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As gravitational-wave (GW) observations of binary black holes are becoming a precision tool for physics
and astronomy, several subdominant effects in the GW signals need to be accurately modeled. Previous studies
have shown that neglecting subdominant modes in the GW templates causes an unacceptable loss in detection
efficiency and large systematic errors in the estimated parameters for binaries with large mass ratios. Our recent
work [Mehta et al., Phys. Rev. D 96, 124010 (2017)] constructed a phenomenological gravitational waveform
family for nonspinning black-hole binaries that includes subdominant spherical harmonic modes (` = 2,m = ±1),
(` = 3,m = ±3), and (` = 4,m = ±4) in addition to the dominant quadrupole mode, (` = 2,m = ±2). In this
article, we construct analytical models for the (` = 3,m = ±2) and (` = 4,m = ±3) modes and include them
in the existing waveform family. Accurate modeling of these modes is complicated by the mixing of multiple
spheroidal harmonic modes. We develop a method for accurately modeling the effect of mode mixing, thus
producing an analytical waveform family that has faithfulness > 99.6%.

I. INTRODUCTION

The detection of compact binary coalescences is now com-
monplace for the Advanced LIGO [1] and Advanced Virgo [2]
detectors, and they have now produced their first catalogue of
such detections [3]. The accurate extraction of the parameters
and hence the science output from these events depends on the
accurate modeling of the gravitational waves (GWs) from such
sources. Detection of GWs from compact binaries primarily
relies on the method of matched filtering, which requires hun-
dreds of thousands of signal templates to be compared against
the data (e.g., [4, 5]). Inference of source parameters from
observed signals also relies on comparing the data with theo-
retical waveform templates [6]. Although numerical relativity
(NR) provides the most accurate template waveforms, the large
computational cost and sparse parameter space coverage of the
NR simulations make the direct implementation of NR wave-
forms in GW data analysis challenging (see [7, 8] for some
recent work in this direction). Over the past decade, there has
thus been a considerable effort devoted to developing quick-
to-evaluate accurate waveform models for the detection and
parameter estimation of GWs from the inspiral, merger, and
ringdown of binary black holes, e.g., [9–28].

Most of these (semi) analytical waveforms contain only the
dominant multipoles (quadrupole) of the gravitational radia-
tion, though higher multipole models are now starting to be
developed [12, 29–33]. Studies show that neglecting the higher
modes can result in a considerable reduction in the sensitiv-
ity of searches for high-mass, higher-mass-ratio binary black
holes [34–37]. Neglecting these modes can also lead to sys-
tematic biases in the parameter estimation of LIGO events
from binaries with large mass ratios or high inclination angles,

thus biasing our inference of the astrophysical properties of
the sources [34, 36, 38]. The inclusion of higher multipoles
is also expected to provide several other advantages, such as
improvements in the precision of parameters extracted from
the data [8, 31, 39–46] and in the accuracy of various observa-
tional tests of GR [47], the detection of GW memory [48, 49],
etc.

In this paper, we extend our previous higher multipole wave-
form family for nonspinning binary black holes [50] to in-
clude some additional subdominant spherical harmonic modes
(` = 3,m = 2 and ` = 4,m = 3) which have a more com-
plicated behavior in their post-merger part of the waveforms
due to an effect known as mode mixing.1 As a consequence,
they posses some unusual bumps in the post-merger part which
make it difficult to model them accurately. The dominant
cause for mode mixing is the mismatch between angular basis
functions used in NR (i.e., spin −2 weighted spherical harmon-
ics) and in Kerr black hole perturbation theory (i.e., spin −2
weighted spheroidal harmonics) [51].2 As GW observations
are entering a regime of precision astronomy, such as preci-
sion tests of general relativity (GR) [54–57], modeling of such
subtle effects in the waveforms becomes important.

We introduce a method for approximately extracting the un-
mixed spheroidal harmonic modes from the spherical harmonic

1 Since we are considering nonprecessing binaries, we will only refer to the
modes with positive m explicitly, as the modes with negative m can be
obtained from the positive m modes by symmetry. Additionally, we will
refer to the modes using just `m for the remainder of the paper.

2 See [52] for an initial study of this effect and [53] for a further study of
mode mixing in numerical relativity waveforms.
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modes (the quasi-normal modes separate in the spheroidal ba-
sis). We then model these unmixed modes using suitable phe-
nomenological functions motivated by black hole perturbation
theory and finally reintroduce the mixing to obtain the model
for the spherical harmonic modes. The resulting waveform
model is highly faithful (faithfulness > 99.6%) and fast to
evaluate.

