to

∑
~J for the purpose of asymptotic

analysis of the integral.
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Gluing many 4-simplices: spacetime foam

Spin Foam Amplitude in LQG: spins
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FIG. 1: (a) The 5-valent vertex in a 4-simplex illustrates a rank-
5 tensor |Aσ〉. Gluing 4-simplices σ in K gives a tensor network
TN(K , ~J), where each link associates to a maximally entangled state
of a pair of iτs. (b) A triangulation of the hypercube. The 4d hyper-
cubic lattice with the triangulated hypercube makes K . (c) An illus-
tration of the neighborhood N (the region bounded by blue dashed
lines) in the space of ~J. The red curve illustrates MRegge, including
~J(`) as the perturbation of ~J( ˚̀). The black and blue arrows are basis
vectors êi(`) and ∂ ~J(`)/∂`, transverse and tangent to MRegge.

III. SPIN SUM AND REGULARIZATION:

LQG predicts that the geometrical areas are fundamentally
discrete at the Planck scale. The area spectrum [35, 36] re-
lates to the spins via a f = γ

√
J f (J f + 1)`2

P, where γ ∈ R is
the Barbero-Immirzi parameter and `2

P ≡ 8πGN~. Since the
semiclassical area a f � `2

P implies J f � 1, the semiclassical
analysis of SFMs is build on uniformly large (but finite) spins
J f = λ j f where λ � 1 is the typical value of the spins.

For the following argument, it is important to note that
small perturbations J̊ + δJ of a given background spins J̊ ∼
λ � 1 will still be inside this large-J regime. Moreover, the
sum

∑
~J can be replaced through an integral by Poisson re-

summation formula. by Eq.(6),

Z(K) =
∑

k f ,m±τ ∈Z/∼

2N f−Nτ

qN f

∫ ∞

0
[dJ]

∫
[dX]

∏
f

A f (J f ) e
∑

f J f

(
F f [X]+4πi

k f
q +πi

∑
± m±τ

q±p
q

)
, (7)

where N f denotes the number of internal f s in K . 4πi k f

q +

2πi
∑
±m±τ

q±p
q in the exponent and

∑
k f ,mτ

manifest the pe-
riodicity of the integrand discussed above.

∑
k f ,mτ∈Z/∼ sums

k f ,m f ∈ Z modulo an equivalence because the exponent has
gauge transformations

{
k f

}
f⊂τ
→

k f +
∑
±

(q ± p)
M±τ
2


f⊂τ

, m±τ → m±τ − 2M±τ , (8)

where Mτ ∈ Z and q ± p are even numbers. Note that in
Eq.(7) we only focus on the terms from internal f and neglect
the boundary terms, since they do not involve in most of the
following analysis.

Eq.(7) treats Js as continuous variables. From previous
results e.g. [15, 17, 38] follows that there is a subspace of
large ~J ∈ RN f that determine classical triangle areas. These
spin conigurations are called Regge-like and satisfy the trian-

gle area-length relation

γJ f (`) =
1
4

√
2(`2

i j`
2
jk + `2

ik`
2
jk + `2

i j`
2
ik) − `4

i j − `
4
ik − `

4
jk. (9)

The right-hand side determines the area a f (`)/`2
P of the trian-

gle f in terms of `i j, `ik, ` jk being the lengths (in `P unit) of
3 edges of a triangle. Since there are less edges than trian-
gles in the bulk of K , Regge-like spins form a proper subset
and Eq.(9) defines an embedding map RN` ↪→ RN f . N` is the
number of internal edges in K .

Here, we want to consider perturbations on a flat (triangu-
lated) hypercubic lattice with constant spacing (γλ)1/2 (in `P

unit), which fixes all edge lengths ˚̀ in K , e.g. (γλ)−1/2 ˚̀ =

1,
√

2,
√

3, 2 for the cube edges, face diagonals, body diag-
onals, and hyperbody diagonals. These edge-lengths in turn

determine the Regge-like spins ~̊J = ~J( ˚̀) by Eq.(9). The flat
triangulated hypercubic lattice geometry is a large-J critical
point of the SFM and determines the critical data X̊. In this
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paper, we focus on the perturbations

(J, X) = (J̊ + δJ, X̊ + δX). (10)

When J̊ ∼ λ � 1, J̊ + δJ are also large. The perturbations
restricts us in the large-J regime of Z(K). By considering
perturbations of the flat geometry, we would like to extract so-
lutions of equations of motion from SFM, and find their con-
tinuum limit to give the smooth linearized Einstein gravity.

For the study of perturbations around ~̊J, it is sufficient to

consider a neighborhood N ⊂ RN f of ~̊J. N is constructed
as follows: Firstly, smooth perturbations ` = ˚̀ + δ` and the
embedding Eq.(9) define a submanifold MRegge ⊂ R

N f of di-
mension N`. We choose êi (i = 1, · · · ,N f − N`) basis vectors
transverse to MRegge. All

~J = ~J(`) +
∑
i=1

tiêi (11)

defines N , with ~J(`) ∈ MRegge and ti ∈ R. (`, ti) form a
local coordinate system in N (see FIG.1(c)). Js with ti , 0

is called non-Regge-like. êi can be chosen as constant vectors
transverse to MRegge since we focus on a neighborhood at ˚̀ ∈
MRegge (the space of ~J is a flat space RN f ). For instance, we
can choose êi to be vectors normal to MRegge at ˚̀, and extend
every êi to a constant vector field trivially by parallel transport
in RN f . êi are transverse to MRegge in a neighborhood of ˚̀.

The integral over ~J can now be split into transverse and
Regge-like part as well. That is,

∫
d ~J =

∫
[d`dt]J(`), where

the Jacobian J(`) = |∂ ~J(`)/∂`, êi|. J(`) only depends on `
because êi are constant vectors. We regularize the transverse
integral

∫ ∞
−∞

ti by inserting a Gaussian factor parametrized by
0 < δ � 1:∫

d ~J =

∫
[d`dt]J(`)→

∫
[d`]J(`)

∫
[dt] e−

δ
4
∑

i t2
i . (12)

The t-integral has a lower bound since J ∈ [0,∞). But ex-
tending the t-integral to −∞ only add a negligible contribution
when J̊ is large.

Inserting Eq.(12) to Z(K) defines

Zδ(K) :=
2N f−Nt

qN f

∑
k f ,m±τ ∈Z/∼

∫ ∞

0
[d`]J(`)

∫
[dXdt] e−

δ
4
∑

i t2
i

∏
f

A f (J f ) e
∑

f J f

(
F f [X]+4πi

k f
q +πi

∑
± m±τ

q±p
q

)
, (13)

where we can interchange
∫

[dX] and
∫

[dt] since
∫

[dX] is
over a compact space and e−

δ
4
∑

i t2
i decays at infinity.

The regulator δ plays a key role in our work. The following
explains several roles played by this regularization:

• Inserting the Gaussian modifies the sum over spins

∑∞
J f =0 along certain direction in the space of spins. In-

deed if we perform the Poisson resummation backward
after inserting the Gaussian in Eq.(7), using the relation∑

k∈Z e2πikx =
∑

n∈Z δ(x − n) recovering J ∈ Z/2 and∑
f⊂τ J± ∈ Z from continuous J in Eq.(7),

Zδ(K) =
2N f−Nτ

qN f

∫
[d`]J(`)

∫
[dXdt] e−

δ
4
∑

i t2
i

∏
f

A f (J f ) e
∑

f J f F f [X]

×
∏

f

∑
n f ∈Z

δ
(
2J f /q − n f

)∏
τ,±

∑
n±τ ∈Z

δn±τ ,
∑

f⊂τ J±f (14)

It is clear that Zδ(K) modifies Z(K) by damping down
spins with large t (far away from MRegge transversely).
Integrating delta functions in Eq.(14) then sending δ→
0 reduces Zδ(K) to Z(K) (comparing to Eq.(6)). The
Gaussian with small δ is a “smooth cut-off” of large
spins (in the direction transverse to MRegge).

• Zδ(K) is a 1-parameter deformation from Z(K), and
δ is a parameter deciding how many non-Regge-like
Js are contributing Zδ(K). From δ = 0 to δ → ∞,

Zδ(K) has less and less non-Regge-like contribution.
δ → ∞ removes all non-Regge-like contribution from
Z(K). However in the following discussion, we focus
on small δ and send δ→ 0 in the end. Namely we only
ignore spins very far away from MRegge and J̊ (at dis-
crete level), which is qualified because we study pertur-
bative effects around J̊, as will be clarified in a moment.

• Although Zδ(K) , Z(K) at the discrete level, they may
have the same continuum limit if we turn off the regula-
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tor δ→ 0 together with refining the latticeK , as we will
do in the following. Eventually the theory of spinfoams
should be defined in the continuum limit to remove the
triangulation dependence. All physical quantities com-
puted in the continuum limit will not depend on δ.

• As we see in a moment, another important role played
by δ � 1 is to make deficit angles ε f of emergent Regge
geometries to be small but nonzero, as a resolution of
the “flatness problem” in SFM [21, 43–45]. The de-
tailed discussion is given momentarily below Eq.(70).

• It is discussed shortly below that δ reveals the high
curvature corrections to Einstein gravity derived from
SFM. It is demonstrated in Eq.(16) and explained
shortly below. It is closely related to [46]. δ ∈ [0,∞)
is essentially a parameter interpolating from SFMs to
quantum Regge calculus.

• Note that inserting the Gaussian with δ may not make
the SFM finite, since the domain of

∫ ∞
0 [d`] still contains

the orbits of the vertex translation group (zero modes in
a Hessian matrix in Section VIII B). This orbit is non-
compact and not restricted by δ.

IV. HIGHER CURVATURE CORRECTION

We compute the term in Zδ(K) at k f = mτ = 0 (all
other terms can be obtained by shifting F f → F f + 4πi k f

q +

πi
∑
± m±τ

q±p
q ):∫

[d`dX] J(`)
∫

[dt] e−
δ
4
∑

i t2
i

×
∏

f

A f

J f (`) +
∑
i=1

tiêi
f

 e
∑

f

[
J f (`)+

∑
i=1 ti êi

f

]
F f [X] (15)

The ti-integral in Z(K) is a Gaussian integral and yields∫
[d`dX] eλ

〈
~j(`), ~F[X]

〉
Dδ(`, X), Dδ = e

∑M
i=1

1
δ 〈ê

i, ~F[X]〉2J ′ (16)

where J ′ = ( 4π
δ

)MJ(`)
∏

f A f (J f (`) + 2
δ

∑
i êi

f 〈ê
i, ~F[X]〉).

Here, ~F = {F f } f is treated as a complex N f -dimensional vec-
tor, and 〈·, ·〉 denotes the Euclidean inner product. Further-
more, we have ignored the boundary terms in the exponent
because they are unimportant in the main discussion.

We can combine the exponent of Dδ and define an effective
action S e f f write Eq.(16) as∫

[d`dX] eS e f f [`,X]J ′[`, X], where

S e f f = λ

〈~j(`), ~F[X]
〉

+
1
λδ

M∑
i=1

〈êi, ~F[X]〉2
 . (17)

where we have written J f = λ j f (λ � 1 is the typical value of
J̊ over K).

In the SFM large-J asymptotics, F f = iγε f at a subclass
of geometrical large-J critical points of the integral (see e.g
[17] and Sections V B and V C), where ε f is the deficit angle
in Regge geometry. Therefore in S e f f , (δλ)−1 is a coupling
constant for a ε2

f correction, while the first term in S e f f re-
duces to the Regge action at the critical point. The details
of this argument is given in the following sections. ε2

f term
corresponds to higher curvature corrections in Regge calculus
[47], although here the ε2

f term is likely nonlocal due to the
appearance of êi.

