
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Black hole shadows, photon rings, and lensing rings
Samuel E. Gralla, Daniel E. Holz, and Robert M. Wald
Phys. Rev. D 100, 024018 — Published 12 July 2019

DOI: 10.1103/PhysRevD.100.024018

http://dx.doi.org/10.1103/PhysRevD.100.024018


Black Hole Shadows, Photon Rings, and Lensing Rings

Samuel E. Gralla,1, ∗ Daniel E. Holz,2, 3, † and Robert M. Wald2, ‡

1Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
2Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago, IL 60637, USA

3Department of Astronomy & Astrophysics and Kavli Institute for
Cosmological Physics, University of Chicago, Chicago, IL 60637, USA

The presence of a bright “photon ring” surrounding a dark “black hole shadow” has been discussed
as an important feature of the observational appearance of emission originating near a black hole.
We clarify the meaning and relevance of these heuristics with analytic calculations and numerical
toy models. The standard usage of the term “shadow” describes the appearance of a black hole
illuminated from all directions, including from behind the observer. A backlit black hole casts a
somewhat larger shadow. Neither “shadow” heuristic is particularly relevant to understanding the
appearance of emission originating near the black hole, where the emission profile and gravitational
redshift play the dominant roles in determining the observed size of the central dark area. A photon
ring results from light rays that orbit around the black hole in the near field region before escaping
to infinity, where they arrive near a ring-shaped “critical curve” on the image plane. Although the
brightness can become arbitrarily large near this critical curve in the case of optically thin emitting
matter near the black hole, we show that the enhancement is only logarithmic, and hence is of no
relevance to present observations. For optically thin emission from a geometrically thin or thick disk,
photons that make only a fraction of an orbit will generically give rise to a much wider “lensing ring,”
which is a demagnified image of the back of the disk, superimposed on top of the direct emission.
For nearly face-on viewing, the lensing ring is centered at a radius ∼ 5% larger than the photon ring
and, depending on the details of the emission, its width is ∼ 0.5–1M (where M is the mass of the
black hole). It can be relatively brighter by a factor of 2–3, as compared to the surrounding parts
of the image, and thus could provide a significant feature in high resolution images. Nevertheless,
the characteristic features of the observed image are dominated by the location and properties of
the emitting matter near the black hole. We comment on the recent M87* Event Horizon Telescope
observations and mass measurement.

I. INTRODUCTION

The Event Horizon Telescope (EHT) collaboration re-
cently reported 1.3mm Very Long Baseline Interferom-
etry (VLBI) observations of the nucleus of the nearby
galaxy M87, achieving angular resolution comparable to
the expected size of the supermassive black hole [1–6].
In these papers, the concepts of a “black hole shadow”
surrounded by a “photon ring” have dominated the dis-
cussion of the interpretation of the observations. In this
paper we use analytic calculations and simple models to
gain better understanding and insight into the observ-
able features of emission arising from near a black hole,
paying special attention to shadows and rings.

The shadow and ring heuristics both involve a special
curve on the image plane that Bardeen called the “appar-
ent boundary” [7], and that we will call the critical curve.
By definition, when traced backwards from its observa-
tion by a distant observer, a light ray from the critical
curve will asymptotically approach a bound photon orbit.
Thus, photons which are seen near the critical curve will
have orbited the black hole many times on their way to
the observer. For Schwarzschild, the bound orbits occur
at r = 3M and the critical curve is a circle of apparent
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radius (i.e., impact parameter) b = 3
√

3M ≈ 5.2M (see,
e.g., [8, 9]). For Kerr, the critical curve remains of ap-
proximately the same typical radius [7, 10, 11].

The term “black hole shadow” has come to represent
the interior of the critical curve. The model problem
where this region corresponds to some kind of “shadow”
is when the black hole is illuminated by a distant, uni-
form, isotropically emitting spherical screen surrounding
the black hole (and the observer is far away from the
black hole, but within the radius of the screen). In this
case the region inside the critical curve would be perfectly
dark and the region outside would be uniformly bright.
As we shall discuss in subsection III A, if a Schwarzschild
black hole is instead backlit by a distant planar screen,
the black hole will cast a slightly larger shadow, extend-
ing out to b ∼ 6.2M , with a tiny amount of light emerg-
ing near the critical curve at b ∼ 5.2M (Fig. 3 below).
However, neither of these shadows has much relevance
for determining the appearance of emission from near a
black hole, where the physical emission profile and red-
shift effects play the dominant roles. For emission from
an accretion disk, the main dark area extends simply to
the lensed position of the inner edge of the disk [8, 12].
For example, if the emission extends all the way to the
horizon of a Schwarzschild black hole, the dark area (for
face-on viewing) extends to 2.9M , well within either of
the “shadows” at 5.2M or 6.2M .

The photon ring is a region of enhanced brightness near
the critical curve that arises if optically thin matter emits
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from the region where unstable bound photon orbits ex-
ist [10, 11, 13]. The light rays that comprise the photon
ring can orbit many times through the emission region
and thereby “pick up” extra brightness. Since the opti-
cal path lengths become arbitrarily long near the critical
curve, the brightness can become arbitrarily large (ne-
glecting absorption). One of the purposes of this paper
is to give a quantitative estimate of the size and obser-
vational relevance of this photon ring.

We focus primarily on the simple case of emission
from an optically and geometrically thin disk near a
Schwarzschild black hole, viewed face-on, since the main
features can be understood from this example. We will
also investigate the effects of having a geometrically thick
emission region. (More detailed analysis for inclined
disks in Kerr will appear separately [14].) It will be con-
venient for us to make a distinction between a “photon
ring” and what we call the “lensing ring.” We define
the lensing ring to consist of light rays that intersect the
plane of the disk twice outside the horizon, and we de-
fine the photon ring to consist of light rays that intersect
three or more times (Fig. 2 below). For Schwarzschild,
the photon ring lies at 5.19M < b < 5.23M and the
lensing ring lies between 5.02M and 6.17M . For termi-
nological definiteness, we exclude the photon ring region
from the lensing ring, so that the lensing ring consists of
light rays that cross the disk plane exactly twice.

Away from the lensing ring, i.e. for b < 5.02M or b >
6.17M in Schwarzschild, one would see only the direct
emission from the disk. Within the lensing ring, however,
one would also see a lensed image of the back side of the
disk superimposed upon the direct emission. This lensed
image, of course, would be demagnified and distorted,
and would contain varying viewing angles. Within the
photon ring, one would see an additional image of the
front side of the disk, and, as one gets closer to the critical
curve, one would see additional alternating images of the
back and front sides of the disk.