We describe our method for removing the mode mixing ap-
proximately and modeling the resulting “unmixed” modes in
Sec. II, where we also describe how we add the mode mixing
back in to the final model and test its accuracy by computing
matches with hybrid waveforms. We summarize and conclude
in Sec. III. Additionally, we list the waveforms used for cali-
bration and validation in Appendix A and give some additional
plots in Appendix B. Throughout the paper we denote the bi-
nary’s total mass by M. We also denote the real and imaginary
parts of quantities by a superscript R and I, respectively.

II. AN IMPROVED WAVEFORM MODEL FOR
SUBDOMINANT MODES

A. Mixing of spherical and spheroidal harmonic modes

The two polarizations h+(t) and h×(t) of GWs can be ex-
pressed as a complex waveform h(t) := h+(t) − i h×(t). It is
convenient to expand this in terms of the spin −2 weighted
spherical harmonics so that the radiation along any direction
(ι, ϕ0) in the source frame can be expressed as

h(t; ι, ϕ0) =
∑
`≥2

∑
|m|≤`

Y`m(ι, ϕ0) Yh`m(t). (2.1)

The spherical harmonic modes Yh`m(t) = A`m(t) ei φ`m(t) are
purely functions of the intrinsic parameters of the system (such
as the masses and spins of the binary), while all the angu-
lar dependence is captured by the spherical harmonic basis
functions Y`m(ι, ϕ0). Here, by convention, the polar angle ι is
measured with respect to the orbital angular momentum of the
binary. The leading contribution to h(t; ι, ϕ0) comes from the
quadrupolar 22 modes.

We construct spherical harmonic modes of hybrid wave-
forms for different modes using the method described in [36,
50]. Figure 1 shows the amplitude (solid lines in left panel)
and instantaneous frequency (solid lines in right panel) of the
second time derivative of different spherical harmonic modes
of the hybrid waveforms with mass ratio q = 4.3 We note
that the 22, 33, 44, and 21 modes, for which an analytical

3 We consider the second time derivative of h (i.e., the Weyl scalar ψ4) here
instead of h itself in order to give a cleaner illustration. If we make the
same plot using h, we find additional oscillations, even in modes that are not
expected to have significant mode mixing. These oscillations appear to be
due primarily to additional constant and linear terms in h that are removed
by taking the time derivatives. Taking a single time derivative of h (i.e.,
considering the Bondi news) removes most of the oscillations, but taking
a second time derivative removes some remaining oscillations. Since we
are concerned with removing the mode mixing in the frequency domain,

phenomenological model was presented in [50], have smoothly
varying amplitude and frequency. On the other hand, the 32
and 43 modes have some bumps in the post-merger regime
(t > 0). The unusual behavior of these modes is attributed
to what is known as mode-mixing, where multiple spheroidal
harmonic modes are getting mixed in one spherical harmonic
mode. The prime cause of the mode mixing is the mismatch
between the angular basis that is used in NR simulations to
extract waveforms (spherical harmonics) and the one that is
used to separate the Teukolsky equations in Kerr black hole
perturbation theory (spheroidal harmonics) [51].

The mixing of multiple spheroidal harmonic modes creates
multiple frequencies in the ringdown waveform that makes it
hard to model them using simple analytical functions. Figure 2
shows an example of the Fourier domain amplitude |Yh̃R

`m( f )|
of different hybrid modes — note the non-monotonic behavior
seen in the higher frequencies of the 32 and 43 modes. These
modes were thus left out in the phenomenological model pre-
sented in [50]. In this paper, we present a phenomenological
model for the 32 and 43 modes. Our approach is to subtract the
effect of mode mixing from these modes which allows us to
model these “unmixed” modes using methods that were used
earlier, and then reintroduce the effects of mode mixing to
obtain the final model.

B. Removal of mode mixing from the 32 and 43 modes

The binary merger produces a perturbed black hole which
settles into a stationary Kerr black hole. Teukolsky’s solu-
tion for GWs from a perturbed Kerr black hole has a natu-
ral decomposition in spin −2 weighted spheroidal harmon-
ics, S `mn ≡ S `m(a fω`mn) associated with quasinormal mode
(QNM) frequencies ω`mn, where M f a f is the spin angular mo-
mentum of the final black hole (of mass M f ). See, e.g., [58]
for information about the properties of these functions. Thus,
GW polarizations from the ringdown can be written as

h(t; ι, ϕ0) =
∑
`′≥2

∑
|m|≤`′

∑
n≥0

S `′mn(ι, ϕ0) Sh`′mn(t). (2.2)

Here the overtone index n measures the magnitude of the imag-
inary part of the quasinormal mode frequencies ω`mn. Note that
the spheroidal harmonic basis functions S `′mn can be expressed
in terms of (spin −2 weighted) spherical harmonics Y`m as