The above argument is obvious perturbative, because treat-
ing the second term in Eq.(17) nonperturbatively modifies the
critical equation and critical points in the large-J asymptotics.
This term contains corrections from SFM degrees of freedom
X other than ε2

f . However in this paper, we still treat this term
perturbatively, i.e. we consider the regime

λ � δ−1 � 1. (18)

which makes the coupling constant (λδ)−1 small. All non-ε2
f -

corrections are restored in the perturbative expansion in the
coupling constant. The nonperturbative study of S e f f beyond
the above regime will be reported in the future. Note that
given any arbitrarily small δ , 0, the above regime always
exists because J f is summed toward infinity.

Recall that 1
δ

∑M
i=1〈ê

i, ~F[X]〉2 in S e f f comes from the t-
integral which are contributions from non-Regge-like Js.
Treating this correction term perturbatively in S e f f means
that we treat the contribution from non-Regg-like Js perturba-
tively. It reflects our proposal mentioned above that we focus
on perturbations at J̊.

Zδ(K) has the following gauge symmetry:

• Continuous: The following transformation leave all
F f (X) invariant: (1) A diagonal Spin(4) action at σ,
g±στ → h±σg±στ for all τ ⊂ σ by (h+

σ, h
−
σ); (2) At an in-

ternal τ, |ξτ f 〉 → hτ|ξτ f 〉 and g±στ → g±στh
−1
τ for all σ

having τ at boundaries; and (3) |ξτ f 〉 → eiθτ f |ξτ f 〉 at any
internal |ξτ f 〉.

• Discrete: g+
στ → ±g+

στ and independently g−στ → ±g−στ
shift F f → F f + πi(1± γ) for all f ⊂ τ. Simultaneously
m±τ → m±τ − 1 leaves the integrand invariant.

V. CRITICAL EQUATIONS AND GEOMETRICAL
CORRESPONDENCE

Since the exponent in Eq.(16) scales linearly in λ, we can
apply the stationary phase method to Eq.(16). As long as the
exponent in Dδ is subleading, we can directly take over the
result in [15, 17, 38]. In the regime of Eq.(18), the dominant
contributions of Eq.(16) come from the critical points (`c, Xc),
i.e. the solutions of the critical equations ReS = δXS = δ`S =

0, of S = 〈~j, ~F〉.
We firstly discuss the subset of critical equations ReS =

δXS = 0, and postpone discussion of the other critical equa-
tion δ`S = 0 to Section VII. ReS = δXS = 0 have been stud-
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ied extensively in the spinfoam asymptotic analysis on sim-
plicial complexes with fixed J f e.g. [15–17, 59]. Subsections
V A reviews some key results useful in our derivation, while
some details is provided in Subsections V B and V C.

A. Classification of solutions to ReS = δXS = 0

Recall Eq.(4), δXS = 0 includes δg±στS = δξτ f S = 0. But
δξτ f S = 0 is implied by ReS = 0 so doesn’t give a new con-
straint [17]. These critical equations are equivalent to the fol-
lowing equations:

ĝ±στn̂τ f = ĝ±στ′ n̂τ′ f ,
∑
f⊂τ

j f ετ f (σ)n̂τ f = 0 (19)

where ĝ±στ ∈ SO(3) is the 3-dimensional representation of g±στ,
and n̂τ f = 〈ξτ f |~σ|ξτ f 〉 is a unit 3-vector (~σ are Pauli matri-
ces). ετ f = ±1 satisfying ετ f (σ) = −ετ′ f (σ) (τ ∩ τ′ = f ) and
ετ f (σ) = −ετ f (σ′) (σ ∩ σ′ = τ). We denote a solution to
above equations by

Xc ≡ (g±στ, ξτ f )c modulo gauge (20)

Note that j f enters as a parameter in these critical equations.
A bad choice of j f may not lead to any solution. But in our
case Eq.(16), j f = j f (`) implies solutions always exist.

At j f = j f (`), there is a subclass G of solutions Xc which
can be interpreted as nondegenerate simplicial geometries on
K . A useful quantity classifying solutions is sgn(Vσ) where
Vσ is the oriented 4-volume

sgn(Vσ) = sgn [det (N1(σ),N2(σ),N3(σ),N4(σ))] , (21)

where Nτ(σ) is the 4d normal of tetrahedron τ ⊂ σ outward
pointing from σ. Nτ(σ) is computed by N0

τ (σ)1 + iN i
τ(σ)σi =

g−στ(g
+
στ)
−1 (σi are Pauli matrices). The subclass G is defined

as solutions with sgn(Vσ) , 0.
Eq.(19) obviously has a Z2 symmetry: n̂τ f → −n̂τ f (ξτ f →

Jξτ f ) globally on the entire K . K triangulates a region in R4

and has boundary, this symmetry is broken by the boundary
condition which fixes ξτ f at boundary.

The following 1-to-1 correspondence is valid within the
subclass G (see Subsection V B for a proof, and see [59] for a
proof in Lorentzian signature):

Solutions Xc ∈ G

l

4d nondegenerate simplicial geometry on K
and 4-simplex orientations (22)

Xcs reconstruct a nondegenerate simplicial geometries on K
made by geometrical 4-simplices at all σ, while every pair
of 4-simplices are glued by sharing a geometrical tetrahe-
dron. Simplicial geometries are parametrized by edge lengths.
Some solutions give precisely the simplicial geometry ` in
j(`), although some other solutions may give different ge-
ometries. But all geometries have the same set of areas

a f = γλ j f (`)`2
P. ξτ f in the solution data give tetrahedron face

normals n̂τ f of the simplicial geometry.
A simple way to see the appearance of 4-simplex orien-

tations in the above equivalence is that the geometrical data
(edge lengths) are invariant under local orthogonal O(4) trans-
formations in σ. Discrete O(4) transformations (parity trans-
formations) acting on the geometry can leads to different Xc’s
since Xc is only Spin(4) invariant.

The local parity P in O(4) leads to the “cosine problem”
in SFM [38]. Any Xc ∈ G gives (g+

στ, g
−
στ) in every σ with

g+
στ , g−στ. A party transformation at a σ flips g+

στ, g
−
στ and

leaves ξτ f invariant:

Pσ : (g+
στ, g

−
στ)→ (g−στ, g

+
στ) (23)

and maps Xc to another solution X̃c ∈ G corresponding to the
same simplicial geometry. Xc, X̃c give opposite 4-orientations
to 4-simplex σ, since P flips the 4-orientation. Local parities
gives all orientations in Eq.(22) on K . sgn(Vσ) characterizes
the 4d orientation. Pσ gives the parity refection of Nτ(σ), thus
flips sgn(Vσ). sgn(Vσ) in general not equals to sgn(V ′σ) for
σ , σ′.

The above shows that a solution with (g+
στ, g

−
στ) and ξτ f as-

sociates another solution (g−στ, g
+
στ) with the same ξτ f for the

same nondegenerate simplicial geometry. But it is easy to see
that (g+

στ, g
+
στ) and (g−στ, g

−
στ) with the same ξτ f are also solu-

tions of Eq.(19). (g+
στ, g

+
στ) and (g−στ, g

−
στ) have sgn(Vσ) = 0 so

do not belong to the subclass G , and are called BF-type solu-
tions, since they also appears in the asymptotics of SU(2) BF
theory.

Another subclass of solution are called vector geometries,
which happens when Eq.(19) has only a single solution with
(gστ, gστ) in a σ with some ξτ f . The vector geometry cor-
responds to a degenerate 4-simplex, and has sgn(Vσ) = 0.
Generally speaking, critical equations with j(`) (` is a nonde-
generate simplicial geometry) may still have vector geometry
solutions.

The subclass G of geometrical solutions satisfying Eq.(22),
BF-type solutions, and vector geometry solutions completely
classifies all solutions to Eq.(19) on K [17, 38], assuming ξτ f
(internal and at boundary) do not give degenerate tetrahedra.
Solutions to Eq.(19) with degenerate tetrahedra have not been
studied in the literature. Given a generic solution,K may need
to be divided into regions, such that the solution data restricted
into every region are of a single type [16, 17].

B. Geometrical Correspondence of Critical Solutions

The following presents a proof of Eq.(22) of the geomet-
rical correspondence of critical solutions. In this subsection
and subsection V C, we assume K is a generic simplicial
complex with or without boundary. The discussions are
valid for the triangulation in FIG.1(b), and are also valid for
arbitrary triangulations.

1. Reconstructing individual 4-simplices: Given a solution
(g±στ, ξτ f )c (modulo gauge) to Eq.(19) with ~J(`). We firstly
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construct five 4-vectors Nτ(σ) at every σ by

N0
τ (σ)1 + iN i

τ(σ)σi = g−στ(g
+
στ)
−1, (24)

where σi are Pauli matrices.

Definition V.1. A subclass G collects solutions (g±στ, ξτ f )c sat-
isfying

sgn [det (N1(σ),N2(σ),N3(σ),N4(σ))] , 0. (25)

for all τ = 1, 2, 3, 4 out of 5.

Note that due to gauge equivalence g±στ ∼ κ
±
στh

±
σg±στ (κ±στ =

±1, (h+
σ, h

−
σ) ∈ Spin(4)) of Zδ(K), five Nτ(σ)s at σ are defined

up to individual ± and a global SO(4) rotation.
We focus on solutions in the subclass G . We construct at

every σ 20 bivectors

Xτ f (σ) = (~X+
τ f ,

~X−τ f ) = γJ f (ĝ+
στn̂τ f , ĝ−στn̂τ f ), (26)

where ĝ±στ ∈ SO(3) are 3-dimensional representations of g±στ.
~X±τ f are self-dual and anti-self-dual parts: X±i = ±X0i +
1
2ε

i
jkX jk.

Any 3 out of 4 n̂τ f at every τ is assumed to span a 3d space.
In other words, it assumes that the tetrahedra reconstructed
from the second equation in Eq.(19) are all nondegenerate and

tr
(
Xτ f1 [Xτ f2 , Xτ f3 ]

)
(σ) , 0, ∀ τ. (27)

Critical equations (19) implies the following properties of
Xτ f (σ): (1) Xτ f (σ)∧Xτ f (σ) = 0, (2) Nτ(σ) ·Xτ f (σ) = 0 for all
f ⊂ τ, (3) Xτ f (σ) = Xτ′ f (σ) ≡ X f (σ) for all pairs of τ, τ′ ⊂ σ
with τ∩ τ′ = f , and (4)

∑
f⊂τ ετ f (σ)Xτ f (σ) = 0. ετ f = ±1 sat-

isfying ετ f (σ) = −ετ′ f (σ) (τ ∩ τ′ = f ) and ετ f (σ) = −ετ f (σ′)
(σ ∩ σ′ = τ). ετ f (σ) is defined up a global sign on the entire
K .

By Eqs.(25) and (27) and properties (1-4) of Xτ f (σ), the
solution (g±στ, ξτ f )c (modulo gauge) reconstructs a unique 4-
simplex geometry whose triangle areas are γJ f `

2
P on every

σ ⊂ K [38]. Here each 4-simplex geometry is labelled by
10 edge lengths. Every geometrical 4-simplex gives 4d out-
ward pointing normals Uτ(σ) to 5 boundary tetrahedra, such
that Uτ(σ) satisfy a 4d closure condition and relate to the ori-
ented 4-simplex volume∑

τ⊂σ

Uτ(σ) = 0,
1

Vσ
= det (U1,U2,U3,U4) (σ) (28)

The nondegeneracy Vσ , 0 by Definition V.1. Vσ relies on
a consistent choice of ordering 4-simplex vertices (there is a
1-to-1 correspondence between vertices and tetrahedra in a
4-simplex), e.g. if σ = [1, 2, 3, 4, 5] with τ = [1, 2, 3, 4], a
neighboring 4-simplex sharing τ has to beσ′ = −[1, 2, 3, 4, 5′]
inducing an opposite ordering to τ.