The properties of the observed emission in the pho-
ton and lensing ring regions depend significantly on the
details of the emission. For example, if there is no emis-
sion at all coming from the region near the bound pho-
ton orbits, there would still be emission appearing at the
photon and lensing rings arising from lensing of emission
elsewhere, and there could still be some enhanced bright-
ness effects (arising from seeing the emission region from
a different “viewing angle”), but it is not plausible that
the photon and lensing rings would be prominent features
of the overall emission. As an extreme example, even if
there is only emission from the disk at very large radii,
there will still be a series of (highly demagnified) lensed
images of the distant disk near the critical curve. At
the opposite extreme, if there is so much emission from
the region near the bound photon orbits that this emis-
sion is optically thick, then there would be no photon or
lensing ring effects at all—all the lensed emission would
be “blocked” by absorption. In intermediate cases, one
could have photon and lensing rings of enhanced bright-
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FIG. 1. Using an example where the lensing ring is partic-
ularly prominent, we illustrate the key features of the image
of a black hole surrounded by an optically and geometrically
thin accretion disk, viewed face-on. The observed intensity
is plotted as a function of impact parameter, b. This figure
is an annotated version of the middle bottom plot in Fig. 5
below. The underlying emission source profile is peaked near
the black hole, falling off by r = 6M (see bottom left panel of
Fig. 5). The inner edge of the observed profile at b . 3M is
the lensed position of the event horizon. (The radius of this
central dark region is considerably smaller than that of the
conventional “black hole shadow” at r = 5.2M .) The ramp-
up outside of the central dark area is due to the gravitational
redshift. The very narrow spike at 5.2M is the photon ring,
while the distinct, broader bump at 5.4M is the lensing ring.
The portion of this bump above the dashed line is the contri-
bution from the image of the back side of the disk; the portion
below the dashed line is from the direct emission from the
front side of the disk. Beyond the lensing ring, the intensity
falls off at a rate determined by the source profile. The yellow
band on the x-axis shows the range of the lensing ring, and
the red band shows the range of the photon ring.

ness, but their exact size and brightness would depend on
the details of where the emission is coming from as well
as its optical depth. Nevertheless, we will argue in this
paper that it is possible to make some general statements
about the importance of the photon and lensing rings.

A key result that allows us to make an unambiguous
statement about the photon ring concerns the behavior
of light rays near the critical curve. As we have al-
ready noted above, for a Schwarzschild black hole the
bound photon orbits are at r = 3M and the critical im-
pact parameter is bc = 3

√
3M . We will show that in

Schwarzschild, both the bending angle and the elapsed
affine parameter near the black hole diverge only as
ln |b − bc| near the critical curve. This implies that in
order to additively lengthen the optical path length of a
light ray through the emission region near the black hole
by a given amount, one must get exponentially closer to
the critical curve. In particular, within the regime of
this approximation, in order to orbit the black hole by
an extra half-orbit (i.e., by an additional angle π), one
must get closer to bc by a factor of eπ ∼ 23. The main
consequence of this is that the light rays that make up



3

the photon ring as defined above can contribute only a
few percent of the total flux contributed by the lensing
ring. Thus, for practical purposes the photon ring can
be ignored and only the lensing ring need be considered.
We show in Appendix A that these results extend to Kerr
black holes at any inclination.

The width and brightness of the lensing ring will de-
pend upon the geometry of the emitting region. If the
emitting region is an optically thin, geometrically thin
disk (viewed nearly face-on) extending near the black
hole, then as we shall illustrate in section III B (see Fig.
2), the lensing ring will be narrow and should not be more
than 2–3 times brighter than the direct emission (where
the direct emission is included in the brightness of the
lensing ring). It therefore should not make an impor-
tant contribution to the observed flux at low resolution.
On the other hand if the emitting region is geometrically
thick and if the emission peaks near the region of bound
photon orbits, then a bending angle of only ∼ π/2 would
be needed to significantly lengthen the optical path. The
photon ring may be wide enough and bright enough to
make a more significant feature in the observed total flux
from the emission, as we shall illustrate in section III C.
Nevertheless, even in this case, the observed emission
would be dominated by the direct image of the emission
profile.

The nature and properties of the enhanced emission
from the photon ring and lensing ring are illustrated in
Fig. 1, which corresponds to the toy model thin disk emis-
sion profile shown in the bottom left panel of Fig. 5.
The observed intensity profile is a redshifted and slightly
distorted version of the source profile, upon which are
superimposed lensing and photon rings. Although very
bright, the photon ring is extremely narrow and makes
a negligible contribution to the overall flux. The lensing
ring is less bright but significantly broader, and for some
emission profiles can make a modest net contribution to
the total flux. The lensing ring feature is particularly
prominent in this example because it lies directly on top
of the broad peak of the direct emission. The completely
dark area is at b . 3M , far smaller than the “shadow”
defined above. The intensity profile shown in Fig. 1 ex-
hibits roughly the maximum possible contribution from
the lensing and photon rings in the case of thin disk emis-
sion, because the emission itself is already peaked in the
region of photon orbits. For a thick disk, the lensing ring
can encompass significantly more of the yellow lensing
band (i.e., it can be broader), but the typical brightness
enhancement will still be 2–3. The contribution to the
observed flux from the photon ring is always negligible.

Some comparison of our terminology with that of the
recent EHT papers [1–6] is in order. In these papers,
the photon ring is introduced as the precise critical curve
b = bc, and the associated theoretical discussion is closely
tied to the unstable photon orbits. The images arising
from simulations discussed in these papers display rings
of enhanced brightness, which the authors refer to as
“photon rings.” These enhanced brightness rings cannot

be “photon rings” as we have defined the term. To the
extent that the enhanced brightness rings are not direct
features of the emission profile, they would be “lensing
rings” in our terminology, and would therefore peak at an
impact parameter roughly 5% larger than that of what
we (and EHT) refer to as the “photon ring.”

In section II we discuss general features of photon tra-
jectories in Schwarzschild. In section III we describe the
appearance of the region near a Schwarzschild black hole
when it is backlit, as well as when there is emission from
an optically thin, geometrically thin or thick disk near
the black hole. Some comments about the case of a Kerr
black hole are given in section IV. In section V we dis-
cuss implications of our findings for EHT observations of
M87*. In the Appendix we show that the optical path
length near the critical photon orbits in Kerr is similar
to the Schwarzschild case, indicating that our conclusions
about photon rings will also hold for Kerr. A more com-
plete analysis of Kerr will be given elsewhere [14].

II. LIGHT BENDING NEAR A
SCHWARZSCHILD BLACK HOLE

The behavior of null geodesics in Schwarzschild space-
time is treated in standard general relativity texts. Null
geodesics possess a conserved energy E and angular mo-
mentum L, with only their ratio b = L/E relevant for
the trajectory. For null geodesics that reach infinity, b is
the impact parameter.

We are interested in the appearance of the region near
the black hole to a distant observer, for various cases
of emission from near the black hole. This can be un-
derstood by tracing null geodesics from the eye of an
observer backwards towards the region near the black
hole. A key result needed to understand the appearance
of what is observed is the total change in orbital plane
azimuthal angle, φ, of the null geodesic as a function of
impact parameter b for such trajectories. This is plotted
in two ways in Fig. 2.