S `′mn =
∑
`≥|m|

µ∗m``′nY`m, (2.3)

where µm``′n are mixing coefficients which can be computed
simply using the fits provided by Berti and Klein [59] (there
are more complicated fits given in [60]) and the star denotes the

where the time derivatives correspond to a multiplicative factor, there is
nothing lost in illustrating the mode mixing removal in the time domain
using ψ4. We compute the second time derivative by second-order accurate
finite differencing.
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FIG. 1. Left panel: Amplitude of the second time derivative of different spherical harmonic modes Yḧ`m(t) (solid lines) from a nonspinning
binary with mass ratio q = 4. Time t = 0 corresponds to the peak amplitude of 22 mode. Note the oscillations in the 32 and 43 modes for t > 0,
due to the mixing of multiple spheroidal harmonic modes. The dashed lines show the amplitude of the second time derivative of the spheroidal
harmonic modes Sḧ`m0(t) for `m ∈ {32, 43} constructed using the prescription presented in Sec. II B, which are better behaved in the ringdown
regime (t > 0). Right panel: The instantaneous frequency φ̇`m(t) of the second time derivatives of the spherical (solid lines) and spheroidal
(dashed lines) modes. The horizontal lines show the quasi-normal-mode frequencies of different modes. Note that the 32 and 43 spherical
harmonic modes’ frequencies (solid lines) do not approach the corresponding quasi-normal-mode frequencies, while the spheroidal harmonic
modes’ frequencies (dashed lines) do. Note also that the oscillations in the instantaneous frequency of the 21 mode are not due to mixing from
the 31 mode, which has an indistinguishable effect in this plot.
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figure.

complex conjugate.4 By inserting this expansion in Eq. (2.2),
we have

h(t; ι, ϕ0) =
∑
`′≥2

∑
|m|≤`′

∑
n≥0

∑
`≥|m|

µ∗m``′nY`m(ι, ϕ) Sh`′mn(t). (2.4)

Comparing this with Eq. (2.1), we get

Yh`m(t) =
∑
`′≥|m|

∑
n≥0

Sh`′mn(t) µ∗m``′n. (2.5)

Thus, spherical harmonic modes of the hybrid waveforms can
be written in terms of the spheroidal harmonic modes. From
inspection of the different spherical harmonic modes of the
NR data, we get an understanding of the relative amplitudes of
these modes (see, e.g., Fig. 1 in both [12] and [32]). We thus
make the following approximations when removing the mode
mixing:

• The amplitudes of the higher spheroidal overtones are
negligible because their damping times are factors of
& 3 smaller than those of the leading overtone n = 0.
Hence we will only consider mixing from the leading
overtone.

4 We actually substitute µm``′n → (−1)`+`
′
µm``′n, where the prefactor cor-

rects for the difference in the sign convention for spin-weighted spherical
harmonics that we use—the same convention as [61], which is also the one
used in the SpEC code [62]—and the one used by Berti and Klein. There is
an additional factor of (−1)m that we neglect, as it is fixed for each mode
we consider (including its mixed modes).

• For ` = m spherical modes, the mixing contribution from
any mode except the ``0 spheroidal mode is negligible.

• For a general `m spherical mode, contribution from
spheroidal modes with `′ > ` is negligible, since the
higher mode amplitudes are much smaller than the `m0
spheroidal mode, and they are also multiplied by the
mixing coefficient which is already small.

As a result of these approximations, a particular `m spherical
mode will have contribution from spheroidal modes `′m0 with
`′ ≤ ` (and the obvious restriction of `′ ≥ |m|). We thus have

Yh`m(t) '
∑
`′≤`

Sh`′m0(t) µ∗m``′0. (2.6)

To determine the spheroidal modes Sh`′m0(t) from the spherical
modes Yh`m(t), we observe that it is a perfectly determined
system of coupled equations when we consider different `m
spherical modes. To be specific, we compute the following
spheroidal modes:5

Sh320(t) '
Yh32(t) − Yh22(t)µ∗2320/µ

∗
2220

µ∗2330
, (2.7a)

Sh430(t) '
Yh43(t) − Yh33(t)µ∗3430/µ

∗
3330

µ∗3440
. (2.7b)

5 The same procedure also works for modes with m ≤ ` − 2 that have three or
more spheroidal modes mixed into the spherical mode in our approximation,
e.g., the 42 mode studied in [63]. However, this mode has a small enough
amplitude that we do not include it in the present study.
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These spheroidal harmonic modes for a binary with q = 4 are
shown as dashed lines in Fig. 1 (as discussed there, we plot the
second time derivatives to give a cleaner illustration). It can
be seen that the amplitude oscillations seen in the spherical
modes (solid lines) are largely absent in the spheroidal modes
(dashed lines). In addition, the instantaneous frequency (right
panel) of the spheroidal modes approaches the corresponding
quasi-normal-mode frequency.