Geometrical 4d unit normals Ûτ(σ) = Uτ(σ)/|Uτ(σ)| are
determined by the geometry up to global O(4) rotations at σ.
Relating to Nτ(σ) by Ûτ(σ) = ±Nτ(σ) reduces the ambiguity
to global SO(4) rotations. There is also a gauge transforma-
tion on g±στ to set Ûτ(σ) = Nτ(σ).

On the other hand, every geometrical 4-simplex give 20
bivectors Bτ f (σ) by

Bτ f (σ) = γJ f ∗
Ûτ(σ) ∧ Ûτ′ (σ)
|Ûτ(σ) ∧ Ûτ′ (σ)|

(29)

=
1
2
|Vσ| ∗ Uτ(σ) ∧ Uτ′ (σ).

The norm of a bivector X is |X| =
√

1
2 XIJ XIJ . Bτ f (σ) relates

to “spinfoam bivectors” Xτ f (σ) by1

ετ f (σ)X f (σ) = µ(σ)Bτ f (σ)

=
1
2
ε(σ) Vσ ∗ Uτ(σ) ∧ Uτ′ (σ), (30)

where

ε(σ) = µ(σ)sgn(Vσ) = ±1. (31)

µ(σ) = 1 or −1 relates to that ετ f (σ)n̂τ f are outward or inward
pointing 3d face normals in all τ ⊂ σ.

2. Gluing 4-simplices: Given neighboring σ,σ′ sharing τ,
Eq.(26) implies X f (σ) = (g+

σσ′ , g
−
σσ′ ) · X f (σ′) with g±σσ′ =

g±στg
±
σ′τ
−1. Then Eq.(30) and ετ f (σ) = −ετ f (σ′) implies

Bτ f (σ) = −µ(σ)µ(σ′)(g+
σσ′ , g

−
σσ′ ) · Bτ f (σ′). (32)

Bτ f (σ) =
(
ĝ+
στ
~bτ f (σ), ĝ−στ~bτ f (σ)

)
where ~bτ f (σ) is the geomet-

rical face normals of τ from the 4-simplex geometry on σ.
~bτ f (σ) satisfies the closure

∑
f⊂τ

~bτ f (σ) = 0 Eq.(32) implies

~bτ f (σ) = −µ(σ)µ(σ′)~bτ f (σ′), (33)

where the sign difference is independent of f . So tetrahedron
geometries (labelled by edge lengths) from ~bτ f (σ) and ~bτ f (σ′)
coincide. Therefore 4-simplex geometries on σ,σ′ are glued
with their induced tetrahedron geometries on τ matching in
shape. By gluing many 4-simplices to build K , the above
shows that the solution (g±στ, ξτ f )c reconstructs a unique sim-
plicial geometry labelled by edge lengths.

Lemma V.1. ε(σ) = ε(σ′) = ε for all σ,σ′ ⊂ K , i.e. ε is a
global sign on the entire K .

Proof: Eq.(24) implies that Nτ(σ) = (g+
σσ′ , g

−
σσ′ ) · Nτ(σ′)

for τ shared by σ,σ′, and implies

Ûτ(σ) = sσσ′ (g+
σσ′ , g

−
σσ′ ) · Ûτ(σ′), sσσ′ = ±1 (34)

where sσσ′ comes from the sign gauge ambiguity relating Ûτ

and Nτ. Moreover by X f (σ) = (g+
σσ′ , g

−
σσ′ ) · X f (σ′),

ετ f (σ)X f (σ) =
1
2
ε(σ) Vσ ∗ Uτ(σ) ∧ Uτ1 (σ)

= −
1
2
ε(σ′) Vσ′ ∗ U′τ(σ) ∧ U′τ′1 (σ), (35)

1 Here ετ f (σ)X f (σ), Bτ f (σ) and µ(σ) corresponds to Bab, Bab(σ) and µ in
Barrett et al [38].
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where U′τ(σ) = (g+
σσ′ , g

−
σσ′ ) · Uτ(σ′). Since U′τ(σ) ∝ Uτ(σ),

U′
τ′1

(σ) is a linear combination of Uτ(σ),Uτ1 (σ). Explicitly

U′τ′1 (σ) = −sσσ
ε(σ) |Uτ(σ)|Vσ

ε(σ′) |Uτ(σ′)|Vσ′
Uτ1 (σ) + a1Uτ(σ). (36)

Vσ,Vσ′ are given by

V−1
σ = det

(
Uτ1 ,Uτ2 ,Uτ3 ,Uτ4

)
(σ)

V−1
σ′ = − det

(
U′τ′1 ,U

′
τ′2
,U′τ′3 ,U

′
τ′4

)
(σ) (37)

since det of Us is invariant under SO(4) rotations. The mi-
nus sign comes from the ordering σ = [1, 2, 3, 4, 5] and
σ′ = −[1, 2, 3, 4, 5′]. Eq.(36) is also valid to U′

τ′2
,U′

τ′3
,U′

τ′4
.

Because
∑
τ′ U′τ′ = 0,

V−1
σ′ = − det

(
U′τ,U

′
τ′1
,U′τ′2 ,U

′
τ′3

)
(σ) (38)

=
ε(σ)
ε(σ′)

(
|Uτ(σ)|Vσ

|Uτ(σ′)|Vσ′

)2

V−1
σ′ (39)

which implies ε(σ) = ε(σ′) and |Uτ(σ)|Vσ = ±|Uτ(σ′)|Vσ′ .
�

The appearance of global sign ambiguity ε comes from
critical equation Eq.(19) is invariant under a global refection
n̂τ f → −n̂τ f or ξτ f → Jξτ f on the entire K (named “global
J-parity” in [59]). But this invariance is broken when K has
a boundary where some n̂τ f s are fixed by the boundary condi-
tion. In this case, we can set e.g. ε = 1 by redefining ετ f (σ)
globally. If K has no boundary, ε = ±1 corresponds to 2
different solutions related by this global refection of n̂τ f .

When ε(σ) = ε = 1, Eq.(31) gives

µ(σ) = sgn(Vσ). (40)

The above proves the forward direction in the correspon-
dence Eq.(22):

Theorem V.2. Given any solution (g±στ, ξτ f )c ∈ G (modulo
gauge) to critical equations (19), it reconstructs uniquely a
nondegenerate simplicial geometry labelled by edge lengths
on K , and determines all 4-simplex orientations sgn(Vσ) =

±1, which is not constant in general. The solution also give a
global sign ε = 1 or −1 when ∂K = ∅.

The reconstruction defines a map

C : G → the space of (`, sgn(Vσ), ε), (41)

where ` labels a simplicial geometry on K , and sgn(Vσ)
labels the 4-simplex orientation. The following discusses the
injectivity and surjectivity of C.

3. Injectivity and surjectivity of C: Given data (`, sgn(Vσ), ε)
where ` is a nondegenerate simplicial geometry on K with
edge lengths ` and triangle areas γJ f (`), sgn(Vσ) are orien-
tations at all σs, and ε is a global sign (ε = −1 when K
has boundary), we suppose that (`, sgn(Vσ), ε) can be recon-
structed by 2 different solutions (g±στ, ξτ f )c, (g′±στ, ξ

′
τ f )c ∈ G .

(`, sgn(Vσ), ε) determines 4d unit normals Uτ(σ) outward
pointing from every σ, up to global SO(4) rotations at σ by
Eq.(28). We set Ûτ(σ) = Nτ(σ) = ĜστN where Ĝστ ∈ SO(4)
and N = (1, 0, 0, 0). Individual Ĝστs are fixed by this relation
up SO(3) rotations leavingN invariant. Up to this SO(3), Ĝστ

is the 4-dimensional representation of both g±στ and g′±στ up
to gauge freedom. Ûτ(σ) = Nτ(σ) fixes the discrete gauge
freedom of g±στ up to g±στ → κστg±στ, κστ = ±1 leaving Nτ(σ)
invariant.

The geometrical bivectors Bτ f (σ) given by Uτ(σ) in
Eq.(29) and acted by Ĝ−1

στ gives a bivector orthogonal to N :

Ĝ−1
στBτ f (σ) =

(
~bτ f (σ), ~bτ f (σ)

)
,

∣∣∣∣~b±τ f (σ)
∣∣∣∣ = γJ f (`) (42)

A set of 4 3d vectors ~bτ f (σ) and ~bτ f (σ′) are related by an
SO(3) rotation leaving N invariant, because both of them are
face normals of a geometrical tetrahedron shared by σ,σ′. So
we can implement this SO(3) rotation to Ĝστ or Ĝσ′τ to make

~bτ f (σ) = ±~bτ f (σ′). (43)

This reduces ambiguities of Ĝστ and Ĝσ′τ from SO(3)×SO(3)
to SO(3): Ĝστ, ~bτ f (σ) ∼ Ĝστĥτ, ĥ−1

τ
~bτ f (σ) where ĥτ ∈ SO(3)

independent of σ.

Lemma V.3. ~bτ f (σ) = −sgn(Vσ) sgn(Vσ′ )~bτ f (σ′) is implied
by (`, sgn(Vσ), ε).

Proof: Ĝ−1
στBτ fi (σ) = ∗N∧~bτ fi (σ) so Ĝ−1

στÛi ∝ ~bτ fi (σ)+αiN

for τi=1,2,3,4 ⊂ σ sharing fi with τ. Eq.(28) implies that
Ûτ, sgn(Vσ)Û1, sgn(Vσ)Û2, sgn(Vσ)Û3 form a right-hand
frame at σ. Rotating by Ĝστ ∈ SO(4) implies that

N , sgn(Vσ)~bτ f1 (σ), sgn(Vσ)~bτ f2 (σ), sgn(Vσ)~bτ f3 (σ) (44)

form a right-hand frame. By Eqs.(37) and (38), from σ′ we
obtain the right-hand frame

N , −sgn(Vσ′ )~bτ f1 (σ′), −sgn(Vσ′ )~bτ f2 (σ′), −sgn(Vσ′ )~bτ f3 (σ′).

By Eq.(43) and comparing to (44), we obtain

sgn(Vσ)~bτ f (σ) = −sgn(Vσ′ )~bτ f (σ′). (45)

�

Lemma V.3 is consistent with Eq.(30) which implies

ε sgn(Vσ) ετ f (σ)~bτ f (σ) = γJ f (`) n̂τ f (46)

since Ĝστ is the 4-dimensional representation of g±στ or g′±στ.
It determines n̂τ f up to ĥτ ∈ SO(3).

As a result, (`, sgn(Vσ), ε) determines (Ĝστ, n̂τ f ) up to
gauge freedom (Ĝστ, n̂τ f ) ∼ (ĥσĜστĥτ, ĥ−1

τ n̂τ f ) with ĥσ ∈
SO(4) and ĥτ ∈ SO(3). Therefore modulo the gauge free-
dom, g±στ and g′±στ are 2 different lifts from Ĝστ ∈ SO(4) to
Spin(4), thus g±στ = κστg′±στ, κστ = ±1. But g±στ → κστg±στ
is a discrete gauge transformation of the SFM. Moreover n̂τ f
determines that ξτ f = eiθτ f ξ′τ f , while ξτ f → eiθτ f ξτ f is again a
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gauge transformation for internal ξτ f , and the phase ambiguity
of ξτ f at boundary is fixed in any boundary condition. There-
fore (g±στ, ξτ f )c = (g′±στ, ξ

′
τ f )c modulo continuous and discrete

gauge transformations. Nondegeneracy of the simplicial ge-
ometry ` implies that (g±στ, ξτ f )c ∈ G .