The left plot in Fig. 2 directly shows the total num-
ber of orbits, n ≡ φ/2π, as a function of b. (Note that
“straight line motion” would correspond to n = 1/2, i.e.,
the bending of light rays that do not enter the black hole
is measured by n− 1/2.) The most prominent feature of
this plot is the singularity at b = bc, where

bc = 3
√

3M ≈ 5.1962M. (1)

Null geodesics at this critical impact parameter asymp-
totically approach the bound null geodesics at r = 3M
and thus orbit around the black hole an infinite number
of times.

The right plot gives perhaps a clearer picture of what
an observer—placed at large distances to the right of the
plot—would see. Null geodesics emerging at impact pa-
rameter b < 5.02M originate from the black hole (or,
more precisely, from the the spacetime region where the
black hole was formed) and make less than n = 3/4
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FIG. 2. Behavior of photons in the Schwarzschild spacetime as a function of impact parameter b. On the left, we show the
fractional number of orbits, n = φ/(2π), where φ is the total change in (orbit plane) azimuthal angle outside the horizon.
The thick line is the exact expression, while the dashed line is the approximation, Eq. (2). The colors correspond to n < 0.75
(black), 0.75 < n < 1.25 (gold), and n > 1.25 (red), defined as the direct, lensed, and photon ring trajectories, respectively.
On the right we show a selection of associated photon trajectories, treating r, φ as Euclidean polar coordinates. The spacing
in impact parameter is 1/10, 1/100, and 1/1000 in the direct, lensed, and photon ring bands, respectively. The black hole is
shown as a solid disk and the photon orbit as a dashed line.

orbits around the black hole. Thus, if we call the far
right of the plot the “north pole direction,” these null
geodesics cross the equatorial plane at most once. Light
rays with 5.02M < b < 6.17M have n > 3/4 and thus
cross the equatorial plane at least twice. Those with
5.19M < b < 5.23M have n > 5/4 and thus cross the
equatorial plane at least 3 times. Finally, the light rays
with b > 6.17 have n < 3/4 and thus only cross the
equatorial plane once. For the reasons already indicated
in the Introduction, we will classify these rays as follows:

1. Direct: n < 3/4

b/M /∈ (5.02, 6.17)

2. Lensed: 3/4 < n < 5/4

b/M ∈ (5.02, 5.19) or (5.23, 6.17)

3. Photon ring: n > 5/4

b/M ∈ (5.19, 5.23)

In Fig. 2 these are colored black, gold, and red, respec-
tively.

It is useful to have a simple, analytic approximation
to the bending angle near the critical curve bc. The
Schwarzschild geodesics may be expressed in terms of el-
liptic integrals—see Refs. [8, 15] for details.1 Expanding

1 These references considered the case b > bc only, but the gener-

the elliptic integral near bc gives the approximation,

φ ∼ log

(
C±
|b− bc|

)
, b→ bc

±, (2)

with

C+ =
1944

12 + 7
√

3
M ≈ 80.6M, (3)

C− = 648(26
√

3− 45)M ≈ 21.6M. (4)

The result for b > bc was given by Luminet [8] (see Eq. 7
of that reference). The exact and approximate solutions
are plotted in the left panel of Fig. 2. It can be seen that
the logarithmic approximation (2) is excellent within the
photon ring and most of the lensing ring, with apprecia-
ble (but still < 10%) deviation only at the right-most
edge.

III. SHADOWS AND RINGS

In this section we consider the appearance of a
Schwarzschild black hole under various illumination con-
ditions. In subsection III A we consider a “backlit” black

alization is straightforward.
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hole. In subsection III B we consider emission from an op-
tically and geometrically thin disk around the black hole,
viewed face-on. In subsection III C we consider emission
from a geometrically thick region near the black hole.

A. Backlit Black Hole

For our first model problem, consider a black hole that
is illuminated from behind by a planar screen that emits
isotropically with uniform brightness. We assume that
the screen is infinitely far away and infinite in extent.
This problem is of no physical interest but is quite useful
pedagogically for understanding features of gravitational
lensing by a Schwarzschild black hole.

As in the previous section, we trace the light rays
backwards from the observer. By conservation of surface
brightness (specific intensity), the image has brightness
equal to that of the screen where the relevant light ray
intersects the screen, and otherwise has zero brightness.
The light ray will intersect the screen if and only if b > bc
and n ∈ (j + 1/4, j + 3/4) for j = 0, 1, 2, . . . , where n is
the number of black hole orbits (see Fig. 2). Thus, the
observed brightness, Iobs is given in terms of the emitted
brightness, Iem by

Iobs(b) =

{
Iem, b > bc and n ∈ (j + 1/4, j + 3/4)

0, otherwise
(5)

The main bright region is comprised of the rays deflected
by less than 90◦, which occurs for

b > 6.17M. (6)

The additional bright regions have at least n = 5/4 and
are well within the validity of the log approximation (2).
These form a sequence of rings converging to the critical
curve,

b− bc
C+

∈
(
e−2π(j+3/4), e−2π(j+1/4)

)
, j = 1, 2, . . . (7)

The widest of these rings (j = 1) ranges from

b ∈ (5.1975M, 5.2274M). (8)

That is, the inside edge of the first ring is already just
0.001M outside the critical curve and has a thickness of
only 0.03M , less than 1% the critical curve radius. The
subsequent rings are exponentially closer and narrower.
Thus the image features a dark hole of radius 6.17M ,
together with extremely narrow rings near 5.19M .

The observational appearance of a backlit black hole
is shown in Fig. 3. We would describe this arrangement
as the black hole casting a “shadow” of radius 6.17M ,
into which a tiny amount of light has managed to “sneak
through” to occupy less than 1% of the shadow area.
However, the standard usage of the term “black hole
shadow” refers to the smaller portion within the thin
ring.

FIG. 3. Observational appearance of a Schwarzschild black
hole that is backlit by a large, distant screen of uniform,
isotropic emission. The brightness (beige color) is uniform
where it is non-zero. The large dark area has radius 6.17M ,
and the thin ring of light has radius 5.20M and thickness
0.03M . Inside of this ring is an infinite sequence of tinier and
tinier rings, which are far too thin to display in this figure.
We would regard the larger dark area of radius 6.17M as the
black hole “shadow”, but the standard usage of this term is
to refer the region inside the tiny rings as the shadow.

Finally, suppose that, instead of a distant planar
screen, we had a distant spherical screen surrounding the
black hole—still emitting isotropically and with uniform
brightness—and a distant observer inside the radius of
the screen. Then it can be seen immediately from a
similar analysis that the region b > 3

√
3M ≈ 5.20M

would appear uniformly bright and the region b < 3
√

3M
would be entirely dark. Thus, there would be a smaller
“shadow” and there would be no “rings” around the
shadow.