We can also convert Eqs. (2.7) into the frequency domain,
so that we can remove the mode mixing from the frequency
domain waveforms. Here we want to compute the Fourier
transforms of the real and imaginary parts separately, since in
this nonprecessing case we can focus on just modeling the real
part, and the imaginary part can be obtained from the real part
by a phase shift of π/2. However, we give the expression for
the imaginary part as well, for completeness. A straightfor-
ward calculation, i.e., taking the real and imaginary parts of
Eq. (2.7a) and expressing them in the frequency domain, gives
us the following form for the 32 mode:

Sh̃R
320( f ) ' (α1µ

R
2330 − α2µ

I
2330)/|µ2330|

2,

Sh̃I
320( f ) ' (α2µ

R
2330 + α1µ

I
2330)/|µ2330|

2,
(2.8)

where

α1 := Yh̃R
32( f ) −

(
Yh̃R

22( f )ρR
2320 + Yh̃I

22( f )ρI
2320

)
,

α2 := Yh̃I
32( f ) +

(
Yh̃R

22( f )ρI
2320 −

Yh̃I
22( f )ρR

2320

)
.

(2.9)

Here ρ2320 := µ2320/µ2220 and Yh̃R
`m( f ), Yh̃I

`m( f ) are the Fourier
transforms of the real and imaginary parts of Yh`m(t), respec-
tively. The expressions for the 43 mode are analogous.

The amplitude |Yh̃R
`m( f )| in the Fourier domain is shown for

the 32 and 43 modes in Fig. 3 (lighter shades). There are clearly
two features in the 32 mode at close to the QNM frequencies
of the 320 and 220 modes and similarly for the 43 mode. Now
the “unmixed” modes are constructed as follows:

AU
`m( f ) :=

|Yh̃R
`m( f )|, f < f mix

`m ,

wU
`m|

Sh̃R
`m0( f )|, f ≥ f mix

`m ,
(2.10a)

ΨU
`m( f ) :=

arg(Yh̃R
`m( f )), f < f mix

`m ,

φU
`m + arg(Sh̃R

`m0( f )), f ≥ f mix
`m ,

(2.10b)

where AU
`m( f ) and ΨU

`m( f ) represent the amplitude and phase
of the unmixed modes respectively, while f mix

`m is a transition
frequency. The parameters wU

`m and φU
`m are determined by

demanding the continuity of the amplitude and phase at f mix
`m ,

respectively.
To determine f mix

`m , we note that the bump in the amplitude
of a certain `m spherical harmonic mode due to the mixing
of the (` − 1)m mode always appears at frequencies slightly
below the `m mode’s dominant QNM frequency f QNM

`m . When
f mix
`m is allowed to be a free parameter, it becomes degenerate

with the model parameters [Eq. (2.18)] and thus makes the
model fail, i.e., the parameters appearing in Eq. (2.18) do not
have a simple dependence on η. We find that fixing f mix

`m =

0.9 f QNM
`m gives good agreement of the model parameters with

quadratic functions of η. In Fig. 3, we also plot the unmixed
modes (dashed lines). The bumps in the amplitudes of the
spherical harmonic modes due to mode mixing are significantly
suppressed in the unmixed modes.

C. Construction of the analytical waveform model

To construct models for the amplitude AU
`m( f ) and phase

ΨU
`m( f ), `m ∈ {32, 43}, we follow exactly the same procedure

as Sec. II B of [50]. We calibrate the model to the same hybrid
waveforms used to calibrate the model in [50]. These hybrid
waveforms are constructed by matching NR waveforms from
the SXS Gravitational Waveform Database [29, 64–66], listed
in Appendix A, with post-Newtonian (PN)/effective-one-body
waveforms, using the procedure described in [36, 50]. The
imaginary part of the unmixed mode (in the time domain) is
related to the real part by a phase shift of π/2, due to the
symmetry of nonprecessing binaries. Hence, we only model
the Fourier transform of the real part. The amplitude model is
thus

AU, mod
`m ( f ) =

AIM
`m( f ), f < f A

`m,

ARD
`m ( f ), f ≥ f A

`m,
(2.11)

where f A
`m denotes the transition frequency from the inspiral-

merger part of the waveform to the ringdown in the amplitude.
The inspiral-merger part is modelled as

AIM
`m( f ) = APN

`m ( f )

1 +

k=1∑
k=0

(
αk, `m + αL

k, `m ln v f

)
vk+8

f

 ,
(2.12)

where v f = (2πM f /m)1/3 and APN
`m ( f ) is the Padé resummed

version of the Fourier domain 3PN amplitude of the 32 and
43 modes. The Fourier domain amplitude is obtained using
the stationary phase approximation as in [67], starting from
the time-domain PN results in [68]. We use P0

4 and P0
3 Padé

approximants for the 32 and 43 modes, respectively, similar to
our treatment of the other modes in [50].