The above proves that the map C is injective. It also
proves C is surjective because we start from arbitrary data
(`, sgn(Vσ), ε) and recover a solution (g±στ, ξτ f )c ∈ G .

Theorem V.4. The map C relating solutions (g±στ, ξτ f )c ∈

G to nondegenerate simplicial geometries and orientations
(`, sgn(Vσ), ε) is a bijection.

C. Deficit Angles

Given a critical solution Xc ≡ (g±στ, ξτ f )c ∈ G correspond-
ing to (`, sgn(Vσ), ε) with sgn(Vσ) = 1 at all σ and ε = 1, F f
evaluated at Xc gives [15, 17, 21],

F f [Xc] = i
(
Φ+

f + Φ−f

)
+ iγ

(
Φ+

f − Φ−f

)
, γ = p/q (47)

where p/q ∈ Z+ and p + q is an even number.

Φ±f =
∑
σ, f⊂σ

φ±τστ′ ,

iφ±τστ′ = ln
〈
ξτ f

∣∣∣(g±στ)−1g±στ′
∣∣∣ξτ′ f 〉 ∣∣∣∣

Xc
∈ iR (48)

Recall that the integrand in Zδ(K) depends on F f through
F f + 4πik f /q + πi

∑
± mτ

q±p
q , and Zδ(K) sums k f ,mτ ∈ Z. The

integrand in Zδ(K) is invariant under the following shifts:

Φ+
f + Φ−f → Φ+

f + Φ−f + 4π, or Φ+
f − Φ−f → Φ+

f − Φ−f + 4π,
and k f → k f − q, or k f → k f − p (49)

and

Φ+
f + Φ−f → Φ+

f + Φ−f + 2π, and Φ+
f − Φ−f → Φ+

f − Φ−f + 2π,
and k f → k f − (q + p)/2. (50)

The above gauge invariance allows us to fix the following
range of angles:

Φ+
f + Φ−f ∈ [−2π, 2π], Φ+

f − Φ−f ∈ [−π, π]. (51)

At Xc, φ±τστ′ relates to the 4d dihedral angle θ f (σ) between
the two tetrahedra τ and τ′ within σ.: [38]

φ+
τστ′ − φ

−
τστ′ = π − θ f (σ) ∈ [0, π]. (52)

We define n f to be the number of σ sharing an internal f . n f
is always even for the triangulationK adapted to a hypercubic
lattice (see Appendix C). Then shifting by multiples of 2π and
4π gives

Φ+
f − Φ−f = n fπ −

∑
σ, f⊂σ

θ f (σ) − 4πu − 2πv

= 2π −
∑
σ, f⊂σ

θ f (σ) = ε f (53)

ε

FIG. 2: The deficit angle ε in a 2d discrete surface hinged by a point.
ε , 0 demonstrates that summing the angles at the hinge fails to
give 2π. One obtains a discrete curved surface when the two edges
bounding ε are glued. In higher dimensions, ε is always hinged by a
co-dimension-2 simplex, e.g. in 4d, ε f is hinged by a triangle f .

for certain u, v ∈ Z. The deficit angle ε f hinged by f is a dis-
crete description of Riemann curvature in simplicial geometry
(FIG.(2)).

To determine Φ+
f + Φ−f , we consider all g±στ whose σs

and τs share a single internal triangle f . At the solution,
g±τσg±στ′ |ξτ′ f 〉 = eiφ±

τστ′ |ξτ f 〉 where g±τσ = (g±στ)
−1, so

g±τσ1
g±σ1τ1

· · · g±τkσ
g±στ|ξτ f 〉 = eiΦ±f |ξτ f 〉, (54)

which gives

g±τσ1
g±σ1τ1

· · · g±τkσ
g±στ = g(ξτ, f )

(
eiΦ±f 0

0 e−iΦ±f

)
g(ξτ, f )−1 (55)

where g(ξ) = (ξ, Jξ) ∈ SU(2). We define

G±f (σ) ≡ g±στg
±
τσ1

g±σ1τ1
· · · g±τkσ

= exp
(
iΦ±f X̂±f (σ)

)
(56)

where Φ±f ∼ Φ±f + 2π and

X̂±f (σ) = g±στg(ξτ, f )σ3g(ξτ, f )−1(g±στ)
−1 = g±στ(n̂τ f · ~σ)(g±στ)

−1.

Comparing to Eq.(26), X̂±f (σ) = ~X±f (σ) · ~σ/|~X±f (σ)|.
On the other hand, in terms of the corresponding geometry,

E jk(σ) = Vσ ∗ Ul(σ) ∧ Um(σ) ∧ Un(σ) (57)

defines an edge vector (|E jk(σ)| = ` jk) pointing to the vertex
j from the vertex i [15, 17]. Here σ = [k, j, l,m, n] is the
ordering of vertices. Eq.(36) implies that for all edges of τ
j, k = 1, · · · , 4

(g+
σσ′ , g

−
σσ′ ) · E jk(σ′) = sσσ′sgn(Vσ)sgn(Vσ′ )E jk(σ). (58)

We have assumed sgn(Vσ) = 1 at all σ, and we partially gauge
fix the discrete gauge freedom of g±στ such that Ûτ(σ) = Nτ(σ)
so sσσ′ = 1 (the remaining discrete gauge freedom is g±στ →
κστg±στ, κστ = ±1). So (g+

σσ′ , g
−
σσ′ ) is a discrete spin connec-

tion. By the parallel transport of E jk(σ),

Ĝ f (σ)E jk(σ) = E jk(σ), ∀( j, k) ⊂ f . (59)

Therefore Ĝ f (σ) ∈ SO(4) (the 4-dimensinal representation of
G f (σ)) is a 4d rotation leaving the geometrical triangle f in-
variant

Ĝ f (σ) = exp
(
− ∗ X̂ f (σ)ϑ f

)
(60)
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where by Vσ ∗ Um(σ) ∧ Un(σ) = E jk(σ) ∧ Elk(σ),

ετ f (σ)X̂ f (σ) =
ετ f (σ)X f (σ)
|X f (σ)|

=
Bτ f (σ)
|Bτ f (σ)|

=
E jk(σ) ∧ Elk(σ)
|E jk(σ) ∧ Elk(σ)|

.

(G f (σ)+,G−f (σ)) ∈ Spin(4) in Eq.(56) is a lift of Ĝ f (σ) ∈
SO(4) in Eq.(60). The angles Φ±f and ϑ f are related by

Φ+
f − Φ−f = ϑ f , Φ+

f + Φ−f = 2χ fπ, χ f ∈ {0, 1} (61)

or Φ±f = ± 1
2ϑ f +χ fπ, where χ f labels the lift ambiguities from

SO(4) to Spin(4). Note that similar as above, the periodicity
Φ±f ∼ Φ±f + 2π allows us to set ϑ f ∈ [−π, π] and χ f ∈ {0, 1}.
This identifies ϑ f = ε f .

In general most lift ambiguities can be canceled by the re-
maining discrete gauge freedom g±στ → κστg±στ, κστ = ±1:

Lemma V.5. The lift ambiguities χ f at all internal f are
removed by discrete gauge transformations g±στ → κστg±στ,
κστ = ±1 up to H2(K∗,Z2), the 2nd cellular cohomology
group of the dual complex K∗.

Proof: A spin structure on the manifold triangulated by K
defines a canonical lift of Ĝ f (σ) to (Ω+

f (σ),Ω−(σ)) ∈ Spin(4)
such that the lift Ω±f (v) can be continuously deformed to 1.
G±f (σ) = eiπχ f Ω±f (v) where χ f ∈ {0, 1} ' Z2 gives the other lift
of Ĝ±f (σ) when χ f = 1.

Given a triangulated manifold K , there is a corresponding
dual polyhedral decomposition K∗. Given an edge ` shared
by a number of internal f in K . ` is dual is a 3d polyhedron
`∗ bounded by internal faces f ∗s dual to f s in K∗. G±f (σ) and
Ω±f (σ) are along the dual face boundary ∂ f ∗, and based at the
dual vertex σ∗. The polyhedron `∗ gives cocycle conditions to
both G±f ,Ω

±
f :

−−→∏
f

Ω±f = 1 and
−−→∏

f

G±f = 1, (62)

where all Ω±f s (G±f s) are parallel transported by Ω±σσ′ (G±σσ′ )
to share the same base point. The above relations may be seen
by viewing Ω±f s (G±f s) are flat connection holonomies on a
2-sphere with p holes (each Ω±f (G±f ) circles around a hole),
followed by enlarging holes to approach the skeleton of the
polyhedron `∗ with p faces.

Parallel transports are made by conjugate with Ω±σσ′ or G±σσ′
whose sign ambiguities doesn’t affect eiπχ f . Eqs.(62) result in
the Z2-cocycle condition∑

f

χ f = 0, χ f ∈ Z2 (63)

If we understand χ f = 〈 f ∗, χ2〉 where χ2 is a 2-cochain, then∑
f χ f = 〈∂`∗, χ2〉 = 〈`∗, δχ2〉 i.e. δχ2 = 0 where δ is the

coboundary differential.
If K∗ has a nontrivial 2nd cohomology goup H2(K∗,Z2),

there exist η ∈ H2(K∗,Z2), such that χ2 = η + δχ1. Evaluate
at any dual face f ∗ gives

χ f = 〈 f ∗, η〉 + 〈∂ f ∗, χ1〉 = 〈 f ∗, η〉 +
∑
τ

χτ, χτ ∈ Z2, (64)

where χτ = 〈τ∗, χ1〉 and
∑
τ is over all τ∗ ⊂ ∂ f ∗. Eq.(64)

implies there exists χτ ∈ Z2 such that

eiπχ f = eiπ〈 f ∗,η〉
∏
τ

eiπχτ , (65)

The factor
∏

τ eiπχτ can be cancelled by the discrete gauge
transformation g±στ → eiπχτg±στ at one σ bounded by τ. There-
fore we obtain

G±f (σ) = eiπ〈 f ∗,η〉Ω±f (σ). (66)

where η ∈ H2(K∗,Z2). �

When K∗ is a polyhedral decomposition of R4 as in our
main discussion, all lift ambiguity can be removed by gauge
transformations since H2(R4,Z2) = 0. When K∗ has bound-
ary and is a polyhedral decomposition of a (topologically triv-
ial) compact 4d region R ⊂ R4, we apply Lefschetz-Poincaré
duality H2(R,Z2) ' H2(R, ∂R,Z2) = 0 where H2(R, ∂R,Z2)
is the 2nd relative homology. Since Lemma V.5 is valid only
for internal f s, gauge transformations may not be able to re-
move lift ambiguities at boundary f s. i(Φ+

f + Φ−) = iπ may
present in the boundary F f [Xc]. Boundary F f ’s doesn’t affect
our derivation of Eqs.(68) and (70).

As a result, we conclude that when H2(K∗,Z2) = 0, for all
internal f ,

F f [Xc] = iγε f . (67)

VI. BACKGROUND AND PERTURBATIONS

We define the background X̊ as the solution in the subclass
G , corresponding (as Eq.(22)) to the flat simplicial geome-
try whose edge-lengths are ˚̀ on K , and with a uniform 4-
orientation at all 4-simplices sgn(Vσ) = 1. Recall ˚̀ is a flat tri-
angulated hypercubic lattice with constant spacing (γλ)1/2`P.
The geometry and orientation uniquely fixes the critical point
X̊ by Eq.(22).