We note in passing that Luminet [8] considered illu-
mination by a plane-parallel beam of light, mainly dis-
cussing the appearance of the deflected beam in that par-
ticular case.

B. Optically and Geometrically Thin Disk
Emission

We now consider some simple examples where the
emission originates near the black hole from an optically
thin and geometrically thin disk—viewed in a face-on
orientation—whose specific intensity Iν depends only on
the radial coordinate. We assume that the disk emits
isotropically in the rest frame of static worldlines (i.e.,
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the matter is at rest). It would not be difficult to con-
sider the much more realistic cases of orbiting and/or
infalling matter, but for the face-on disk these effects are
degenerate with the choice of radial profile. Our exam-
ples below are intended only as toy models, designed to
illustrate the effects of gravitational lensing, as well as
gravitational redshift.

We take the disk to lie in the equatorial plane, with
our observer at the North pole. We denote the emitted
specific intensity by

Iemν = I(r), (9)

where ν is the emission frequency in a static frame. Since
Iν/ν

3 is conserved along a ray, radiation emitted from a
radius r and received at any frequency ν′ has specific
intensity

Iobsν′ = g3I(r), g =
√

1− 2M/r. (10)

The integrated intensity I =
∫
Iνdν then scales as g4,

Iobs = g4I(r). (11)

We assume that the disk is optically thin, since no in-
teresting photon ring or lensing ring effects will occur
otherwise. If a light ray followed backward from the ob-
server intersects the disk, it will pick up brightness from
the disk emission. But if the light ray has an impact pa-
rameter b such that, in the notation of Fig. 2, we have
n > 3/4, then the light ray will bend around the black
hole and hit the opposite side of the disk from the back.
It will therefore pick up additional brightness from this
second passage through the disk. If n > 5/4, the light
ray will also hit the front side of the disk again. The
observed intensity is a sum of the intensities from each
intersection,

Iobs(b) =
∑
m

g4I|r=rm(b), (12)

where rm(b) is the radial coordinate of the mth intersec-
tion with the disk plane outside the horizon. Here we
have neglected absorption, which would decrease the ob-
served intensity resulting from the additional passages.

We will refer to the functions rm(b) (m = 1, 2, 3, . . . ) as
transfer functions. The transfer function directly shows
where on the disk a light ray of impact parameter b will
hit. The slope of the transfer function, dr/db, at each
b yields the demagnification factor (relative to r, rather
than proper distance) at that b. The first three trans-
fer functions are plotted in Fig. 4. None of the transfer
functions has support for b . 2.9M , so no light appears
inside this radius. Note that this dark region is much
smaller than the “black hole shadow” of the previous
subsection. The first (m = 1) transfer function corre-
sponds to the “direct image” of the disk. The slope is
nearly 1 over its entire range, so the direct image profile
is essentially just the redshifted source profile. The sec-
ond (m = 2) transfer function has support in the “lensing

First
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b/M0
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15

20
r/M

FIG. 4. The first three transfer functions rm(b) for a face-on
thin disk in the Schwarzschild spacetime. Tracing a photon
back from the detector, these represent the radial coordinate
of the first (black), second (gold), and third (red) intersections
with a face-on thin disk outside the horizon.

ring” b/M ∈ (5.02, 6.17) (including in the “photon ring”
portion of this range of b). In this range of b, the ob-
server will see a highly demagnified image of the back
side of the disk, with a variable demagnification given by
the slope of the curve. Over the displayed range of r the
average slope is around 20, indicating that the secondary
image is around 20 times smaller, and hence will typi-
cally contribute around 5% of the total flux. Finally, the
third transfer function has support only in the “photon
ring” b/M ∈ (5.19, 5.23). In this range of b, one will see
an extremely demagnified image of the front side of the
disk. This image—as well as the further images—is so
demagnified that it will always contribute negligibly to
the total flux.

The negligible contribution of the photon ring to the
total flux can be seen analytically as follows. Let us de-
note the edges of the mth image by b±m,

mth image: b ∈ (b−m, b
+
m), (13)

where m = 1, 2, 3+ corresponds to direct, lensed, and
photon ring, respectively. Inverting Eq. (2) gives

|b− bc| ∼ C±e−φ, b→ bc
± . (14)

Thus, the width ∆bm = b+m − b−m is exponentially sup-
pressed,

∆bm ≈ e−π∆bm−1, m→∞ , (15)

i.e., the images are exponentially demagnified.
For optically thin emitting matter present in the region

of photon orbits, the images will superpose. The local
brightness can then become arbitrarily large. However,
because of the exponential demagnification, the average
brightness—which is proportional to flux in a detector—
remains low for all reasonable profiles. For example, sup-
pose that the direct emission from near the photon orbit
has typical brightness Ilocal, while the rest of the disk has
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FIG. 5. Observational appearance of a thin, optically thin disk of emission near a Schwarzschild black hole, viewed from a
face-on orientation. The emitted and observed intensities Iem and Iobs are normalized to the maximum value I0 of the emitted
intensity outside the horizon. The lensing ring at around 5.5M is clearly visible, while the photon ring at 5.2M is negligible.
(Only the first three images (m = 1, 2, 3) are included in these plots.) When the emission stops at some inner edge (top two
rows), the radius of the main dark hole is the apparent position of the edge. When the emission extends to the horizon, the
radius of the main dark hole is the apparent position of the horizon (here b ∼ 3M). The critical curve b = 5.2M (previously
called the “shadow”) plays no role in determining the size of the main dark area.

typical brightness Idisk. If Iring is the average observed
brightness in the lensing ring regime, ∼ 5M–6M , we have

Iring ≈ Ilocal + Idisk(1 + e−π + e−2π + . . . ). (16)

= Ilocal + Idisk
1

1− e−π
(17)

≈ Ilocal + 1.05Idisk, (18)

As long as the local emission is not too different from
the rest of the disk (i.e., as long as there are no very
bright sources outside the direct field of view), then the
typical brightness enhancement is a factor of 2.05. The
main contribution comes from the m = 2 image (the
back side of the disk), while the first “photon ring” image
(m = 3) contributes just 5% to the average brightness of
the lensing ring.