The modeling of ARD
`m ( f ) exactly follows Eq. (2.10) of [50],

i.e.,

ARD
`m ( f ) = w`m e−λ`m |B`m( f )| , (2.13)

where B`m( f ) is the Fourier transform of a damped sinusoid:

B`m( f ) =
σ`m − i f

f 2
`m + (σ`m − i f )2

. (2.14)

The frequencies f`m and σ`m are the real and imaginary parts
of the `m0 quasi-normal mode frequency of a Kerr black hole
Ω`m0 = 2π ( f`m + iσ`m), determined from the mass and spin
of the final black hole using the fits from [69–71]. The phe-
nomenological parameter λ`m in Eq. (2.13) is determined from
fits to numerical Fourier transforms of the hybrid waveforms,
while w`m is a normalization constant to make the amplitudes
continuous at the merger-ringdown matching frequency f A

`m.
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The mass and spin of the final black hole are computed from
the masses of the initial black holes using fitting formulae
calibrated to NR simulations, given in [12].

Similarly, for the phase model we have

Ψ
U, mod
`m ( f ) =

ΨIM
`m( f ), f < f P

`m,

ΨRD
`m ( f ), f ≥ f P

`m,
(2.15)

ΨIM
`m( f ) = ΨPN

`m ( f ) +

k=3∑
k=0

(βk, `m + βL
k, `m ln v f + βL2

k, `m ln2 v f ) vk+8
f ,

(2.16)
where ΨPN

`m ( f ) is the PN phasing of the `m mode and f P
`m de-

notes the transition frequency from the inspiral-merger part of
the waveform to the ringdown in the phase. The ringdown part
of the phase is modelled as

ΨRD
`m ( f ) = 2π f tP

`m + φP
`m + arctan B`m( f ), (2.17)

where tP
`m and φP

`m are computed by matching two phases (ΨIM
`m

and ΨRD
`m ) and their first derivative at the matching frequency

f P
`m.

Now, the phenomenological parameters appearing in the
analytical models (for the 32 and 43 modes) are represented as
quadratic functions of the symmetric mass ratio η:

αi, `m = aαi, `m + bαi, `m η + cαi, `m η
2 ,

αL
i, `m = aα,Li, `m + bα,Li, `m η + cα,Li, `m η

2 ,

βk, `m = aβk, `m + bβk, `m η + cβk, `m η
2 ,

βL
k, `m = aβ,Lk, `m + bβ,Lk, `m η + cβ,Lk, `m η

2 ,

βL2
0, `m = aβ,L2

0, `m + bβ,L2
0, `m η + cβ,L2

0, `m η
2 ,

λ`m = aλ`m + bλ`m η + cλ`m η
2 ,

f X
`m = (aX

`m + bX
`m η + cX

`m η
2) /M,

(2.18)

where the index i runs from 0 to 1 and k runs from 0 to 3,
while X ∈ {A, P}. We also refit the phase of the 22 mode
using the smaller number of coefficients given in (2.16); the
fit in [50] has the same form, except that the sum extends up
to k = 4 instead of k = 3. We use this refit since it improves
the 22 mode’s overlap with high mass ratio hybrid waveforms.
Figure 4 provides a comparison of the amplitudes and phases
of the unmixed modes in the Fourier domain with the analytical
fits given by Eqs. (2.11) and (2.15). Figure 5 shows the values
of the phenomenological parameters estimated from the hybrid
waveforms, as well as the fits given in Eq. (2.18).6

6 We find that quadratic polynomials in η provide sufficiently accurate fits
in terms of mismatches. Hence we do not consider higher order fits, even
though there appears to be some substructure that would require a higher-
order polynomial to fit (Fig. 5). It is possible that some of the structure seen
in the 32 and 43 modes’ coefficients for η close to 0.25 is related to the fact
that the mode mixing removal does not work as well for q < 3, as discussed
below.

10−3 10−2 10−1

f M/m

10−3

10−2

10−1

100

A
`m

(
f)

32
f QNM
32

f QNM
22

43
f QNM
43

f QNM
33

FIG. 6. Comparison of the amplitude of the mixed modes for a mass
ratio q = 4, showing the hybrid (solid lines) and analytical model
(dashed lines).