When we perturb X̊ ∈ G by (J̊ +δJ, X̊ +δX) where J̊ = J( ˚̀).
There is a neighborhood at X̊ such that all other solutions
Xc , X̊ still belong to the subclass G , and have the same
uniform orientation sgn(Vσ) = 1 for all σ. Note that here
Xc may associates to a different J̊ + δJ. Indeed X̊ at every σ
gives (g̊+

στ, g̊
−
στ) and ξ̊τ f with g̊+

στ , g̊−στ. Here g̊+
στ, g̊

−
στ are

very different, or namely there is a finite distance between
g̊+
στ, g̊

−
στ ∈ SU(2) measured by the natural metric on S 3, be-

cause Nτ(σ) at 5 τ ⊂ ∂σ determined by (g̊+
στ, g̊

−
στ) are far

from being parallel. Therefore there exists a neighborhood
at (g̊+

στ, g̊
−
στ), such that perturbations (g̊+

στ + δg+
στ, g̊

−
στ + δg−στ)

only perturb Nτ(σ) but do not change sgn(Vσ). Perturbations
neither interchange g̊+

στ, g̊
−
στ nor make them equal. As a re-

sult, perturbations (J̊ + δJ, X̊ + δX) can only touch solutions
in G having the same uniform orientation as (J̊, X̊), but can-
not touch solutions with different orientations. Perturbations
cannot touch BF-type solutions (g+

στ, g
+
στ), (g−στ, g

−
στ) and vec-

tor geometry solutions (gστ, gστ) because their Nτ(σ)s are all
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parallel and give sgn(Vσ) = 0. Therefore the existences of co-
sine problem and BF-type, vector geometry solutions do not
affect our following derivation of perturbative solutions, since
no solution of opposite oriention, BF-type, or vector geometry
appears in perturbations. We focus in the following on Xc ∈ G
with the same orientation as X̊.

Note the above argument doesn’t work for SU(2) BF the-
ory: The critical equation provides only the + sector of
Eq.(19), so the subclass G doesn’t exist in the BF theory. So-
lutions there only contain BF-type solutions of nondegener-
ate geometries, and vector geometries. But BF-type solutions
are not well-separated from vector geometry solutions [63].
Therefore perturbations from a nondegenerate geometry can
touch vector geometries.

By the correspondence Eq.(22), and since the orientation
is preserved by perturbations, all perturbative solutions from
critical equations ReS = δXS = 0 or Eq.(19) in (J̊ + δJ, X̊ +

δX) correspond to perturbations of simplicial geometries with
edge lengths ` = ˚̀ + δ`. i.e. the geometries are perturbations
of the flat simplicial geometry ˚̀ on K .

Any solution Xc ∈ G with a uniform orientation as X̊ im-
plies F f [Xc] = iγε f (`) (see Subsection V C for a proof) where
ε f ’s are deficit angles, which measure discrete Riemannian
curvature. This applies in particular to the above perturbative
solutions.

VII. EQUATION OF MOTION AND SMALL DEFICIT
ANGLES

In the above, we have obtained the perturbative solutions
of a subset of critical equations ReS = δXS = 0 and their
geometrical interpretations. The other critical equation δ`S =

0 and Eq.(9) yields the equation of motion (EOM)〈
∂ ~J(`)
∂`

, γ~ε(`)
〉

= 0 or
∑

f

∂a f (`)
∂`

ε f (`) = 0, (68)

and coincides with the Regge equation. Regge equation is a
discretization of Einstein equation in 4d [48].

The leading asymptotic behavior of Eq.(16) is determined
by the integrand evaluated at the critical point:

eS e f f

∣∣∣∣
critical pt

= ei
〈
γ ~J(`),~ε(`)

〉
−
∑M

i=1
1
δ 〈ê

i,γ~ε(`)〉2 . (69)

The first term in the exponent is the Regge action which
vanishes at the solution of Eq.(68). The second term is the
ε2

f higher curvature correction (mentioned in the last sec-
tion) which encodes the contributions from non-Regge-like
Js. Since the ε2

f correction term is real and negative, and
δ � 1, it suppresses the contribution of the critical point
(`c, Xc) exponentially unless

∣∣∣∣〈êi, γ~ε
〉∣∣∣∣ . δ1/2 for all i. Since

{∂ ~J(`)/∂`, êi} forms a complete basis in RN f , it follows from
Eq.(68) that

|γε f (`)| . δ1/2 � 1, (70)

Eqs. (68) and (70) determine the critical points (`c, Xc) that
contribute essentially to Zδ(K), and thus are the key equations
constraining the simplicial geometries emerging in the large
spin limit of the model.

Eqs.(68) and (70) are trivially satisfied by the flat back-
ground (J̊, X̊). (J̊, X̊) is a critical point of Zδ(K) thus is qual-
ified as a background. For perturbations, Eq.(68) can be re-
duced to a set of linear equations of the deficit angles ε f [33],
because the considered geometries are nearly-flat. That is,

M~ε = 0. (71)

where M is a constant N f ×N f matrix. Note that this is a con-
sequence of the nearly-flat geometries, but not a consequence
of Eq.(70). By itself, Eq.(70) is compatible with the non-
linear Regge equation, and excludes no nonsingular curved
geometry. On a sufficiently refined triangulation, any simpli-
cial geometry approximating a smooth geometry with typical
curvature radius ρ satisfies |ε f | ' a2/ρ2 � 1, which is con-
sistent with Eq.(70). Here a is the typical lattice spacing. The
simplicial geometries that fail to satisfy Eq.(70) cannot have
smooth approximation.

If the regularization in Eq.(12) wasn’t imposed, i.e. if δ = 0
as in standard SFMs, then Eq.(70) would imply strict flatness
ε f = 0. This strict flatness has been proven to be one of
the main obstacles for recovering classical gravity from SFMs
[21, 43–45]. But if δ � 1 is non-zero as above, then small
excitations of ε f are allowed, and therefore arbitrary smooth
curved geometries may emerge from refining triangulations
while δ→ 0.

It is interesting to note that the opposite limit δ→ ∞ reduce
Eq.(69) to the quantum Regge calculus. Therefore δ ∈ [0,∞)
is essentially a parameter interpolating from SFMs to quantum
Regge calculus.

The above discusses only the integral with k f = mτ = 0
in Zδ(K). Nonzero k f = mτ shifts F f = iγε f in the above
computation by F f → F f +4πi k f

q +πi
∑
± m±τ

q±p
q . In particular

Eq.(70) becomes∣∣∣∣∣∣∣γε f + 4π
k f

q
+ π

∑
±

m±τ
q ± p

q

∣∣∣∣∣∣∣ . δ1/2. (72)

The deficit angles ε f are all small for small perturbations (J̊ +

δJ, X̊+δX) of the flat geometry. Therefore, for finite γ, Eq.(72)
can only be satisfied for k f = mτ = 0. So integrals in Zδ(K)
with nonzero k f = mτ are all suppressed in the perturbative
regime unless ~k = 0.

We would like to remark that the above perturbative study
of SFM on a large triangulation by (J̊ + δJ, X̊ + δX) follows
from the standard technique in perturbative quantum field
theory, i.e. fixing a solution of equation of motion as the
background vacuum and perturbing all field variables2. Our
method is different from the boundary state formalism used in
e.g. [19, 20, 49–51] in the context of a single 4-simplex.

2 The background (J̊, X̊) satisfies the equations of motion (68) and (70).
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VIII. SEMICLASSICAL CONTINUUM LIMIT:

A. The idea

The above discussion is based on a fixed triangulation K
adapted to a hypercubic lattice. From this, we may construct
a refined triangulationK ′ by subdividing each hypercube into
16 identical hypercubes, triangulated by simplices in the same
manner as above. By refining the hypercubic lattice, we define
a sequence of triangulations KN where the label N is the total
number of vertices in K . The continuum limit is N → ∞

in which the vertices in the triangulation become dense in a
region of R4.

We can now associate a SFM Zδ(KN) to each KN , with
N → ∞ as the continuum limit of SFM. The above large spin
analysis can be applied to all Zδ(KN). This gives a sequence of
EOMs (68) (or its linearization Eq.(71)) and (70). All quanti-
ties in the equations, e.g. the spins J f = J f (N), the regulator
δ = δ(N), the simplicial geometries, etc, depend on N, and
flow with N → ∞, which defines the semiclassical continuum
limit (SCL). In particular, we will show below that the solu-
tions to the EOM (68) flow to solutions of smooth Einstein
equation as N → ∞. This can be derived from the fact that the
solutions of linearized Regge equation converge to solutions
of linearized Einstein equation as the lattice spacing a → 0
(see [33, 52, 53]). The EOMs (68) are already Regge equa-
tion and it only remains to relate the Regge limit a → 0 and
the SFM continuum limit N → ∞. In fact relating the limits
is nontrivial and specifies the SCL.

The regulator δ(N) should go to zero with N → ∞ in order
to guarantee that the continuum result does not depend on δ.
Yet, (18) must still be satisfied at every step N for the above
asymptotic analysis of Zδ(KN) to remain valid. Thus, λ(N)
has to grow faster than δ(N)−2 (see Subsection VIII B).

Recall that the area from SFM is given by a f = γλ j f `
2
P.

The lattice spacing a relates to background (J̊(N), X̊(N)) by
(recall Section II)

a(N) = (γλ(N))1/2`P. (73)

where λ(N) is the typical value of J̊ f (N) overK . Note that the
background data (J̊(N), X̊(N)) depends on KN , thus depends
on N.

We would like to relate Regge continuum limit, so we must
require a(N) → 0 as N → ∞. It is possible even when we
have λ(N) → ∞ as N → ∞, because we take at the same
time the semiclassical limit `P → 0 3. Practically we define a
scaling parameter µ(N) depending on N, and replace `P by

`P → µ(N)`P, such that µ(N)→ 0 as N → ∞. (74)

3 It may be physically relevant to fix a finite (although large) length unit
at IR so that the numerical value of `P is tiny but nonzero. So in this
sense, it is relevant to choose a large but finite N. The limit N → ∞

or µ(N) → 0 is an idealization while the convergence in the limit shows
that at IR, the geometries from SFM critical points approximates smooth
solutions of Einstein equation with error of O(`P).

By scaling `P, the lattice spacing a(N) in Eq.(73) becomes

a(N) = (γλ(N))1/2µ(N)`P. (75)

The scaling µ(N) may be viewed as a change of length unit
(from small to large), such that the numerical value of `P be-
comes µ(N)`P in the new unit. We zooms out to a coarser
length unit at the same time as refining the lattice N → ∞, so
effectively scales `P → 0. Thus µ(N)→ 0 is understood as an
infrared (IR) limit.

To clarify the motivation, it may be illustrating to look
at the Regge action term in Eq.(69) by writing a f (N) =

γJ f (µ(N)`P)2

〈
γ ~J(`), ~ε(`)

〉
(N) =

1
µ2(N)`2

P

∑
f

a f (N) ε f (N) (76)

µ(N)→ 0 as N → ∞ implements both the semiclassical limit
in the path integral and the continuum limit of the Regge ac-
tion. Indeed, if the lattice spacing a(N) satisfies

lim
N→∞

a(N) = 0, (77)

Eq.(76) gives [64]〈
γ ~J(`), ~ε(`)

〉
(N) =

1
µ2(N)`2

P

∫
d4x
√

g R[g] (1 + ε(N)) (78)

where ε(N)→ 0 as N → ∞.
Because µ(N) is a monotonically decreasing function of

N, we may invert this function and write N(µ) and make the
change of variable to all quantities:

KN = Kµ, J(N) = J(µ), X(N) = X(µ),
λ(N) = λ(µ), δ(N) = δ(µ), a(N) = a(µ). (79)

All previously N-dependent quantities becomes µ-dependent.
The continuum limit N → ∞ becomes µ → 0, and Eq.(77)
becomes

lim
µ→0

a(µ) = 0. (80)

As a key requirement to relate SFM and Regge continuum
limits, Eq.(80) requires da(µ)/dµ > 0, which together with
(75) requires:

−
2
µ
<

1
λ

dλ
dµ

< 0. (81)

The inequality (81) is not the only requirement in order to
relate to the Regge continuum limit. Recall that solutions of
Regge equation arise in the leading order stationary phase ap-
proximation of Z(Kµ) as λ(µ) � 1. The solutions have the
(quantum) corrections of O(1/λ). The correction is bounded
by C(µ)/λ(µ) with C(µ) > 0, where C(µ) grows as µ → 0
(see Section VIII B). As a result, λ(µ) is required to grow in
a faster rate, in order to keep C(µ)/λ(µ) small to suppress the
1/λ correction to Regge solutions as µ→ 0. It implies

1
λ

dλ
dµ

<
1
C

dC
dµ
. (82)
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In addition to the constraints (81) and (82), it follows from
(70) and ε f ' a2/ρ2 that there should exist a bound L < ∞ s.t.