Fig. 5 shows the appearance of the region near the
black hole for a range of source profiles. In the exam-
ple depicted in the top row, the disk emission is sharply
peaked near r = 6M , and it ends abruptly at r = 6M
(see the left panel). Thus, in this example, the region
of emission is well outside the critical photon orbits at
r = 3M . As can be readily seen from the middle panel,
the direct image of the disk looks very similar to the emis-
sion profile, although its abrupt end occurs at b ∼ 7M
due to gravitational lensing. The image of the back side
of the disk (i.e., the “lensing ring” emission) is disjoint
from the direct emission and appears in a narrow ring
near b ∼ 5.5M . The lensing ring emission is confined to
a very thin ring because the back side image is highly
demagnified for r > 6M . As is evident from the right
panel—where the lensing ring emission appears as a tiny
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ring inside the direct image—it makes only a very small
contribution to the total flux. The photon ring emission
is the extremely narrow spike at b ∼ 5.2M in the middle
panel of the top row. It makes a totally negligible con-
tribution to the total flux—one can just barely see it in
the right panel of the top row if one zooms in!2

The second row of Fig. 5 depicts another example of a
sharply peaked emission profile, but this time the emis-
sion peaks right at the photon orbit r = 3M before
abruptly dropping to zero. In this case, redshift effects
noticeably decrease the observed flux. However, the most
important difference from the top row for our consider-
ations is that the lensing ring and photon ring emission
are now superimposed on the direct emission. This pro-
duces a lensing ring spike in the brightness from 5.2M to
5.5M , with a further extremely narrow photon ring spike
at b ∼ 5.2M . Nevertheless, the lensing ring continues to
make only a very small contribution to the total flux, and
the photon ring continues to make an entirely negligible
contribution.

Finally, the bottom row of Fig. 5 depicts emission that
arises mainly from r < 6M but extends all the way down
to the horizon at r = 2M . This case was already depicted
in Fig. 1 above. Again, the lensing ring and photon ring
are superimposed on the direct image. In this case, the
lensing ring is more prominent, but the direct emission
remains dominant. The photon ring continues to be en-
tirely negligible.

Although Fig. 5 shows only a few highly idealized cases
of thin disk emission near a Schwarzschild black hole
(viewed face on), it illustrates two key points that we
believe will hold quite generally for optically thin disk
emission: (1) The emission is dominated by the direct
emission, with the lensing ring emission providing only
a small contribution to the total flux and the photon
ring providing a negligible contribution in all cases. (2)
Although the photon ring always occurs near b ∼ 5.2M
and the lensing ring always occurs somewhat outside this
radius, the size of the dark central area is very much de-
pendent on the emission model. Although the black holes
in the right column of Fig. 5 are the same size, the dark
central areas are very different in size, ranging from radii
of b ∼ 7M to b ∼ 3M .

C. Geometrically Thick Emission

In this subsection, we consider emission from an opti-
cally thin but geometrically thick region near the black
hole. In this case the brightness at each impact param-
eter is an integrated volume emissivity along the line of
sight. The observational appearance will therefore de-
pend in a relatively complex way on both the emission
profile and the shape of the emitting region.

2 High resolution images are available in the Supplemental Mate-
rial [16].

We explore the effects of the shape of the emitting
region by considering a range of highly idealized mod-
els. First, we arbitrarily select an emission region near a
Schwarzschild black hole. We assign a uniform emissivity
to this region and integrate the emissivity along each light
ray (followed backward from the observer). To greatly
simplify our calculations, instead of calculating the true
optical path length of the light ray in the Schwarzschild
geometry, we simply compute the Euclidean path length
through the emission region (treating r, φ as polar coor-
dinates). We also ignore redshift effects. The effects of
these simplifications on our results are small compared
with effects that would result from significantly varying
the emission profiles in the emission region, so we do
not feel that much is lost by making these simplifica-
tions. However, the reader should be aware that our aim
is merely to attain a qualitative understanding of how
the shape of the emission region may affect the observed
appearance, not to obtain physically realistic models of
geometrically thick emission.

Fig. 6 shows nine different choices of emission region.
The top row shows plane parallel disks of various thick-
nesses that extend all the way to the horizon. The middle
row shows tapered discs that terminate at different inner
radii. The bottom row shows spherical emission regions
of various radii. The corresponding observed brightness
for face-on viewing (i.e., arclength) is shown in the gray
plots in the figure.

The main difference that occurs for geometrically thick
emission is that a bending angle between π/2 and π (i.e.,
n between 3/4 and 1) can result in a large increase in
optical path length. As a consequence, the lensing ring
can be brighter and the bright region of the lensing ring
can extend out to b ∼ 6M . Thus, the lensing ring can
provide a more significant feature in the emission than
in the thin disk case. However, it should be noted that
the potential effects of the lensing ring are undoubtedly
overemphasized in the models of the top and middle rows
of Fig. 6, since our assumption of uniform emission over
the entire volume of the emission region allows consider-
able brightness to be picked up from emission far from
the black hole. On the other hand, for a spherical emis-
sion region, there is no clearly demarcated lensing ring
feature.

The photon ring feature at b ∼ 5.2M can be seen in all
nine cases shown in Fig. 6. However, as in the thin disk
case, it contributes negligibly to the total flux. This can
be understood in the same manner as in the thin disk
case.

In summary, for geometrically thick emission, the lens-
ing ring can provide a more significant feature in the ob-
served appearance than in the thin disk case. Neverthe-
less, the basic features of the observed appearance will
be dominated by the emission profile. The photon ring
contributes negligibly to the total flux.
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FIG. 6. Euclidean arclength of each ray with impact parameter b, including only the portion where it intersects a red “emission
region”. The observer is located to the right, as in Fig. 2. The arclength illustrates the contribution to observed brightness
from the effects of extended, optically thin emission. For disk-like emission (top two rows) a lensing ring is clearly present,
with wider disks giving wider rings. The narrow photon ring is also visible. (Finite numerical resolution keeps the height of
the spike finite.) When the emission is more isotropically distributed (bottom row), the lensing and photon ring features blend
with the direct image.

D. Inclined disks

Thus far we have considered disks viewed from a face-
on orientation. For a disk viewed at a modest inclination
(e.g., the presumed 17◦ inclination of the M87* disk), we
would still define the lensing and photon rings as the tra-
jectories that make 2 and 3+ intersections with the disk
plane, respectively, since this is the region of enhanced
brightness. The typical brightness enhancement will still
be a factor of 2–3, with the qualitatively new feature be-
ing variation of the ring thickness around its circumfer-
ence. If α is a polar angle on the image plane and θ is the
inclination between the line-of-sight to the observer and
the disk axis (θ = 0 is face-on), then the first intersection
with the disk plane occurs at n = 1/2+θ/(2π) sinα. The
definitions of photon and lensing rings are those given
above with the replacement

n→ n− θ

2π
sinα. (19)

Note, however, that as θ → π/2 (i.e., for nearly edge-
on viewing) a “lensing ring” defined this way would not
take the shape of a ring, as the backside image of the far

side of the disk makes a large contribution, comparable
to that of the direct image.

In the inclined case, the brightness along the ring will
also vary due to doppler-shift effects. However, this
brightness variation will precisely mirror that of the di-
rect emission (the lensing ring is, after all, just a de-
magnified image of the disk), so the typical brightness
enhancement will remain a factor of 2–3. Our main con-
clusions are therefore unaltered in the case of a modestly
inclined disk.