D. Adding the mode mixing contribution into unmixed modes

Having constructed analytical models for the amplitude and
phase of unmixed modes, we need to add the mode mixing
contribution back into this model in order to get the analyt-
ical model for the amplitude and phase of the spherical har-
monic modes Yh̃R

`m( f ). This is done as follows: We denote the
(Fourier domain) model waveform by

Yh̃mod
`m ( f ) := AU, mod

`m ( f ) ei Ψ
U, mod
`m ( f ), (2.19)

where AU, mod
`m ( f ) and Ψ

U, mod
`m ( f ) are given by Eqs. (2.11)

and (2.15). We then write

Mh̃R, mod
32 ( f ) = Yh̃R, mod

22 ( f )ρR
2320 −

Yh̃I, mod
22 ( f )ρI

2320

+ Uh̃R, mod
320 ( f )µR

2330 −
Uh̃I, mod

320 ( f )µI
2330,

(2.20)

where

Uh̃mod
320 ( f ) := ε32

Yh̃mod
`m ( f ) ei δ32π. (2.21)

The expressions for the 43 mode are analogous. Here we have
introduced two free parameters, ε`m and δ`m, corresponding to
the amplitude ratio and phase difference at f mix

`m . We fit these
parameters by minimizing the mismatch of Mh̃R

32( f ) with the
corresponding hybrid mode. They are represented as cubic
functions of the symmetric mass ratio; we find similar func-
tional behavior when we compute the amplitude ratio and phase
difference between mixed (spherical) and spheroidal modes
[Eq. (2.8)] at f mix

`m . Specifically,

ε`m = aε`m + bε`m η + cε`m η
2 + dε`m η

3,
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δ`m = aδ`m + bδ`m η + cδ`m η
2 + dδ`m η

3,

(2.22)

where `m ∈ {32, 43}. The fits for parameters ε`m and δ`m are
shown in the Fig. 5.

The amplitude and phase of the complete model for Yh̃R
`m( f )

for the mixed modes (32 and 43) are finally constructed as
follows:

A`m( f ) =

|Yh̃R, mod
`m ( f )|, f < f mix

`m ,

wM
`m|

Mh̃R, mod
`m ( f )|, f ≥ f mix

`m ,
(2.23a)

Ψ`m( f ) =

arg(Yh̃R, mod
`m ( f )), f < f mix

`m ,

φM
`m + arg(Mh̃R, mod

`m ( f )), f ≥ f mix
`m .

(2.23b)

The parameters wM
`m and φM

`m ensure the continuity of amplitude
and phase at f mix

`m , respectively. We compare the results of the
final model for the spherical harmonics with the hybrids in
Fig. 6.

So far, we have used q = 4 for all our illustrations. We chose
this mass ratio to give a clean illustration in a case where the
higher modes are relatively prominent and the mode mixing
is still fairly large. (The mode mixing decreases as the mass
ratio increases for nonspinning binary black holes, as the final
spin decreases with increasing mass ratio.) We find that the
mode mixing removal is less effective for smaller mass ratios,
for reasons that we do not understand. Nevertheless, we still
find that our model provides an accurate representation of the
waveforms in these cases, as is shown by the match calculations
below. We give illustrations of the mode mixing removal and
the accuracy of the model for q = 2.32 in Appendix B.

E. Assessing the accuracy of the analytical model

We assess the accuracy of our model by computing mis-
matches with the same set of 10 hybrid waveforms used to
validate the model in [50] (which only share 4 waveforms—
primarily high mass-ratio ones—with the set of 8 waveforms
that are used to construct the model; see Appendix A). The
overlaps are computed assuming the design power spectrum of
Advanced LIGO (in the “high-power, zero-detuning” configu-
ration [72]),7 assuming a low-frequency cutoff of 20 Hz, for a
range of total masses.

Figure 7 shows the comparison of our waveform model in
the time domain against the hybrid waveforms for two cases,
firstly when the model waveforms contain only four modes, i.e.,
22, 33, 44, and 21, and secondly when it also includes the 32
and 43 modes in addition to the four modes mentioned before.
The hybrid waveforms contain all modes with ` ≤ 4, except
for the m = 0 modes, which are small and not well-resolved
in the NR simulations. We see that the inclusion of the two
additional modes improves the agreement between the hybrid

7 This noise curve has recently been updated slightly with newer predictions
for the thermal noise [73]. We use the older version.

and phenomenological waveforms. Additionally, comparing
with Fig. 3 in [50], we see the improvement in the face-on case
due to the refit of the 22 mode, as well as the inclusion of the
32 mode; the 43 mode does not contribute for a face-on binary.

While Fig. 7 only shows qualitative agreement between the
phenomenological and hybrid waveforms, Fig. 8 shows the
mismatch plots. The top panel plots show the mismatch (un-
faithfulness) between the hybrid waveforms and the case where
the model waveforms contain only four modes for various in-
clination angles. The bottom panel plots show the mismatch
after including the 32 and 43 modes in the model waveforms
for the same inclination angles. We see that for high mass
ratio waveforms, the maximum mismatch reduces from 1%
to 0.2% for the highest inclination angle ι = π/2. However,
mismatches are even lower (∼ 0.05%) for other inclination an-
gles. The lower mass ratio cases are almost unaffected, though
they show a little improvement. This is expected, because the
contribution of higher modes is significant for high mass ratio
and inclination angles.