δ(µ)1/2

a(µ)2 < L. (83)

Otherwise, the curvature of the emergent geometry (i.e.
ρ−2 = lim ε f (µ)/a(µ)2) would diverge.

Definition VIII.1. A semiclassical continuum limit (SCL) is
the flow of the 3 parameters λ(µ), a(µ) and δ(µ) as µ → 0
(together with the lattice refinement) that satisfy (81), (82),
and (83). a(µ) and δ(µ) tend to zero in the limit µ → 0, while
λ(µ)→ ∞ grows faster than δ(µ)−2.

The SCL is well-defined although (81), (82), and (83) in-
deed give nontrivial restrictions.

Theorem VIII.1. The SCL is well-defined because the flows
satisfying the requirements always exist.

The proof of the above statement is given in Subsection
VIII C. An SCL relates the SFM continuum limit to the
Regge continuum limit, and allows us to apply the conver-
gence in Regge calculus to geometries coming from SFM crit-
ical points.

B. Expansion of the linearized theory

The large spin analysis uses the stationary phase approx-
imation, which is an 1/λ asymptotic expansion of integrals

in Zδ(K). We focus on the expansion of the integral with
k f = mτ = 0, at the level of the linearized theory.

We write δX = δX(`) + δX, where δX(`) solves the critical
equations δXS = Re(S ) = 0. By this change of variables,

S = S
[
˚̀ + δ`, X̊ + δX(`)

]
+

1
2
δXT HXXδX + · · · . (84)

From the discussion in the last section, we know that S [ ˚̀ +

δ`, X̊ + δX(`)] is the Regge action. At the quadratic order,

S [ ˚̀ + δ`, X̊ + δX(`)] =
1
2
δ`T H``δ` + · · · (85)

has been studied in [34], in which the Hessian matrix H`` was
shown to be degenerate. The kernel of the Hessian contains
(1) the space of solutions of linearized Regge equation, and
(2) 4 zero modes corresponding to the diffeomorphisms in the
continuum, and (3) 1 zero mode of hyperdiagonal edge-length
fluctuation.

We obtain the following bound of error for the large spin
analysis in the last section 4

∣∣∣∣∣∣∣
∫

[d`dX] eλS Dδ(`, X) −
(

2π
λ

)N
2 [

det (HXX) det
(
K⊥``

)]− 1
2

∫
[dδ`‖] Dδ

(
δ`‖, X(δ`‖)

)∣∣∣∣∣∣∣ ≤
(

2π
λ

)N
2 C
λ
. (86)

Here K⊥`` is the nondegenerate part of H``, and N =

rank(K⊥``) + rank(HXX). The integral
∫

[dδ`‖] is over solutions
of linearized Regge equations and zero modes. C > 0 bounds
the 1/λ correction [60]. The semiclassical approximation by
Regge solutions is valid when the 1/λ corrections are negligi-
ble, i.e. when Cδ/λ is small.

The bound relates to the derivatives of Dδ by [60]

C
λ

=
c
λ

(
sup

∣∣∣∂Dδ

∣∣∣ + sup
∣∣∣∂2Dδ

∣∣∣) . (87)

where c is a constant. Since ∂2Dδ ∼ δ
−2,

λ � δ−2 � 1 (88)

has to be satisfied to validate the expansion.
Eq.(86) is the expansion at the level of linearized theory,

whose asymptotics is an integral over critical solutions (solu-
tions of EOM and zero modes). It indicates that the critical

solutions contribute dominantly to the SFM. In this paper we
mainly discuss the convergence of critical solutions under the
semiclassical continuum limit. In a companion paper [61],
we report the result of graviton propagator and the continuum
limit, in which we apply gauge fixings to remove zero modes.

C. Semiclassical Continuum Limit (SCL)

We construct a refined triangulationK ′ which is adapted to
a refined hypercubic lattice in the same way as K is adapted
to the original hypercubic lattice. The refined hypercubic lat-
tice is given by subdividing each hypercube into 16 identical
hypercubes. By refining the hypercubic lattice we define a
sequence of triangulations Kµ where Kµ′ is finer than Kµ if
µ′ < µ. In the continuum limit µ → 0 the vertices in the
triangulation become dense in R4.
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A sequence of SFMs is defined by associating an amplitude
Z(Kµ) to each Kµ. Since the above large spin analysis is valid
for all Z(Kµ), it gives a sequence of Eqs.(68) and (70) on the
sequence of Kµ:∑

f

∂a f (µ)
∂`

ε f (µ) = 0, |γε f (µ)| . δ1/2(µ). (89)

All quantities in the equations, e.g. the spins J f , the regulator
δ, and the simplicial geometries, etc, depend on µ, and flow
toward µ→ 0.

We set the triangulation label µ to be a mass scale such that
µ−1 is a new length unit. Then a f (µ) = α f (µ)µ−2. The lattice
spacing a(µ) is given by the background flat geometry on Kµ:

˚̀(µ) = (γλ(µ))
1
2 `P = a(µ)µ−1. (90)

We define the semiclassical continuum limit (SCL) as the
flow of the 3 parameters λ(µ), a(µ), δ(µ), where a(µ), δ(µ)→ 0
and λ(µ) → ∞ (λ(µ) � δ(µ)−2) for µ → 0. In addition, these
flows should satisfy

−
2
µ
<

1
λ

dλ
dµ

< 0, (91)

1
λ

dλ
dµ

<
1
C

dC
dµ
, (92)

δ(µ)1/2

a(µ)2 bounded from above. (93)

Here, C(µ) is the bound in Eq.(86), which now depends on µ
for the expansion of Z(Kµ).

The constraint Eqs.(91) - (93) are necessary due to the fol-
lowing reasons: Firstly, the motivation for the SCL is to relate
the SFM continuum limit µ→ 0 to the continuum limit a→ 0
in Regge calculus, so that we can apply the convergence result
in Regge calculus to the solutions of Eqs.(68) and (70). Obvi-
ously, this requires that the lattice space a(µ)2 ∝ λ(µ)µ2 → 0
as µ→ 0. Thus,

0 <
d

dµ

(
λ(µ)µ2

)
= µ2 dλ

dµ
+ 2µλ (94)

which yields Eq.(91).
Secondly, the 1/λ correction has to be small for all µ, in

order that classical Regge solutions are the leading orders of
Z(Kµ). It is important to have Regge solutions at all µ to ap-
ply the convergence result in Regge calculus. This demands
Eq.(86) to be valid for all Z(Kµ) with C(µ)/λ(µ) being always
small.

C(µ) ∼ δ(µ)−2 grows when the triangulation is refined.
Thus, λ(µ) is required to grow in a faster rate in order to sup-
press C(µ)/λ(µ) as µ→ 0. This requires

0 <
d

dµ

(
C(µ)
λ(µ)

)
= −

C
λ2

dλ
dµ

+
1
λ

dC
dµ

(95)

which gives

1
λ

dλ
dµ

<
1
C

dC
dµ
. (96)

This condition guarantee that Eq.(86) is valid at all µ, with the
1/λ correction being always small, i.e. the following bound
holds in the continuum limit µ→ 0:

C(µ)
λ(µ)

<
C(1)
λ(1)

, (97)

where µ = 1 is the starting point of the flow.
Thirdly, the simplicial geometry should approximates a

smooth geometry. If this is the case then the typical curvature
radius ρ of the smooth geometry relates to the deficit angle of
the simplicial geometry by ρ−2 ' ε f a−2. The regulator δ and
conditions (70) and (93) guarantee that the curvature ρ−2 of
the emergent geometry is bounded (geometry is nonsingular)
as µ→ 0.

Eqs.(91) - (93) have nontrivial implications for the SCL: In
order that a satisfactory flow λ(µ) exists, Eqs.(91) and (92)
have to be consistent, i.e.

1
C

dC
dµ

> −
2
µ
, (98)

which yields a restriction to the assignment of µ to Kµ. Since
µ is assigned to a sequence of triangulations Kµ ≡ Kµn ≡ Kn
(µn−1 > µn), the variable µ ≡ µn is actually discrete. In the
above, we have assumed that C(µn) and λ(µn) can be con-
tinued to differentiable functions C(µ) and λ(µ). Integrating
Eq.(98) leads to∫ µn−1

µn

1
C

dC
dµ

dµ > −
∫ µn−1

µn

2
µ

dµ (99)

which implies the following constraint on µn:

µn−1

µn
>

[
C(µn)

C(µn−1)

] 1
2

. (100)

Note that, µn satisfying this constraint always exists.
Once we have a satisfactory assignment of µ toKµ, the run-

ning behavior of λ(µ) is constrained by

−
2
µ
<

1
λ

dλ
dµ

<
1
C

dC
dµ
. (101)

In addition, Eqs.(93) and (88) requires δ(µ) to satisfy

λ(µ)−1/2 � δ(µ) ≤ L2λ(µ)2µ4 (102)

where Lγ−2`−2
P is the bound of δ(µ)1/2/a(µ)2. The existence of

a satisfactory δ(µ) requires that

λ(µ)5/2 � µ−4. (103)

which is another constraint for the flow λ(µ).
A flow λ(µ) satisfying both constraints Eqs.(101) and (103)

always exists. The following provides a satisfactory example
of λ(µ). Consider the ansatz:

λ(µ) = λ(1) µ−2+u, (104)
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where λ(1) is the initial value of λ(µ) at µ = 1. Eq.(101)
implies

u > 0,
1
C

dC
dµ

> −
2 − u
µ

, ∀1 ≤ s ≤ m + 1. (105)

The second inequality certainly can be satisfied by a suit-
able assignment of µ to Kµ, by a similar derivation showing
Eq.(98) can be satisfied (replacing 2

µ
by 2−u

µ
). It doesn’t re-

strict the value of u. But combining (103), we obtain an upper
bound of u:

0 < u <
2
5
. (106)

If u is within the above range then we obtain a satisfactory

flow λ(µ) = λ(1)µ−2+u, which implies a(µ) = µu/2
√
γλ(1)`2

P,

and λ(1)−1/2µ1−u/2 � δ(µ) ≤ L2µ2u. This example illustrates
that flows λ(µ), a(µ), δ(µ), which satisfy Eqs.(91) - (93) always
exist. So the SCL of SFM is well-defined.

IX. EMERGENT LINEARIZED GRAVITY:

The above SCL fills the gap between the continuum limits
in SFM and Regge calculus. Thus, the sequence of critical
points satisfying Eq.(68) under the SCL is the same as the
sequence of Regge solutions under a→ 0.