A discussion of the role of orbiting photons in the ob-
servational appearance of inclined disks was given pre-
viously by Beckwith and Done [12]. Their conclusions
in the nearly face-on case (Fig. 5 therein) agree qualita-
tively with ours. In the nearly edge-on case, the authors
claim a large contribution from orbiting photons, but the
relevant photons in this case execute only a fraction of
an orbit.
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IV. KERR

We now argue that our conclusions from the above
analysis in the Schwarzschild spacetime are qualitatively
unchanged in the more realistic case of a Kerr black
hole. Our first main conclusion was that the photon
ring—defined as photons that intersect the disk at least 3
times—makes a negligible contribution to the flux of an
image spanning a few M . The key observation is that
the number of orbits increases only logarithmically with
distance from the critical curve (Eq. (2) above), making
successive images exponentially demagnified. In the ap-
pendix we prove that the affine path length diverges at
most logarithmically at any point near the critical curve
of the Kerr black hole. This shows that successive im-
ages are at least exponentially demagnified, making the
photon ring negligible.

Our second main conclusion from the Schwarzschild
analysis is the presence of a “lensing ring” from the first
demagnified image of an optically thin emitting disk.
Consider now a disk surrounding a Kerr black hole, lying
in the plane orthogonal to the spin axis. When the disk is
viewed from a face-on angle, the main effect of the spin is
to “drag” the photons around the viewing axis, without
qualitatively affecting propagation in the radial direction.
Thus the typical properties of the lensing ring should be
similar. For nearly edge-on viewing, Kerr photons be-
have rather differently from Schwarzschild photons, and
the properties of the lensing ring could be somewhat dif-
ferent. A more complete analysis of lensing rings in the
Kerr spacetime will be presented in a forthcoming paper
[14].

V. IMPLICATIONS FOR THE
INTERPRETATION OF EHT OBSERVATIONS

OF M87*

The EHT collaboration has reported [1–6] the obser-
vation of an annular feature centered on M87* with a
typical radius of θobs ∼ 21µas. Image reconstruction al-
gorithms favor a width of 30–50% of the diameter, while
fitting to simple ring models favors smaller fractional
widths of 10–20%.3 The brightness along the ring is
asymmetric, presumably due to doppler boosting from
matter orbiting around the jet axis, which is inclined
relative to the line of sight by 17◦. We will ignore the
asymmetry in our discussion, instead focusing on the in-
terpretation of the annulus.

The EHT collaboration reported a measurement [6] of
the black hole mass that is consistent with the “stel-
lar dynamics” value 6.2 × 109M� [17], but inconsis-
tent with an alternative “gas dynamics” measurement of

3 A fractional width of 20% corresponds to roughly one-half the
nominal resolution of the array, a typical lower-bound for the
scale one can probe with visibility fitting.

FIG. 7. Images from Fig. 5 before and after blurring with
a Gaussian filter with standard derivation equal to 1/12 the
field of view (simulating the nominal resolution of the Event
Horizon Telescope). A lensing ring at ∼ 5.4M appears in the
sharp images, but this feature washes out after blurring. (The
photon ring at 5.2M is never relevant.) The effective radius of
the blurred ring, and the size of the dark area, depend directly
on the assumed emission profile near the black hole, with
the critical curve (previously called the “shadow”) playing no
significant role.

3.5× 109M� [18]. This mass measurement was made by
comparing their observations with simulated images gen-
erated by applying a phenomenological prescription for
electron temperature (as a function of ion density, ion in-
ternal energy, and magnetic field strength) to the results
of a bank of general relativistic magnetohydrodynamic
(GRMHD) simulations. These simulated images—or, at
least, the ones used to fit the observations—have peak in
brightness at a location ∼ 10% outside the photon ring.

In many places in [1–6] it is suggested that it is a ro-
bust feature of emission models that the observed emis-
sion will peak near the photon ring. One of the main
conclusions of our analysis is that this is not the case.
In this paper, we have distinguished between a “photon
ring” (light rays that complete at least n = 5/4 orbits)



11

and a “lensing ring” (light rays that complete between
3/4 and 5/4 orbits). For optically thin emission, we have
argued that the “photon ring” always produces a sharp
feature near the critical impact parameter bc (= 3

√
3M

in Schwarzschild) but the peak is so narrow that it never
makes a significant contribution to the observed flux.
The photon ring, as we have defined it, cannot be rel-
evant for the EHT observations. On the other hand, the
lensing ring contributes a broader and more significant
feature. Depending on the geometry of the emitting re-
gion and its emission profile, the lensing ring could be
making a non-negligible contribution to the EHT obser-
vations. Nevertheless, the lensing ring emission is sub-
dominant to the direct emission.

The degree of non-robustness of the observed emission
peaking near the photon ring can be seen clearly if we
return to the images in Fig. 5 for thin disk emission and
blur them to correspond roughly to the EHT resolution,
as shown in Fig. 7. The images of Fig. 5, of course,
do not correspond to realistic emission models, but they
represent a range of illustrative possibilities. The sim-
ple blurring done in Fig. 7 does not correspond to the
EHT image reconstructions—and model fitting should of
course be done in the visibility domain—but the blurring
gives a rough indication of EHT’s current resolution. It
can be seen from Fig. 7 that in all cases, the blurring
washes out the sharp lensing ring feature. In the bottom
row images of Fig. 7, the blurred image peaks at the lo-
cation of the lensing ring, and the lensing ring emission
itself contributes nontrivially to this peak. But in the
middle row images, the peak emission is inside the lens-
ing ring; in the top row images, the peak emission is well
outside the lensing ring. Thus, it is clear that the validity
of the EHT mass measurement is dependent on the va-
lidity of the detailed physical assumptions underlying the
simulated images that are used to fit the observations.
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Appendix A: Path Length Calculation

The key fact underlying the weakness of the photon
ring effect is the slow, logarithmic increase of the path

length with the distance from the critical impact param-
eter. In the Schwarzschild case, photons are confined to
a plane, and in Sec. II we discussed the number of orbits.
Photon trajectories in Kerr are more complicated, and
we instead discuss the elapsed path length directly. We
first establish the general method in the Schwarzschild
spacetime, before turning our attention to Kerr.

1. Schwarzschild

We use a dimensionful parameter s such that pµ =
Edxµ/ds is the four-momentum of the photon, where E
is the conserved energy. Null geodesics satisfy

dr

ds
= ±

√
V (r), V = 1− b2

r2

(
1− 2M

r

)
, (A1)

where r is the Schwarzschild coordinate, E is the con-
served energy and b is the impact factor relative to the
North pole (equal to L/E in terms of the associated con-
served angular momentum L). The impact factor is di-
rectly proportional to the distance from the center of an
image taken on the pole. Since the Schwarzschild metric
is spherically symmetric, we may place our observer on
the pole without loss of generality. Henceforth we regard
b as a radial coordinate on the asymptotic image.