We also show the improvement in the accuracy of the model
for the 22 mode alone for higher mass ratios in Fig. 9. This
comes from a refit of this mode’s phase. Unfortunately, this
improvement for higher mass ratios comes at the cost of a
somewhat larger mismatch for mass ratios of 1 and 2. Future
work will consider improvements to the structure of the model
to improve the mismatch for small mass ratios.

III. SUMMARY AND CONCLUSIONS

In this paper, we extend our analytical frequency-domain
phenomenological higher-mode model for gravitational wave-
forms from nonspinning binary black holes [50] to include two
additional subdominant modes, namely the 32 and 43 modes,
in addition to the 22, 33, 44, and 21 modes. This waveform
family now has a faithfulness of > 99.6% for binaries up to a
mass ratio of 10 and a total mass of 200M�, using the design
sensitivity Advanced LIGO noise curve and a low-frequency
cutoff of 20 Hz. The two additional modes that we model in
this paper, i.e., 32 and 43, exhibit the effects of mode-mixing,
i.e., having multiple spheroidal harmonic ringdown modes
mixed into a single spherical harmonic mode. This leads to
bumps in the ringdown part of the waveform. We have intro-
duced a simple way of approximately extracting the unmixed
(spheroidal harmonic) modes. We then model these unmixed
modes using the method used for the other modes in [50].
We then reinstate the mode mixing using the models for the
unmixed modes to obtain the final model for the spherical har-
monic modes. We also refit our model for the dominant 22
mode to improve its accuracy for large mass ratios. This is the
first analytical inspiral-merger-ringdown waveform family that
model the mode mixing effect.

We note that efforts are underway to construct effective-one-
body/phenomenological models for binary black holes with
non-precessing spins [31, 32]. The simple prescription that
we use to model mode mixing effects may be used in these
models as well. Future models aiming for a highly accurate de-
scription of non-quadrupole modes may also need to consider
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FIG. 7. Comparison between hybrid waveforms and our analytical phenomenological waveforms for a binary with mass ratio q = 10. Hybrid
waveforms are constructed using all the modes with ` ≤ 4, except the m = 0 modes. Phenomenological waveforms are constructed by taking
the (discrete) inverse Fourier transform of the analytical model waveforms in the Fourier domain. The top panel corresponds to a “face-on”
binary (inclination angle ι = 0) while the bottom panel corresponds to an “edge-on” binary (ι = π/2). The two phenomenological waveforms
correspond to the current model with and without the 32 and 43 modes.

other sources of mode mixing, e.g., the mode-mixing due to
boosts and displacements from the origin, discussed in [74].
Additionally, as discussed in Appendix B, more accurate deter-
mination of the waveforms at infinity in numerical simulations,
e.g., through Cauchy-characteristic extraction [66, 75–77], will
likely be necessary input for precise models. As GW obser-
vations are becoming precision probes of physics and astro-
physics, accuracy requirements on GW templates can only
grow.
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Appendix A: Numerical relativity waveforms

In Table I, we list the SXS waveforms that are used to fit the
coefficients appearing in Sec. II C and to assess the accuracy
of our model as described in Sec. II E.

Appendix B: Mode mixing removal for lower mass ratios

We give analogs of Figs. 1 and 6 for a mass ratio of q = 2.32
in Figs. 10 and 11. The first of these figures illustrates that
the mode mixing removal is still effective in improving the
agreement of the instantaneous frequency with the expected
QNM frequency, and in reducing the amplitude oscillations
of the 32 mode. However, the mode mixing removal is less
effective for q . 3, for reasons we do not fully understand.
Nevertheless, the second figure shows that the final model for
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FIG. 8. The unfaithfulness (mismatch) of the analytical model waveform family towards hybrid waveforms for inclination angle ι = π/2. The
analytical model waveform family in the top panel contains only the 22, 33, 44, and 21 modes while in the bottom panel the mixed modes
we model here are also included, i.e., also the 32 and 43 modes. The horizontal axes report the total mass of the binary and different curves
correspond to different mass ratios q (shown in the legend). Horizontal black dashed lines correspond to a mismatch of 1%. The overlaps
are computed assuming the design power spectrum of Advanced LIGO (in the “high-power, zero-detuning” configuration [72]), assuming a
low-frequency cutoff of 20 Hz. We do not consider a smaller low-frequency cutoff or smaller total masses due to computational difficulties with
constructing hybrid waveforms starting from lower dimensionless frequencies.

the mixed modes still agrees well with the Fourier transform
of the hybrid.