The classification of Linearized Regge solutions and their
convergence has been studied in [33, 52] (reviewed in Ap-
pendix B). It is shown that the solutions of linearized Regge
equation converge to smooth solution of 4d (Riemannian) Ein-
stein equation in the limit a→ 0. All the nontrivial geometries
obtained from the limit have curvatures as linear combinations
of

Rabcd(x) = Re
[
Wabcd exp (−k · x)

]
, (107)

which are Euclidian analogs of plane waves. Here k · x is
the 4d Euclidean inner product and k ∈ C4 satisfy k · k = 0.
Wabcd is a traceless constant tensor that spans a 2-dimensional
solution space, whose dimensions correspond to the helicity
±2 gravitons.

Recall that the main contributions to Z(Kµ) in the SCL
come from critical points that satisfy linearized Regge equa-
tion, all other contributions are suppressed. Moreover, the
SCL maps the SFM IR limit µ → 0 to Regge calculus limit
a → 0. Therefore, the above convergence result of Regge so-
lutions can be applied to SFM as µ→ 0, which shows that on a
4d flat background, the low energy excitations of SFM give all
smooth solutions of linearized Einstein equation (gravitons).

X. CONCLUSION AND OUTLOOK:

In the above discussion, we have shown that from the SCL,
the low energy excitations of SFM on a flat background give
all smooth (linearized) Einstein solutions. It indicates that at
the linearized level, classical Einstein gravity can arise as a

low energy effective theory from SFMs. Our result indicates
that the SFM, being a discrete model of fundamentally entan-
gled qudits, is a working example for the idea in emergent
gravity program.

Here we showed for the first time that smooth curved space-
times can emerge from SFMs in a suited continuum limit. It
suggests that SFMs have a proper semiclassical limit not only
at the discrete level but also in the continuum. Our result,
therefore, strengthens the confidence that covariant LQG is a
consistent theory of quantum gravity.

As a key technical tool, a regularization/deformation of the
SFM is employed in the derivation. This deformation in-
terpolates between SFMs and quantum Regge calculus, and
the deformation parameter δ becomes a coupling constant of
a higher curvature correction term to Einstein gravity from
SFM. It is interesting to see the physical implication of this
higher curvature correction turned on by a finite δ.

Our analysis certainly can be generalized to the nonlinear
regime, and even to the case of strong gravitational field. In-
deed the large spin analysis doesn’t rely on the linearization,
and the EOM (68) is nonlinear. The emergence of black hole
or cosmological solutions from SFMs can be derived by ap-
plying the Regge calculus convergence results in e.g. [54],
similarly as above. These solutions will enable us to study
singularities as the high energy excitations from SFMs.

Finally we remark that the flows of SFM parameters
λ(µ), a(µ), δ(µ) in the SCL likely relate to a renormalization
group flow5. Further investigation of the relation may shed
light on the renormalization of perturbative gravity.
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Appendix A: Spin Foam Models (SFMs) and Tensor Networks

In 4 dimensions, the main building block of a triangula-
tion K is a 4-simplex σ (see FIG.3(a)), whose boundary ∂σ
contains 5 tetrahedra τ and 10 triangles f . K is obtained by
gluing a (large) number of σ through pairs of their boundary
tetrahedra. In the following K itself should be understood as
purely combinatorial or topological while the discrete geom-
etry is encoded in the associated state sum Z(K) of the SFM.

5 It may relate to the recent development of the renormalization group flow
in SFM [55].
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Generically, Z(K) takes the form

Z(K) =
∑
~J

∑
~i

∏
f

A f (J f )
∏
σ

Aσ(J f , iτ), (A1)

where the summand products over all triangles f and all 4-
simplices σ in the triangulation K . The SFM data ( ~J,~i)
assigns each triangle f an SU(2)-representation labelled by
J f ∈ Z+/2, and assigns each tetrahedron τ ⊂ K an SU(2)-
intertwiner (rank-4 invariant tensor) iτ, i.e.

iτ ∈ InvS U(2)[VJ1 ⊗ · · · ⊗ VJ4 ] ≡ H inv
J1···J4

. (A2)

Each σ associates to a 4-simplex amplitude Aσ(J f , iτ), which
depends on 10 J f and 5 iτ assigned to f , τ ⊂ ∂σ. The weight
A f (J f ) of

∑
~J is usually called the face amplitude.

Both, the face amplitude A f (J f ) and the 4-simplex ampli-
tude Aσ(J f , iτ) are model dependent. In the following we
mainly focus on the Euclidean Engle-Pereira-Rovelli-Levine
(EPRL) model [39, 40]. In this model, the 4-simplex ampli-
tude Aσ is given by the contraction of 5 Spin(4) invariant ten-
sors Iτ, that depend on iτ (τ = 1, · · · 5). That is,

Aσ(J f , iτ) = tr (I1 ⊗ I2 ⊗ I3 ⊗ I4 ⊗ I5) , (A3)

where Iτ is given by

Im±1 ···m
±
4

τ =

∫
dh+dh−

4∏
f =1

[
D

(J+
f )

m+
f n+

f
(h+)D

(J−f )

m−f n−f
(h−)C

n+
f n−f

n f

]
in1···n4
τ .

The above integral integrates over 2 copies of SU(2) with Haar

measures dh±. D
(J±f )

m±f n±f
(h±) are Wigner D-matrices for the rep-

resentation J±f and C
n+

f n−f
n f are Clebsch-Gordan coefficients in-

terpolating between (J+
f , J

−
f ) and J f ( f = 1, · · · , 4) which are

subject to the constraint

J±f =
1
2
|1 ± γ|J f . (A4)

Here, γ ∈ R is the Barbero-Immirzi parameter. If γ = p/q
(p, q ∈ Z), then J±f ∈ Z/2 implies J f ∈ qZ for p + q odd or
J f ∈ qZ/2 for p + q even.

Note that Aσ(J f ) with fixed J f ’s is a linear map from 5 in-
variant tensors iτ to C. In other words, Aσ(J f ) is a rank-5
tensor state (see FIG.3(b))

|Aσ(J f )〉 ∈

H inv
J1 J2 J3 J4

⊗H inv
J4 J5 J6 J7

⊗H inv
J7 J3 J8 J9

⊗H inv
J9 J6 J2 J10

⊗H inv
J10 J8 J5 J1

.(A5)

Thus, the 4-simplex amplitude can be written as an inner prod-
uct

Aσ(J f , iτ) = 〈i1 ⊗ · · · ⊗ i5|Aσ(J f )〉. (A6)

The above relation allows us to write the summand of
∑

~J
in Eq.(A1) as a tensor network. We observe that a pair of
σ,σ′ is glued in K by identifying a pair of tetrahedra τ =

τ′ = σ ∩ σ′. Correspondingly, a pair of invariant tensors in

(a) (b)

(c)

FIG. 3: (a) A 4-simplex σ as the building block of 4d triangulation
K . (b) The 5-valent vertex illustrates a rank-5 tensor |Aσ( ~J)〉. (c)
Gluing 4-simplices σ in K gives a tensor network TN(K , ~J).

Aσ, Aσ′ is identified by setting iτ = iτ′ and summing over iτ in
Z(K). The identification and summation may be formulated
by inserting a maximal entangled state at each τ

|τ〉 :=
∑

iτ

|iτ〉 ⊗ |iτ〉 ∈ H inv
J1 J2 J3 J4

⊗H inv
J1 J2 J3 J4

. (A7)

This yields a tensor network,

TN(K , ~J) := ⊗τ〈τ| ⊗σ |Aσ(J f )〉, (A8)

where the tensors Aσ at the vertex is contracted with |τ〉 at the
edges (see FIG.3(c)). In other words, the EPRL pair of |iτ〉 in
|τ〉 is associated to the two ends of the edge in FIG.3(c), and
contracted with the pair |Aσ〉, |Aσ′〉 (σ ∩ σ′ = τ) at the two
ends 6. Inserting (A8) into (A1) finally gives

Z(K) =
∑
~J

TN(K , ~J)
∏

f

A f (J f ). (A9)

Note that both, TN(K , ~J) and Z(K), are wave functions of
boundary SFM data if ∂K , ∅, or numbers if ∂K = ∅.

6 To compare with the usual definition of SFM, the network in FIG.3(c) is
the 1-skeleton of the 2-complex dual to K . Note that the network FIG.3(c)
was oriented in the usual definition of SFM, where iτ associated to the
target of each edge was the dual 〈iτ |. Here we have encoded the duality
map |iτ〉 7→ 〈iτ | at the target of each oriented edge into |Aσ( ~J)〉, in order to
formulate TN(K , ~J) as a projected entangled pair states (PEPS) [30, 56].
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Due to the presence of the maximal entangled states |τ〉, the
tensor network formulation (A9) allows to interpret SFMs as
models of entangled qubits (or more precisely qudits). Recent
advances in condense matter suggest that entangled qubits and
their quantum information might be fundamental, while grav-
ity might be emergent phenomena (see e.g. [57]). Our results
demonstrate that SFMs are concrete examples, in which grav-
ity emerges from fundamentally entangled qubits, and there-
fore relate quantum gravity to quantum information.

An important step in establishing the results of this paper is
to analyze the behavior of (A9) for large spins. This is best
studied in the integral representation of TN(K , ~J) [17, 38]:

TN(K , ~J) =

∫
dg±στdξτ f e

∑
f J f F f [g±στ, ξτ f ] (A10)

where g±στ ∈ SU(2) × SU(2) and ξτ f ∈ C
2 are normalized

spinors, < ·|· > is the Hermitian inner product and F f is ex-
pressed as

F f

[
g±στ, ξτ f

]
=

∑
σ, f⊂σ

[
(1 − γ) ln

〈
ξτ f

∣∣∣(g−στ)−1g−στ′
∣∣∣ξτ′ f 〉

+(1 + γ) ln
〈
ξτ f

∣∣∣(g+
στ)
−1g+

στ′

∣∣∣ξτ′ f 〉 ]
. (A11)

The above integral representation is valid for γ < 1. For γ > 1
one obtains a similar expression (see [17]).

Appendix B: Convergence to Smooth Geometry

The equations of motion from SFM’s contain the Regge
equation ∑

f

∂α f (µ)
∂`

ε f (µ) = 0. (B1)

In the SCL the lattice spacing a(µ) goes to zero with µ → 0.
Therefore the behavior of SFM critical points in the SCL
is closely related to the convergences of solutions to Regge
equation in the continuum limit a → 0. The latter has been
studied in [33, 52] for the linearized theory on a flat back-
ground.

In the following, we review the results in [33, 52] and apply
them to our case. The following discussion often suppresses
the label µ but uses the lattice space a to label the continuum
limit.

Regge’s equation can be written as a set of linear equations
of ε f for small perturbations on a flat background, i.e.∑

f ,`⊂ f

ε f cot (ϑ`) = 0, (B2)

where ϑ` is the internal angle of the triangle f opposite to the
edge ` and evaluated on the flat background ˚̀.

In addition to Eq.(B2) the deficit angles ε f should satisfy
the (linearized) Bianchi identity∑

f ,`⊂ f

ε f

[
U[bcma]Ude

]
f

= 0 (B3)

where m is the outward-normal of ` in the plane of f and Uab
is an antisymmetric tensor associate to f that is given by

Uab = vawb − vbwa. (B4)

The unit vectors v,w are mutually orthogonal and orthogonal
to f .

Note that the Bianchi identity is satisfied automatically, if
one uses edge-length variables to describe the system. How-
ever, here it is more convenient to use deficit angles as the
system variables. In this case, the Bianchi identity is an addi-
tional constraint. This formulation of linearized Regge equa-
tion using deficit angles is equivalent to the one using edge
lengths, because a set of linearized deficit angles satisfying
the Bianchi identities can construct a linearized (piecewise-
flat) metric, unique up to linearized diffeomorphisms (4 zero
modes mentioned in Section VIII B). [62]. Conversely, from
the linearized metric, one can construct the linearized deficit
angles.