The photon orbits have r = 3M and b = 3
√

3M , and
we define dimensionless fractional deviations by

r = 3M(1 + δr), b = 3
√

3M(1 + δb). (A2)

To preserve the physics of interest (orbits near 3M), δb
and δr must be taken simultaneously to zero at the rate
δb ∝ δr2. Keeping the leading term in this approximation
gives

V ≈ 3δr2 − 2δb. (A3)

Turning points occur where V = 0, i.e. δr = ±
√

(2/3)δb.
When δb < 0 there are no turning points; these trajecto-
ries link the horizon and infinity. When δb > 0, the tra-
jectories that reach infinity only involve the outermost
turning point. We therefore consider just the positive
branch,

δrturn =
√

(2/3)δb. (A4)

We now ask how much affine parameter accumulates in
a region near the photon orbit defined by

−δR < δr < δR (A5)

for some positive δR � 1. First consider δb < 0. There
are no turning points, and from Eq. (A1) we have

∆s = 3M

∫ δR

−δR

dδr√
3δr2 − 2δb

(A6)

=
√

3M log

[
3

−2δb

(
δR+

√
δR2 − (2/3)δb

)2]
.

(A7)
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The logarithmic divergence as δb → 0 is clearly visible.
Now consider δb > 0, where there is a single turning
point. We must also take δR > δrturn for the photon to
enter the region of interest. Using (A4) we then have

∆s = 2× 3M

∫ δR

√
(2/3)δb

dδr√
3δr2 − 2δb

(A8)

=
√

3M log

[
3

2δb

(
δR+

√
δR2 − (2/3)δb

)2]
. (A9)

Comparing with Eq. (A7), we see that the answer for all
cases may be written

∆s =
√

3M log

[
3

2|δb|

(
δR+

√
δR2 − (2/3)δb

)2]
×Θ

(
δR2 − (2/3)δb

)
, (A10)

where Θ(x) is zero if x < 0 and otherwise equal to one.
It is interesting that the equation takes the same form
for δb > 0 and δb < 0. This is a special property of the
region −δR < r < δR for Schwarzschild radius r (and
δR� 1).

For |δb| � (3/2)δR2 we have

∆s ≈
√

3M log

(
6δR2

|δb|

)
. (A11)

This recovers the logarithmic scaling of path length with
impact parameter.

It is straightforward to similarly estimate the lapse in
t and φ. From the definition of the conserved quantities
E and b = L/E, we have

dt

ds
=

1

1− 2M
r

≈ 3 (A12)

dφ

ds
=

b

r2
≈ 1√

3M
. (A13)

Thus from (A11) we have

∆t ≈ 3
√

3M∆φ, (A14)

∆φ ≈ log

(
6δR2

|δb|

)
. (A15)

2. Kerr

We now repeat the analysis for the non-extremal Kerr
metric, using Boyer-Lindquist coordinates (t, r, θ, φ). We
first summarize the basic results on image coordinates
[7] and photon orbits [19] that will be needed for our
analysis. We use the notation of [20], except that our λ

and q are their λ̂ and q̂. The relevant derivations are also
reviewed in Ref. [20]. We will assume 0 < a < M , where
M is the mass and a is the spin parameter.

Each null geodesic possesses two conserved quantities
λ and q, related to the angular momentum and Carter

constant, respectively. For geodesics that reach an ob-
server at infinity at an inclination θ = θo, the impact
parameters (α, β) are given by

(α, β) =

(
− λ

sin θo
,±
√
q2 + a2 cos2 θo − λ2 cot2 θo

)
.

(A16)

The ± reflects the fact that, for each λ and q, there
are two distinct geodesics that reach the observer. Since
(α, β) are proportional to Cartesian distance (x, y) on an
image, we will refer to them as “image coordintaes”. We
emphasize that the observer is at θ = θo, in contrast to
the Schwarzschild calculation, where one can place her
on the pole without loss of generality.

Null geodesics in the Kerr metric satisfy

Σ
dr

ds
= ±

√
R(r), (A17a)

Σ
dθ

ds
= ±

√
Θ(θ), (A17b)

Σ
dφ

ds
= −

(
a− λ

sin2 θ

)
+
a

∆

(
r2 + a2 − aλ

)
, (A17c)

Σ
dt

ds
= −a

(
a sin2 θ − λ

)
+
r2 + a2

∆

(
r2 + a2 − aλ

)
,

(A17d)

where Σ = r2 + a2 cos2 θ, ∆ = r2 + a2 − 2Mr, and

R(r) =
(
r2 + a2 − aλ

)2 −∆
[
q2 + (a− λ)

2
]
, (A18a)

Θ(θ) = q2 + a2 cos2 θ − λ2 cot2 θ. (A18b)

Photon orbits at r = r̃ occur when R(r̃) = R′(r̃) = 0.
This is possible in the range r̃ ∈ [r̃−, r̃+], where

r̃± ≡ 2M

[
1 + cos

(
2

3
arccos± a

M

)]
, (A19)

and the associated conserved quantities are

λ̃ = − r̃
2 (r̃ − 3M) + a2 (r̃ +M)

a (r̃ −M)
, (A20a)

q̃ =
r̃3/2

a (r̃ −M)

√
4a2M − r̃ (r̃ − 3M)

2
. (A20b)

The critical curve {α(r̃), β(r̃)} is parameterized by the
radius r̃ of the associated photon orbit using Eqs. (A20)
and (A16). In the edge-on case θo = π/2, the parameter
r̃ ranges over the full range r̃ ∈ [r̃−, r̃+], i.e., all photon
orbits are “visible”. In general the parameter ranges over
only the subset of values such that β is real, since only
for these photon orbits can nearby photons reach infinity
at the desired observation angle.

We now turn to the path length calculation. The pres-
ence of Σ(r, θ) in Eqs. (A17) means that the r and θ
equations are not fully decoupled. The path length is
given by

∆s =

∫
r2 + a2 cos2[θ(r)]

±
√
R(r)

dr. (A21)
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This expression is to be understood as an integral along
a photon path, choosing (+) during portions of outward
motion and (−) during portions of inward motion. Since
the cosine function is positive and bounded, the path
length is bounded by

∆s ≤
∫

r2 + a2

±
√
R(r)

dr. (A22)

For limits of integration near a photon orbit r̃, we have

∆s . (r̃2 + a2)I, I =

∫
dr

±
√
R(r)

. (A23)

It remains to compute the integral I for limits near a
photon orbit. Following the general approach used above
for Schwarzschild, we let

r = r̃(1 + δr), λ = λ̃(1 + δλ), q = q̃(1 + δq), (A24)

and consider δr � 1, δλ� 1, δq � 1 with δr2 ∼ δλ ∼ δq.
The radial “potential” is approximated as

R ≈ Crδr2 − δB, (A25)

where

δB = Cqδq + Cλδλ (A26)

and

Cr =
4r̃3

(r̃ −M)2
(
r̃3 − 3Mr̃(r̃ −M)− a2M

)
(A27a)