The numerical noise we find in the instantaneous frequency
of the modes is reduced when considering the NR waveform
with no extrapolation to infinity. Experimentation with the
equal-mass nonspinning Cauchy-characteristic extraction SXS
waveform from [76] finds that this does not suffer from the
numerical noise that is present in the instantaneous frequen-
cies of the analogous finite radius or extrapolated equal-mass
nonspinning SXS waveform modes.
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for the previous phenomenological 22 mode and right plot shows the mismatch for the current phenomenological 22 mode which has been
remodeled. The horizontal axes report the total mass of the binary and different curves correspond to different mass ratios q (shown in the
legend). We can see a significant improvement in the mismatch for high mass ratio waveforms in the right-hand plot.
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FIG. 10. This is the analog of Fig. 1 for mass ratio q = 2.32. The left-hand plot shows the mode mixing removal in the time domain amplitude of
the second time derivatives of the modes and the right-hand plot shows the effects of the mode mixing removal on the instantaneous frequency
of the second time derivatives of the modes. The solid lines show the spherical harmonic modes and the dashed lines show the unmixed
spheroidal harmonic 320 and 430 modes constructed using the procedure in Sec. II B. We see that there are considerably larger oscillations in
the instantaneous frequency of the 320 mode than in Fig. 1, particularly in the frequency. We also see some numerical noise in the frequency
plots, which we find can be attributed to the extrapolation procedure used to obtain the waveform at infinity.
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Simulation ID q Mωorb e # orbits

Fitting

SXS:BBH:0198 1.20 0.015 2.0 × 10−4 20.7
SXS:BBH:0201 2.32 0.016 1.4 × 10−4 20.0
SXS:BBH:0200 3.27 0.017 4.1 × 10−4 20.1
SXS:BBH:0182 4.00 0.020 6.8 × 10−5 15.6
SXS:BBH:0297 6.50 0.021 5.9 × 10−5 19.7
SXS:BBH:0063 8.00 0.019 2.8 × 10−4 25.8
SXS:BBH:0301 9.00 0.023 5.7 × 10−5 18.9
SXS:BBH:0185 9.99 0.021 2.9 × 10−4 24.9

Verification

SXS:BBH:0066 1.00 0.012 6.4 × 10−5 28.1
SXS:BBH:0184 2.00 0.018 7.6 × 10−5 15.6
SXS:BBH:0183 3.00 0.019 6.3 × 10−5 15.6
SXS:BBH:0182 4.00 0.020 6.8 × 10−5 15.6
SXS:BBH:0187 5.04 0.019 5.0 × 10−5 19.2
SXS:BBH:0181 6.00 0.017 7.9 × 10−5 26.5
SXS:BBH:0298 7.00 0.021 4.0 × 10−4 19.7
SXS:BBH:0063 8.00 0.019 2.8 × 10−4 25.8
SXS:BBH:0301 9.00 0.023 5.7 × 10−5 18.9
SXS:BBH:0185 9.99 0.021 2.9 × 10−4 24.9

TABLE I. Summary of the parameters of the NR waveforms used
in this paper: q := m1/m2 is the mass ratio of the binary, Mωorb is
the orbital frequency after the junk radiation and e is the residual
eccentricity. The waveforms listed under the title Fitting are used to
produce the analytical fits described in Sec. II C while those listed
under the title Verification are used for assessing the faithfulness of
the analytical model in Sec. II E.
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FIG. 11. This is the analog of Fig. 6 for mass ratio q = 2.32. The solid
lines show the amplitude of the hybrid and the dashed lines show the
amplitude of our analytical model for the mixed modes (32 and 43).
We can see that the model is able to reproduce the hybrid modes quite
well, even though our mode-mixing removal method for this mass
ratio is less effective as compared to the same for higher mass ratios.
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G. Pratten, and M. Pürrer, Phys. Rev. Lett. 113, 151101 (2014),
arXiv:1308.3271 [gr-qc].

[21] S. Husa, S. Khan, M. Hannam, M. Pürrer, F. Ohme,
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[25] A. Bohé et al., Phys. Rev. D 95, 044028 (2017),
arXiv:1611.03703 [gr-qc].

[26] A. Nagar et al., Phys. Rev. D 98, 104052 (2018),
arXiv:1806.01772 [gr-qc].

[27] S. Khan, K. Chatziioannou, M. Hannam, and F. Ohme, (2018),
arXiv:1809.10113 [gr-qc].

[28] S. T. McWilliams, (2018), arXiv:1810.00040 [gr-qc].
[29] J. Blackman, S. E. Field, C. R. Galley, B. Szilágyi, M. A. Scheel,
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