Given the periodic nature of the triangulation K , we con-
sider the periodic configuration of ε f with the shiftωi(a) along
the body principles of a hypercube. The shift relates ε f and
ε f ′ for parallel f in two neighboring hypercubes by

ε f = ωi(a) ε′f . (B5)

Here i = 1, 2, 4, 8 label the 4 body principles of the hypercube.
Eq. (B5) can be more conveniently written by introducing the
short hand notation

Ω(a) = (ω1(a), ω2(a), ω4(a), ω8(a) ) . (B6)

and computing the Fourier transform of Eq.(B5) on the hyper-
cubic lattice (aZ)4. This yields,

ε f (n) =

∫ π
a

− π
a

d4k
(2π)4 ei

∑
i kiniaε f (k), ni ∈ Z. (B7)

Thus each “plane wave” corresponds to Ω(a) =(
eik1a, eik2a, eik4a, eik8a

)
and tends to (1, 1, 1, 1) in the limit

a → 0. In the following we will assume the same limit
behavior, i.e. Ω(a)→ (1, 1, 1, 1), and that the derivative Ω′(0)
exists at zero for general Ω(a). Note that Ω(a) is complex
because the ki ’s are complex in Euclidean signature, as we
see in a moment.

Due to periodicity, Eqs.(B2) and (B3) reduces to a set of
linear equations for ε f ’s within a single hypercube. Let this
hypercube be denoted by cell(0), then∑

f⊂cell(0)

M [Ω(a)] f ′ f ε f (a) = 0. (B8)

In the following we consider complex solutions of the above
equation and their convergence. The physical solutions are the
real parts of those solutions, and converge when the complex
solutions converge.

By selecting a solution ε f (a) of Eq.(B8) for each a we can
generate a sequence of linearized Regge configurations. The
convergence of this sequence is closely related to the conver-
gence of the associated discrete Riemann curvature tensors.
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The discrete curvature is defined as a tensor-valued distribu-
tion that maps a smooth function f of compact support to the
tensor Rabcd[f] given by

f→
∑

f

ε f [UabUcd] f

∫
f
fζ ≡ Rabcd[f]. (B9)

Here ζ is the area measure of f and Uab is the bi-vector of the
triangle f . One can now show that the sequence of solutions to
Eq.(B8) converges for a → 0 if Rabcd converges as a distribu-
tion provided that ε f /a2 remains bounded [33, 52]. Note that
in the SCL defined above the latter condition is automatically
satisfied due to the regulator δ and Eq.(93).

It is more convenient to consider a stronger convergence
for the sequence of solutions ε f (a). Namely we require that
ε f (a)/a2 converges for all f as a → 0, which clearly implies
the above convergence criterion.

In [52] it was shown that for any family of vectors Ω(a), for
which Ω(0) = (1, 1, 1, 1) and Ω′(0) exist, and any solution ε(0)

f
of Eq.(B8) at a finite a0 there exists a sequence of solutions
ε f (a) of Eq.(B8) such that ε f (a0) = ε(0)

f . Moreover, the limit
ε f (a)/a2 as a → 0 exists for all f and the discrete curvature
tensor Rabcd converges to

Rabcd(x)→ Wabcd exp
(
−Ω′(0) · x

)
, (B10)

where Wabcd is a traceless complex constant tensor, and · is the
4d Euclidean inner product.

There are 3 possible cases for different k ≡ Ω′(0) ∈ C4.
Case 1: If k , 0 satisfies k · k = 0 then Wabcd spans a 2-
dimensional solution space, where the dimension corresponds
to the helicity ±2 of gravitons. Note that k has to be complex,
otherwise k · k = 0 would imply k = 0.

Let U and V denote the real and imaginary part of the tensor
W, and m and l the real and imaginary part of k. The real part
of Eq.(B10) is

Uabcd exp(−l · x) cos(m · x)
+Vabcd exp(−l · x) sin(m · x). (B11)

The appearance of exp(−l · x) is due to the difference between
Minkowskian and Euclidean signatures.

Case 2: For k , 0 and k · k , 0, the solution space is 1-
dimensional and Rabcd converges to zero.

Case 3: For k = 0 the vector Ω(a) = (1, 1, 1, 1) is a constant
and Rabcd converges to a nonzero constant. The solution space
corresponds to the full 10-dimensional space of traceless ten-
sors Wabcd.

The geometries in Case 1 are smooth solutions of linearized
Einstein equation, as Euclidean analog of plane waves. They
correspond to the nontrivial low energy excitations from SFM
under SCL. Case 2 with Rabcd = 0 doesn’t change the flat
background geometry and, thus, correspond to purely gauge
fluctuations of the triangulation in the flat geometry.

The solutions in Case 3 deserves some further explana-
tion. Although those solutions appear in addition to the “plane
wave” geometries Eq.(B11), they only associate to k = 0. So
the set of solutions in case 3 is of measure-zero in the space

of all solutions. The space of all solutions in the continuum
limit is infinite-dimensional, although the solution space with
a fixed k is finite-dimensional. A generic linear combination

Rabcd(x) =

∫
C4

dk δ4(k · k) Re
[
Wabcd(k) exp (−k · x)

]
(B12)

is insensitive to the value of Wabcd(0) (solution in Case 3). The
above Rabcd(x) is a Euclidean analog of a realistic gravitational
wave that is not a purely plane wave but has a distribution
Wabcd(k).

Among the zero modes mentioned in Section VIII B, 4 dif-
feomorphisms have been taken care in the above analysis be-
cause of using deficit angle variables, which leads to ±2 he-
licities. The hyperdiagonal zero mode has the same behavior
as in Case 2, i.e. it converges to zero curvature Rabcd = 0 [33].

Appendix C: Some Topological Properties of the Triangulation
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FIG. 4: A visualization of a triangulated hypercube cell.The vertices
of the hypercube are labeled by number from 0 to 15. The binary
number of the vertex label is the same as the components of the vec-
tor from the origin point to the vertex.

The analysis in this paper is based on a fixed type of tri-
angulation K . In this section we collect a couple of useful
properties of K .
K is adapted to a 4-dimensional hypercube lattice in which

each lattice cell is a triangulated hypercube (FIG.4). Each
vertex of the hypercube is labelled by a number from 0 to
15. Note that the vertex number written in binary form
(n1, n2, n3, n4) with ni = 0, 1 yields the components of the
vector from the origin to the vertex. Thus the vertex numbers
define 15 lattice vectors at the origin, which are edges and var-
ious diagonals of the hypercube and subdivide the hypercube
into 24 4-simplices. The triangulation K is made from the
hypercube lattice by simply translating the triangulation from
one hypercube to another. In order to simplify the problem,
one can consider K as a N4 lattice. Among those hypercubic
cells, a hypercube whose lattice components contain 0 or N−1
lies on the boundary of the lattice. A hypercube whose lattice
components do not contain 0 or N − 1 is in the bulk.

A single triangulated hypercube has 65 edges, 110 triangles
and 24 4-simplices. However, the numbers of the edges and
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the triangles per bulk cell in the lattice is smaller than those
numbers for a single hypercube since triangles and edges are
shared by different hypercube cells. If there are n edges or
triangles parallels to each other in a single triangulated hyper-
cube then each of those edges or triangles will be shared by
n hypercube cells in the bulk of the lattice. Thus the effective
weight of those edges or faces in a cell is 1/n.

For example, in a single hypercube the triangle (4, 5, 15) is
the only triangle that is parallel to (0, 1, 11). One finds that the
shift vector between (0, 1, 11) and (4, 5, 15) is (0, 1, 0, 0). In
the bulk of the lattice, the triangle (4, 5, 15) of cell with lattice
coordinate (t, x − 1, y, z) coincides with the triangle (0, 1, 11)
of the cell (t, x, y, z). Similarly, the triangle (0, 1, 11) in the cell
(t, x + 1, y, z) coincides with (4, 5, 15) in cell (t, x, y, z). Thus
the bulk cell (t, x, y, z) only posses half of the triangle (0, 1, 11)
and half of (4, 5, 15). Similar arguments work for all the other
faces and edges in the bulk of the lattice K . So in the lattice,
each bulk hypercube only posses 15 edges and 50 triangles.

Furthermore, we can define a coincide number ψ of a tri-
angle f where ψ = m + 1 if one triangle f coincide with m
triangles coming from other cells. The maximum value of

ψ( f ) is equal to one plus the number of the triangles that are
parallel to f in a single isolated hypercube7. For any triangle
f in a bulk cell, ψ( f ) must be equal to its maximum value. But
in a boundary cell, not all the triangles have maximum ψ( f ).
Those triangles lie in the boundary triangles.

In an N4 lattice, the boundary hypercubes contribute 356 +

574(N − 2) + 310(N − 2)2 + 56(N − 2)3 boundary triangles and
80 + 148(N − 2) + 84(N − 2)2 + 14(N − 2)3 boundary edges.
So in the bulk, there are 50N4 − (356 + 574(N − 2) + 310(N −
2)2 + 56(N − 2)3) triangles and 15N4 − (80 + 148(N − 2) +

84(N − 2)2 + 14(N − 2)3) edges. When N tends to be large,
the ratio between the number of bulk edges and the number of
bulk triangles will converge to 3 : 10 .

Furthermore one can show that every bulk triangle is shared
by an even number of 4-simplices because any triangle within
a single triangulated hypercube must be shared by 1,2,4 or 6
4-simplices. Define ñ( f ) to be the total number of 4-simplices
within a hypercube that are sharing the triangle f . We call f
of type-1 if ñ( f ) = 1, or of type-2 if ñ( f ) , 1 respectively.
There are 24 type-1 triangles in a single hypercube. TABLE.I
lists all of those triangles and the triangles parallel to them.

TABLE I: Each column of the table shows 4 triangles that parallel to each other. The triangles appears in the first two lines are type-1 and the
triangles in the last two lines are type-2.

type-1 (1,5,13) (1,3,7) (1,3,11) (1,9,13) (1,9,11) (2,6,7) (2,3,7) (2,3,11) (2,10,11) (4,5,7) (4,6,7)
type-1 (2,6,14) (8,10,14) (4,6,14) (2,10,14) (4,12,14) (8,12,13) (8,9,13) (4,5,13) (4,12,13) (8,9,11) (8,10,11)
type-2 (0,4,12) (0,2,6) (5,7,15) (3,11,15) (5,13,15) (10,14,15) (10,11,15) (0,1,9) (0,8,9) (0,1,3) (0,2,3)
type-2 (3,7,15) (9,11,15) (0,2,10) (0,8,12) (0,8,10) (0,4,5) (0,1,5) (6,7,15) (6,14,15) (12,13,15) (12,14,15)

Obviously some of the triangles are shared by different hy-
percubes. For those triangles one should add up ñ( f ) in dif-
ferent hypercubes in order to count how many 4-simplices are
sharing the face f . TABLE.I shows that each of the type-1
triangle must be parallel to another type-1 triangle and two
type-2 triangles. From this we may conclude:

• Any triangle shown in the TABLE.I is shared by 4 hy-
percubes. In two of those hypercubes, the triangle is
type-1 and in the other two hypercubes, it is type-2.

• The triangles listed in the same column are shared by
the same number of 4-simplices. Explicitly, the triangle

(x, y, z) is shared by
∑

f ñ( f ) of 4-simplices, where f
stands for all the triangles that are in the column and
contain triangle (x, y, z). Moreover,

∑
f ñ( f ) must be

even since it can be expressed as 1 + 1 plus two even
number.

• For the other type-2 triangle in the TABLE.I, the num-
ber of 4-simplices shared by it should be the sum of 2, 4
or 6, which is also even.

Thus in the bulk of K , every triangle is shared by an even
number of 4-simplices.
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