Cq =
−2r̃3

a2(r̃ −M)2

[
r̃5 − 8Mr̃4 + r̃3(a2 + 21M2)

−Mr̃2(10a2 + 18M2) + 17a2M2r̃ − 4a4M

]
(A27b)

Cλ =
2r̃2

a2(r̃ −M)2

[
r̃6 − 8Mr̃5 + r̃4(2a2 + 21M2)

−Mr̃3(10a2 + 18M2) + a2r̃2(a2 + 10M2)

+ a2Mr̃(6M2 − 2a2)− 3a4M2

]
. (A27c)

Turning points occur at δr = ±
√
δB/Cr, provided the

quantity under the square root is positive. As before,
we disregard the inner root, since a trajectory turning
there will not reach infinity. Noting that Cr is positive
outside the horizon, the analysis proceeds identically to
the Schwarzschild case, and we find

I =
r̃√
Cr

log

[
Cr
|δB|

(
δR+

√
δR2 + δB/Cr

)2]
×Θ

(
δR2 + δB/Cr

)
. (A28)

Using Eqs. (A16), (A24) and (A26), it is straightfor-
ward to express δB as a linear combination of the lin-
earized deviations δα and δβ from the critical curve.
Then Eqs. (A28) and (A23) show that the path length
grows at most logarithmically as one approaches the im-
age plane critical curve, meaning that photon ring images
are at least exponentially demagnified.
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“First M87 Event Horizon Telescope Results. VI. The
Shadow and Mass of the Central Black Hole,” ApJ 875
(Apr., 2019) L6.

[7] J. M. Bardeen, “Timelike and null geodesics in the Kerr
metric.,” in Black Holes (Les Astres Occlus), C. Dewitt
and B. S. Dewitt, eds., pp. 215–239. 1973.

[8] J.-P. Luminet, “Image of a spherical black hole with

http://dx.doi.org/10.3847/2041-8213/ab0ec7
http://dx.doi.org/10.3847/2041-8213/ab0ec7
http://dx.doi.org/10.3847/2041-8213/ab0c96
http://dx.doi.org/10.3847/2041-8213/ab0c57
http://dx.doi.org/10.3847/2041-8213/ab0e85
http://dx.doi.org/10.3847/2041-8213/ab0e85
http://dx.doi.org/10.3847/2041-8213/ab0f43
http://dx.doi.org/10.3847/2041-8213/ab0f43
http://dx.doi.org/10.3847/2041-8213/ab1141
http://dx.doi.org/10.3847/2041-8213/ab1141


14

thin accretion disk,” A&A 75 (May, 1979) 228–235.
[9] D. E. Holz and J. A. Wheeler, “Retro-MACHOs: π in

the Sky?,” ApJ 578 no. 1, (Oct, 2002) 330–334,
arXiv:astro-ph/0209039 [astro-ph].

[10] H. Falcke, F. Melia, and E. Agol, “Viewing the Shadow
of the Black Hole at the Galactic Center,” ApJ 528
(Jan., 2000) L13–L16, astro-ph/9912263.

[11] T. Johannsen and D. Psaltis, “Testing the No-hair
Theorem with Observations in the Electromagnetic
Spectrum. II. Black Hole Images,” ApJ 718 (July,
2010) 446–454, arXiv:1005.1931 [astro-ph.HE].

[12] K. Beckwith and C. Done, “Extreme gravitational
lensing near rotating black holes,” MNRAS 359 (June,
2005) 1217–1228, astro-ph/0411339.

[13] M. Jaroszynski and A. Kurpiewski, “Optics near Kerr
black holes: spectra of advection dominated accretion
flows.,” A&A 326 (Oct., 1997) 419–426,
astro-ph/9705044.

[14] S. E. Gralla and A. Lupsasca in preparation (2019) .
[15] H. C. Ohanian, “The black hole as a gravitational

“lens”,” American Journal of Physics 55 (May, 1987)
428–432.

[16] See Supplemental Material at [URL will be inserted by
publisher] for high-resolution images.

[17] K. Gebhardt, J. Adams, D. Richstone, T. R. Lauer,
S. M. Faber, K. Gültekin, J. Murphy, and S. Tremaine,
“The Black Hole Mass in M87 from Gemini/NIFS
Adaptive Optics Observations,” ApJ 729 (Mar., 2011)
119, arXiv:1101.1954.

[18] J. L. Walsh, A. J. Barth, L. C. Ho, and M. Sarzi, “The
M87 Black Hole Mass from Gas-dynamical Models of
Space Telescope Imaging Spectrograph Observations,”
ApJ 770 (June, 2013) 86, arXiv:1304.7273.

[19] E. Teo, “Spherical Photon Orbits Around a Kerr Black
Hole,” General Relativity and Gravitation 35 (Nov.,
2003) 1909–1926.

[20] S. E. Gralla, A. Lupsasca, and A. Strominger,
“Observational signature of high spin at the Event
Horizon Telescope,” MNRAS 475 (Apr., 2018)
3829–3853, arXiv:1710.11112 [astro-ph.HE].

http://dx.doi.org/10.1086/342463
http://arxiv.org/abs/astro-ph/0209039
http://dx.doi.org/10.1086/312423
http://dx.doi.org/10.1086/312423
http://arxiv.org/abs/astro-ph/9912263
http://dx.doi.org/10.1088/0004-637X/718/1/446
http://dx.doi.org/10.1088/0004-637X/718/1/446
http://arxiv.org/abs/1005.1931
http://dx.doi.org/10.1111/j.1365-2966.2005.08980.x
http://dx.doi.org/10.1111/j.1365-2966.2005.08980.x
http://arxiv.org/abs/astro-ph/0411339
http://arxiv.org/abs/astro-ph/9705044
http://dx.doi.org/10.1119/1.15126
http://dx.doi.org/10.1119/1.15126
http://dx.doi.org/10.1088/0004-637X/729/2/119
http://dx.doi.org/10.1088/0004-637X/729/2/119
http://arxiv.org/abs/1101.1954
http://dx.doi.org/10.1088/0004-637X/770/2/86
http://arxiv.org/abs/1304.7273
http://dx.doi.org/10.1023/A:1026286607562
http://dx.doi.org/10.1023/A:1026286607562
http://dx.doi.org/10.1093/mnras/sty039
http://dx.doi.org/10.1093/mnras/sty039
http://arxiv.org/abs/1710.11112

	Black Hole Shadows, Photon Rings, and Lensing Rings
	Abstract
	Introduction
	Light Bending Near A Schwarzschild Black Hole
	Shadows and Rings
	Backlit Black Hole
	Optically and Geometrically Thin Disk Emission
	Geometrically Thick Emission
	Inclined disks

	Kerr
	Implications for the Interpretation of EHT Observations of M87*
	Acknowledgments
	Path Length Calculation
	Schwarzschild
	Kerr

	References


